
Synchronizing Finite Automata

Lecture IV: The Černý Conjecture
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1. Recap

Deterministic finite automata: A = 〈Q,Σ, δ〉.
• Q the state set
• Σ the input alphabet
• δ : Q× Σ → Q the transition function

A is called synchronizing if there exists a word w ∈ Σ∗ whose action resets A ,
that is, leaves the automaton in one particular state no matter which state in
Q it started at: δ(q, w) = δ(q′, w) for all q, q′ ∈ Q.
|Q .w| = 1. Here Q . v = {δ(q, v) | q ∈ Q}.

Any w with this property is a reset word for A .
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2. Example
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A reset word is abbbabbba. In fact, we have verified that this is the shortest
reset word for this automaton.
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3. The Černý Series

Suppose a synchronizing automaton has n states. What is
its reset threshold, i.e., the minimum length of its reset words?

We know an upper bound: there always exists a reset word of length n3−n
6

.
What about a lower bound?
In his 1964 paper Jan Černý constructed a series Cn, n = 2, 3, . . . , of
synchronizing automata over 2 letters.
The states of Cn are the residues modulo n, and the input letters a and b act
as follows:

δ(0, a) = 1, δ(m,a) = m for 0 < m < n, δ(m, b) = m+ 1 (mod n).

The automaton in the previous slide is C4.
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4. The Černý Series

Here is a generic automaton from the Černý series:
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Černý has proved that the shortest reset word for Cn is (abn−1)n−2a of length
(n− 1)2. As other results from Černý’s paper of 1964, this nice series of
automata has been rediscovered many times.
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5. Game

We present a proof of this result using a solitaire-like game.

• The digraph of Cn — the game-board.

• The initial position — each state holds a coin, all coins are pairwise
distinct.

• Each letter c ∈ {a, b} defines a move — coins slide along the arrows
labelled c and, whenever two coins meet at the state 1, the coin arriving
from 0 is removed.

• The goal — to free all but one states.

• The only coin that remains at the end of the game is the golden coin G.
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6. Example
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7. Key Idea

Let P0 be an initial distribution of coins, w a reset word. Denote by Pi the
position that arises when we apply the prefix of w of length i to the position
P0. We want to define the weight wg(Pi) of the position such that

(i) wg(P0) ≥ n(n− 1) and wg(P|w|) ≤ n− 1;

(ii) for each i = 1, . . . , |w|, the action of the ith letter of w decreases the
weight by 1 at most, that is, 1 ≥ wg(Pi−1)− wg(Pi).

Then |w| =
|w|
∑

i=1

1 ≥
|w|
∑

i=1

(

wg(Pi−1)−wg(Pi)
)

=

wg(P0)− wg(P|w|) ≥ n(n− 1) − (n− 1) = (n− 1)2.
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8. Constructing the Weight Function

The trick consists in letting the weight of each coin depend on its relative
location w.r.t. the golden coin.

If a coin C is present in a position Pi, let si(C) be the state covered with C in
this position. Define the weight of C in the position Pi as

wg(C,Pi) := n · di(C) +mi(C)

where mi(C) is the distance from si(C) to the state 0 and di(C) is the
distance from si(C) to the state holding the golden coin (recall that the latter
is present in all positions.) Distances are measured on the ‘main circle’ of our
automaton in the direction of arrows.

The weight of Pi is the maximum weight of the coins present in this position.
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9. Example
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Assume the yellow coin is the golden one. Then its weight is 2.
The weight of the blue coin is 5 · 1 + 3 = 8.
The weight of the gray coin is 5 · 3 + 0 = 15.
The weight of the red coin is 5 · 4 + 1 = 21,
and this is the weight of the position.
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10. Properties of the Weight Function. I

We have to check that our weight function satisfies the conditions

(i) wg(P0) ≥ n(n− 1) and wg(P|w|) ≤ n− 1;

(ii) 1 ≥ wg(Pi−1)− wg(Pi) for each i = 1, . . . , |w|.
In the initial position all states are covered with coins. Consider the coin C

that covers the state s0(G) + 1(mod n), that is, the state in one step
clockwise after the state holding the golden coin. Then d0(C) = n− 1 whence

wg(C,P0) = n · (n− 1) +m0(C) ≥ n(n− 1).

Since the weight of a position is not less than the weight of any coin in this
position, we have wg(P0) ≥ n(n− 1).
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11. Properties of the Weight Function. II

In the final position only the golden coin G remains
whence the weight of P|w| is the weight of G. Clearly,
wg(G,Pi) = mi(G) ≤ n− 1 for any position Pi.
In particular, except for the final position, the golden coin can never be the
coin of maximum weight: for any coin C 6= G, we have di(C) ≥ 1 whence
wg(C,Pi) = n · di(C) +mi(C) ≥ n > n− 1 ≥ wg(G,Pi).

Let C be a coin of maximum weight in Pi−1. If the transition from Pi−1 to Pi

is caused by b, then di(C) = di−1(C) (because the relative location of the
coins does not change) and mi(C) = mi−1(C)− 1 if mi−1(C) > 0, otherwise
mi(C) = n− 1. We see that

wg(Pi) ≥ wg(C,Pi) = n · di(C) +mi(C) ≥
n · di−1(C) +mi−1(C)− 1 = wg(C,Pi−1)− 1 = wg(Pi−1)− 1.
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12. Properties of the Weight Function. III

Suppose the transition from Pi−1 to Pi is caused by a. If si−1(C) 6= 0, then
mi(C) = mi−1(C) and

di(C) =

{

di−1(C) if si−1(G) 6= 0,

di−1(C) + 1 otherwise.

Thus, the transition from Pi−1 to Pi cannot decrease the weight.

Assume that C covers 0 in Pi−1. Then in Pi the state 1 holds a coin C′ (which
may or may not coincide with C). In Pi−1 the golden coin G does not cover 0
whence it does not move and di(C

′) = di−1(C)− 1. Therefore

wg(Pi) ≥ wg(C′
, Pi) = n · di(C′) + n− 1 = n · (di−1(C)− 1) + n− 1

= n · di−1(C)− 1 = wg(C,Pi−1)− 1 = wg(Pi−1)− 1.

This completes the proof.
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13. The Černý Function

Define the Černý function C(n) as the maximum reset threshold
of all synchronizing automata with n states. The above property of the series
{Cn}, n = 2, 3, . . . , yields the inequality

C(n) ≥ (n− 1)2.

The Černý conjecture is the claim that in fact the equality

C(n) = (n− 1)2

holds true.
This simply looking conjecture is arguably the most longstanding open problem
in the combinatorial theory of finite automata. Everything we know about the
conjecture in general can be summarized in just one line:

(n− 1)2 ≤ C(n) ≤ min{ 85059n3+90024n2+196504n−10648
85184

, n3 − n}
6

.
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14. Why it is hard?

Why is the problem so surprisingly difficult?

We saw two reasons:
• non-locality: prefixes of optimal solutions need not be optimal (that is why
the greedy algorithm fails);
• combinatorics of finite sets is encoded in the problem.

Yet another reason: “slowly” synchronizing automata turn out to be extremely
rare. The only known infinite series of n-state synchronizing automata with
reset threshold (n− 1)2 is the Černý series Cn, n = 2, 3, . . . , with a few
sporadic examples for n ≤ 6.
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15. 20-State Experiment
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16. 30-State Experiment
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17. Random Automata

Recent massive experiments (see Andrzej Kisielewicz, Jakub Kowalski, and
Marek Szyku la, Computing the shortest reset words of synchronizing automata,
J. Comb. Optim., 29, 88–124 (2015)) involved random DFAs with up to 350
states and up to 10 letters.
Almost all random DFAs are synchronizing and the mean value of reset
thresholds for random n-state automata with 2 input letters turns out to be
close to 2.5

√
n− 5.

Known theoretical results about random automata are still much weaker, but it
has been proved (Mikhail Berlinkov and Marek Szyku la, Algebraic
synchronization criterion and computing reset words, MFCS 2015, LNCS 9234,
103–115 (2015)) that reset threshold of a random n-state automaton with 2
input letters is at most n3/2+o(1).
Later, Cyril Nicaud (The Černý conjecture holds with high probability,
J. Autom. Lang. Comb., 24(2-4): 343–365 (2019)) has shown that the
probability that a random n-state synchronizing automaton has a reset word
of length O(n log3 n) tends to 1 as n → ∞.
Thus, Černý conjecture holds true almost surely.

Moreover, even “slowly” synchronizing automata cannot be discovered
via a random sampling.
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18. Sporadic Examples: n = 2

A synchronizing automaton A = 〈Q,Σ, δ〉 is proper if none of the DFAs
obtained from A by erasing any letter in Σ are synchronizing.
E.g., the Černý automata Cn with n > 2 are proper while C2 is not.

A synchronizing automaton with n states reaches the Černý bound if the
minimum length of its reset words is (n− 1)2. We present here all known
proper synchronizing automata beyond the Černý series Cn, n = 3, 4, . . . that
reach the Černý bound.

For the sake of completeness, we start with n = 2:

0 1
a

a
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19. Sporadic Examples: n = 3

For n = 3 we have three sporadic automata:
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20. Sporadic Examples: n = 4

Also for n = 4 three sporadic automata are known:
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21. Roman’s Automaton

A proper 5-state automaton reaching the Černý bound has been discovered by
Adam Roman (A note on Černý conjecture for automata over 3-letter alphabet,
J. Automata, Languages and Combinatorics, 13, 141–143 (2008)).
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22. Kari’s Automaton

The last in our list and the most remarkable example was found by Jarkko Kari
(A counter example to a conjecture concerning synchronizing words in finite
automata, EATCS Bull., 73, 146 (2001)).
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23. Pin’s Conjecture

Kari’s automaton K6 has refuted several conjectures.

The most well known of them was suggested by Jean-Éric Pin in 1978. Pin
conjectured that if an automaton A = 〈Q,Σ, δ〉 with n states admits a word
w ∈ Σ∗ such that |Q .w| = k, 1 ≤ k ≤ n, then A possesses a word of length
at most (n− k)2 with the same property. (The Černý conjecture corresponds
to the case k = 1.)

However, in K6 there is no word w of length 16 = (6− 2)2 such that
|Q .w| = 2.

Recent exhaustive search experiments (Andrzej Kisielewicz, Jakub Kowalski
and Marek Szyku la, Experiments with synchronizing automata, CIAA 2016,
LNCS 9705, 176–188, 2016) have indicated that likely K6 is the only ‘proper’
counter example to Pin’s conjecture.
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24. Rank Conjecture. I

The rank of a DFA A = 〈Q,Σ, δ〉 is the minimum cardinality of the sets Q .w

where w runs over Σ∗. This is the minimum score that can be achieved in the
solitaire game on the automaton A . Synchronizing automata are precisely
those of rank 1.

A corrected (and perhaps correct) version of Pin’s conjecture is the following
rank conjecture: if an automaton A = 〈Q,Σ, δ〉 with n states has rank k, then
there exists a word w ∈ Σ∗ of length at most (n− k)2 such that |Q .w| = k.

Again, the Černý conjecture corresponds to the case k = 1.
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25. Rank Conjecture. II

Kari’s automaton does not refute the rank conjecture!
In the solitaire game on K6, no sequence of 16 moves removes 4 coins.
However, 4 is not the maximum number of tokens that can be removed! One
can show that 5 states can be freed by a sequence of 25 moves — in full
accordance with the rank conjecture.
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