
Synchronizing Finite Automata

Lecture III: Complexity Issues

Mikhail Volkov

Ural Federal University

Spring of 2021

Mikhail Volkov Synchronizing Finite Automata

1. Recap

Deterministic finite automata (DFA): A = 〈Q,Σ, δ〉.
• Q the state set
• Σ the input alphabet
• δ : Q× Σ→ Q the transition function

A is called synchronizing if there exists a word w ∈ Σ∗ whose action resets A ,
that is, leaves the automaton in one particular state no matter which state in
Q it started at: δ(q, w) = δ(q′, w) for all q, q′ ∈ Q.
|Q .w| = 1. Here Q . v = {δ(q, v) | q ∈ Q}.

Any w with this property is a reset word for A .

Mikhail Volkov Synchronizing Finite Automata

2. Example

0 1

23

a

b

b

b

b

a

aa

A reset word is abbbabbba. In fact, this is the shortest reset word for this
automaton.

Mikhail Volkov Synchronizing Finite Automata

3. Greedy Algorithm

There is a algorithm that uses a natural greedy strategy and, when given a
synchronizing automaton A with n states, finds a reset word of length at most
n3

−n

6
for A spending polynomial time as a function of n. (In fact, time is

O(n3)).

GreedyCompression(A)
1: ⊲ Initializing the current wordw← ε

2: ⊲ Initializing the current setP ← Q

3: while |P | > 1 do

4: if |P . u| = |P | for all u ∈ Σ∗ then

5: return Failure
6: else

7: take a word v ∈ Σ∗ of minimum length with |P . v| < |P |
8: ⊲ Updating the current wordw← wv

9: ⊲ Updating the current setP ← P . v

10: return w

Mikhail Volkov Synchronizing Finite Automata

4. Example

We have already seen that the greedy algorithm fails to find a reset word of
minimum length.

0 1

23

a, b

b

b

b

a

aa

03

01 12

23

02 13

a

a

a

b

b

b

b
a

012 013

123 0230123b

a

a

b

a

bb

b

a
a

a b

b

a

b

a

b

a

b

b
a

b

b

a

b

b

a

ba
b

b

b
a

Mikhail Volkov Synchronizing Finite Automata

5. Short Reset Words are Hard to Find

Actually, the gap between the minimum length of a reset word and the length
of the word produced by the greedy algorithm may be arbitrarily large: for each
n > 1 there exists a synchronizing automaton with n states whose shortest
reset word has length (n− 1)2 while the greedy algorithm produces a reset
word of length Ω(n2 log n).

Dmitry Ananichev and Vladimir Gusev (Approximation of reset thresholds with
greedy algorithms, Fundam. Inform. 145:3, 221–227, 2016) have analysed the
worst case behaviour of all natural variants of the greedy algorithm. They have
shown that the gap between the sizes of the solution found by any of these
variants and of the optimal solution can be arbitrarily large.

Now we aim to prove that under standard assumptions (like NP 6= coNP) no
polynomial algorithm, even non-deterministic, can find the minimum length of
reset words for synchronizing automata.

Mikhail Volkov Synchronizing Finite Automata

6. 5-minute Tour in Complexity Theory

Recall what are P, NP, coNP, etc.

These are classes of combinatorial decision problems, i.e., problems whose input
is a finite object (graph, formula, automaton, . . .). and whose question is
whether or not a given object possesses a certain property (which usually gives
the name to the problem).

The answer to each concrete instance of such a problem is either YES or NO.

Mikhail Volkov Synchronizing Finite Automata

7. Example: Graph Coloring

The input of k-COLOR is a graph G.

The question is whether the vertices of G can be labeled with k colors so that
adjacent vertices are assigned different colors.
For the above graph, the answer to 3-COLOR is YES
while the answer to 2-COLOR is NO.

Mikhail Volkov Synchronizing Finite Automata

8. Classes P, NP, and coNP

Arthur, an ordinary man Merlin, a wizard

Mikhail Volkov Synchronizing Finite Automata

9. Classes P, NP, and coNP

A problem is in P if Arthur can solve it in polynomial time (of the size of its
input).
Example: 2-COLOR is in P since Arthur can check in polynomial time whether
or not all simple cycles of a given graph are of even length.

A problem is in NP if, whenever the answer to its instance is YES, Merlin can
convince Arthur that the answer is YES in polynomial time (of the size of the
input).
Example: 3-COLOR is in NP since, given a 3-colorable graph, Merlin can
exhibit its 3-coloring, and Arthur can check in polynomial time that this
coloring is correct.

A problem is in coNP if, whenever the answer to its instance is NO, Merlin can
convince Arthur that the answer is NO in polynomial time (of the size of the
input).

Mikhail Volkov Synchronizing Finite Automata

10. Classes P, NP, and coNP

Clearly P⊆NP and P⊆ coNP.
Is any of the inclusions strict? In other words, is it true that P 6=NP?
This is a VERY BIG PROBLEM
which is worth $1000000 (before tax).
According to the present paradigm, we assume that P 6=NP 6= coNP.
An NP-hard problem is a problem to which any problem from NP can be
reduced in polynomial time.
An NP-complete problem is a problem in NP that at the same time is NP-hard.
Example: 3-COLOR is NP-complete (Leonid Levin, 1973).
How can one prove that a problem is NP-hard? Via a polynomial reduction
from some problem known to be NP-complete.

Mikhail Volkov Synchronizing Finite Automata

11. Short Reset Words are Hard to Decide

Consider the following decision problem:

Short-Reset-Word: Given a synchronizing automaton A = 〈Q,Σ, δ〉 and a
positive integer ℓ, is it true that A has a reset word of length ℓ?

Clearly, Short-Reset-Word belongs to NP: Merlin can non-deterministically
guess a word w ∈ Σ∗ of length ℓ and then Arthur can check if w is a reset word
for A in time ℓ|Q|.

Several authors have observed that Short-Reset-Word is NP-hard by a
transparent reduction from SAT which is a classical NP-complete problem.

Mikhail Volkov Synchronizing Finite Automata

12. SAT

Recall what the Boolean satisfiability problem (SAT) is.

An instance C of SAT is a collection of clauses over a set V of Boolean
variables. A clause over V is a disjunction of literals and a literal is either a
variable in V or the negation of a variable.
Example: C = {x1 ∨ x2 ∨ x3, ¬x1 ∨ x2, ¬x2 ∨ x3, ¬x2 ∨ ¬x3}

A truth assignment on V is any map ϕ : V → {0, 1}. It extends to a map
C → {0, 1} (still denoted by ϕ) via the usual rules:

ϕ(¬x) = 1− ϕ(x), ϕ(x ∨ y) = max{ϕ(x), ϕ(y)}.

A truth assignment ϕ satisfies C if ϕ(c) = 1 for all c ∈ C.

The answer to an instance C is YES if C has a satisfying assignment (i.e., a
truth assignment on V that satisfies C) and NO otherwise.

Mikhail Volkov Synchronizing Finite Automata

13. Reduction from SAT

Given an instance C of SAT with n variables x1, . . . , xn and m clauses
c1, . . . , cm, one constructs A (C) with 2 input letters a and b and the state set
{z, qi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n+ 1}.

The transitions are defined by:

qi,j . a =

{

z if xj occurs in ci,

qi,j+1 otherwise
for 1 ≤ i ≤ m, 1 ≤ j ≤ n;

qi,j . b =

{

z if ¬xj occurs in ci,

qi,j+1 otherwise
for 1 ≤ i ≤ m, 1 ≤ j ≤ n;

qi,n+1 . a = qi,n+1 . b = z for 1 ≤ i ≤ m;

z . a = z . b = z.

Mikhail Volkov Synchronizing Finite Automata

14. Reduction from SAT

For C = {x1 ∨ x2 ∨ x3, ¬x1 ∨ x2, ¬x2 ∨ x3, ¬x2 ∨ ¬x3}:

q1,2 q1,4q1,1 q1,3

q2,2 q2,3 q2,4q2,1

q3,4q3,1 q3,2 q3,3

q4,2 q4,4q4,1 q4,3

b b

a, b

b

a, b a a

a b

a, b a

x1 x2 x3

c1

c2

c3

c4

z

b

Mikhail Volkov Synchronizing Finite Automata

15. Reduction from SAT

It is easy to see that A (C) is reset by every word of length n+ 1 and is reset
by a word of length n if and only if C is satisfiable.
In the above example the truth assignment x1 = x2 = 0, x3 = 1 satisfies C

and the word bba resets A (C).

If we change C to C′ = {x1 ∨ x2, ¬x1 ∨ x2, ¬x2 ∨ x3, ¬x2 ∨ ¬x3}, it becomes
unsatisfiable and A (C′) is reset by no word of length 3.
Thus, assigning the instance (A (C), n) of Short-Reset-Word to an
arbitrary n-variable instance C of SAT, one gets a polynomial reduction which
is in fact parsimonious, i.e., there is a 1-1 correspondence between the
satisfying assignments for C and reset words of length n for A (C).

Mikhail Volkov Synchronizing Finite Automata

16. Reduction from SAT

For C = {x1 ∨ x2, ¬x1 ∨ x2, ¬x2 ∨ x3, ¬x2 ∨ ¬x3}:

q1,2 q1,4q1,1 q1,3

q2,2 q2,3 q2,4q2,1

q3,4q3,1 q3,2 q3,3

q4,2 q4,4q4,1 q4,3

b b

a, b

b

a, b a a

a b

a, b a

x1 x2 x3

c1

c2

c3

c4

z

a, b

Mikhail Volkov Synchronizing Finite Automata

17. Shortest Reset Words are Even Harder to Decide

Now consider the following decision problem:

Shortest-Reset-Word: Given a synchronizing automaton A and a positive

integer ℓ, is it true that the minimum length of a reset word for A is equal to ℓ?

Assigning the instance (A(C), n+ 1) of Shortest-Reset-Word to an
arbitrary system C of clauses on n variables, one sees that the answer to the
instance is “Yes” if and only if C is not satisfiable. This is a polynomial
reduction from the negation of SAT to Shortest-Reset-Word whence the
latter problem is coNP-hard. As a corollary, Shortest-Reset-Word cannot
belong to NP unless NP=coNP.

Shortest-Reset-Word has been shown to be complete for DP (Difference
Polynomial-Time) by Jörg Olschewski and Michael Ummels, The complexity of
finding reset words in finite automata, MFCS 2010, LNCS 6281: 568–579,
2010.

Mikhail Volkov Synchronizing Finite Automata

18. Computing is Harder than Deciding

PNP[log] is the class of all problems that can be solved by a deterministic
polynomial-time Turing machine that has an access to an oracle for an
NP-complete problem, with the number of queries being logarithmic in the size
of the input.
DP is contained in PNP[log] (for every problem in DP two oracle queries suffice)
and the inclusion is believed to be strict.

The problem of computing the minimum length of reset words is complete for
the functional analogue FPNP[log] of PNP[log] — Olschewski and Ummels, loc.
cit.

Finding the shortest reset words may be even harder than computing their
length but the exact complexity is not yet known.

Mikhail Volkov Synchronizing Finite Automata

19. Non-approximability: Constant Factor

However, all these results were consistent with the existence of very good
polynomial approximation algorithms for the problem!

Mikhail Berlinkov has shown that under NP 6=P, for no k, there may exist a
polynomial algorithm that, given a synchronizing automaton with two input
letters, produces a reset word whose length is less than k×minimum possible
length of a reset word (Approximating the minimum length of synchronizing
words is hard, Theory Comput. Syst. 54:2, 211–223, 2014).

The next question was: is approximating within a logarithmic factor possible?

Mikhail Volkov Synchronizing Finite Automata

20. Non-approximability: Logarithmic Factor

Michael Gerbush and Brent Heeringa (Approximating minimum reset sequence,
CIAA 2010, LNCS 6482: 154–162, 2010) have observed that Set Cover

admits a transparent reduction to the problem of finding a reset word of
minimum length for a given synchronizing automaton. Recall that an instance
of Set Cover consists of a set S, a family {Ci}i∈I of subsets of S and a
positive integer N . The question is whether or not there exists a subset J ⊆ I

such that |J | ≤ N and
⋃

j∈J
Cj = S.

Using a difficult result on Set Cover by Alon, Moshkovitz and Safra, Gerbush
and Heeringa have deduced that the minimum length of reset words for
synchronizing automata with n states and unbounded alphabet cannot be
approximated within the factor c log n for some constant c > 0 unless P=NP.
Berlinkov has obtained a similar result for synchronizing automata with only 2
input letters (On two algorithmic problems about synchronizing automata, DLT
2014, LNCS 8633: 61–67, 2014).

Mikhail Volkov Synchronizing Finite Automata

21. Non-approximability: Sublinear Factor

Finally, Pawel Gawrychowski and Damian Straszak have shown that for every
ε > 0 it is not possible to approximate the length of the shortest reset word for
synchronizing automata with n states within a factor of n1−ε in polynomial
time, unless P=NP (Strong inapproximability of the shortest reset word,
MFCS 2015 Part 1, LNCS 9234: 243–255, 2015).

This is an ultimate result in a sense because polynomial algorithms that
approximate the length of the shortest reset word within a linear factor are
known.
For instance, Gerbush and Heeringa (loc. cit.) constructed an algorithm that,
given a synchronizing automaton with n states and m input letters, finds its
reset word with length ≤ ⌈n−1

k−1
⌉ℓ, where ℓ is the length of its shortest reset

word, in time O(kmnk + n4

k
). Here k > 1 is a lookahead parameter.

Mikhail Volkov Synchronizing Finite Automata

22. Constrained Synchronization

So far we allow reset words to be arbitrary words over the input language of the
corresponding DFA. In reality, however, available commands might be subject
to certain restrictions. For instance, it is quite natural to assume that a reset
word should always start and end with a specific command that first switches
the automaton to a ‘directive’ mode and then returns the automaton to its
usual mode: compare with $ tag in TEX.

In symbols, given a DFA A = 〈Q,Σ〉, we fix a letter a ∈ Σ and seek a reset
word from the (regular) language a(Σ \ {a})∗a. Does A admit synchronization
under such a constraint?

Mikhail Volkov Synchronizing Finite Automata

23. Constrained Synchronization: An Example

The constraint language a(Σ \ {a})∗a is very simple and looks innocent.
Therefore the following result was somewhat surprising.

Theorem (Henning Fernau, Vladimir Gusev, Stefan Hoffmann, Markus Holzer,
Mikhail Volkov, and Petra Wolf, MFCS 2019)

The problem of deciding whether a given A = 〈Q,Σ〉 has a reset word from
the language a(Σ \ {a})∗a, for a fixed letter a ∈ Σ, is PSPACE-complete if
|Σ| ≥ 3 and NP-complete if |Σ| = 2.

To prove hardness we reduce from DFA-Intersection Nonemptiness.
Membership in PSPACE is easy due to Savitch’s Theorem.
A relatively nontrivial part is membership in NP for |Σ| = 2.
There are DFAs A = 〈Q, {a, b}〉 for which the least N such that abNa is a
reset word for A is exponentially big with respect to |Q|. One can guess N in
binary, but a direct verification that abNa resets A may be unfeasible.

Mikhail Volkov Synchronizing Finite Automata

24. Regular Constraints

Let L ⊆ Σ∗ be a regular language. The L-Synchronization problem asks
whether a given DFA whose input alphabet is Σ admits a reset word in L. It is
easy to show that this problem is in PSPACE for each regular L.

The ultimate goal is to classify regular languages L according
to the computational complexity of L-Synchronization.

For which complexity classes C can L-Synchronization be C-complete?

Recall that L = ab∗a provides NP-completeness while for L = a(b+ c)∗a we
get PSPACE-completeness. Of course, L-Synchronization can be in P.

So far we have not found representatives for any other complexity class so that
one can state a trichotomy conjecture (but I do not believe in it).

Mikhail Volkov Synchronizing Finite Automata

