§ 3. LR(1)-автомат, LR(1)-анализатор, LR(1)-грамматика

Опр. LR(1)-пунктом расширенной грамматики G называется набор (A, β_1, β_2, a) , где $A \to \beta_1 \beta_2$ – правило грамматики, $a \in \Sigma \cup \{ \longrightarrow \}$.

Обозначение: $[A \rightarrow \beta_1 \bullet \beta_2, a]$.

Опр. Ядром LR(1)-пункта называется пункт $[A \to \beta_1 \bullet \beta_2]$.

Опр. LR(1)-пункт $[A \to \beta_1 \bullet \beta_2, a]$ называется допустимым для активного префикса $\gamma = \gamma' \beta_1$ некоторой r-формы, если существует вывод $S' \Rightarrow^* \gamma' A v \Rightarrow \gamma' \beta_1 \beta_2 v \Rightarrow^* u v$, и цепочка $v \longrightarrow$ начинается символом a.

Комментарий: в процессе анализа после переноса в стек β_2 во входном потоке будет a, поскольку v – необработанная часть цепочки.

Опр. Автомат LR(1)-пунктов содержит переходы двух видов:

1)
$$\delta([A \to \beta_1 \bullet X \beta_3, a], X) = [A \to \beta_1 X \bullet \beta_3, a];$$

2)
$$\delta([A \to \beta_1 \bullet B\beta_3, a], \varepsilon) = [B \to \bullet \beta, b]$$
, где $b \in FIRST(\beta_3 a)$.

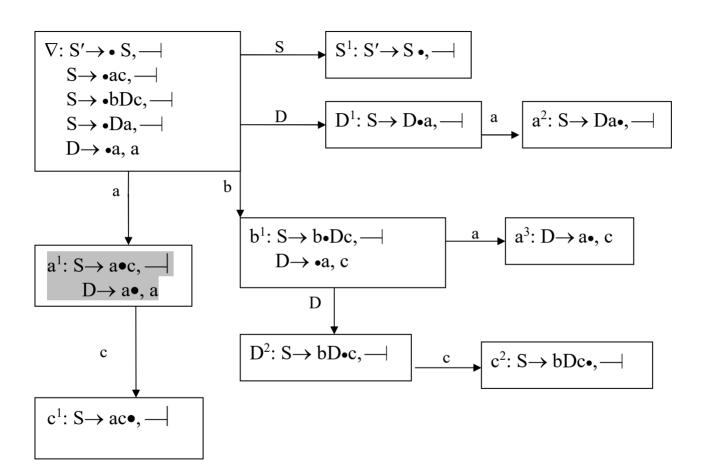
Начальное состояние автомата: LR(1)-пункт [S' \rightarrow • S, —] . Заключительные — все состояния.

Комментарий: в процессе построения переходов такого автомата появляются только допустимые LR(1)-пункты (покажем позже).

Опр. LR(1)-автоматом грамматики G называется ϵ -замыкание автомата LR(1)-пунктов.

Комментарий: в задачах на практических занятиях будем строить ϵ -замыкание без поиска ϵ -НКА LR(1)-пунктов.

Пример. $G=\{S'\to S, S\to ac| bDc| Da, D\to a\}$. (стр. 171 учебного пособия А.Ф. Шура и А.П. Замятина содержит ошибку)


1) Построим массив FIRST для нетерминалов грамматики:

нетерм.	FIRST()
S'	
S	
D	

$G=\{S'\rightarrow S, S\rightarrow ac| bDc| Da, D\rightarrow a\}.$

нетерм.	FIRST()
S'	a, b
S	a, b
D	a

2) LR(1)-автомат:

Алгоритм построения LR(1)-анализатора

Заполнение ACTION:

- 1) В строке $q = [S' \to S_{\bullet}, ---]$ в столбце заносим $\sqrt{(допуск)}$.
- 2) В каждой строке q, не заполненной в 1):

для каждого пункта [$A \to \alpha \bullet$, a], в столбце a заносим \otimes n (свертка); для каждого пункта [$A \to \beta_1 \bullet a\beta_3$, b] в столбце a заносим $a^i = \leftarrow \delta(q,a)$ (перенос).

Заполнение GOTO:

В каждой строке q для каждого пункта $[A \to \beta_1 \bullet B\beta_3, b]$ в столбце В заносим $B^j = \delta(q, B)$.

Напоминание: обозначение *а* для элементов $\Sigma \cup \{ \longrightarrow \}$, обозначение В для элементов Γ .

Опр. Грамматика называется LR(1)-грамматикой, если построенная таблица анализатора не содержит конфликтов.

Комментарий: $\{ SLR(1)$ -грамм. $\} \subset \{ LR(1)$ -грамм. $\}$

Точное доказательство будет следовать из основной теоремы LR-анализа, основная идея будет следовать из факта, что при выводе

$$S' \Rightarrow^* \gamma' A v \Rightarrow \gamma' \beta_1 B \beta_3 v \Rightarrow^* u v$$
, соответствующем переходу $\delta([A \to \beta_1 \bullet B \beta_3, a], \varepsilon) = [B \to \bullet \beta, b]$, выполняется FIRST $(\beta_3 a) \subseteq$ FOLLOW (B) .

Следствие: $LR(0) \subset SLR(1) \subset LR(1)$.

Пример, рассмотренный ранее $G=\{S'\rightarrow S, S\rightarrow ac|\ bDc|\ Da,\ D\rightarrow a\}.$

		AC	GOTO			
	а	b	С	$\overline{}$	S	D
∇						
a^1						
a^2 a^3						
a^3						
b^1						
c^1						
$ \begin{array}{c} c^1 \\ c^2 \\ S^1 \end{array} $						
S^1						
\mathbf{D}^1						
D^2						

		AC	GOTO			
	а	b	С		S	D
∇	<i>←a</i> ¹	<i>←b</i> ¹			S^1	\mathbf{D}^1
a^1	⊗5		<i>←c</i> ¹			
a^2				⊗4		
a^3			⊗5			
b^1	<i>←a</i> ³					D^2
c^1				⊗2		
c^2				⊗3		
S^1						
D^1	<i>←a</i> ²					
D^2			$\leftarrow c^2$			

Вопрос: является ли G LR(1)-грамматикой?

Упр. Является ли G LR(0)-грамматикой, SLR(1)-грамматикой?

Указание: рассмотреть FOLLOW(D).