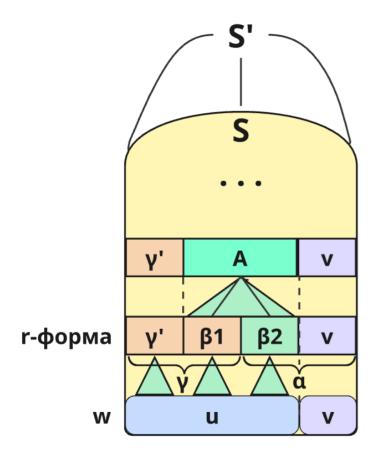
§ 5. Основная теорема LR анализа

Вернемся к LR(0)-пунктам и ε-НКА пунктам.

Опр. Пункт $[A \to \beta_1 \bullet \beta_2]$ называется допустимым для активного префикса $\gamma = \gamma' \beta_1$ некоторой r-формы $\gamma \alpha$, если существует правый вывод

 $S' \Rightarrow^* \gamma' A v \Rightarrow \gamma' \beta_1 \beta_2 v \Rightarrow^* uv$ (см. рис. 1). $(\gamma', \beta_1, \beta_2)$ может содержать нетерминалы, u,v содержит только терминалы)

Рис. 1



Теорема (основная теорема LR-анализа). Пусть G — зафиксированная расширенная грамматика. I_G — ее автомат пунктов. Пункт q = $[A \to \beta_1 \bullet \beta_2]$ является допустимым для активного префикса γ некоторой r-формы \Leftrightarrow в автомате пунктов I_G есть путь из q_0 в q, помеченный цепочкой γ .

Доказательство:

Будем называть «базисными» пунктами те пункты $q = [A \to \beta_1 \bullet \beta_2]$, где $\beta_1 \neq \varepsilon$ (точка не в начале) (β_2 может быть равным ε), и пункт $[S' \to \bullet S]$.

Будем называть «базисными» переходами – переходы с пометками, не равными ε.

Замечание: В базисные пункты ведут базисные переходы, и только они.

Лемма 1. Пусть γ – активный префикс. Тогда найдется базисный пункт, допустимый для γ .

Доказательство леммы 1:

Пусть γ – активный префикс некоторой r-формы, принадлежащей выводу $S' \Rightarrow^* \mathbf{w}$.

(**Напоминание**: γ не выходит за правый конец основы этой r-формы).

Пусть $\gamma \alpha$ – первая (ближайшая к S') r-форма, где γ такой активный префикс.

Случай 1) Пусть $\gamma \alpha r$ -форма, встретившаяся не на первом шаге.

$$S' \Rightarrow S \Rightarrow^* \gamma \alpha \Rightarrow^* w$$
.

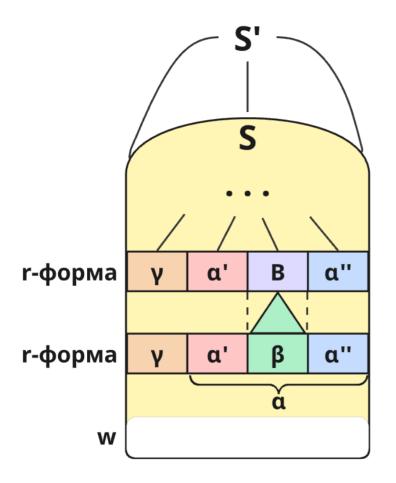
Основа r-формы $\gamma \alpha$ не может целиком лежать в α .

От противного: предположим $\gamma \alpha = \gamma \alpha' \beta \alpha''$, где правило. Тогда

$$S' \Rightarrow S \Rightarrow^* \gamma \alpha' \beta \alpha'' \Rightarrow^* w$$
 равносильно $S' \Rightarrow S \Rightarrow^* \gamma \alpha' B \alpha'' \Rightarrow \gamma \alpha' \beta \alpha'' \Rightarrow^* w$

$$S' \Rightarrow S \Rightarrow^* \gamma \alpha' B \alpha'' \Rightarrow \gamma \alpha' \beta \alpha'' \Rightarrow^* W$$

Следовательно, $\gamma \alpha B$ – префикс r-формы, стоящей ближе к S' (рис. 2).

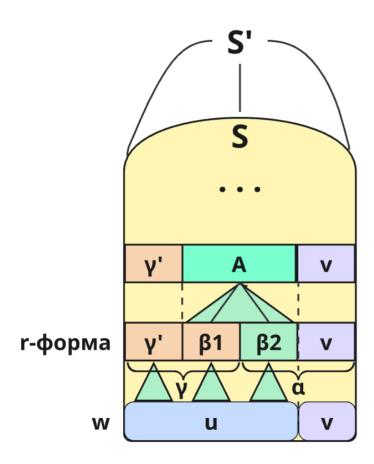


Таким образом, основа r-формы $\gamma \alpha$ имеет вид $\beta_1 \beta_2$, где $\gamma = \gamma' \beta_1$, $\alpha = \beta_2 v$, $\beta_1 \neq \varepsilon$, $v \in \Sigma^*$. \Rightarrow существует правило $A \to \beta_1 \beta_2$.

$$\Rightarrow S' \Rightarrow^* \gamma' A \mathbf{v} \Rightarrow \gamma' \beta_1 \beta_2 \mathbf{v} = \gamma \alpha \Rightarrow^* \mathbf{w}.$$

Тогда пункт $[A \to \beta_1 \bullet \beta_2]$ – базисный, допустим для γ (см. рис. 3).

Рис. 3



Случай 2) Пусть $\gamma \alpha$ появилась на первом шаге.

$$S' \Rightarrow S = \gamma \alpha \Rightarrow^* w$$
.

Т.е. либо
$$\gamma = \varepsilon$$
, $\alpha = S$; это значит $[S' \to \bullet S]$ допустим для γ , либо $\gamma = S$, $\alpha = \varepsilon$; это значит $[S' \to S \bullet]$ допустим для γ .

Лемма 1 доказана.

Лемма 2. Пункт $q = [B \to \bullet \beta]$ допустим для активного префикса $\gamma \Leftrightarrow$ состояние q достижимо по ε -переходам $\delta([A \to \beta_1 \bullet B\beta_2], \varepsilon) = [B \to \bullet \beta]$ автомата \mathcal{I}_G из некоторого базисного пункта $[A \to \beta_1 \bullet B\beta_2]$ допустимого для γ .

Доказательство:

 \Leftarrow) Пусть $[A \to \beta_1 \bullet B\beta_2]$ - некоторый пункт, допустимый для $\gamma = \gamma'\beta_1$, причем пункт не обязательно базисный (т.е. β_1 не обязательно не равно ε), и существует правило $B \to \beta$, т.е в автомате пунктов I_G есть ε -переход $\delta([A \to \beta_1 \bullet B\beta_2], \varepsilon) = [B \to \bullet \beta]$.

Поскольку пункт $[A \to \beta_1 \bullet B\beta_2]$ - допустимый, существует вывод $S' \Rightarrow^* \gamma' A v \Rightarrow \gamma' \beta_1 B \beta_2 v = \gamma B \beta_2 v \Rightarrow^* uv$

Восстановим вывод полностью

$$S' \Rightarrow^* \gamma' A v \Rightarrow \gamma' \beta_1 B \beta_2 v = \gamma B \beta_2 v \Rightarrow^*$$
 $\Rightarrow^* \gamma B u_2 v \Rightarrow^* \gamma \beta u_2 v \Rightarrow^* u_1 u_2 v = uv = w$ (см. рис. 4). (β_2 может содержать нетерминалы, v содержит только терминалы, поскольку вывод правый, нетерминалы из β_2 заменяются раньше нетерминала B)

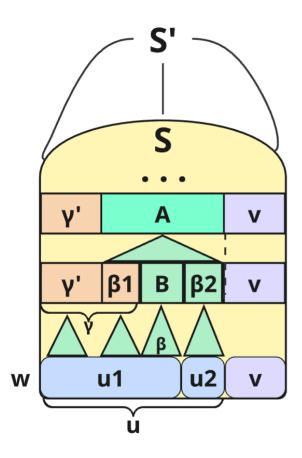


Рис. 4

Таким образом,

$$S' \Rightarrow^* \gamma B \beta_2 v \Rightarrow^* \gamma B u_2 v \Rightarrow^* \gamma \beta u_2 v \Rightarrow^* u_1 u_2 v = uv = w$$

Это значит, что по определению пункт $[B \to \bullet \beta]$ допустим для γ .

Мы показали, что если в автомате пунктов существует ε -переход $\delta([A \to \beta_1 \bullet B\beta_2], \varepsilon) = [B \to \bullet \beta]$, то второй пункт также допустим для γ .

Допустимость наследуется по ε -переходу \Rightarrow она наследуется по любому пути из ε -переходов.

(⇐) доказано.

 \Rightarrow) Пусть пункт $q = [B \to \bullet \beta]$ допустим для активного префикса γ , т.е. существует вывод $S' \Rightarrow^* \gamma B \mathbf{u} \Rightarrow \gamma \beta \mathbf{u} \Rightarrow^* \mathbf{w}$. Рассмотрим первое такое появление γ .

По **лемме 1** пункту $q = [B \to \bullet \beta]$ соответствует базисный пункт $[A \to \beta_1 \bullet \beta_2]$, допустимый для γ , где γ появляется сразу после применения правила $A \to \beta_1 \beta_2$:

$$S' \Rightarrow^* \gamma' A \mathbf{u} \Rightarrow \gamma' \beta_1 \beta_2 \mathbf{u} = \gamma \beta_2 \mathbf{u}.$$

Тогда
$$S' \Rightarrow^* \gamma' A u \Rightarrow \gamma' \beta_1 \beta_2 u = \gamma \beta_2 u \Rightarrow^* \gamma B u \Rightarrow \gamma \beta u \Rightarrow^* w$$
.

Здесь u,v,w – цепочки терминалов.

Так и — цепочка из терминалов, то из β_2 правым выводом выводима цепочка с префиксом B (т.е. начинающаяся с нетерминала).

Следовательно, β_2 начинается с нетерминала.

Обозначим его С. Тогда $\beta_2 = C\alpha_0$.

Если $\gamma \beta_2 u = \gamma B u$, то C = B.

Если $\gamma\beta_2$ и $\neq \gamma$ Ви, то существует (правый!) вывод

$$\beta_2 = C\alpha_0 \Rightarrow B_1\alpha_1 \mathbf{u}_0 \Rightarrow^* B_1\mathbf{u}_1 \Rightarrow B_2\alpha_2\mathbf{u}_1 \Rightarrow^* B_2\mathbf{u}_2 \Rightarrow \dots \Rightarrow^* B_k\mathbf{u}_k = B\mathbf{u}_k.$$

Здесь $u_1, u_2, \dots u_k$ – цепочки терминалов, и

$$\alpha_0 \Rightarrow^* \mathbf{u}_0, \alpha_1 \mathbf{u}_0 \Rightarrow^* \mathbf{u}_1, \alpha_2 \mathbf{u}_1 \Rightarrow^* \mathbf{u}_2, \alpha_3 \mathbf{u}_2 \Rightarrow^* \mathbf{u}_3, ..., \alpha_{k-1} \mathbf{u}_{k-2} \Rightarrow^* \mathbf{u}_{k-1},$$

$$\alpha_k \mathbf{u}_{k-1} \Rightarrow^* \mathbf{u}_k$$
 (см. рис.5)

В таком выводе применялись правила:

$$C \to B_1 \alpha_1$$
$$B_1 \to B_2 \alpha_2$$

. . .

$$B_{k-1} \to B\alpha_k$$

Следовательно, в автомате пунктов I_G имеются ε -переходы:

$$\delta([A \to \beta_1 \bullet \beta_2], \varepsilon) = [C \to \bullet B_1 \alpha_1] (\beta_2 = C\alpha_0)$$

$$\delta([C \to \bullet B_1 \alpha_1], \varepsilon) = [B_1 \to \bullet B_2 \alpha_2]$$

..

$$\delta([B_{k-1} \to \bullet B\alpha_k], \varepsilon) = [B \to \bullet \beta]$$

Таким образом, мы доказали, что пункт $q = [B \to \bullet \beta]$ достижим из $[A \to \beta_1 \bullet \beta_2]$ по ε -переходам.

1 //

Лемма 2 доказана.

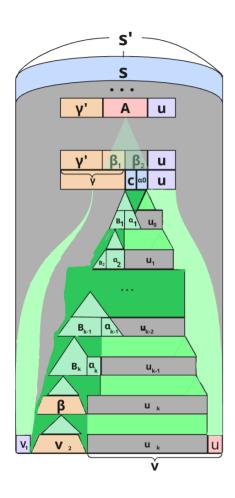


Рис. 5

Продолжение доказательства теоремы.

 \Leftarrow) Дано: существует путь из q_0 в q, помеченный γ . Докажем индукцией по длине $|\gamma|$, что пункт $q=\left[A \to \beta_1 \bullet \beta_2\right]$ является допустимым для активного префикса γ

<u>Б.И.</u> $|\gamma| = 0$, т.е. $\gamma = \varepsilon$. Пункт $[S' \to \bullet S] = q_0$ допустим для активного префикса ε по определению.

По **лемме 2**, любой пункт (в том числе базисный), достижимый из q_0 по ε -переходам, допустим для ε .

$$\underline{\text{III.}\text{VI.}} |\gamma| \ge 1$$
, T.e. $\gamma = \overline{\gamma} \text{ X}$.

В пути из q_0 в q последний базисный переход идет по $\delta(A \to \overline{\beta}_1 \bullet X\beta_2, X) = A \to \overline{\beta}_1 \times \beta_2$.

После базисного перехода возможны несколько ε -переходов.

Путь от q_0 до $\left[A \to \overline{\beta}_1 \bullet X\beta_2\right]$ помечен $\overline{\gamma}$, длина которого строго меньше длины γ . По предположению индукции, это пункт допустим для $\overline{\gamma}$.

Следовательно, $\bar{\gamma} = \gamma' \bar{\beta}_1$ и существует вывод

$$S' \Rightarrow^* \gamma' A v \Rightarrow \gamma' \underline{\beta_1} \underline{X \beta_2} v \Rightarrow^* w$$

$$(S' \Rightarrow^* \gamma' A v \Rightarrow \gamma' \beta_1 \ \beta_2 v \Rightarrow^* w)$$

По определению, базисный пункт $\left[A \to \overline{\beta}_1 X \bullet \beta_2\right]$ также допустим для $\gamma = \gamma' \overline{\beta}_1 X$:

$$S' \Rightarrow^* \gamma' A v \Rightarrow \gamma' \underline{\beta_1} \underline{X} \underline{\beta_2} v \Rightarrow^* w$$

$$(S' \Rightarrow^* \gamma' A v \Rightarrow \gamma' \beta_1 \beta_2 v \Rightarrow^* w)$$

Конец пути до q проходит по ε -переходам. Следовательно, q допустим для γ (по лемме 2).

(⇐) доказано.

 \Rightarrow) Дано: пункт $q = [A \rightarrow \beta_1 \bullet \beta_2]$ допустим для γ .

Докажем индукцией по длине цепочки γ , что в автомате пунктов I_G есть путь из q_0 в q, помеченный цепочкой γ .

Б.И. Пусть
$$q = [A \to \beta_1 \bullet \beta_2]$$
 допустим для $\gamma = \varepsilon$. Тогда $\beta_1 = \varepsilon$, т.к. $\gamma = \gamma' \beta_1$.

Единственный базисный пункт, допустимый для ε ($\beta_1 = \varepsilon$), это пункт $[S' \to \bullet S] = q_0$.

По **лемме 2** состояние q достижимо из q_0 по ε -переходам.

Ш.И.
$$\gamma = \overline{\gamma} X$$
.

По **лемме 1** существует базисный пункт, допустимый для $\gamma = \gamma' \beta_1$, это пункт $[A \to \beta_1 X \bullet \beta_2] = \tilde{q}$:

$$S' \Rightarrow^* \gamma' A v \Rightarrow \gamma' \underbrace{\beta_1}_{\beta_1} \underbrace{X \beta_2}_{\beta_2} v \Rightarrow^* w$$

$$(S' \Rightarrow^* \gamma' A v \Rightarrow \gamma' \beta_1 \ \beta_2 v \Rightarrow^* w)$$

Следовательно, $\gamma = \gamma' \beta_1 X$ и существует вывод $S' \Rightarrow^* \gamma' A v \Rightarrow \gamma' \beta_1 X \beta_2 v \Rightarrow^* w$.

Пункт $[A \to \beta_1 \bullet X\beta_2]$ допустим для $\bar{\gamma} = \gamma'\beta_1$. Тогда по предположению индукции, существует путь q_0 в этот пункт, помеченный $\bar{\gamma}$.

В автомате существует переход $\delta([A \to \beta_1 \bullet X\beta_2], X) = [A \to \beta_1 X \bullet \beta_2].$ Достроим по этому переходу путь из q_0 в \widetilde{q} , помеченный γ .

Для всех базисных пунктов вида \widetilde{q} существует путь из q_0 в \widetilde{q} , помеченный γ .

Для небазисных пунктов, по лемме 2, существует путь из базисного пункта по ε -переходам.

(⇒) доказано.

Теорема доказана.

Следствие 1. Язык, распознаваемый автоматом пунктов грамматики G, совпадает с языком всех активных префиксов грамматики G.

Это просто переформулировка теоремы.

Следствие 2. Состояние в LR(0)-автомате, достижимое из q_0 по пути, помеченному γ , совпадает с множеством пунктов, допустимых для активного префикса γ .

Доказательство следует из теоремы и того факта, что LR(0)-автомат – ДКА, построенное по ε -НКА пунктов \mathbf{I}_G .