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Abstract
The sufficient causes theory is a generally accepted way to describe causality in the 

biomedical sciences. This theory can be adequately formalized in the Boolean algebra 
framework. An important question of biomedical research is determination of a joint 
(combined) action type of the acting factors. In Boolean interpretation of sufficient causes 
theory, this question is treated as computation of the orbits of the action of a certain group 
of automorphisms on the algebra of Boolean functions. Boolean formalization allows us to 
introduce additional concepts that help to study in more detail various questions of combined 
action of binary factors. In particular, the article provides a definition of combined action of a 
set of Boolean variables in a Boolean function and its geometric interpretation. The invariance 
of this concept is proved under the action of the automorphism group of the Boolean cube. 
These automorphisms are formal representation of the experimental symmetries. An integer 
number is introduced, called the degree of joint action. This number can be considered as a 
characteristic of the strength of the joint action of a number of variables in a Boolean function. 
This number is proved to be an invariant under the action of the Boolean cube automorphism 
group. The notion of a spectrum of combined action of a set of variables in a Boolean function 
is proposed. This concept allows us put all types of joint action in an order. An upper bound 
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is found for the number of all possible spectra of joint action of variables in Boolean functions 
depending on a given number of variables.
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1.  Introduction

A concept of joint action (interaction) of acting agents widely used in 
various applied sciences for describing of how these factors affect the 
change in the resulting variable. For example, in the study of variables 
whose change is subject to random influences, this is implemented in 
regression analysis, where the average value of the response is 
approximated by a linear function of the acting variables [28].

At the same time, the notion of interaction is not self-evident and 
implicitly presupposes comparison with some model of joint action for 
which it is assumed that there is no interaction (zero interaction model). 
For example, in regression analysis such a model is linear regression with 
uncorrelated predictors. The concept of zero interaction model is not 
formally defined and depends on which mathematical model is used to 
describe joint action. In addition to the above mentioned statistical model 
with uncorrelated predictors, the zero interaction isobolographic model 
(additivity isobole) generally accepted in toxicology [1, 4, 5] can also be 
regarded as a zero interaction model.

Thus, the presence of a zero interaction model is a necessary 
prerequisite for determining presence of a nontrivial joint action of given 
factors. However, in this case we can make a comparison only in relation 
to the zero interaction model, and if there are two models with nontrivial 
joint action, there is no possibility to make a comparison between them, 
for example, to say that for one case there is a stronger joint action than for 
another.

A more subtle classification of the joint action types can be 
implemented with the notion of a transformation that preserves the type 
of joint action. Below we examine this construction using the Boolean 
model of the theory of sufficient causes, which is one of the generally 
accepted causality concept in epidemiology.

An important feature of this approach is that it does not introduce the 
intricate notion of zero interaction, but considers certain types of joint 
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action at once. These types can be given some meaning through the joint 
action degree notion introduced below.

In the second half of the 20th century, a concept of causality appeared 
in philosophy, which proposed a causality mechanism based on the 
representation of a cause of a given event in the form of a set of 
simultaneously occurring conditions, which inevitably lead to the onset of 
this event (INUS-conditions, i. e. Insufficient, but Necessary part of an 
Unnecessary but Sufficient condition) [9, 10, 12, 13]. At the same time, a 
similar concept was presented in epidemiology, where revealing causes of 
a disease in population is one of the most important problem. [14, 23] The 
subsequent development of these ideas has mainly continued in 
epidemiological studies under the name sufficient causes or sufficient causes 
component framework [6, 7, 8, 15, 25, 26, 27]. The first formal models of this 
causality concept were proposed in [6, 15, 26].

From an epidemiological point of view, it is important to establish 
whether the joint presence of acting factors that lead to a given outcome 
has any additional effect on this outcome compared to the total isolated 
effect of these factors. The presence of such an additional effect in 
comparison with a certain reference model based on their isolated action 
is expressed in terms of synergism or antagonism depending on the sign 
of this effect.

A formalized presentation of two-factor sufficient causes model was 
suggested in [15]. There, all possible outcomes were organized in classes 
according to the presence in them of a specific type of joint action, and to 
each of which some term was assigned expressing the medical meaning of 
such an effect (preventive antagonism, causal synergism etc.). The [6] 
notes the importance of accounting for data symmetry in analyzing types 
of joint action. In [27] this idea has been clarified and elaborated.

The importance of data symmetries for identification the type of joint 
action of factors is as follows. In epidemiology, factors and a resulting 
variable (response or outcome) are often used, the values of which may or 
may not have any natural order. Typical examples are gender, race, religion, 
type of work, region of residence etc. Since there is no natural order of 
values that such a factor takes, a choice of their encoding for numerical 
data analysis is completely arbitrary. At the same time, it is obvious that a 
type of combined action (understood in a certain sense) should not be 
dependent on an encoding method. In other words, a joint action type 
must be invariant with regard to an encoding method.

In epidemiology, the most elaborated theory of sufficient causes is 
one for binary factors. It only deals with two-level factors and a two-level 
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response. It is easy to see that the semantic construction of that theory is 
quite clearly conforms to the algebraic structure of Boolean algebra. For 
instance, in [20, 21] this two-factor binary theory was considered in terms 
of Boolean functions of two variables. It was demonstrated that Boolean 
formalization adequately represents those logical propositions that 
underlie the epidemiological understanding of the sufficient causes 
theory, as well as the concepts introduced into this theory later. Besides, 
Boolean framework allows us to use a lot of mathematical concepts in the 
sufficient causes theory. [17, 22]

In the discussed Boolean formalization, epidemiological symmetries 
are automorphisms on the algebra of all Boolean functions. Consequently, 
responses (Boolean functions) having the same type of combined action 
fall into the same orbit of the action of a given automorphism group. This 
formalism avoids the discussion of what the reference model should be to 
determine the presence of an additional effect of joint action. The 
identification of possible types of joint action is then reduced to the 
algebraic calculation of the orbits of a given automorphism group action 
on the algebra of Boolean functions. [17, 18, 20, 21, 22]

Summary of the article. In the Section 2 Boolean framework for 
sufficient causes theory is outlined. Main results are presented in Section 
3. As an extension of the concept of joint action of variables in a Boolean 
function introduced in [17], the concept of joint action of a certain number 
of variables in a Boolean function is introduced. It is shown that this notion 
correctly generalizes the concept of joint action of all variables on which a 
function depends. In addition, the notion of the degree of joint action of a 
given number of variables is proposed, which also generalizes a similar 
notion for all variables in a given function from [17]. Below the Boolean 
domain {0, 1} is denoted by ;B  the end of each proof is marked with a sign 

.  For necessary concepts of Boolean algebras and functions, see e.g. [3, 
11, 16].

2.  A concept of joint action of Boolean variables

The questions discussed below concern only the case of the binary 
theory of sufficient causes, which deals with a finite number of two-level 
factors and two-level response. The main points of Boolean framework of 
the binary sufficient causes theory are stated in [20-22]. Briefly, one can 
say that a response studied in that theory is formally represented by a 
Boolean function which depends on the same number of Boolean variables 
as the number of acting factors is, and each acting factor is represented by 
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a certain Boolean variable. Therefore, below we say about a response that 
depends on factors and a Boolean function that depends on Boolean 
variables as equivalent concepts. Here and below, Boolean functions are 
conveniently represented in the DNF (disjunctive normal form). Let us 
denote 1( , , )nx xB  the Boolean algebra of all Boolean functions of 
variables 1 , , ,nx x 2.n  In accordance with common ideas of that 
formalism the following definition of joint action of Boolean variables 
(also called interaction) was proposed (see, also [26] for similar 
epidemiological notion).

Definition 2.1: [17]. Let 1= , , nx xx  be a set of Boolean variables, and 
f ∈B 1( ,x , )nx  a Boolean function. There is joint (combined) action of 

these variables in the function f  if there exists such a vector na∈B  that a 
conjunction xa 1 2

1 2= n
nx x xaa aa

x  presents in every irredundant representation 
of the Boolean function f. In this case we say that joint action in the function 
f attains at = .ax  

One can verify presence of the combined action of variables 1 , , nx x  
in a Boolean function f ∈B 1( , , )nx x  using the following statement. 

Theorem 2.2: [17]. Joint action of variables 1= , , nx xx  which attained at 
= ,ax ,na∈B  is present in a Boolean function f ∈B 1( , , )nx x  if and only if 

the conjunction ax  is a prime implicant of the Boolean function .f  
It is important to note that the Definition 2.1 refers to joint action of 

all the variables involved in a given Boolean function which offers a logical 
representation for a given experimental binary response. Thus, any 
Boolean function that does not meet this definition does not represent the 
joint action of all the variables involved. For example, a Boolean function 

1 2 2 3=f x x x x∨  doesn’t meet the Definition 2.1 although this function is 
clearly dependent on three variables in some way. It is obvious that a 
certain degree of joint action is present in this function, though it cannot 
be taken into account with Definition 2.1. This can be done using the 
following notion.

Definition 2.3: There is joint action of k variables, 2 k n   in a Boolean 
function f ∈B 1( , , ),nx x  if there are an ordered k-element subset 

{1, 2, , }I n⊆   and a vector n kb −∈B  such that joint action of k variables Ix
= { }i i Ix ∈  is present in the function , ,If b  where the Boolean function ,If b  
is defined as follows. For y = 1( ,y 2 ,y , ),ky , ( )If b y = 1  iff ( ) = 1f x  and 

= ,Ix y = ,I bx  where I  is the ordered complement of the set I  relative 
to {1, 2, , }.n  We say then that combined action of variables Ix  for =I ax  
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under =I bx  is present in the function f if joint action attains at y = a in fI, 
b(y) for some  a Œ Bk.

Definition 2.3 is a mathematically rigorous formulation of a similar 
concept considered in [26]. In short, in a function f there is combined action 
of k variables = { }I i i Ix ∈x  if in the function f of variables Ix  joint action 
presents under fixed values =I bx  of other variables.

Thus, this Definition generalizes the Definition 2.1 and allows us to 
define a notion of joint action for a number of variables that is less than or 
equal to the number of variables on which a given Boolean function 
depends. In this regard, it is necessary to examine the fulfillment for the 
Definition 2.3 of those important properties that were proved in [17] for 
the concept of combined action of n variables. In particular, it is necessary 
to build criteria for joint action of k factors in a function that depends on n 
variables, where 2 ,k n   similar to Theorems 4, 8 from [17], and also 
check the invariance of the introduced concept with regard to the action of 
the group of automorphisms of Boolean cube as shown for the concept of 
the joint action of n variables in [17].

An important property of the concept of joint action of all variables 
(Definition 2.1) is that it does not depend on how the values of independent 
variables are encoded. Obviously, this property is quite natural and 
obligatory for the joint action concept. Mathematically, that means the 
invariance of joint action with respect to the nG -action of the on the 
Boolean algebra 1( , , ),nx xB  there nG  is the group of all automorphisms 
of the Boolean cube nB . [17, 22] nG -action on 1( , , )nx xB  generates a 
natural partition of that algebra into disjoined orbits, each of which is a 
class of Boolean functions that have the same type of joint action. [17, 22] 
Below the class of all Boolean functions which are nG -equivalent to a 
given Boolean function f is denoted by .f〈 〉

We denote by fC  support of a function f, i.e. the set { na∈B | ( ) = 1}.f a  
The Boolean cube can be regarded as a graph of which two vertices are 
connected by an edge iff the Hamming distance between them is 1. As in 
[17], denote fG  a graph vertex-generated by the support .fC  In [17] a 
following criterion for the presence of joint action in terms of graphs is 
given.

Theorem 2.4: [17]. Joint action of n variables in a function f ∈B 1( , , )nx x  is 
present iff the graph fG  contains an isolated vertex. 

A useful consequence of the Boolean formalization of the binary 
sufficient causes theory is the possibility to define an integer characteristic 
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fm  for any function f from 1( , , ).nx xB  This number is an invariant under 

nG -action on 1( , , )nx xB  and is called the degree of joint action. It 
expresses, in a sense, the strength of joint action of variables in a given 
function (for more information, see [17]). Let f ∈B 1( , , )nx x  be a nonzero 
Boolean function and .fCa∈

Definition 2.5: [17]. Degree of joint action of variables 1 , , nx x  in a 
function f at values = ax  is a number defined as follows 

min{ ( , )| , } 1, if| |> 1
( ) =

, if| |= 1
f f

f
f

d C C
n C

a b b b a
m a

 ∈ ≠ −



where ( , )d a b  is the Hamming distance between vectors a  and ,b  and 
| |fC  is the cardinality of .fC  

From Definition 2.5 the natural equality 0 ( )f nm a   follows.

Definition 2.6: [17]. Degree of joint action of variables 1 , nx x  in a 
Boolean function f ∈B 1( , , )nx x  is a number defined by equalities:

= max{ ( )| }f f fCm m a a∈  if f  is a nonzero Boolean function and = 0fm  for 
zero function .f  

The degree of joint action allows us to obtain the following criterion. 

Theorem 2.7: [17]. Joint action of n variables is present in a function  
f ∈B 1( , , )nx x  iff the inequality 1fm   holds. 

Before presenting main results we introduce some notations. For an 
arbitrary positive integer m we denote m  the integer interval m =
{1, 2, , }.m  For a fixed nk∈  we denote by I = 1 2{ , , , },ki i i 1 21 < <i i 

< ki n  an ordered k-element set of numbers from ,n  and by I  its 
ordered complement in n : I = 1{ , , },k ni i+  1 21 < <k ki i+ +  < ,ni n
I I∪ = .n  For a vector ,kd ∈B I

dB  denotes an ( )n k− -face { nx∈B |
= }Ix d  of the Boolean cube .nB  For a given k-element set I denote by Ipr  

a projection of n-dimensional Boolean cube nB  which maps a Boolean 
vector n∈Bx  to a vector k

I ∈Bx  with Boolean coordinates = { } .I i i Ix ∈x  The 
restriction of the projection Ipr  to the k-face n

I
b ⊆B B  which is obviously a 

bijection of I
bB  onto ,kB  is denoted by , .Ip b  k0  is a k-dimensional zero-

vector in , andk 0 1B  are constant Boolean functions. Hereafter, the sets I  
and its complement I  are considered ordered.
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3. Main results

Before formulating the main statements (Theorems 3.2, 3.6, 3.10, 3.13, 
3.15) we need some simple auxiliary lemmas. Consider Boolean cube nB  
as a metric space whose metric is given by the Hamming distance. Then 
any face I

bB  of the Boolean cube nB  is a metric subspace with induced 
metric.

Lemma 3.1: Let 1( , , ),nf x x I∈ B  is a k-element subset of ,n ,n kb −∈B
2 .k n   Then the following statements hold 

(1)	� The map , : k
I Ip b

b →B B  is an isometry of metric spaces with respect to the 
Hamming distance. 

(2)	� Consider graph I
bB  as a section graph defined by the vertices of the graph 

I
bB  in the graph .nB  Then the function ,Ip b  is an isomorphism of I

bB  onto 
kB  as graphs. 

(3)	� The equality 1
, ,= ( )I If f pb b

−
  holds. 

(4)	� Let 
,

,
If fC C

b
 are supports of f and ,If b  respectively. Then the equality 

, ,= ( )
If I f IC p C

b

b
b ∩B  holds. 

(5)	� Metric spaces f IC b∩B  and 
,If

C
b

 are isometric with respect to the Hamming 
distance. 

(6)	� The graph 
,If b

G  is isomorphic to a section graph of the graph fG  defined by 
vertices of .f IC b∩B  

Proof:
(1)	� Statement is obvious.
(2)	� The proof follows from (1) and from the fact that edges in the Boolean 

cube connect only those vertices which Hamming distance is equal 
to 1.

(3)	� The proof follows from the equalities , ,( )I If pb b ( )h = ,If b ,( ( ))Ip b h
= , ( )I If b h = ( ),f h  where , ,I bh∈B  i. e. = .Ih b

(4)	� By Lemma 3.1 (3) a point kx∈B  belongs to the support 
,If

C
b

 if and 

only if the equality 1
,( ( ) )( ) = 1.If p b x−

 Hence, taking 1
,= ( )Ip bh x−  we 

get = ,Ih x = ,Ih b  and ( ) = 1,f h  i. e. f IC bh∈ ∩B  or, which is the 
same, ,Ip bx∈ ( ).f IC b∩B

(5)	� follows directly from (1) and (4).
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(6)	� As it follows from the definition of the graph fG  for a subset ,nI ⊆ 
| |=I k  and a vector n kb −∈B  the graph 

,If b
G  is a section graph of the 

Boolean cube kB  which is generated by the set 
,If

C
b

 [17]. Thus, (6) 
follows from (4) and (2). 

To formulate the next statement we denote by fd  the minimum 
degree of vertices in .fG  Then the following geometric criterion can be 
obtained.

Theorem 3.2: Joint action of k variables is present in a function 1( , , ),nf x x∈ B  
2 ,k n   iff the inequality fk n d−  holds. 

Proof: It follows from the Definition 2.3 and Theorem 2.4 that in a function 
f ∈B 1( , , )nx x  there is combined action of k variables iff there are 

k-element subset I in ,n  vectors ,ka∈B ,n kb −∈B  such that the vertex 
a  is an isolated vertex of 

,
.

If b
G  The graph 

,If b
G  is defined by the support 

,IC b  as a section graph of the graph .kB  By the Lemma 3.1 (6) and (4) this 
means that the degree of the vertex 1

,= ( ) ( )Ip bg a−  in the section graph of 
the graph nB  defined by the set f IC b∩B  is isolated. As the degree of each 
vertex of a k-face of I

bB  as a section graph of nB  is equal to k, the degree of 
the vertex g  in fG  is no greater than .n k−  Thus, the presence of combined 
action of k variables in the function f is equivalent to the existence in the 
graph fG  a vertex which degree is not greater than ,n k−  i.e. .fk n d−  

Theorem 3.2 is a geometric criterion of joint action of k variables in a 
function f depending on a larger number of variables. It is a natural 
generalization of the Theorem 2.4.

From Theorem 3.2 we obtain

Corollary 3.3: If there is combined action of k variables in a function  
f ∈B 1( , , ),nx x 2 < ,k n  then there is combined action of a smaller number of 

variables in this function. 
Note that the restriction of any automorphism of the graph nB  to the 

support fC  is an isomorphism of fG  onto the image of fG  under this 
automorphism. Thus, the following statement holds

Corollary 3.4: The presence of joint action of k variables in a function f is 
invariant with respect to the nG -action. 

Example 1: Let = 3.n  The types of combined action of two variables which 
are not types of combined action of three variables are only the following 
classes of nG -equivalent Boolean functions 
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1 2 1 2 3 1 2 1 3 1 2 1 3 1 2 2 3 1 3

1 2 1 2 1 2 1 2 3 1 2 1 2 1 3

, , , , ,
, ,

x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x
〈 〉 〈 ∨ 〉 〈 ∨ 〉 〈 ∨ 〉 〈 ∨ ∨ 〉
〈 ∨ 〉 〈 ∨ ∨ 〉 〈 ∨ ∨ 〉

Indeed, for any representative f of any of these classes there are no 
isolated vertices in .fG  Thus, by Theorem 2.4 there is not combined action 
of all three variables in those functions f. In order to check is there joint 
action of two variables let us take the set = {1, 2},I =b 0  in the Definition 
2.3, i.e. a condition 3 = 0x  for the additional variable 3x  is imposed. Hence, 
for the first five classes the function ,If b  for which joint action of two 
variables takes place is , 1 2= ,If x xb  so for these classes the Definition 2.3 is 
fulfilled for two variables in the function depending on three variables. 
For other three classes we get ,If b = 1 2x x ∨ 1 2 ,x x  which is also a type of 
two-factor joint action [17].

One can get the same conclusion using Theorem 3.2. Indeed, for any 
given representative f of these classes the vertex (1,1,0) in the Boolean cube 

3B  has degree 1 in the graph ,fG  that means that = 1,fd  because there is 
no isolated vertex in .fG  

Thus, the introduced notion of join action of k variables, 2 ,k n   in 
a function that depends on n variables is invariant under the nG -action on 
Boolean cube .nB  Now we consider an integer invariant for the introduced 
concept that generalizes the notion of the degree of combined action for n 
variables.

Definition 3.5: Degree of joint action of k variables in a function
1( , , ), 2nf x x k n∈ B    is a number defined as follows 

	 ,, = max{ | ,| |= , }
I

n k
f k f nI I k

b
m m b −⊆ ∈ B

We assume that ,0 = 0fm  for any function f, ,1 = 1fm  for any { , }f ∈ 0 1  
and ,1m0 = ,1m1 = 0.  In addition, it is reasonable to assume that , = 0km0  for 
any .nk∈

Clearly, the Definition 3.5 generalizes the Definition 2.6, and the 
equalities , =f n fm m  and ,0 f k km   hold. The next statement is a 
generalization of the Theorem 2.7.

Theorem 3.6: Joint action of k variables in a function f ∈B 1( , , ),nx x

2 ,k n   is present iff the inequality , 1f km   holds. 

Proof: If a function f which depends on Boolean variables 1 , , nx x  has 
combined action of k variables, then by Definition 2.3 there are a subset 

,nI ⊆  | |= ,I k  and a vector n kb −∈B  such that the function ,If b  has joint 
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action of k variables .Ix  By Theorem 2.7 and Definition 3.5 we obtain that 
, 1.f km   The converse is proved similarly. 

In order for the introduced degree of combined action of k variables 
to be a generalization of the degree of combined action of n variables, it 
remains to prove that the number ,f km  is an invariant under the nG -action. 
It is well known that the group ,nG  being the automorphism group 

( )nAut B  of graph ,nB  is isomorphic to the hyperoctahedral group ,nOct  
i.e., the n-dimensional hypercube symmetry group (see, e.g. [22]). In 
addition, the following statements hold for this group. 

Lemma 3.7: 
(1)	� The group nG  is the isometry group of a Boolean cube nB  as a metric space 

with respect to the Hamming distance. 
(2)	� For a fixed nk∈  the group nG  acts transitively on the set of all pairs 

( , ),B d  where B  is a k-face of the Boolean cube nB  and .Bd ∈  
(3)	� For a fixed nk∈  the group nG  acts transitively on the set of all k-faces of 

the Boolean cube .nB  

Proof:
(1)	� Proof is obvious, since any automorphism of Boolean cube nB  

considered as a graph is an isometry of nB  considered as a metric 
space with respect to the Hamming distance.

(2)	� It is well known that group nOct  acts transitively and simply on the 
flags of hypercube = [0,1]n

nK  [2]. As above, consider k-element set I 

and its complement I  as ordered ascending subsets from n : I =
1 2{ , , , },ki i i 11 i < 2i < < ,ki n = =J I 1{ ,ki + 2 ,ki + , },ni 11 ki +

2< ki + < < .ni n  It is clear that for any k-face = JB bB  and some of 
its vertex d  one can match one-to-one a system of nested l-faces 

0 1 ,nC C C⊂ ⊂ ⊂  where 0C = ,
n

d
B lC = ,

l

lJ
bB lJ  is the ordered 

set 1{ ,li + 2 ,li + , },ni
lb =

lJd  for l∈ {0,1, , 1}n −  and = .n
nC B  In 

particular, = .k JC bB  It is obvious that the system 0C ⊂ 1C ⊂ ⊂ nC  
one-to-one corresponds to a flag of the hypercube .nK

(3)	 follows from (2). 

Let us take a subset I, | |= ,I k  from n  and arbitrary tuple .n kb −∈B  
Let nt G∈  be an automorphism. By Lemma 3.7 (2) the range ( )It bB  is a 
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k-face J
gB  where J is a k-element subset from ,n  and .n kg −∈B  Then one 

can define a map ,It b  by the equality ,It b = ,( )Jp g t  1
,( ) .Ip b

−

Lemma 3.8: The map ,It b  is an isometry of the Boolean cube kB  with respect to 
the Hamming distance. 

Proof: Proof follows from Lemmas 3.1 (1), 3.7 (1).

Lemma 3.9: Let t be an automorphism from the group nG  and f ∈B 1( , , ),nx x

2 .k n   If the automorphism t maps a k-face I
bB  onto k-face J

gB  then for the 
Boolean function = ( )f t f  the following equalities hold 

, ,

, ,

, ,

,

,

(1) ( ) =

(2) ( ) = ( ) , = ( )

(3) = .

I J

I J

I J

I f f

k
f If

f f

t C C

and t
b g

b g

b g

b

bm a m a a a a

m m

∈







 B

 

Proof:
(1)	� follows from the the definition of bijection ,It b  and straightforward 

equality ( )ft C
 

=  f
C

 
:  

,, ( )
II ft C

bb  
=  ,( Jp g  

t   
1

,( ) )Ip b
−

 ,( )fC b  
=

,( )Jp tg  ( )f IC b∩B = , ( ( )J fp t Cg ∩ ( ))It bB =
, ( )J Jf

p C g
g ∩B =

,
.

Jf
C

g


(2)	� Let 
,

.
If

C
b

a∈  If 
,

| |> 1,
If

C
b

 then by the Lemma 3.8 for any 
,

,
If

C
b

d ∈
,d a≠  we have the equality ( , )d a d = ,( Id t b ( ),a ,It b ( ))d = ( , ),d a d  

where ,= ( ),It ba a

,= ( )It bd d  and .a d≠   As the bijection ,It b  maps 

,If
C

b
 onto 



,Jf
C

g
 (see, Lemma 3.9 (1)), we get equality of the sets 

{ ( , )d a d |
,

,
If

C
b

d ∈ }d a≠ = { ( , )d a d |


,
,

Jf
C

g
d ∈ }.d a≠   If 

,
| |= 1,

If
C

b
 

then 


,
| |= 1

Jf
C

g
 as well. Thus, by the Definition 2.5 we get the required 

equality 
,

( )
If b

m a =
,

( ).
Jf g

m a




(3)	� By the Lemma 3.8 the map ,It b  is a bijection of Boolean cube 
kB  onto itself. By the Lemma 3.9 (1) we obtain equality 



,Jf
C

g
=

,, ( ).
II ft C

bb  By the Lemma 3.9 (2) the equality 
,

{ ( )fI b
m a |

,
}

If
C

b
a∈ =  



,
{

f J g
m ( )a |



,
}

Jf
C

g
a∈  holds. Then by the Definition 3.5 we get equality 

, ,
= .

I Jf fb g
m m



 

We can now formulate and prove invariance of the degree ,f km  of 
combined action with regard to the nG -action.
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Theorem 3.10: For any function 1( , , )nf x x∈ B  and nk∈  the degree ,f km  
is invariant under the action of the automorphism group nG  of Boolean cube .nB  

Proof: For 2k  it follows from the Definition 3.5, Lemma 3.7 (3) and 
Lemma 3.9 (3). For = 1k  the statement is obvious.

Example 2: Let us present the values of the degree ,f km  for Boolean 
functions f of three variables, for which ,3= = 0,f fm m  and ,2 1fm   (see 
Example 1). In other words, consider the values of the degree of combined 
action of two variables for those Boolean functions for which there is no 
combined action of three variables. For the following classes 

	 1 2 1 2 3 1 2 1 3 1 2 1 3 1 2 2 3 1 3, , , ,x x x x x x x x x x x x x x x x x x x〈 〉 〈 ∨ 〉 〈 ∨ 〉 〈 ∨ 〉 〈 ∨ ∨ 〉

we have = {1, 2},I , 1 2=If x xb  and the condition =
I

x b  for which the 
equality 

,,2 =
If f b

m m  holds is 3 = 0.x  Hence, ,2 = 2.fm  For other classes 

	 1 2 1 2 1 2 1 2 3 1 2 1 2 1 3, ,x x x x x x x x x x x x x x x〈 ∨ 〉 〈 ∨ ∨ 〉 〈 ∨ ∨ 〉

we have , 1 2 1 2= {1, 2}, =II f x x x xb ∨  and the condition =
I

x b  is the same, 
but here ,2 = 1.fm

Thus, the integer invariant ,f km  enables us to classify the types of 
combined action more accurately than the similar invariant fm  considered 
earlier in [17]. 

In order to characterize the strength of combined action in a given 
Boolean function as an entire, we introduce the following 

Definition 3.11: [18]. A sequence ,1 ,2 ,= ( , , , )f f f f nM m m m  is called 
spectrum of joint action of variables in a function 1( , , ).nf x x∈ B  

From the Theorem 3.10 it follows that the spectrum fM  is invariant 
under the nG -action. Thus, it is correctly defined on the nG -orbit f〈 〉  of 
the function 1( , , ).nf x x∈ B

All the combined action types f〈 〉  can be ordered by inverse 
lexicographical order   on the tuples .fM  This order is reasonable 
because of the greater importance of combined action of more variables 
than a smaller number of them.

Let us consider some properties of the degree ,f km  (see also [18]). 
Effective algorithms for calculation of interaction spectrum are proposed 
in [19]. 

Lemma 3.12: Let 1( , , ), { }nf x x f∈ ∉ 0, 1B  and .nk∈  Then 
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(1)	 if , =f k km  then , 1 = 1;f k km − −  
(2)	 if , <f k km  then , 1 , .f k f km m−   

Proof: By the Definition 3.5 both statements are valid for = 1k  and = 2.k  
Let > 2.k

(1)	� Let , = .f k km  By the Definition 3.5 there exist such a subset ,nI ⊆ 
| |= ,I k  and n kb −∈B  that 

,, = .
If k f b

m m  From 
,

=
If

k
b

m  by the Definition 
2.5 it follows that 

,
| |= 1,

If
C

b
 and by Lemma 3.1 (5) that | |= 1.f I

C b∩B  
Let = { }f I

C b a∩B  and denote = ,na 0 = ,n kg −0 = .kJ   Then, 
obviously, .J

ga∈ B  By Lemma 3.7 (2) there exists an automorphism 
,nt G∈  such that ( )t a = ,a ( )It bB = ( ).Jt gB  By the Theorem 3.10 we 

have equalities 
 ,f k

m = ,f km = k  and 
 , 1f k

m
−

= , 1 ,f km −  where = ( ).f t f  
Thus, without loss of generality we can assume that = ,na 0 = ,n kb −0

= .kI   Let 1= ,kI −
′  1= .n kb − +

′ 0  Then obviously 
I
b′
′

B ⊆ ,
I
bB a ∈ ,

I
b′
′

B  
and hence = { }.f I

C b a′

′
∩B  Then by Lemma 3.1 (5) we have 

,
| |= 1.

If
C

b′ ′
 

Hence, by the Definitions 2.5 and 2.6 the equality 
,If b

m
′ ′

= 1k −  holds. 
Because of equality | |I′ = 1,k − 1 ,n kb − +′∈B  inequality , 1 1,f k km − −  
and by Definition 3.5 we get , 1 = 1.f k km − −

(2)	� Let , < .f k km  By Definitions 2.6, 3.5 there exist a k-element subset I in 
,n  a tuple ,n kb −∈B  and a point 

,If
C

b
d ∈  such that the equalities 

,f km =
,If b

m =
,

( )
If b

m d  hold. Let us denote 1
,= ( ).Ip ba d−  Without loss 

of generality just as in (1), we can assume that = ,na 0 = ,n kb −0
= .kI   Then = .kd 0  By Definitions 2.5, 2.6 and 3.5 it follows from 

, <f k km  that 
,

| |> 1.
If

C
b

 Let us denote ,= .f km m  Then it follows from 

,
( ) =

If
m

b
m d  and Definition 2.5 that for every point 

,
,

If
C

b
r∈ ,r d≠  

Hamming’s weight ( ) > .w mr  It follows from Lemma 3.1 (5) that 
| |> 1,f IC b∩B  and ( ) >w mt  for any fCt ∈ ∩ ,I

bB .t a≠

Let 1= kI −
′   and let 1= .n kb − +

′ 0  Then ,I
ba ′
′∈B  and fC ∩ I

b′
′B ⊆ fC ∩

.I
bB  Thus, for any point fCt ′∈ ∩ ,

I
b′
′

B t a′ ≠  the inequality ( ) >w mt ′  
holds. From Lemma 3.1 (5) it follows that ( ) >w mt ′′  for every 

, '
,

If
C

b
t

′
′′∈ if 

t g′′ ≠  for , '= Ip bg ′ ( )a = 1.k−0  If 
,

| |> 1,
If

C
b′ ′

 then , 1f km − 
,If b

m
′ ′


, 'If b

m
′

( )g
 m  by the Definitions 2.5, 2.6, 3.5. If 

,
| |= 1,

If
C

b′ ′
 then by the same 
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Definitions and from the inequality , 1f km −  1,k −  we get , 1f km − = 1,k −  i.e. 
the inequality , 1f km −  m  holds. 

The following theorem describes arithmetic structure of the joint 
action spectrum of variables in a Boolean function. 

Theorem 3.13: For any function f ∈B 1( , , )nx x  there exists a unique integer 
fm ∈ {0,1, , }n  such that 

(1)	 , =f k km  for {0,1, 2, , }fk m∈   and 
(2)	 , , 1f k f km m −  for { 1, , }fk m n∈ +   if < .fm n  

Proof: For =f 0  or =f 1  we have = 0.fm  For other Boolean functions 
we have ,1 = 1,fm  and hence, we can set fm = max { nk∈ | ,f km = }.k  By 
Lemma 3.12 (1) we obtain (1). The inequality (2) follows from ,0 f k km   
and Lemma 3.12 (2). 

Example 3: As it is noticed in [17], for the Boolean function 1 2 3=f x x x  we 
have = 3.fm  Thus, ,3fm = fm = 3  and by the Theorem 3.13 (1) we obtain 
the equalities ,2 = 2,fm ,1 = 1,fm  i.e. the spectrum of that function is fM =
(1, 2, 3).  In the same paper it is shown that = 2fm  for 1 2 3=f x x x ∨ 1 2 3 .x x x  
For this function with = {1, 2},I = 1b  we get , 1 2=If x xb  and 

,
= 2

If b
m  

(see, Example 2). Hence, ,2 = 2fm  and the spectrum of this function is 
= (1, 2, 2).fm  In the Example 2 it is shown that ,2 = 2fm  and ,3 = 0fm  for the 

function 1 2= .f x x  Hence, its spectrum is = (1, 2,0).fM  As the equalities 
(1, 2, 3)  (1, 2, 2)  (1, 2,0)  hold, one can order the corresponding types 
of joint action as follows: 1 2 3x x x〈 〉  is the most strong type of joint action, 

1 2 3x x x〈 ∨ 1 2 3x x x 〉  is a weaker one, and 1 2x x〈 〉  is the weakest one among 
these three types. Moreover, it is easy to see that the type 1 2 3x x x〈 〉  is the 
strongest joint action type among all the joint action types for = 3.n  

An important question is the estimation of how many spectra of joint 
action can be for Boolean functions depending on a given number of 
variables. Let’s find an upper bound for this number.

From the Theorem 3.13 it follows that a set of interaction degrees 
possesses their own specific property which allows us to introduce 
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Definition 3.14: We say that a sequence of integers 1= ( , , ),nM m m

1 ,im n   possesses a spectrum property if there exists such a unique 
number {0,1, , }K n∈   that the the following properties hold 

(1)	 =im i  for any {0,1, , }i K∈   and 
(2)	 1j jm m −  for any { 1, , }j K n∈ +   if < .K n  

We can now formulate the Theorem 3.13 as a property that spectrum 
of joint action of n Boolean variables for arbitrary Boolean function from 

1( , , )x nB  is a sequence with the spectrum property. Therefore, the 
number of all spectra of joint action of n variables does not exceed the 
number nS  of sequences possessing the spectrum property. Let us calculate 

.nS

Theorem 3.15: For any integer 2n  the equality = 2n
nS  holds. 

Proof: The number ( , )num p r  of all sequences =1{ }p
i ix  of integers such that 

1 21 < <x x  < px r  equals r
p
 
  
 

 as the set { | }i px i∈  is a p-element subset 

of .r  Let us denote ( , )N p r  the number of all sequences =1{ }p
i iy  of integers 

such that 1 21 .py y y r    
One can put every sequence =1{ }p

j jy  in a one-to-one correspondence 
with a sequence =1{ } ,p

j jz  where jz = ( 1),jy j+ − pj∈  and 1 21 < <z z 

< ,pz s  where = 1.s r p+ −  Conversely, to every such a sequence =1{ }p
j jz  

one can establish one-to-one correspondence with a sequence =1{ } ,p
j jy  

where =j jy z − ( 1),j − ,pj∈  and the equalities 1 21 y y    py r  
hold. Thus, we obtain the equality ( , )N p r = ( ,num p r + 1)p− = 1r p

p

 + − 
 
 

 (a 
similar problem was considered in [24]).

By Definition 3.14 there is a one-to-one correspondence between the 
set of all sequences 1= ( , , )nM m m  possessing the spectrum property 
with <K n  and the set of all such non-increasing sequences = 1{ }n

i i Km +  that 

1KK m +  2Km +    0.nm   It is clear that the number of that 
sequences is equal to 

	
( , 1) = = .n n

n K K
N n K K    

      −   
− +
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For =K n  there exist a unique sequence with the spectrum property, 
namely, = (1, 2, , ).M n  Thus, 

	

1 1

=0 =0
= ( , 1) 1 = 1 = 2 .

n n n
n

K K

n
K

S N n K K
− −  

  
 

− + + +∑ ∑

Corollary 3.16: The number of combined action spectra of n Boolean variables in 
Boolean functions from 1( , , )nx xB  does not exceed 2 .n  

Example 4: Let = 2.n  In [17] it was shown that = 2fm  for 1 2= ,f x x  = 1fm  
for f = 1 2x x ∨ 1 2 ,x x  and = 0fm  for = 0f  or 1= ,f x 2= .f x  Then by 
Definitions 3.5 and 3.11 every pair (1, 2), (1,1), (1,0), (0,0)  is a spectrum 
of combined action of variables 1 2,x x  for a particular function from 

1 2( , ).x xB  By Theorem 3.13 there are no other spectra for the case under 
consideration. Thus, there are exactly 4 different spectra of joint action of 
two Boolean variables. This is consistent with Corollary 3.16. 

4.  Conclusions

The theory of sufficient causes for two-level variables considered as 
one of the possible concept for describing causality in epidemiology has 
an adequate mathematical language that is the theory of Boolean functions 
and Boolean algebras. The foundations of this formalization laid down in 
[20]-[22] continues in the present paper where analogues of the concepts 
of joint action and degree of joint action of all variables in a given function 
introduced in [17] are built. These analogues consider the notion of joint 
action of 2k  variables in a function that depends on n k  variables and 
as shown above they satisfy the properties proved in [17] for the joint 
action of all variables in a given function. In particular, 

1.	� A notion of joint (combined) action of k variables is introduced. 
2.	� A criterion for the combined action of k variables is formulated 

and proved, which generalizes the corresponding criterion for the 
presence of combined action of n variables, in graph theory terms. 

3.	� It is possible to define the notion of the degree of combined action of 
k variables which also generalizes the notion of degree of combined 
action of all variables from . 

4.	� A criterion for the presence of combined action of k variables is 
given and proved, which generalizes the criterion for the presence of 
combined action of n variables. 
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5.	� The degree of combined action of k variables, as well as the notion 
of combined action of k variables, are invariant under the nG -action 
there nG  is automorphism group of Boolean cube nB  (i.e. the 
hyperoctahedral group ).nOct  This means that the concept of the 
combined action of k variables and the degree of combined action of 
k variables are correctly defined on the nG -orbits. Thus, each such 
orbit (referred to as a class above in the text) represents some specific 
type of combined action. 

6.	� Properties of degree of combined action of k variables for a Boolean 
function which depends on n variables are formulated and proved 
for different k. 

7.	� The concept of the spectrum of joint action of variables in a Boolean 
function is introduced. This notion allows us to order the types of 
combined action according to their power. 

8.	� An upper bound for the number of joint action spectra of variables 
in Boolean functions depending on a given number of variables is 
obtained. 

In general, we can say that the Boolean framework for the binary 
sufficient causes theory is not only an adequate language for describing 
existing concepts, but also a mathematical tool allowing one to effectively 
develop this theory.
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