Тема V: Линейные операторы

5. Системы линейных уравнений

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2024/2025 учебный год

Постановка задачи

Мы установили необходимое и достаточное условие *совместности* системы линейных уравнений $A\mathbf{x}=\mathbf{b}$. Теперь обсудим, как *решать* такие системы.

Эта задача делится на две подзадачи:

- решение совместных систем;
- решение несовместных систем.

Сегодня займемся первой подзадачей; вторую (более сложную и практически более важную подзадачу) обсудим немного позднее.

Система линейных уравнений называется *однородной*, если свободные члены всех уравнений системы нулевые:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0, \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0. \end{cases}$$

Однородная система всегда совместна. Сведем нахождение решений произвольной совместной системы к нахождению решений однородной системы, а затем изучим строение решений однородной системы.

Сведение к однородным системам

Пусть $A\mathbf{x}=\mathbf{b}$ – произвольная совместная система. Соответствующая ей однородная система $A\mathbf{x}=\mathbf{0}$ получается, если заменить столбец свободных членов нулевым столбцом.

Замечание

Если \mathbf{x}_0 – некоторое решение системы $A\mathbf{x}=\mathbf{b}$, то вектор-столбец \mathbf{x}_1 будет решением системы $A\mathbf{x}=\mathbf{b}$ тогда и только тогда, когда $\mathbf{x}_1=\mathbf{x}_0+\mathbf{y}$, где \mathbf{y} – решение соответствующей однородной системы $A\mathbf{x}=\mathbf{0}$.

 ${\cal L}$ оказательство. Если ${f x}_1$ – решение системы $A{f x}={f b}$, положим ${f y}:={f x}_1-{f x}_0.$ Тогда

$$A\mathbf{y} = A(\mathbf{x}_1 - \mathbf{x}_0) = A\mathbf{x}_1 - A\mathbf{x}_0 = \mathbf{b} - \mathbf{b} = \mathbf{0}.$$

Итак, \mathbf{y} – решение однородной системы $A\mathbf{x} = \mathbf{0}$ и $\mathbf{x}_1 = \mathbf{x}_0 + \mathbf{y}$.

Обратно, если $\mathbf{x}_1 = \mathbf{x}_0 + \mathbf{y}$, где \mathbf{y} – решение однородной системы, то

$$A\mathbf{x}_1 = A(\mathbf{x}_0 + \mathbf{y}) = A\mathbf{x}_0 + A\mathbf{y} = \mathbf{b} + \mathbf{0} = \mathbf{b}.$$

Отсюда \mathbf{x}_1 – решение системы $A\mathbf{x} = \mathbf{b}$.

Сведение к однородным системам (2)

Доказанное выше замечание показывает, что если научиться находить всевозможные решения однородных систем, то для нахождения всех решений данной системы $A\mathbf{x}=\mathbf{b}$ достаточно найти какое-нибудь одно решение этой системы. Эту мысль часто выражают так: общее решение системы $A\mathbf{x}=\mathbf{b}$ равно сумме какого-то частного решения этой системы и общего решения соответствующей однородной системы.

Отметим еще геометрическую интерпретацию. В обычном трехмерном пространстве системы линейных уравнений задают прямые или плоскости, а однородные системы – прямые или плоскости, проходящие через начало координат, т.е. одномерные или двумерные подпространства. Замечание говорит, что любую точку прямой или плоскости можно получить, отложив от какой-то начальной точки этой прямой или плоскости подходящий вектор из направляющего подпространства этой прямой или плоскости.

Фундаментальная система решений однородной системы

Предложение

Множество решений однородной системы $A\mathbf{x}=\mathbf{0}$ образует подпространство в пространстве столбцов.

Доказательство. Если $A-k\times n$ -матрица, то правило $\mathcal{A}(\mathbf{x}):=A\mathbf{x}$ определяет линейный оператор $\mathcal{A}\colon V_1\to V_2$ из пространства столбцов высоты n в пространство столбцов высоты k. При этом матрица A будет матрицей этого оператора \mathcal{A} (в стандартных базисах пространств V_1 и V_2), а множество решений системы $A\mathbf{x}=\mathbf{0}$ будет ядром оператора \mathcal{A} . Ядро линейного оператора является подпространством.

Если пространство решений однородной системы ненулевое, то любой базис этого пространства называется фундаментальной системой решений. Если $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_d$ — фундаментальная система решений системы $A\mathbf{x} = \mathbf{0}$, то любое решение \mathbf{y} этой системы однозначно представимо в виде

$$\mathbf{y} = c_1 \mathbf{y}_1 + c_2 \mathbf{y}_2 + \dots + c_d \mathbf{y}_d, \tag{*}$$

где c_1, c_2, \ldots, c_d – некоторые скаляры. Выражение (*) принято называть общим решением системы $A\mathbf{x}=\mathbf{0}$.

Размерность пространства решений

Итак, решить однородную систему линейных уравнений – значит построить для нее фундаментальную систему решений. Как это сделать?

Прежде всего, ответим на вопрос, как узнать, сколько решений входит в фундаментальную систему.

Теорема о размерности пространства решений однородной системы

Размерность пространства решений системы $A\mathbf{x}=\mathbf{0}$ равна n-r, где n- число неизвестных в системе, а r- ранг матрицы A.

Доказательство. Снова рассмотрим линейный оператор $\mathcal A$ из пространства столбцов высоты n в пространство столбцов высоты k, определяемый как умножение вектора-столбца на матрицу A слева, и применим к $\mathcal A$ теорему о ранге и дефекте. По этой теореме сумма ранга (размерности образа $\mathcal A$) и дефекта (размерности ядра $\mathcal A$) равна размерности пространства столбцов высоты n, т.е. n. Так как ранг линейного оператора совпадает с рангом его матрицы, ранг оператора $\mathcal A$ равен r. Ядро оператора $\mathcal A$ – это пространство решений системы, поэтому размерность последнего равна n-r.

Построение фундаментальной системы решений

Рассмотрим произвольную однородную систему.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0, \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0. \end{cases}$$

Пусть ранг ее матрицы A равен r < n. (В случае r = n у системы есть единственное решение ${\bf 0}$, и фундаментальной системы решений нет.) В силу теоремы о ранге в A есть r линейно независимых строк, а любой набор из более, чем r ее строк линейно зависим. Переставляя уравнения, можно считать, что первые r строк матрицы A линейно независимы, а все последующие строки линейно выражаются через первые r строк. Следовательно, все уравнения нашей системы, начиная с (r+1)-го, являются следствиями первых r уравнений. Вычеркнув все уравнения, начиная с (r+1)-го, получим систему

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0, \\ \dots \\ a_{r1}x_1 + a_{r2}x_2 + \dots + a_{rn}x_n = 0, \end{cases}$$

равносильную исходной. Обозначим матрицу этой системы через A'; ясно, что ранг A' равен r. Поэтому у A' есть r линейно независимых столбцов.

Построение фундаментальной системы решений (2)

Переставляя столбцы матрицы A^\prime и переименовывая переменные, получим систему с матрицей, в которой первые r столбцов линейно независимы:

$$\begin{cases} b_{11}y_1 + b_{12}y_2 + \cdots + b_{1r}y_r + b_{1r+1}y_{r+1} + \cdots + b_{1n}y_n = 0, \\ b_{21}y_1 + b_{22}y_2 + \cdots + b_{2r}y_r + b_{2r+1}y_{r+1} + \cdots + b_{2n}y_n = 0, \\ \vdots \\ b_{r1}y_1 + b_{r2}y_2 + \cdots + b_{rr}y_r + b_{rr+1}y_{r+1} + \cdots + b_{rn}y_n = 0; \end{cases}$$

здесь $\{y_1,\ldots,y_n\}=\{x_1,\ldots,x_n\}$, а матрица $(b_{ij})_{r\times n}$ получается из матрицы A' перестановкой столбцов. Перенеся слагаемые, содержащие неизвестные y_{r+1},\ldots,y_n , в правую часть, получим систему

$$\begin{cases} b_{11}y_1 + b_{12}y_2 + \dots + b_{1r}y_r = -b_{1r+1}y_{r+1} - \dots - b_{1n}y_n, \\ b_{21}y_1 + b_{22}y_2 + \dots + b_{2r}y_r = -b_{2r+1}y_{r+1} - \dots - b_{2n}y_n, \\ \dots \\ b_{r1}y_1 + b_{r2}y_2 + \dots + b_{rr}y_r = -b_{rr+1}y_{r+1} - \dots - b_{rn}y_n. \end{cases}$$
(†)

Неизвестные y_{r+1},\ldots,y_n называются *свободными*, а неизвестные y_1,\ldots,y_r – *связанными*. Будем смотреть на систему (\dagger) как на (неоднородную) систему r линейных уравнений относительно r неизвестных y_1,\ldots,y_r .

Построение фундаментальной системы решений (3)

В матричном виде систему (†)

можно записать как $B\mathbf{y}=\mathbf{c}$, где $B=(b_{ij})_{r imes r}$ – матрица

из коэффициентов при неизвестных y_1,\dots,y_r , $\mathbf{y}:=egin{pmatrix} y_1\\ \vdots \end{pmatrix}$,

а
$$\mathbf{c}:=egin{pmatrix} -b_{1\,r+1}y_{r+1}-\cdots-b_{1n}y_n,\\ \vdots\\ -b_{r\,r+1}y_{r+1}-\cdots-b_{rn}y_n \end{pmatrix}$$
. Матрица B обратима, поскольку ее

столбцы линейно независимы. Умножая равенство $B\mathbf{y}=\mathbf{c}$ слева на B^{-1} . получаем единственное решение системы (†) в виде $y = B^{-1}c$.

получаем единственное решение системы (†) в виде
$$\mathbf{y} = B^{-1}\mathbf{c}$$
. Переходя к координатам, имеем
$$\begin{cases} y_1 = c_{1\,r+1}y_{r+1} + \cdots + c_{1n}y_n, \\ y_2 = c_{2\,r+1}y_{r+1} + \cdots + c_{2n}y_n, \\ \cdots \\ y_r = c_{r\,r+1}y_{r+1} + \cdots + c_{rn}y_n. \end{cases}$$

Построение фундаментальной системы решений (4)

Из формул

$$\begin{cases} y_1 = c_{1\,r+1}y_{r+1} + \dots + c_{1n}y_n, \\ y_2 = c_{2\,r+1}y_{r+1} + \dots + c_{2n}y_n, \\ \dots \\ y_r = c_{r\,r+1}y_{r+1} + \dots + c_{rn}y_n. \end{cases}$$
(*)

можно извлекать решения исходной системы, придавая свободным неизвестным y_{r+1}, \dots, y_n произвольные значения (поэтому они и названы «свободными»), вычисляя соответствующие значения связанных неизвестных y_1, \ldots, y_r и переходя к исходным неизвестным x_1, \ldots, x_n .

Для каждого $i=r+1,\ldots,n$ придадим свободной неизвестной y_i значение 1, а всем остальным свободным неизвестным – значение 0.

значение 1, а всем остальным свободным неизвестным — значение 0. Вычислив по формулам
$$(\star)$$
 соответствующие значения связанных неизвестных, получим $n-r$ решений $\mathbf{y}_1:=\begin{pmatrix}c_{1\,r+1}\\\vdots\\c_{r\,r+1}\\1\\\vdots\\0\end{pmatrix},\ldots,\mathbf{y}_{n-r}:=\begin{pmatrix}c_{1n}\\\vdots\\c_{rn}\\0\\\vdots\\1\end{pmatrix}$

Построение фундаментальной системы решений (5)

Утверждается, что эти решения образуют фундаментальную систему решений для системы

$$\begin{cases} b_{11}y_1 + b_{12}y_2 + \dots + b_{1r}y_r + b_{1r+1}y_{r+1} + \dots + b_{1n}y_n = 0, \\ b_{21}y_1 + b_{22}y_2 + \dots + b_{2r}y_r + b_{2r+1}y_{r+1} + \dots + b_{2n}y_n = 0, \\ \dots \\ b_{r1}y_1 + b_{r2}y_2 + \dots + b_{rr}y_r + b_{rr+1}y_{r+1} + \dots + b_{rn}y_n = 0. \end{cases}$$

Действительно, их число равно размерности n-r пространства решений системы, а сами эти решения линейно независимы, что сразу видно, если

Нижние n-r строк линейно независимы, откуда ранг равен n-r.

Построение фундаментальной системы решений (6)

Переход к исходным неизвестным x_1,\ldots,x_n означает перестановку строк матрицы

Столбцы полученной при этой перестановке строк матрицы останутся линейно независимыми и потому образуют фундаментальную систему решений для исходной системы.

Построение фундаментальной системы решений – пример

На практике фундаментальную систему решений ищут, приводя систему к ступенчатому виду. Разберем пример:

$$\begin{cases} x_1 + 3x_2 + x_3 - 2x_4 - 2x_5 &= 0\\ -x_1 - 7x_2 - 2x_3 + x_4 + 2x_5 &= 0\\ -x_1 - 11x_2 - 3x_3 + 2x_5 &= 0\\ -2x_1 - 2x_2 - x_3 + 5x_4 + 4x_5 &= 0 \end{cases}$$

$$\begin{pmatrix} 1 & 3 & 1 & -2 & -2 \\ -1 & -7 & -2 & 1 & 2 \\ -1 & -11 & -3 & 0 & 2 \\ -2 & -2 & -1 & 5 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 1 & -2 & -2 \\ 0 & -4 & -1 & -1 & 0 \\ 0 & -8 & -2 & -2 & 0 \\ 0 & 4 & 1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 1 & -2 & -2 \\ 0 & 4 & 1 & 1 & 0 \end{pmatrix}$$

Получили ступенчатую систему $\left\{ \begin{array}{ccc} x_1+3x_2+x_3-2x_4-2x_5=0\\ 4x_2+x_3+x_4&=0 \end{array} \right..$

Свободные неизвестные – x_3, x_4, x_5 , связанные – x_1, x_2 . Фундаментальная

система решений состоит из
$$\mathbf{x}_1=\begin{pmatrix} -0,25\\-0,25\\1\\0\\0 \end{pmatrix}$$
, $\mathbf{x}_2=\begin{pmatrix} 2,75\\-0,25\\0\\1\\0 \end{pmatrix}$, $\mathbf{x}_3=\begin{pmatrix} 2\\0\\0\\0\\1 \end{pmatrix}$.

Пусть дана система линейных уравнений $A\mathbf{x} = \mathbf{b}$ с n неизвестными.

- **③** Элементарными преобразованиями строк приводим матрицу A|b к ступенчатому виду.
- $oldsymbol{eta}$ Если ранг r матрицы A меньше ранга матрицы A|b, система $A\mathbf{x}=\mathbf{b}$ несовместна. Если ранги равны, находим частное решение \mathbf{x}_0 этой системы.
- **③** Находим фундаментальную систему решений $\mathbf{x}_1, \dots, \mathbf{x}_{n-r}$ соответствующей однородной системы $A\mathbf{x} = \mathbf{0}$.
- Выражение

$$\mathbf{x} = \mathbf{x}_0 + c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_{n-r} \mathbf{x}_{n-r},$$

где $c_1, c_2, \ldots, c_{n-r}$ – произвольные скаляры, дает общее решение системы $A\mathbf{x} = \mathbf{b}$. Каждое решение системы получается из общего при некотором (однозначно определяемом) наборе $c_1, c_2, \ldots, c_{n-r}$.

Трудоемкость описанной процедуры $O(m^3)$, где m – число уравнений.

Приложение – извлечение данных

Задача

Дано: множество E (огромного!) размера m и функция $f\colon E\to \{0,1\}.$ Требуется: Структура данных R, которая по $y\in E$ возвращает f(y).

Требования на R по времени и памяти

Память: (1+arepsilon)m бит для некоторой маленькой константы arepsilon. Время: константа (не зависит от m).

Заметим, что каждый элемент $y \in E$ может быть относительно большим, поэтому хранить массив всех пар (y,f(y)) не является решением (требует $m(\max\{|y|\}+1)$ бит и не допускает быстрого извлечения).

Пример: Результаты тестов на ковид

Извлечение данных трудно – ошибка Ватсона

Watson — это знаменитый суперкомьютер фирмы IBM. В 2011 г. Watson выиграл в интеллектуальном шоу «Jeopardy!» у двух самых знаменитых белковых чемпионов.

Однако Watson допускал ошибки. Например, он не угадал ответ на такой вопрос из категории «Города США»: «Его крупнейший аэропорт назван в честь героя второй мировой войны, а его второй по величине аэропорт – в честь битвы этой войны». Ответ – Чикаго, аэропорты О'Хара и Мидуэй.

Важно понимать, что Watson имел все необходимые данные в своей 15-терабайтной базе знаний! Неудача была связана не с отсутствием данных, а с неспособностью быстро извлечь нужное из огромной базы!

Извлечение данных с помощью систем линейных уравнений

Возьмем $n=(1+\varepsilon)m$ и хэш-функцию $h\colon E \to \{1,\dots,n\}^3.$ Функция h должна быть легко вычислимой и взаимно однозначной. Это дает $m\times n$ -матрицу A над двухэлементным полем $\mathbb{F}=\{0,1\}$:

Input	Hash Values	1	2	3	4	5	6	7	8	9			
Ana	$h(\mathtt{Ana}) = (1, 3, 9)$	/1	0	1	0	0	0	0	0	1	$\vec{x} =$	/1	١
Bea	$h(\mathtt{Bea}) = (2,3,4)$	0	1	1	1	0	0	0	0	0		1	١
Cal	$h(\mathtt{Cal}) = (3, 6, 8)$	0	0	1	0	0	1	0	1	0		0	l
Dan	$h(\mathtt{Dan}) = (5, 8, 9)$	0	0	0	0	1	0	0	1	1		0	l
Eli	$h(\mathtt{Eve}) = (2, 8, 9)$	0	1	0	0	0	0	0	1	1		0	l
Fen	$h(\mathtt{Fen}) = (1,5,6)$	$\backslash 1$	0	0	0	1	1	0	0	0/		$\backslash 1$	

Структура $R = (h, \vec{x})^{\dagger}$

 $\mathsf{query}(y) := \sum_{i=1}^3 ec{x}[h_i(y)]$ – константное время (сумма 3 бит)

Требуемая память: 1.09m бит (или 1.23m бит при конструкции с O(m)).