Задачи по монадической логике второго порядка

Обозначения и соглашения. Рассматриваются слова над конечным алфавитом Σ . Формулы интерпретируются на начальных отрезках натурального ряда. Предметные переменные обозначаются маленькими буквами из конца латинского алфавита, монадические переменные — заглавными буквами. Предметные переменные интерпретируются как номера позиций, монадические — как множества (номеров) позиций. В формулах может использоваться бинарный предикат $x \in Y$, который интерпретируется так: позиция x принадлежит множеству позиций Y. Кроме того, используются бинарные предикаты равенства x = y, порядка x < y и следования y = x + 1, которые интерпретируются естественным образом, и унарные предикаты $Q_a(x)$ для каждой буквы $a \in \Sigma$, которые интерпретируются так: $Q_a(x)$ истинен на каком-то слове $w \in \Sigma^*$, если и только если в w позиция x занята буквой a. Соответствующую логику для краткости обозначаем через MSO(<).

- 1. Какой язык задает формула $\forall x \left(\neg \big(\exists y (y < x) \big) \rightarrow Q_a(x) \right)$?
- 2. Какой язык задает формула $\exists x \, Q_a(x)$?
- 3. Какой язык задает формула $\exists x\exists y\, \Big((y=x+1)\,\&\, Q_a(x)\,\&\, Q_b(y)\Big)?$
- 4. Придумать формулу, задающую язык $\Sigma^* b$.
- 5. Придумать формулу, задающую язык ab^* .
- 6. Придумать формулу, задающую язык a^*b^* .
- 7. Придумать формулу, задающую язык $(ab)^*$.
- 8. Придумать формулу, задающую язык $(a^2)^*$.
- 9. Придумать формулу, задающую язык всех слов нечетной длины над алфавитом Σ .
- 10. Показать, что предикаты следования и равенства можно выразить в логике первого порядка через предикат порядка.
- 11. Показать, что предикат порядка можно выразить в монадической логике второго порядка через предикат следования.
- 12. Выразить через стандартные предикаты следующие монадические предикаты: а) $\operatorname{Sing} X$ (множество X одноэлементно), б) $X \subseteq Y$ (множество X содержится в множестве Y), в) $X \subseteq Q_a$ (во всех позициях множества X стоит буква a).

13. Вася написал следующую формулу, которой, как он думает, задается язык a^*b^* :

$$\exists X \,\exists Y \,\forall x \forall y \Big(\big((x \in X) \,\&\, (y \in Y) \big) \to \big(Q_a(x) \,\&\, Q_b(y) \,\&\, (x < y) \big) \Big).$$

- а) Прав ли Вася? б) Какой язык задает Васина формула? в) Как подправить Васину формулу, чтобы подправленная формула действительно задавала язык a^*b^* ? г) Построить автомат, распознающий a^*b^* , и преобразовать его в формулу по алгоритму из доказательства теоремы Бюхи.
- 14. Доказать, что предикат сложения $S(x,y,z) \rightleftharpoons x+y=z$ нельзя выразить в логике $\mathrm{MSO}(<)$.
- 15. Выразить предикат "x делится на 3" в логике MSO(<).
- 16. Пусть $\mathcal{A}_1 = (\Sigma, Q_1, \mathcal{E}_1, i_1, F_1)$ и $\mathcal{A}_2 = (\Sigma, Q_2, \mathcal{E}_2, i_2, F_2)$ два автомата; L_1 и соответственно L_2 языки бесконечных слов, которые эти автоматы принимают (по Бюхи). Построить автомат, принимающий язык $L_1 \cap L_2$.