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Neutral elements

An element x of a lattice L is called neutral if

Vy,z € L: the sublattice of all generated by x, y and z is distributive
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Neutral elements

An element x of a lattice L is called neutral if
Vy,z € L: the sublattice of all generated by x, y and z is distributive
or, equivalently, if

Vy,zeL: (xVy)A(yVz)A(zVx)=(xAy)V(yAz)V(zAx).
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Neutral elements

An element x of a lattice L is called neutral if

Vy,z € L: the sublattice of all generated by x, y and z is distributive
or, equivalently, if

Vy,zeL: (xVy)A(yVz)A(zVx)=(xAy)V(yAz)V(zAx).

ais neutral in L if and only if L is a subdirect product of (a] = {x € L | x < a}
and [a) ={x € L| x> a},

L embeds in (a] x [a) by the rule

x+— (x Aa,xV a) for any x € L.
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Cancellable elements

Consider a weaker restricion: the mapping from L to (a] x [a) given by the rule
x+— (xAa,xVa)forany x € L

is one-to-one.
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Cancellable elements

Consider a weaker restricion: the mapping from L to (a] x [a) given by the rule
x+— (xAa,xVa)forany x € L

is one-to-one.

An element x of a lattice L is called cancellable if

Vy,z: xANy=xANz & xVy=xVz—oy=z

Boris Vernikov CANCELLABLE ELEMENTS OF VARIETAL LATTICES



Cancellable elements

Consider a weaker restricion: the mapping from L to (a] x [a) given by the rule
x+— (xAa,xVa)forany x € L
is one-to-one.

An element x of a lattice L is called cancellable if
Vy,z: xANy=xANz & xVy=xVz—oy=z

Every neutral element is cancellable.
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Three varietal lattices

We examine cancellable elements in three varietal lattices:

the lattice of all semigroup varieties;
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Three varietal lattices

We examine cancellable elements in three varietal lattices:
the lattice of all semigroup varieties;

the lattice of all epigroup varieties;

Boris Vernikov CANCELLABLE ELEMENTS OF VARIETAL LATTICES



Three varietal lattices

We examine cancellable elements in three varietal lattices:
the lattice of all semigroup varieties;
the lattice of all epigroup varieties;

the lattice of overcommutative semigroup varieties.
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Cancellable elements in the lattice SEM

We denote by SEM the lattice of all semigroup varieties.
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Cancellable elements in the lattice SEM

We denote by SEM the lattice of all semigroup varieties.

To determine all cancellable elements of SEM, we need notation for the
following concrete varieties:

T is the trivial variety,
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Cancellable elements in the lattice SEM

We denote by SEM the lattice of all semigroup varieties.

To determine all cancellable elements of SEM, we need notation for the
following concrete varieties:

T is the trivial variety,

SEM is the variety of all semigroups,
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Cancellable elements in the lattice SEM

We denote by SEM the lattice of all semigroup varieties.

To determine all cancellable elements of SEM, we need notation for the
following concrete varieties:

T is the trivial variety,
SEM is the variety of all semigroups,

SL is the variety of semilattices,
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Cancellable elements in the lattice SEM

We denote by SEM the lattice of all semigroup varieties.

To determine all cancellable elements of SEM, we need notation for the
following concrete varieties:

T is the trivial variety,

SEM is the variety of all semigroups,
SL is the variety of semilattices,
Xoo,0o = var{x’y ~ xyx ~ yx* ~ 0}

(w =~ 0 means wx =~ xw ~ w where x is a letter that does not occur in w),
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Cancellable elements in the lattice SEM

We denote by SEM the lattice of all semigroup varieties.

To determine all cancellable elements of SEM, we need notation for the
following concrete varieties:

T is the trivial variety,

SEM is the variety of all semigroups,

SL is the variety of semilattices,

Xoo,0o = var{x’y ~ xyx ~ yx* ~ 0}

(w =~ 0 means wx =~ xw ~ w where x is a letter that does not occur in w),
Xm,co = Xoo,oo AVar{xixz -+ Xm &= XtxXer " - Xmn | ™ € Sm} where 2 < m < o0

(Sm is the full permutation group on the set {1,2,..., m}),
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Cancellable elements in the lattice SEM

We denote by SEM the lattice of all semigroup varieties.

To determine all cancellable elements of SEM, we need notation for the
following concrete varieties:

T is the trivial variety,

SEM is the variety of all semigroups,

SL is the variety of semilattices,

Xoo,0o = var{x’y ~ xyx ~ yx* ~ 0}

(w =~ 0 means wx =~ xw ~ w where x is a letter that does not occur in w),

Xm,co = Xoo,oo AVar{xixz -+ Xm &= XtxXer " - Xmn | ™ € Sm} where 2 < m < o0
(Sm is the full permutation group on the set {1,2,..., m}),

Xmn = Xm,oo Avar{xixz---xn = 0} where 2 < m < n < oo,
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Cancellable elements in the lattice SEM

We denote by SEM the lattice of all semigroup varieties.

To determine all cancellable elements of SEM, we need notation for the
following concrete varieties:

T is the trivial variety,

SEM is the variety of all semigroups,

SL is the variety of semilattices,

Xoo,0o = var{x’y ~ xyx ~ yx* ~ 0}

(w =~ 0 means wx =~ xw ~ w where x is a letter that does not occur in w),

Xm,co = Xoo,oo AVar{xixz -+ Xm &= XtxXer " - Xmn | ™ € Sm} where 2 < m < o0
(Sm is the full permutation group on the set {1,2,..., m}),

Xmn = Xm,oo Avar{xixz---xn = 0} where 2 < m < n < oo,

Ymn = Xmn /\var{x2 ~ 0} where 2 < m < n < oo.

Boris Vernikov CANCELLABLE ELEMENTS OF VARIETAL LATTICES



Cancellable elements in the lattice SEM

We denote by SEM the lattice of all semigroup varieties.

To determine all cancellable elements of SEM, we need notation for the

following concrete varieties:

T is the trivial variety,

SEM is the variety of all semigroups,

SL is the variety of semilattices,

Xoo,0o = var{x’y ~ xyx ~ yx* ~ 0}

(w =~ 0 means wx =~ xw ~ w where x is a letter that does not occur in w),

Xm,co = Xoo,oo AVar{xixz -+ Xm &= XtxXer " - Xmn | ™ € Sm} where 2 < m < o0
(Sm is the full permutation group on the set {1,2,..., m}),

Xmn = Xm,oo Avar{xixz---xn = 0} where 2 < m < n < oo,

Ymn = Xmn /\var{x2 ~ 0} where 2 < m < n < oo.

Theorem (Shaprynskii, Skokov and ~)

A semigroup variety V is a cancellable element of SEM if and only if either
V =SEM orV =N or V=SLV N where N is one of the varieties T, X » or
Ymn with2 < m < n < oco.
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Corollary

Cancellable elements of the lattice SEM form a countably infinite distributive
sublattice of SEM.
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Diagram (nil-part)

Cancellable nil-varieties
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SEM

SL

T
All cancellable varieties
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Epigroups

An epigroup is a semigroup S with the following property: for any x € S there
is n such that x” lies in some subgroup of S.
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Epigroups

An epigroup is a semigroup S with the following property: for any x € S there
is n such that x” lies in some subgroup of S.

All periodic semigroups as well as all completely regular semigroups are
epigroups.
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Epigroups

An epigroup is a semigroup S with the following property: for any x € S there
is n such that x” lies in some subgroup of S.

All periodic semigroups as well as all completely regular semigroups are
epigroups.

Epigroups may be considered as unary semigroups, that is semigroups with an
additional unary operation.
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Epigroups as unary semigroups

Let S be an epigroup, x € S, G, is the maximum subgroup of S containing x.

Let x* be an identity element of G. Then xx* = x“x € G,. Put

X=(xx*)""in G

X is called pseudoinverse to x

pseudoinversio
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Periodic case

Every periodic semigroup variety can be considered as a variety of epigroups.
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Periodic case

Every periodic semigroup variety can be considered as a variety of epigroups.

If an epigroup variety V consists of periodic semigroups then the operation of
pseudoinversion may be defined by multiplication. Namely, if V satisfies the
identity x™ = x™" then X = x(™™ "1 Thus a variety of periodic epigroups
can be considered as a semigroup variety.
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Periodic case

Every periodic semigroup variety can be considered as a variety of epigroups.

If an epigroup variety V consists of periodic semigroups then the operation of
pseudoinversion may be defined by multiplication. Namely, if V satisfies the
identity x™ = x™" then X = x(™™ "1 Thus a variety of periodic epigroups
can be considered as a semigroup variety.

Periodic varieties of epigroups may be identified with periodic varieties of
semigroups.
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Cancellable elements in the lattice EPI

Let EPT be the lattice of all epigroup varieties.

Theorem (Shaprynskii, Skokov and ~)

An epigroup variety V is a cancellable element of EPI if and only if either
V =N or V=SL V N where N is one of the varieties T, Xm n or Ym n with

2<m<n<oo.
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Cancellable elements in the lattice EPI

Let EPT be the lattice of all epigroup varieties.

Theorem (Shaprynskii, Skokov and ~)

An epigroup variety V is a cancellable element of EPI if and only if either
V =N or V=SL V N where N is one of the varieties T, Xm n or Ym n with
2<m<n<oo.

The class of all epigroups is not a variety of epigroups.
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Corollaries

Cancellable elements of the lattice EPL form a countably infinite distributive
sublattice of EPL.
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Corollaries

Corollary

Cancellable elements of the lattice EPL form a countably infinite distributive
sublattice of EPL.

Corollary

For a periodic epigroup variety VI, the following are equivalent:
a) V is a cancellable element of the lattice EPI;
b) V is a cancellable element of the lattice SEML.
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Periodic and overcommutative varieties

A semigroup variety is called overcommutative if it contains the variety of all
commutative semigroups.
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Periodic and overcommutative varieties

A semigroup variety is called overcommutative if it contains the variety of all
commutative semigroups.

Every semigroup variety is either periodic or overcommutative. Therefore, the
lattice SEM is the disjoint union of the lattice of all periodic varieties and the
lattice OC of all overcommutative varieties.
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Periodic and overcommutative varieties

A semigroup variety is called overcommutative if it contains the variety of all
commutative semigroups.

Every semigroup variety is either periodic or overcommutative. Therefore, the
lattice SEM is the disjoint union of the lattice of all periodic varieties and the
lattice OC of all overcommutative varieties.

All cancellable elements of SEM except SEM are periodic varieties.
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Periodic and overcommutative varieties

A semigroup variety is called overcommutative if it contains the variety of all
commutative semigroups.

Every semigroup variety is either periodic or overcommutative. Therefore, the
lattice SEM is the disjoint union of the lattice of all periodic varieties and the
lattice OC of all overcommutative varieties.

All cancellable elements of SEM except SEM are periodic varieties.

It is interesting to examine cancellable elements of OC.
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Cancellable elements in OC

An element x of a lattice L is called distributive if
Vy,z: xV(yAz)=(xVy)A(xVz).

Codistributive elements are defined dually.
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Cancellable elements in OC

An element x of a lattice L is called distributive if
Vy,z: xV(yAz)=(xVy)A(xVz).

Codistributive elements are defined dually.

Proposition (Shaprynskii and ~, 2011)

For an overcommutative semigroup variety V, the following are equivalent:
a) V is a neutral element of OC;
b) V is a distributive element of OC;
c) V is a codistributive element of OC.

Varieties with the properties a)—c) are completely determined in that work.
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Cancellable elements in OC

An element x of a lattice L is called distributive if
Vy,z: xV(yAz)=(xVy)A(xVz).

Codistributive elements are defined dually.

Proposition (Shaprynskii and ~, 2011)

For an overcommutative semigroup variety V, the following are equivalent:
a) V is a neutral element of OC;
b) V is a distributive element of OC;

c) V is a codistributive element of OC.

Varieties with the properties a)—c) are completely determined in that work.

Theorem (Shaprynskii and ~)

An overcommutative semigroup variety is a cancellable element of OC if and
only if it is a neutral element of OC.

This gives a complete description of cancellable elements of OC.
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