CANCELLABLE ELEMENTS OF VARIETAL LATTICES

Boris Vernikov
Ural Federal University

The joint work with Vyacheslav Shaprynskiĭ and Dmitry Skokov

AAA97
Wien, March 2, 2019

An element x of a lattice L is called neutral if
$\forall y, z \in L$: the sublattice of all generated by x, y and z is distributive
or, equivalently, if
a is neutral in L if and only if L is a subdirect product of $(a]=\{x \in L \mid x \leq a\}$ and $[a)=\{x \in L \mid x \geq a\}$,
L embeds in ($a] \times[a)$ by the rule
\qquad

An element x of a lattice L is called neutral if
$\forall y, z \in L$: the sublattice of all generated by x, y and z is distributive or, equivalently, if

$$
\forall y, z \in L: \quad(x \vee y) \wedge(y \vee z) \wedge(z \vee x)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x) .
$$

a is neutral in L if and only if L is a subdirect product of $(a]=\{x \in L \mid x \leq a\}$ and $[a)=\{x \in L \mid x \geq a\}$,
L embeds in (a] $\times[a)$ by the rule

An element x of a lattice L is called neutral if
$\forall y, z \in L$: the sublattice of all generated by x, y and z is distributive or, equivalently, if

$$
\forall y, z \in L: \quad(x \vee y) \wedge(y \vee z) \wedge(z \vee x)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x) .
$$

a is neutral in L if and only if L is a subdirect product of $(a]=\{x \in L \mid x \leq a\}$ and $[a)=\{x \in L \mid x \geq a\}$,
L embeds in (a] $\times[a)$ by the rule

$$
x \longmapsto(x \wedge a, x \vee a) \text { for any } x \in L .
$$

Cancellable elements

Consider a weaker restricion: the mapping from L to (a] $\times[a)$ given by the rule

$$
x \longmapsto(x \wedge a, x \vee a) \text { for any } x \in L
$$

is one-to-one.
An element x of a lattice L is called cancellable if

Every neutral element is cancellable.

Cancellable elements

Consider a weaker restricion: the mapping from L to (a] $\times[a)$ given by the rule

$$
x \longmapsto(x \wedge a, x \vee a) \text { for any } x \in L
$$

is one-to-one.
An element x of a lattice L is called cancellable if

$$
\forall y, z: \quad x \wedge y=x \wedge z \& x \vee y=x \vee z \rightarrow y=z
$$

Every neutral element is cancellable.

Cancellable elements

Consider a weaker restricion: the mapping from L to (a] $\times[a)$ given by the rule

$$
x \longmapsto(x \wedge a, x \vee a) \text { for any } x \in L
$$

is one-to-one.
An element x of a lattice L is called cancellable if

$$
\forall y, z: \quad x \wedge y=x \wedge z \& x \vee y=x \vee z \rightarrow y=z .
$$

Every neutral element is cancellable.

We examine cancellable elements in three varietal lattices:
the lattice of all semigroup varieties;
the lattice of all epigroup varieties;
the lattice of overcommutative semigroup varieties.

We examine cancellable elements in three varietal lattices:
the lattice of all semigroup varieties;
the lattice of all epigroup varieties;
the lattice of overcommutative semigroup varieties.

We examine cancellable elements in three varietal lattices:
the lattice of all semigroup varieties;
the lattice of all epigroup varieties;
the lattice of overcommutative semigroup varieties.

Cancellable elements in the lattice $\mathbb{S E M}$

We denote by SEM the lattice of all semigroup varieties.

```
To determine all cancellable elements of SEM, we need notation for the
following concrete varieties:
T is the trivial variety
SEM is the variety of all semigroups,
SL is the variety of semilattices,
x co,\infty}=\operatorname{var}{\mp@subsup{x}{}{2}y\approxxyx\approxy\mp@subsup{x}{}{2}\approx0
(w\approx0 means wx\approxxw\approxw where x is a letter that does not occur in w),
\mp@subsup{X}{m,\infty}{}=\mp@subsup{\mathbf{X}}{\infty,\infty}{}\wedge\operatorname{var}{\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\cdots\mp@subsup{x}{m}{}\approx\mp@subsup{x}{1\pi}{}\mp@subsup{x}{2\pi}{}\cdots\mp@subsup{x}{m\pi}{}|\pi\in\mp@subsup{S}{m}{}}\mathrm{ where 2 }\leqm<\infty
    ( }\mp@subsup{S}{m}{}\mathrm{ is the full permutation group on the set {1,2,_..,m}).
X 
\mp@subsup{\mathbf{Y}}{m,n}{}=\mp@subsup{\mathbf{X}}{m,n}{}\wedge\operatorname{var}{\mp@subsup{x}{}{2}\approx0}\mathrm{ where 2 }\leqm\leqn\leq\infty.
```


Theorem (Shaprynskiǐ, Skokov and

A semigroun variety \mathbf{V} is a cancellable element of SEMM if and only if either $\mathrm{V}=\mathrm{SEM}$ or $\mathrm{V}=\mathrm{N}$ or $\mathrm{V}=\mathrm{SL} \vee \mathrm{N}$ where N is one of the varieties $\mathrm{T}, \mathrm{X}_{m, n}$ or $Y_{m, n}$ with $2 \leq m \leq n$

Cancellable elements in the lattice $\mathbb{S E M}$

We denote by $\mathbb{S E M}$ the lattice of all semigroup varieties.
To determine all cancellable elements of $\mathbb{S E M}$, we need notation for the following concrete varieties:

T is the trivial variety,
SEM is the variety of all semigroups,
SL is the variety of semilattices,

Cancellable elements in the lattice $\mathbb{S E M}$

We denote by $\mathbb{S E M}$ the lattice of all semigroup varieties.
To determine all cancellable elements of $\mathbb{S E M}$, we need notation for the following concrete varieties:
\mathbf{T} is the trivial variety, SEM is the variety of all semigroups,
SL is the variety of semilattices,

Cancellable elements in the lattice $\mathbb{S E M}$

We denote by $\mathbb{S E M}$ the lattice of all semigroup varieties.
To determine all cancellable elements of $\mathbb{S E M}$, we need notation for the following concrete varieties:
\mathbf{T} is the trivial variety, SEM is the variety of all semigroups,
SL is the variety of semilattices,

Cancellable elements in the lattice $\mathbb{S E M}$

We denote by $\mathbb{S E M}$ the lattice of all semigroup varieties.
To determine all cancellable elements of $\mathbb{S E M}$, we need notation for the following concrete varieties:
\mathbf{T} is the trivial variety,
SEM is the variety of all semigroups,
SL is the variety of semilattices,
$\mathbf{X}_{\infty, \infty}=\operatorname{var}\left\{x^{2} y \approx x y x \approx y x^{2} \approx 0\right\}$
($\mathbf{w} \approx 0$ means $\mathbf{w} x \approx x \mathbf{w} \approx \mathbf{w}$ where x is a letter that does not occur in \mathbf{w}),

Cancellable elements in the lattice $\mathbb{S E M}$

We denote by $\mathbb{S E M}$ the lattice of all semigroup varieties.
To determine all cancellable elements of $\mathbb{S E M}$, we need notation for the following concrete varieties:
\mathbf{T} is the trivial variety,
SEM is the variety of all semigroups,
SL is the variety of semilattices,

$$
\mathbf{X}_{\infty, \infty}=\operatorname{var}\left\{x^{2} y \approx x y x \approx y x^{2} \approx 0\right\}
$$

($\mathbf{w} \approx 0$ means $\mathbf{w} x \approx x \mathbf{w} \approx \mathbf{w}$ where x is a letter that does not occur in \mathbf{w}), $\mathbf{X}_{m, \infty}=\mathbf{X}_{\infty, \infty} \wedge \operatorname{var}\left\{x_{1} x_{2} \cdots x_{m} \approx x_{1 \pi} x_{2 \pi} \cdots x_{m \pi} \mid \pi \in S_{m}\right\}$ where $2 \leq m<\infty$ (S_{m} is the full permutation group on the set $\{1,2, \ldots, m\}$),

Cancellable elements in the lattice $\mathbb{S E M}$

We denote by $\mathbb{S E M}$ the lattice of all semigroup varieties.
To determine all cancellable elements of $\mathbb{S E M}$, we need notation for the following concrete varieties:
\mathbf{T} is the trivial variety,
SEM is the variety of all semigroups,
SL is the variety of semilattices,

$$
\mathbf{X}_{\infty, \infty}=\operatorname{var}\left\{x^{2} y \approx x y x \approx y x^{2} \approx 0\right\}
$$

$$
(\mathbf{w} \approx 0 \text { means } \mathbf{w} x \approx x \mathbf{w} \approx \mathbf{w} \text { where } x \text { is a letter that does not occur in } \mathbf{w})
$$

$$
\mathbf{X}_{m, \infty}=\mathbf{X}_{\infty, \infty} \wedge \operatorname{var}\left\{x_{1} x_{2} \cdots x_{m} \approx x_{1 \pi} x_{2 \pi} \cdots x_{m \pi} \mid \pi \in S_{m}\right\} \text { where } 2 \leq m<\infty
$$

$$
\text { (} S_{m} \text { is the full permutation group on the set }\{1,2, \ldots, m\} \text {), }
$$

$$
\mathbf{X}_{m, n}=\mathbf{X}_{m, \infty} \wedge \operatorname{var}\left\{x_{1} x_{2} \cdots x_{n} \approx 0\right\} \text { where } 2 \leq m \leq n<\infty,
$$

[^0]
Cancellable elements in the lattice $\mathbb{S E M}$

We denote by $\mathbb{S E M}$ the lattice of all semigroup varieties.
To determine all cancellable elements of $\mathbb{S E M}$, we need notation for the following concrete varieties:
\mathbf{T} is the trivial variety,
SEM is the variety of all semigroups,
SL is the variety of semilattices,
$\mathbf{X}_{\infty, \infty}=\operatorname{var}\left\{x^{2} y \approx x y x \approx y x^{2} \approx 0\right\}$
($\mathbf{w} \approx 0$ means $\mathbf{w} x \approx x \mathbf{w} \approx \mathbf{w}$ where x is a letter that does not occur in \mathbf{w}),
$\mathbf{X}_{m, \infty}=\mathbf{X}_{\infty, \infty} \wedge \operatorname{var}\left\{x_{1} x_{2} \cdots x_{m} \approx x_{1 \pi} x_{2 \pi} \cdots x_{m \pi} \mid \pi \in S_{m}\right\}$ where $2 \leq m<\infty$
(S_{m} is the full permutation group on the set $\{1,2, \ldots, m\}$),
$\mathbf{X}_{m, n}=\mathbf{X}_{m, \infty} \wedge \operatorname{var}\left\{x_{1} x_{2} \cdots x_{n} \approx 0\right\}$ where $2 \leq m \leq n<\infty$,
$\mathbf{Y}_{m, n}=\mathbf{X}_{m, n} \wedge \operatorname{var}\left\{x^{2} \approx 0\right\}$ where $2 \leq m \leq n \leq \infty$.

Theorem (Shaprynskiĭ, Skokov and

Δ semiaroun variety \mathbf{V} is a cancellable element of SEIM if and only if either $\mathrm{V}=\mathrm{SEM}$ or $\mathrm{V}=\mathrm{N}$ or $\mathrm{V}=\mathrm{SL} \vee \mathrm{N}$ where N is one of the varieties $\mathrm{T}, \mathrm{X}_{m, n}$ or $\mathrm{Y}_{m, n}$ with $2 \leq m \leq n \leq \infty$.

Cancellable elements in the lattice $\mathbb{S E M}$

We denote by $\mathbb{S E M}$ the lattice of all semigroup varieties.
To determine all cancellable elements of $\mathbb{S E M}$, we need notation for the following concrete varieties:
\mathbf{T} is the trivial variety,
SEM is the variety of all semigroups,
SL is the variety of semilattices,
$\mathbf{X}_{\infty, \infty}=\operatorname{var}\left\{x^{2} y \approx x y x \approx y x^{2} \approx 0\right\}$
($\mathbf{w} \approx 0$ means $\mathbf{w} x \approx x \mathbf{w} \approx \mathbf{w}$ where x is a letter that does not occur in \mathbf{w}), $\mathbf{X}_{m, \infty}=\mathbf{X}_{\infty, \infty} \wedge \operatorname{var}\left\{x_{1} x_{2} \cdots x_{m} \approx x_{1 \pi} x_{2 \pi} \cdots x_{m \pi} \mid \pi \in S_{m}\right\}$ where $2 \leq m<\infty$ (S_{m} is the full permutation group on the set $\{1,2, \ldots, m\}$),
$\mathbf{X}_{m, n}=\mathbf{X}_{m, \infty} \wedge \operatorname{var}\left\{x_{1} x_{2} \cdots x_{n} \approx 0\right\}$ where $2 \leq m \leq n<\infty$,
$\mathbf{Y}_{m, n}=\mathbf{X}_{m, n} \wedge \operatorname{var}\left\{x^{2} \approx 0\right\}$ where $2 \leq m \leq n \leq \infty$.

Theorem (Shaprynskiï, Skokov and ~)

A semigroup variety \mathbf{V} is a cancellable element of $\mathbb{S E M}$ if and only if either $\mathbf{V}=\mathbf{S E M}$ or $\mathbf{V}=\mathbf{N}$ or $\mathbf{V}=\mathbf{S L} \vee \mathbf{N}$ where \mathbf{N} is one of the varieties $\mathbf{T}, \mathbf{X}_{m, n}$ or $\mathbf{Y}_{m, n}$ with $2 \leq m \leq n \leq \infty$.

Corollary

Corollary

Cancellable elements of the lattice SEM form a countably infinite distributive sublattice of SEM.

An epigroup is a semigroup S with the following property: for any $x \in S$ there is n such that x^{n} lies in some subgroup of S.

All periodic semigroups as well as all completely regular semigroups are epigroups.

Enigrouns may be considered as unary semigroups, that is semigroups with an additional unary operation.

An epigroup is a semigroup S with the following property: for any $x \in S$ there is n such that x^{n} lies in some subgroup of S.

All periodic semigroups as well as all completely regular semigroups are epigroups.
Epigroups may be considered as unary semigroups, that is semigroups with an additional unary operation.

An epigroup is a semigroup S with the following property: for any $x \in S$ there is n such that x^{n} lies in some subgroup of S.

All periodic semigroups as well as all completely regular semigroups are epigroups.

Epigroups may be considered as unary semigroups, that is semigroups with an additional unary operation.

Let S be an epigroup, $x \in S, G_{x}$ is the maximum subgroup of S containing x.
Let x^{ω} be an identity element of G_{x}. Then $x x^{\omega}=x^{\omega} x \in G_{x}$. Put

$$
\bar{x}=\left(x x^{\omega}\right)^{-1} \text { in } G_{x} .
$$

\bar{x} is called pseudoinverse to x

Periodic case

Every periodic semigroup variety can be considered as a variety of epigroups. If an epigroup variety V consists of periodic semigroups then the operation of pseudoinversion may be defined by multiplication. Namely, if \mathbf{V} satisfies the identity $x^{m}=x^{m+n}$ then $\bar{x}=x^{(m+1) n-1}$. Thus a variety of periodic epigroups can be considered as a semigroup variety.

Periodic varieties of epigroups may be identified with periodic varieties of semigroups.

Every periodic semigroup variety can be considered as a variety of epigroups. If an epigroup variety \mathbf{V} consists of periodic semigroups then the operation of pseudoinversion may be defined by multiplication. Namely, if \mathbf{V} satisfies the identity $x^{m}=x^{m+n}$ then $\bar{x}=x^{(m+1) n-1}$. Thus a variety of periodic epigroups can be considered as a semigroup variety.

Periodic varieties of epigroups may be identified with periodic varieties of semigroups.

Every periodic semigroup variety can be considered as a variety of epigroups.
If an epigroup variety \mathbf{V} consists of periodic semigroups then the operation of pseudoinversion may be defined by multiplication. Namely, if \mathbf{V} satisfies the identity $x^{m}=x^{m+n}$ then $\bar{x}=x^{(m+1) n-1}$. Thus a variety of periodic epigroups can be considered as a semigroup variety.

Periodic varieties of epigroups may be identified with periodic varieties of semigroups.

Cancellable elements in the lattice $\mathbb{E P P I}$

Let $\mathbb{E P I I}$ be the lattice of all epigroup varieties.

Theorem (Shaprynskiĩ, Skokov and ~)

An epigroup variety \mathbf{V} is a cancellable element of $\mathbb{E P I I}$ if and only if either $\mathbf{V}=\mathbf{N}$ or $\mathbf{V}=\mathbf{S L} \vee \mathbf{N}$ where \mathbf{N} is one of the varieties $\mathbf{T}, \mathbf{X}_{m, n}$ or $\mathbf{Y}_{m, n}$ with $2 \leq m \leq n \leq \infty$.

The class of all epigroups is not a variety of epigroups.

Let $\mathbb{E P I I}$ be the lattice of all epigroup varieties.

Theorem (Shaprynskiï, Skokov and ~)

An epigroup variety \mathbf{V} is a cancellable element of $\mathbb{E P I I}$ if and only if either $\mathbf{V}=\mathbf{N}$ or $\mathbf{V}=\mathbf{S L} \vee \mathbf{N}$ where \mathbf{N} is one of the varieties $\mathbf{T}, \mathbf{X}_{m, n}$ or $\mathbf{Y}_{m, n}$ with $2 \leq m \leq n \leq \infty$.

The class of all epigroups is not a variety of epigroups.

Corollary

Cancellable elements of the lattice $\mathbb{E P I I}$ form a countably infinite distributive sublattice of $\mathbb{E P I I}$.

Corollary

For a periodic epigroup variety V , the following are equivalent:
a) V is a cancellable element of the lattice $\mathbb{E P I I}$;
b) \mathbf{V} is a cancellable element of the lattice $\mathbb{S} \mathbb{E M}$.

Corollary

Cancellable elements of the lattice $\mathbb{E P I I}$ form a countably infinite distributive sublattice of $\mathbb{E P I I}$.

Corollary

For a periodic epigroup variety \mathbf{V}, the following are equivalent:
a) \mathbf{V} is a cancellable element of the lattice $\mathbb{E P I I}$;
b) \mathbf{V} is a cancellable element of the lattice $\mathbb{S} \mathbb{E M}$.

Periodic and overcommutative varieties

A semigroup variety is called overcommutative if it contains the variety of all commutative semigroups.

Every semigroup variety is either periodic or overcommutative. Therefore, the lattice $\mathbb{S E M}$ is the disjoint union of the lattice of all periodic varieties and the lattice $\mathbb{O C}$ of all overcommutative varieties.

All cancellable elements of SEM except SEM are periodic varieties.
It is interesting to examine cancellable elements of $\mathbb{O C}$.

A semigroup variety is called overcommutative if it contains the variety of all commutative semigroups.

Every semigroup variety is either periodic or overcommutative. Therefore, the lattice $\mathbb{S E M}$ is the disjoint union of the lattice of all periodic varieties and the lattice $\mathbb{O C}$ of all overcommutative varieties.

All cancellable elements of SEM except SEM are periodic varieties.
It is interesting to examine cancellable elements of $\mathbb{O C}$.

A semigroup variety is called overcommutative if it contains the variety of all commutative semigroups.

Every semigroup variety is either periodic or overcommutative. Therefore, the lattice $\mathbb{S E M}$ is the disjoint union of the lattice of all periodic varieties and the lattice $\mathbb{O C}$ of all overcommutative varieties.

All cancellable elements of SEM except SEM are periodic varieties.
It is interesting to examine cancellable elements of $\mathbb{O C}$.

A semigroup variety is called overcommutative if it contains the variety of all commutative semigroups.

Every semigroup variety is either periodic or overcommutative. Therefore, the lattice $\mathbb{S E M}$ is the disjoint union of the lattice of all periodic varieties and the lattice $\mathbb{O C}$ of all overcommutative varieties.

All cancellable elements of SEM except SEM are periodic varieties.
It is interesting to examine cancellable elements of $\mathbb{O C}$.

Cancellable elements in $\mathbb{O C}$

An element x of a lattice L is called distributive if

$$
\forall y, z: \quad x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)
$$

Codistributive elements are defined dually.

Proposition (ShaprynskiÏ and ~, 2011)

For an overcommutative semigroup variety V , the following are equivalent:
a) \mathbf{V} is a neutral element of $\mathbb{O C}$;
b) V is a distributive element of $\mathbb{O C}$;
c) \mathbf{V} is a codistributive element of $\mathbb{O C}$.

Varieties with the properties a)-c) are completely determined in that work.

Theorem (Shaprynskiĭ and

An overcommutative semigroup variety is a cancellable element of OC if and only if it is a neutral element of (OC.

This gives a complete description of cancellable elements of $\mathbb{O C}$.

An element x of a lattice L is called distributive if

$$
\forall y, z: \quad x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z) .
$$

Codistributive elements are defined dually.

Proposition (Shaprynskiï and ~, 2011)

For an overcommutative semigroup variety \mathbf{V}, the following are equivalent:
a) \mathbf{V} is a neutral element of $\mathbb{O C}$;
b) \mathbf{V} is a distributive element of $\mathbb{O C}$;
c) \mathbf{V} is a codistributive element of $\mathbb{O C}$.

Varieties with the properties a)-c) are completely determined in that work.
Theorem (Shaprynskiĩ and
An overcommutative semigroup variety is a cancellable element of OC if and only if it is a neutral element of OC.

This gives a complete description of cancellable elements of $\mathbb{O C}$.

An element x of a lattice L is called distributive if

$$
\forall y, z: \quad x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)
$$

Codistributive elements are defined dually.

Proposition (Shaprynskiĭ and ~, 2011)

For an overcommutative semigroup variety \mathbf{V}, the following are equivalent:
a) \mathbf{V} is a neutral element of $\mathbb{O C}$;
b) \mathbf{V} is a distributive element of $\mathbb{O C}$;
c) \mathbf{V} is a codistributive element of $\mathbb{O C}$.

Varieties with the properties a)-c) are completely determined in that work.

Theorem (Shaprynskiĭ and ~)

An overcommutative semigroup variety is a cancellable element of $\mathbb{O C}$ if and only if it is a neutral element of ©C.

This gives a complete description of cancellable elements of $\mathbb{O C}$.

[^0]: Theorem (Shaprynskiĭ, Skokov and
 Δ semiaroun variety \mathbf{V} is a cancellable element of SEIM if and only if either $\mathrm{V}=\mathrm{SEM}$ or $\mathrm{V}=\mathrm{N}$ or $\mathrm{V}=\mathrm{SL} \mathrm{V} \mathrm{N}$ where N is one of the varieties $\mathrm{T}, \mathrm{X}_{m, n}$ or $Y_{m, n}$ with $2 \leq m \leq n \leq \infty$.

