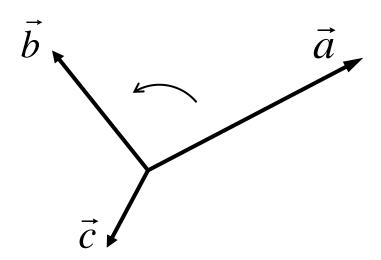
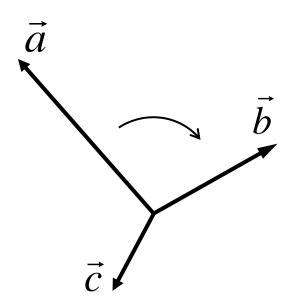
<u>Опр.</u> Упорядоченная тройка векторов $(\vec{a}, \vec{b}, \vec{c})$ называется правой, если переход от \vec{a} к \vec{b} по наименьшему углу видится **против часовой стрелки**, когда векторы отложены от одной точки, и наблюдение ведется с конца вектора \vec{c} .

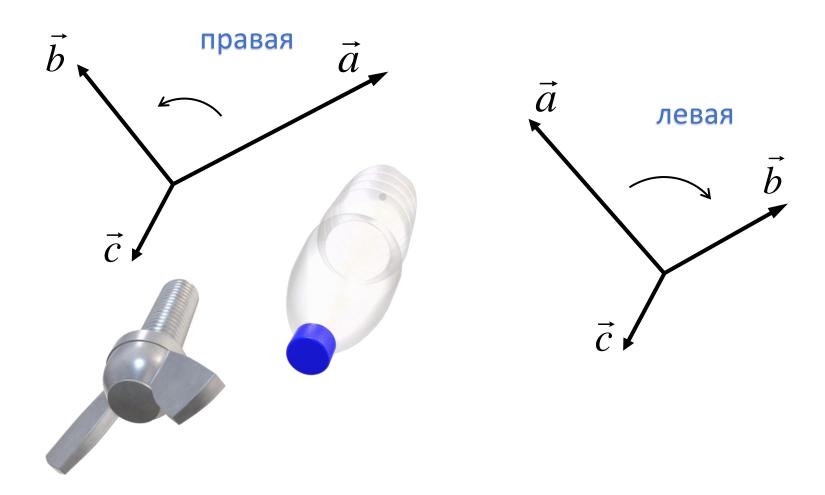


<u>Опр</u>. Упорядоченная тройка векторов $(\vec{a}, \vec{b}, \vec{c})$ называется левой в противном случае (т.е. переход от \vec{a} к \vec{b} с конца вектора \vec{c} видится против часовой стрелки).



Замечание. Для определения того, является ли тройка правой или левой, можно пользоваться «правилом буравчика» или «правилом отвинчивающейся крышки».

Если $(\vec{a}, \vec{b}, \vec{c})$ — правая, то при переходе от \vec{a} к \vec{b} по наименьшему углу направление вектора \vec{c} согласовано с движением буравчика или крышки, а если левая, то нет.



<u>Опр.</u> Векторным произведением векторов \vec{a} и \vec{b} называется вектор \vec{c} такой, что:

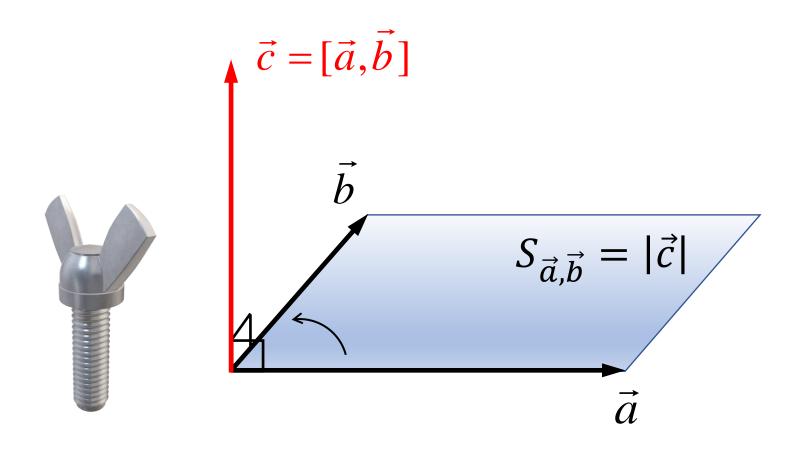
1)
$$|\vec{c}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\vec{a} \cdot \vec{b}) = S_{\vec{a}, \vec{b}};$$

2)
$$\vec{c} \perp \vec{a}$$
, $\vec{c} \perp \vec{b}$,

т.е. \vec{c} перпендикулярен плоскости векторов \vec{a} и \vec{b} ;

3) $(\vec{a}, \vec{b}, \vec{c})$ правая.

Обозначение: $\vec{a} \times \vec{b}$, $[\vec{a}, \vec{b}]$.



Свойства векторного произведения

1. Антикоммутативность: $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$.

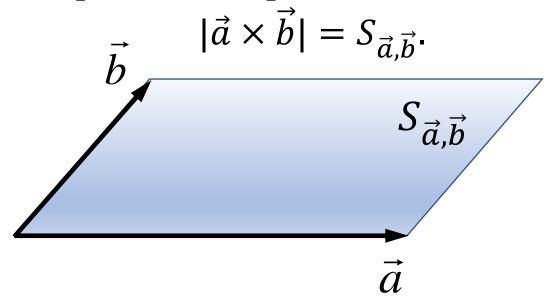
2. Дистрибутивность относительно сложения:

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c};$$

3. Однородность:

$$(m \cdot \vec{a}) \times \vec{b} = \vec{a} \times (m \cdot \vec{b}) = m \cdot (\vec{a} \times \vec{b}).$$

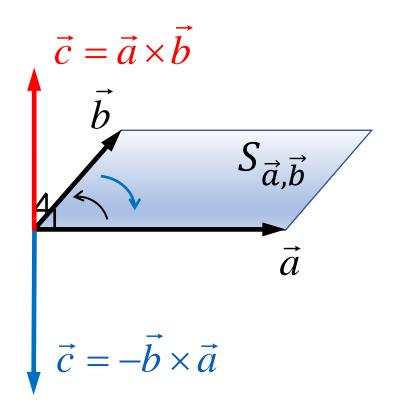
4. Длина векторного произведения равна площади параллелограмма, построенного на \vec{a} и \vec{b} :



5. Векторы \vec{a} и \vec{b} коллинеарны тогда и только тогда, когда $\vec{a} \times \vec{b} = \vec{0}$.

Доказательство

1) Надо доказать: $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$.



- 2), 3) без док-ва;
- 4) очевидно.

Пример 1. Пусть
$$\vec{a} = (-1,1)$$
, $\vec{b} = (2,1)$ в базисе (\vec{c}, \vec{d}) , где $|\vec{c}| = 1$, $|\vec{d}| = 2$, $\widehat{\vec{c}} \cdot \widehat{\vec{d}} = \frac{\pi}{3}$. Найти $|[\vec{a}, \vec{b}]|$.

Решение.

$$\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = \begin{bmatrix} -\vec{c} + \vec{d}, 2\vec{c} + \vec{d} \end{bmatrix} = \begin{bmatrix} -\vec{c}, 2\vec{c} \end{bmatrix} + \begin{bmatrix} -\vec{c}, \vec{d} \end{bmatrix} +$$

$$+ \begin{bmatrix} \vec{d}, 2\vec{c} \end{bmatrix} + \begin{bmatrix} \vec{d}, \vec{d} \end{bmatrix} = \vec{0} - \begin{bmatrix} \vec{c}, \vec{d} \end{bmatrix} - 2 \begin{bmatrix} \vec{c}, \vec{d} \end{bmatrix} + \vec{0} = -3 \begin{bmatrix} \vec{c}, \vec{d} \end{bmatrix}$$

$$\left| \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} \right| = \left| -3 \left[\vec{c}, \vec{d} \right] \right| = 3 \left| \begin{bmatrix} \vec{c}, \vec{d} \end{bmatrix} \right| = 3 \left| \vec{c} \right| \left| \vec{d} \right| \sin \frac{\pi}{3} = \frac{3\sqrt{3}}{2}$$

Теорема. Если
$$\vec{a}=(x_1,y_1,z_1),\,\vec{b}=(x_2,y_2,z_2)$$
 в ОНБ $(\vec{\imath},\vec{\jmath},\vec{k})$, то

$$\vec{a} \times \vec{b} = \begin{pmatrix} \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix}, - \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix}, \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \end{pmatrix}$$

или
$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

11

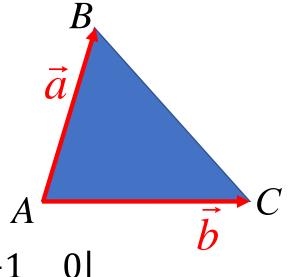
<u>Пример 2</u>. Пусть A(-1,1,0), B(-2,1,-1), C(3,1,0) в $(\vec{\imath},\vec{\jmath},\vec{k})$. Найти площадь ΔABC .

$$\vec{a} = \overrightarrow{AB} = B - A = (-2,1,-1) - (-1,1,0) = (-1,0,-1),$$

$$\vec{b} = \overrightarrow{AC} = C - A = (3,1,0) - (-1,1,0) = (4,0,0),$$

$$S_{\Delta ABC} = \frac{1}{2} |\vec{a} \times \vec{b}|$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -1 & 0 & -1 \\ 4 & 0 & 0 \end{vmatrix}$$



$$= \vec{i} \begin{vmatrix} 0 & -1 \\ 0 & 0 \end{vmatrix} - \vec{j} \begin{vmatrix} -1 & -1 \\ 4 & 0 \end{vmatrix} + \vec{k} \begin{vmatrix} -1 & 0 \\ 4 & 0 \end{vmatrix} =$$

$$= \vec{i} \cdot 0 - \vec{j} \cdot 4 + \vec{k} \cdot 0 = (0; -4; 0)$$

$$S_{\Delta ABC} = \frac{1}{2} |\vec{a} \times \vec{b}| = \frac{1}{2} \sqrt{0^2 + (-4)^2 + 0^2} = 2$$