Upper-modular elements of the lattice of semigroup varieties. II*

B. M. Vernikov

Abstract

A semigroup variety is called a *variety of degree* ≤ 2 if all its nilsemigroups are semigroups with zero multiplication, and a *variety of degree* > 2 otherwise. We completely determine all semigroup varieties of degree > 2 that are upper-modular elements of the lattice of all semigroup varieties and find quite a strong necessary condition for semigroup varieties of degree ≤ 2 to have the same property.

 $Key\ words\ and\ phrases:$ semigroup, variety, lattice, upper-modular element of a lattice.

2000 Mathematics Subject Classification: primary 20M07, secondary 08B15.

As is well known, the lattice **SEM** of all semigroup varieties is not modular. Semigroup varieties with modular subvariety lattice have been completely determined [14]. Speaking informally, this result indicates the zones of "global modularity" in the lattice **SEM**. In order to investigate the phenomenon of modularity in **SEM**, the next natural step is to consider varieties that guarantee a sort of local modularity in their environs. Saying so, we take in mind an examination of modular elements of the lattice **SEM** and other types of its elements whose definition is based on the modular law. Recall that an element x of a lattice $\langle L; \vee, \wedge \rangle$ is called *modular* if

$$\forall y, z \in L \colon y \leq z \longrightarrow (x \lor y) \land z = (x \land z) \lor y,$$

and upper-modular if

$$\forall y, z \in L \colon y \leq x \longrightarrow (z \lor y) \land x = (z \land x) \lor y.$$

Lower-modular elements are defined dually to upper-modular ones. A semigroup variety is called modular [upper-modular, lower-modular] if it is a modular [upper-modular, lower-modular] element of the lattice **SEM**. First results concerning modular and lower-modular varieties have appeared in the articles [3,11] where they have played an auxiliary role. The recent articles [7–10, 12, 16] are devoted to a systematic examination of modular, upper-modular and lowermodular varieties. A brief overview of results of these papers can be found in

^{*}The work was partially supported by the Russian Foundation for Basic Research (grant No. 06-01-00613).

the survey article [6]. In particular, upper-modular nil-varieties have been described in [12], while a necessary condition for a semigroup variety to be uppermodular has been obtained and commutative upper-modular varieties have been classified in [10] (see Propositions 1 and 2 below). This note is a direct continuation of the article [10]. We completely determine here upper-modular varieties containing at least one nilsemigroup that is not a semigroup with zero multiplication (Theorem 1). We obtain also quite a strong necessary condition for varieties all whose nilsemigroups are semigroups with zero multiplication to be upper-modular (Theorem 2). These results imply affirmative answers to two questions posed in [10] (see Corollaries 2 and 3).

We need some definitions and notation. As is well known, any periodic semigroup variety \mathcal{V} contains the greatest nilsubvariety that will be denoted by Nil(\mathcal{V}). It is clear that a semigroup S satisfies an identity system of the form wx = xw = w, where w is a word and x is a letter that does not occur in w, if and only if S contains the zero element 0 and all values of the word win S equal 0. As usual, we will write this identity system in the brief form w = 0 and refer to the equality w = 0 as to a usual identity. We denote by \mathcal{T} the trivial variety and by \mathcal{SEM} the variety of all semigroups. The notation var Σ stands for the semigroup variety given by the identity system Σ . Put $\mathcal{SL} = \operatorname{var}\{x^2 = x, xy = yx\}$ and $\mathcal{C} = \operatorname{var}\{x^2 = x^3, xy = yx\}$. We will use the following two results.

Proposition 1 ([10, Theorem 1.1]). If a semigroup variety \mathcal{V} is upper-modular then either $\mathcal{V} = \mathcal{SEM}$ or \mathcal{V} is a periodic variety and the variety Nil(\mathcal{V}) satisfies the identities $x^2y = xy^2$ and xy = yx.

Proposition 2 ([10, Theorem 1.2]). A commutative semigroup variety \mathcal{V} is upper-modular if and only if one of the following holds:

- (i) $\mathcal{V} = \mathcal{M} \lor \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or \mathcal{SL} , while \mathcal{N} is a nilvariety satisfying the identities $x^2y = xy^2$ and xy = yx;
- (ii) $\mathcal{V} = \mathcal{G} \lor \mathcal{M} \lor \mathcal{N}$ where \mathcal{G} is an abelian periodic group variety, \mathcal{M} is one of the varieties \mathcal{T} , \mathcal{SL} or \mathcal{C} , while \mathcal{N} is a variety satisfying the identities $x^2y = 0$ and xy = yx.

Let n be a natural number. A semigroup variety is said to be a variety of degree n if all its nilsemigroups are nilpotent of degree $\leq n$ and n is the least number with such a property. Varieties that are not varieties of degree $\leq n$ will be called varieties of degree > n (in particular, a variety containing a non-nilpotent nilsemigroup is a variety of degree > n for any n). A semigroup variety is called *proper* if it differs from the variety *SEM*. The first of two main results of this note is the following

Theorem 1. A semigroup variety \mathcal{V} of degree > 2 is upper-modular if and only if either $\mathcal{V} = \mathcal{SEM}$ or one of the conditions (i) or (ii) of Proposition 2 holds.

Proof. Let \mathcal{V} be a proper upper-modular semigroup variety of degree > 2. In view of Proposition 2 it suffices to verify that the variety \mathcal{V} is commutative.

As is well known, an arbitrary variety of degree > 2 contains the variety $\mathcal{N}_3 =$ var{ $xyz = x^2 = 0, xy = yx$ }. Further, Proposition 1 implies that \mathcal{V} is a periodic variety. Therefore \mathcal{V} contains the greatest group subvariety that will be denoted by $\operatorname{Gr}(\mathcal{V})$. Let \mathcal{G} be an arbitrary non-abelian periodic group variety whose exponent is co-prime with the exponent of the variety $\operatorname{Gr}(\mathcal{V})$. Since the variety \mathcal{V} is upper-modular and $\mathcal{N}_3 \subseteq \mathcal{V}$, we have

$$(\mathcal{G} \lor \mathcal{N}_3) \land \mathcal{V} = (\mathcal{G} \land \mathcal{V}) \lor \mathcal{N}_3 = (\mathcal{G} \land \operatorname{Gr}(\mathcal{V})) \lor \mathcal{N}_3 = \mathcal{T} \lor \mathcal{N}_3 = \mathcal{N}_3.$$

In particular, the variety $(\mathcal{G} \vee \mathcal{N}_3) \wedge \mathcal{V}$ is commutative. Hence there exists a deduction of the identity xy = yx from the identities of the varieties $\mathcal{G} \vee \mathcal{N}_3$ and \mathcal{V} . In particular, one of these varieties satisfies a non-trivial identity of the form xy = w. It is easy to check that if some variety \mathcal{X} satisfies such an identity then \mathcal{X} is either commutative or a variety of degree ≤ 2 (see [10, Lemma 2.10], for instance). But it is evident that both the varieties $\mathcal{G} \vee \mathcal{N}_3$ and \mathcal{V} are varieties of degree ≥ 2 and the former variety is non-commutative. Therefore, the variety \mathcal{V} is commutative.

As usual, we denote by $L(\mathcal{V})$ the subvariety lattice of a variety \mathcal{V} . Theorem 1 and results of the article [13] imply

Corollary 1. If \mathcal{V} is a proper upper-modular semigroup variety of degree > 2 then the lattice $L(\mathcal{V})$ is distributive.

Theorem 1 reduces the problem of description of upper-modular varieties to a consideration of varieties of degree ≤ 2 . Note that, in contrast with the case of proper varieties of degree ≥ 2 , there exist non-commutative upper-modular varieties of degree ≤ 2 . Simplest examples of such varieties provide the variety \mathcal{LZ} of all left zero semigroups and the variety \mathcal{RZ} of all right zero semigroups. Indeed, these two varieties are well known to be atoms of the lattice **SEM**, whence they are upper-modular.

It is known that a semigroup variety is a variety of degree ≤ 2 if and only if it satisfies one of the identities

$$xy = (xy)^{r+1}, (1)$$

$$xy = x^{r+1}y, (2)$$

$$xy = xy^{r+1} \tag{3}$$

for some natural r (see [2, Lemma 3] or [10, Proposition 2.11]). If a variety \mathcal{V} satisfies the identity (1) then the square of any semigroup in \mathcal{V} satisfies the identity $x = x^{r+1}$. As is known, this identity holds in a semigroup S if and only if S is completely regular (i. e. a union of groups). By this reason varieties satisfying the identity (1) are called varieties of semigroups with completely regular square. Put $\mathcal{P} = \operatorname{var}\{xy = x^2y, x^2y^2 = y^2x^2\}$. The variety dual to \mathcal{P} is denoted by $\overleftarrow{\mathcal{P}}$. Note that the varieties \mathcal{P} and $\overleftarrow{\mathcal{P}}$ satisfy the identities xyz = yxz and xyz = xzy respectively. The second main result of this article is

Theorem 2. If \mathcal{V} is an upper-modular semigroup variety of degree ≤ 2 then one of the following holds:

- (i) \mathcal{V} is a variety of semigroups with completely regular square;
- (ii) $\mathcal{V} = \mathcal{K} \lor \mathcal{P}$ where \mathcal{K} is a completely regular variety with $\mathcal{RZ} \nsubseteq \mathcal{K}$;
- (iii) $\mathcal{V} = \mathcal{K} \lor \overleftarrow{\mathcal{P}}$ where \mathcal{K} is a completely regular variety with $\mathcal{LZ} \nsubseteq \mathcal{K}$.

Proof. We need some notation. For any prime number p we denote by \mathcal{A}_p the variety of all abelian groups of exponent dividing p, and by \mathcal{CSA}_p the variety of all completely simple semigroups over groups from \mathcal{A}_p . Put

$$\mathcal{LSNB} = \operatorname{var}\{x^2 = x, \, xyz = xyzxz\},\$$

$$\mathcal{Q} = \operatorname{var}\{xy = xy^2, \, xyz^2 = yxz^2, \, xyx = yx^2\},\$$

$$\mathcal{RRB} = \operatorname{var}\{x^2 = x, \, xy = xyx\},\$$

$$\mathcal{RZM} = \{xyz = yz\}.$$

Note that $\mathcal{P} \subseteq \mathcal{Q}$. We formulate several auxiliary statements now. Lemmas 2 and 3 of the paper [15] imply

Lemma 1. If \mathcal{X} is one of the varieties CSA_p , \mathcal{LSNB} , \mathcal{RRB} or \mathcal{RZM} then $\mathcal{X} \lor \mathcal{P} \supseteq \mathcal{Q}$.

Lemma 2 ([15, Lemma 7]). If a semigroup variety satisfies the identity (2) but does not satisfy the identity (1) then it contains the variety \mathcal{P} .

Any periodic semigroup variety \mathcal{X} contains the greatest completely regular subvariety. We will denote this subvariety by $CR(\mathcal{X})$. Put $\mathcal{ZM} = var\{xy = 0\}$. The following lemma is implied by [2, Lemma 4] and [15, Lemma 14].

Lemma 3. If a semigroup variety \mathcal{X} satisfies the identity (2) and does not contain the variety \mathcal{RZM} then $\mathcal{X} = CR(\mathcal{X}) \lor \mathcal{M}$ where \mathcal{M} is one of the varieties $\mathcal{T}, \mathcal{ZM}, \mathcal{P}$ or \mathcal{Q} .

For a word u and a letter x, we denote by c(u) the set of all letters occurring in u, by $\ell(u)$ the length of u, by $\ell_x(u)$ the number of occurrences of x in u, and by t(u) the last letter of u. The claims (i)–(iii) of the following lemma are well known and can be easily verified. The claim (iv) was proved in [2, Lemma 7].

Lemma 4. The identity u = v holds in the variety:

- (i) \mathcal{RZ} if and only if the letters t(u) and t(v) coincide;
- (ii) SL if and only if c(u) = c(v);
- (iii) C if and only if c(u) = c(v) and, for every letter $x \in c(u)$, either $\ell_x(u) = \ell_x(v) = 1$ or $\ell_x(u), \ell_x(v) > 1$;
- (iv) \mathcal{P} if and only if c(u) = c(v) and either $\ell_{t(u)}(u), \ell_{t(v)}(v) > 1$ or $\ell_{t(u)}(u) = \ell_{t(v)}(v) = 1$ and the letters t(u) and t(v) coincide.

Lemma 5. $C \vee \mathcal{RZ} \supseteq \mathcal{P}$.

Proof. Let an identity u = v hold in the variety $\mathcal{C} \vee \mathcal{RZ}$. It is evident that u = v holds in the varieties \mathcal{RZ} and \mathcal{SL} . The claims (i) and (ii) of Lemma 4 imply now that c(u) = c(v) and the letters t(u) and t(v) coincide. Besides that, the identity u = v holds in the variety \mathcal{C} . In view of Lemma 4(iii) this means that every letter from c(u) either occurs in both the words u and v once or occurs in both these words more than once. All the saying together with Lemma 4(iv) show that the identity u = v holds in the variety \mathcal{P} .

For an element a of a lattice L, we denote by (a] the principal ideal of the lattice L generated by a; in other words, $(a] = \{x \in L \mid x \leq a\}$. Simple lattice-theoretical arguments permit to verify the following

Lemma 6 ([10, Lemma 2.1]). Let L be a lattice and $a \in L$ an upper-modular element. The lattice (a] is modular if and only if every element of this lattice is an upper-modular element of L.

With all the above preliminaries in hand, we proceed with the proof of the claim of Theorem 2. Let \mathcal{V} be an upper-modular semigroup variety of degree ≤ 2 . Suppose that $\mathcal{V} \supseteq \mathcal{Q}$. By Proposition 1, \mathcal{V} is periodic. Let p be an arbitrary prime number which does not divide the exponent of the variety $\operatorname{Gr}(\mathcal{V})$. Then $\mathcal{A}_p \not\subseteq \mathcal{V}$. As is well known, the lattice $L(\mathcal{CSA}_p)$ has the form shown in Fig. 1. Therefore $\mathcal{CSA}_p \land \mathcal{V} \subseteq \mathcal{LZ} \lor \mathcal{RZ}$. On the other hand, $\mathcal{CSA}_p \lor \mathcal{P} \supseteq \mathcal{Q}$ by Lemma 1. Since $\mathcal{P} \subseteq \mathcal{Q} \subseteq \mathcal{V}$ and the variety \mathcal{V} is upper-modular, we have:

$$\mathcal{Q} \subseteq (\mathcal{CSA}_p \lor \mathcal{P}) \land \mathcal{V} = (\mathcal{CSA}_p \land \mathcal{V}) \lor \mathcal{P} \subseteq \mathcal{LZ} \lor \mathcal{RZ} \lor \mathcal{P}.$$

But the inclusion $\mathcal{Q} \subseteq \mathcal{LZ} \lor \mathcal{RZ} \lor \mathcal{P}$ cannot hold because the identity xyzt = xzyt is true in the variety $\mathcal{LZ} \lor \mathcal{RZ} \lor \mathcal{P}$ and fails in \mathcal{Q} (the last claim follows from [15, Lemma 1]). Thus $\mathcal{V} \not\supseteq \mathcal{Q}$.

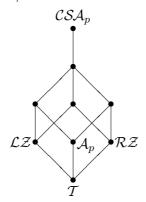


Figure 1: the lattice $L(CSA_p)$

Suppose that \mathcal{V} is not a variety of semigroups with completely regular square, i. e. it does not satisfy the identity (1). Then one of the identities (2) or (3) holds in \mathcal{V} . By symmetry, we may assume that \mathcal{V} satisfies the identity (2). We are going to show the the condition (ii) of Theorem 2 is true in this case.

According to Lemma 2, $\mathcal{V} \supseteq \mathcal{P}$. Now Lemma 1 applies with the conclusion that \mathcal{V} does not contain the varieties \mathcal{CSA}_p (for any p), \mathcal{LSNB} , \mathcal{RRB} and \mathcal{RZM} .

Lemma 3 and the fact that $\mathcal{Q} \not\subseteq \mathcal{V}$ imply that $\mathcal{V} = \mathcal{K} \lor \mathcal{U}$ where $\mathcal{K} = \operatorname{CR}(\mathcal{V})$ and \mathcal{U} is one of the varieties $\mathcal{T}, \mathcal{ZM}$ or \mathcal{P} . If $\mathcal{U} = \mathcal{T}$ or $\mathcal{U} = \mathcal{ZM}$ then the variety $\mathcal{V} = \mathcal{K} \lor \mathcal{U}$ satisfies the identity (1). Therefore $\mathcal{U} = \mathcal{P}$ and $\mathcal{V} = \mathcal{K} \lor \mathcal{P}$.

Thus $\mathcal{V} = \mathcal{K} \vee \mathcal{P}$ where \mathcal{K} is a completely regular variety that does not contain the varieties \mathcal{CSA}_p , \mathcal{RRB} and \mathcal{LSNB} . Together with the results of the article [14], this implies that the lattice $L(\mathcal{V})$ is modular. Now Lemma 6 applies and we conclude that any subvariety of the variety \mathcal{V} is upper-modular.

Suppose that $\mathcal{RZ} \subseteq \mathcal{K}$. Then $\mathcal{P} \lor \mathcal{RZ} \subseteq \mathcal{V}$, whence the variety $\mathcal{P} \lor \mathcal{RZ}$ is upper-modular. Applying Lemma 5, the claim that the variety $\mathcal{P} \lor \mathcal{RZ}$ is upper-modular and the inclusion $\mathcal{RZ} \subseteq \mathcal{P} \lor \mathcal{RZ}$, we have

$$(\mathcal{C} \land (\mathcal{P} \lor \mathcal{RZ})) \lor \mathcal{RZ} = (\mathcal{C} \lor \mathcal{RZ}) \land (\mathcal{P} \lor \mathcal{RZ}) = \mathcal{P} \lor \mathcal{RZ}.$$

On the other hand, the variety $\mathcal{C} \wedge (\mathcal{P} \vee \mathcal{RZ})$ satisfies the identities $xy = x^2y$ and xy = yx. It is well known and easily verified that these two identities determine the variety $\mathcal{SL} \vee \mathcal{ZM}$. Hence this variety contains $\mathcal{C} \wedge (\mathcal{P} \vee \mathcal{RZ})$. The opposite inclusion is evident, and therefore

$$\mathcal{P} \lor \mathcal{RZ} = (\mathcal{C} \land (\mathcal{P} \lor \mathcal{RZ})) \lor \mathcal{RZ} = \mathcal{SL} \lor \mathcal{ZM} \lor \mathcal{RZ}.$$

But the varieties $\mathcal{SL} \vee \mathcal{ZM} \vee \mathcal{RZ}$ and $\mathcal{P} \vee \mathcal{RZ}$ are distinct because the former variety satisfies the identity $xy = xy^2$ which is false in the latter variety. We have a contradiction, whence $\mathcal{RZ} \not\subseteq \mathcal{K}$.

Theorems 1 and 2 and results of the article [14] imply

Corollary 2. If \mathcal{V} is a proper upper-modular semigroup variety then the lattice $L(\mathcal{V})$ is modular.

Corollary 2 and Lemma 6 imply

Corollary 3. Any subvariety of a proper upper-modular semigroup variety is upper-modular. \Box

Corollaries 2 and 3 give the affirmative answers to Questions 5.4b) and 5.4' of the article [10] respectively.

Corollary 1 provides a wide class of semigroup varieties where the property of being upper-modular implies the distributive law in their subvariety lattices. Two more classes of varieties with such a property are given by the following two claims.

Corollary 4. Let \mathcal{V} be a proper upper-modular semigroup variety that is not a variety of semigroups with completely regular square. The lattice $L(\mathcal{V})$ is distributive [satisfies a non-trivial lattice identity] if and only if the subvariety lattice of any group subvariety of the variety \mathcal{V} is distributive [satisfies this identity].

Proof. The necessity is evident. Let us prove the sufficiency. Let \mathcal{V} be a proper upper-modular semigroup variety that is not a variety of semigroups with completely regular square, and ε a non-trivial lattice identity (may be, in particular,

the distributive law). If \mathcal{V} is a variety of degree > 2 then the lattice $L(\mathcal{V})$ is distributive (and therefore satisfies the identity ε) by Corollary 1. Let now \mathcal{V} be a variety of degree ≤ 2 . Applying Theorem 2, we may assume by symmetry that $\mathcal{V} = \mathcal{K} \vee \mathcal{P}$ where \mathcal{K} is a completely regular variety that does not contain \mathcal{RZ} . Recall that a completely regular variety is called *orthodox* if, in every its semigroup, the set of all idempotents forms a subsemigroup. As is well known (see [4], for instance), a completely regular variety is orthodox if and only if it does not contain the variety \mathcal{CSA}_p for all prime p. Since $\mathcal{CSA}_p \supseteq \mathcal{RZ}$ for every prime p (see Fig. 1) and $\mathcal{K} \not\supseteq \mathcal{RZ}$, we obtain that the variety \mathcal{K} is orthodox. Now it follows from [5, Corollary 5] that the lattice $L(\mathcal{K})$ satisfies the identity ε whenever the subvariety lattice of every group subvariety of \mathcal{K} satisfies ε . It remains to take into account that the lattice $L(\mathcal{V})$ is isomorphic to a subdirect product of the lattice $L(\mathcal{K})$ and the 3-element chain by [15, Lemma 15]. \Box

Recall that a semigroup variety is called *combinatorial* if all its groups are singleton.

Corollary 5. If \mathcal{V} is a combinatorial upper-modular semigroup variety then the lattice $L(\mathcal{V})$ is distributive.

Proof. Corollary 4 permits to assume that \mathcal{V} is a variety of semigroups with completely regular square. Let $S \in \mathcal{V}$ and $x, y \in S$. Since \mathcal{V} satisfies the identity (1), xy is a group element in S. But the variety \mathcal{V} is combinatorial, whence all subgroups in S are singleton. Therefore xy is an idempotent in S. Thus \mathcal{V} satisfies the identity $xy = (xy)^2$. It remains to refer to the result from [1] that the variety given by the last identity has a distributive subvariety lattice.

We do not know any example of a proper upper-modular variety with nondistributive subvariety lattice. We do not know also any example of a nonupper-modular variety that satisfies one of the conditions (i)–(iii) of Theorem 2. Thus, the following three questions arise naturally. The first of them have been already mentioned in [10], while the second have been mentioned in [6].

Question 1. Does there exist a proper upper-modular semigroup variety with non-distributive subvariety lattice?

Question 2. Does there exist a non-upper-modular variety of semigroups with completely regular square?

Question 3. Does there exist a non-upper-modular semigroup variety satisfying one of the conditions (ii) or (iii) of Theorem 2?

References

- [1] Gerhard J. A., Semigroups with an idempotent power. II. The lattice of equational subclasses of $[(xy)^2 = xy]$, Semigroup Forum, 14 (1977), 375–388.
- [2] Golubov E. A. and Sapir M. V., Residually small varieties of semigroups, Izv. Vyssh. Uchebn. Zaved. Matem., No. 11 (1982), 21–29 [Russian; Engl. translation: Soviet Math. (Iz. VUZ), 26, No. 11 (1982), 25–36].

- [3] Ježek J. and McKenzie R. N., Definability in the lattice of equational theories of semigroups, Semigroup Forum, 46 (1993), 199–245.
- [4] Polák L., On varieties of completely regular semigroups. I, Semigroup Forum, 32 (1985), 97–123.
- [5] Rasin V. V., Varieties of orthodox cliffordian semigroups, Izv. Vyssh. Uchebn. Zaved. Matem., No. 11 (1982), 82–85 [Russian; Engl. translation: Soviet Math. (Iz. VUZ), 26, No. 11 (1982), 107–110 (1982)].
- [6] Shevrin L. N., Vernikov B. M., and Volkov M. V., Lattices of semigroup varieties, Izv. Vyssh. Uchebn. Zaved. Matem., No. 3 (2009), 3–36 [Russian; Engl. translation: Russian Math. Izv. VUZ, 58, No. 3 (2009), 1–28].
- [7] Vernikov B. M., On modular elements of the lattice of semigroup varieties, Comment. Math. Univ. Carol., 48 (2007), 595–606.
- [8] Vernikov B. M., Lower-modular elements of the lattice of semigroup varieties, Semigroup Forum, 75 (2007), 554–566.
- [9] Vernikov B. M., Lower-modular elements of the lattice of semigroup varieties. II, Acta Sci. Math. (Szeged), 74 (2008), 539–556.
- [10] Vernikov B. M., Upper-modular elements of the lattice of semigroup varieties, Algebra Universalis, 59 (2008), 405–428.
- [11] Vernikov B. M. and Volkov M. V., Lattices of nilpotent semigroup varieties, in Shevrin L. N. (ed.), Algebraic Systems and their Varieties, Sverdlovsk, Ural State University (1988), 53–65 [Russian].
- [12] Vernikov B. M. and Volkov M. V., Modular elements of the lattice of semigroup varieties. II, Contrib. General Algebra, 17 (2006), 173–190.
- [13] Volkov M. V., Commutative semigroup varieties with distributive subvariety lattices, Contrib. General Algebra, 7 (1991), 351–359.
- [14] Volkov M. V., Semigroup varieties with modular subvariety lattice, Dokl. Russ. Acad. Sci., 326 (1992), 409–413 [Russian; Engl. translation: Russ. Acad. Sci. Dokl. Math., 46 (1993), 274–278].
- [15] Volkov M. V., Semigroup varieties with modular subvariety lattice. III, Izv. Vyssh. Uchebn. Zaved. Matem., No. 8 (1992), 21–29 [Russian; Engl. translation: Russ. Math. (Iz. VUZ), 36, No. 8 (1992), 18–25].
- [16] Volkov M. V., Modular elements of the lattice of semigroup varieties, Contrib. General Algebra, 16 (2005), 275–288.

Ural State University, Ekaterinburg *E-mail*: Boris.Vernikov@usu.ru