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Abstract

A semigroup variety is called a variety of degree ≤ 2 if all its nilsemi-
groups are semigroups with zero multiplication, and a variety of degree
> 2 otherwise. We completely determine all semigroup varieties of degree
> 2 that are upper-modular elements of the lattice of all semigroup vari-
eties and find quite a strong necessary condition for semigroup varieties of
degree ≤ 2 to have the same property.
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As is well known, the lattice SEM of all semigroup varieties is not modu-
lar. Semigroup varieties with modular subvariety lattice have been completely
determined [14]. Speaking informally, this result indicates the zones of “global
modularity” in the lattice SEM. In order to investigate the phenomenon of
modularity in SEM, the next natural step is to consider varieties that guar-
antee a sort of local modularity in their environs. Saying so, we take in mind
an examination of modular elements of the lattice SEM and other types of its
elements whose definition is based on the modular law. Recall that an element
x of a lattice 〈L; ∨,∧〉 is called modular if

∀ y, z ∈ L : y ≤ z −→ (x ∨ y) ∧ z = (x ∧ z) ∨ y,

and upper-modular if

∀ y, z ∈ L : y ≤ x −→ (z ∨ y) ∧ x = (z ∧ x) ∨ y.

Lower-modular elements are defined dually to upper-modular ones. A semi-
group variety is called modular [upper-modular, lower-modular ] if it is a modular
[upper-modular, lower-modular] element of the lattice SEM. First results con-
cerning modular and lower-modular varieties have appeared in the articles [3,11]
where they have played an auxiliary role. The recent articles [7–10, 12, 16] are
devoted to a systematic examination of modular, upper-modular and lower-
modular varieties. A brief overview of results of these papers can be found in
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the survey article [6]. In particular, upper-modular nil-varieties have been de-
scribed in [12], while a necessary condition for a semigroup variety to be upper-
modular has been obtained and commutative upper-modular varieties have been
classified in [10] (see Propositions 1 and 2 below). This note is a direct continu-
ation of the article [10]. We completely determine here upper-modular varieties
containing at least one nilsemigroup that is not a semigroup with zero multi-
plication (Theorem 1). We obtain also quite a strong necessary condition for
varieties all whose nilsemigroups are semigroups with zero multiplication to be
upper-modular (Theorem 2). These results imply affirmative answers to two
questions posed in [10] (see Corollaries 2 and 3).

We need some definitions and notation. As is well known, any periodic
semigroup variety V contains the greatest nilsubvariety that will be denoted by
Nil(V). It is clear that a semigroup S satisfies an identity system of the form
wx = xw = w, where w is a word and x is a letter that does not occur in
w, if and only if S contains the zero element 0 and all values of the word w
in S equal 0. As usual, we will write this identity system in the brief form
w = 0 and refer to the equality w = 0 as to a usual identity. We denote by
T the trivial variety and by SEM the variety of all semigroups. The notation
varΣ stands for the semigroup variety given by the identity system Σ. Put
SL = var{x2 = x, xy = yx} and C = var{x2 = x3, xy = yx}. We will use the
following two results.

Proposition 1 ( [10, Theorem 1.1]). If a semigroup variety V is upper-modular
then either V = SEM or V is a periodic variety and the variety Nil(V) satisfies
the identities x2y = xy2 and xy = yx.

Proposition 2 ( [10, Theorem 1.2]). A commutative semigroup variety V is
upper-modular if and only if one of the following holds:

(i) V = M∨N where M is one of the varieties T or SL, while N is a nil-
variety satisfying the identities x2y = xy2 and xy = yx;

(ii) V = G ∨M∨N where G is an abelian periodic group variety, M is one
of the varieties T , SL or C, while N is a variety satisfying the identities
x2y = 0 and xy = yx.

Let n be a natural number. A semigroup variety is said to be a variety
of degree n if all its nilsemigroups are nilpotent of degree ≤ n and n is the
least number with such a property. Varieties that are not varieties of degree
≤ n will be called varieties of degree > n (in particular, a variety containing a
non-nilpotent nilsemigroup is a variety of degree > n for any n). A semigroup
variety is called proper if it differs from the variety SEM. The first of two main
results of this note is the following

Theorem 1. A semigroup variety V of degree > 2 is upper-modular if and only
if either V = SEM or one of the conditions (i) or (ii) of Proposition 2 holds.

Proof. Let V be a proper upper-modular semigroup variety of degree > 2. In
view of Proposition 2 it suffices to verify that the variety V is commutative.
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As is well known, an arbitrary variety of degree > 2 contains the variety N3 =
var{xyz = x2 = 0, xy = yx}. Further, Proposition 1 implies that V is a periodic
variety. Therefore V contains the greatest group subvariety that will be denoted
by Gr(V). Let G be an arbitrary non-abelian periodic group variety whose
exponent is co-prime with the exponent of the variety Gr(V). Since the variety
V is upper-modular and N3 ⊆ V, we have

(G ∨ N 3) ∧ V = (G ∧ V) ∨N 3 =
(G ∧Gr(V)

) ∨N
3

= T ∨ N 3 = N3.

In particular, the variety (G ∨ N 3) ∧ V is commutative. Hence there exists a
deduction of the identity xy = yx from the identities of the varieties G ∨ N 3 and
V. In particular, one of these varieties satisfies a non-trivial identity of the form
xy = w. It is easy to check that if some variety X satisfies such an identity then
X is either commutative or a variety of degree ≤ 2 (see [10, Lemma 2.10], for
instance). But it is evident that both the varieties G ∨ N 3 and V are varieties of
degree > 2 and the former variety is non-commutative. Therefore, the variety
V is commutative.

As usual, we denote by L(V) the subvariety lattice of a variety V. Theorem 1
and results of the article [13] imply

Corollary 1. If V is a proper upper-modular semigroup variety of degree > 2
then the lattice L(V) is distributive.

Theorem 1 reduces the problem of description of upper-modular varieties to
a consideration of varieties of degree ≤ 2. Note that, in contrast with the case
of proper varieties of degree > 2, there exist non-commutative upper-modular
varieties of degree ≤ 2. Simplest examples of such varieties provide the variety
LZ of all left zero semigroups and the variety RZ of all right zero semigroups.
Indeed, these two varieties are well known to be atoms of the lattice SEM,
whence they are upper-modular.

It is known that a semigroup variety is a variety of degree ≤ 2 if and only if
it satisfies one of the identities

xy = (xy)r+1, (1)

xy = xr+1y, (2)

xy = xyr+1 (3)

for some natural r (see [2, Lemma 3] or [10, Proposition 2.11]). If a variety
V satisfies the identity (1) then the square of any semigroup in V satisfies the
identity x = xr+1. As is known, this identity holds in a semigroup S if and
only if S is completely regular (i. e. a union of groups). By this reason varieties
satisfying the identity (1) are called varieties of semigroups with completely
regular square. Put P = var{xy = x2y, x2y2 = y2x2}. The variety dual to P is
denoted by

←−P . Note that the varieties P and
←−P satisfy the identities xyz = yxz

and xyz = xzy respectively. The second main result of this article is

Theorem 2. If V is an upper-modular semigroup variety of degree ≤ 2 then
one of the following holds:

3



(i) V is a variety of semigroups with completely regular square;

(ii) V = K ∨ P where K is a completely regular variety with RZ * K;

(iii) V = K ∨←−P where K is a completely regular variety with LZ * K.
Proof. We need some notation. For any prime number p we denote by Ap the
variety of all abelian groups of exponent dividing p, and by CSAp the variety of
all completely simple semigroups over groups from Ap. Put

LSNB = var{x2 = x, xyz = xyzxz},
Q = var{xy = xy2, xyz2 = yxz2, xyx = yx2},
RRB = var{x2 = x, xy = xyx},
RZM = {xyz = yz}.

Note that P ⊆ Q. We formulate several auxiliary statements now. Lemmas 2
and 3 of the paper [15] imply

Lemma 1. If X is one of the varieties CSAp, LSNB, RRB or RZM then
X ∨ P ⊇ Q.

Lemma 2 ( [15, Lemma 7]). If a semigroup variety satisfies the identity (2) but
does not satisfy the identity (1) then it contains the variety P.

Any periodic semigroup variety X contains the greatest completely regular
subvariety. We will denote this subvariety by CR(X ). Put ZM = var{xy = 0}.
The following lemma is implied by [2, Lemma 4] and [15, Lemma 14].

Lemma 3. If a semigroup variety X satisfies the identity (2) and does not
contain the variety RZM then X = CR(X ) ∨M where M is one of the variet-
ies T , ZM, P or Q.

For a word u and a letter x, we denote by c(u) the set of all letters occurring
in u, by `(u) the length of u, by `x(u) the number of occurrences of x in u, and
by t(u) the last letter of u. The claims (i)–(iii) of the following lemma are well
known and can be easily verified. The claim (iv) was proved in [2, Lemma 7].

Lemma 4. The identity u = v holds in the variety :

(i) RZ if and only if the letters t(u) and t(v) coincide;

(ii) SL if and only if c(u) = c(v);

(iii) C if and only if c(u) = c(v) and, for every letter x ∈ c(u), either `x(u) =
`x(v) = 1 or `x(u), `x(v) > 1;

(iv) P if and only if c(u) = c(v) and either `t(u)(u), `t(v)(v) > 1 or `t(u)(u) =
`t(v)(v) = 1 and the letters t(u) and t(v) coincide.

Lemma 5. C ∨ RZ ⊇ P.
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Proof. Let an identity u = v hold in the variety C ∨ RZ. It is evident that u = v
holds in the varieties RZ and SL. The claims (i) and (ii) of Lemma 4 imply
now that c(u) = c(v) and the letters t(u) and t(v) coincide. Besides that, the
identity u = v holds in the variety C. In view of Lemma 4(iii) this means that
every letter from c(u) either occurs in both the words u and v once or occurs
in both these words more than once. All the saying together with Lemma 4(iv)
show that the identity u = v holds in the variety P.

For an element a of a lattice L, we denote by (a] the principal ideal of the
lattice L generated by a; in other words, (a] = {x ∈ L | x ≤ a}. Simple
lattice-theoretical arguments permit to verify the following

Lemma 6 ( [10, Lemma 2.1]). Let L be a lattice and a ∈ L an upper-modular
element. The lattice (a] is modular if and only if every element of this lattice is
an upper-modular element of L.

With all the above preliminaries in hand, we proceed with the proof of
the claim of Theorem 2. Let V be an upper-modular semigroup variety of
degree ≤ 2. Suppose that V ⊇ Q. By Proposition 1, V is periodic. Let p be
an arbitrary prime number which does not divide the exponent of the variety
Gr(V). Then Ap * V. As is well known, the lattice L(CSAp) has the form shown
in Fig. 1. Therefore CSAp ∧V ⊆ LZ ∨RZ. On the other hand, CSAp ∨P ⊇ Q
by Lemma 1. Since P ⊆ Q ⊆ V and the variety V is upper-modular, we have:

Q ⊆ (CSAp ∨ P) ∧ V = (CSAp ∧ V) ∨ P ⊆ LZ ∨RZ ∨ P.

But the inclusion Q ⊆ LZ ∨RZ ∨ P cannot hold because the identity xyzt =
xzyt is true in the variety LZ ∨RZ ∨ P and fails in Q (the last claim follows
from [15, Lemma 1]). Thus V + Q.
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Figure 1: the lattice L(CSAp)

Suppose that V is not a variety of semigroups with completely regular square,
i. e. it does not satisfy the identity (1). Then one of the identities (2) or (3)
holds in V. By symmetry, we may assume that V satisfies the identity (2). We
are going to show the the condition (ii) of Theorem 2 is true in this case.

According to Lemma 2, V ⊇ P. Now Lemma 1 applies with the conclusion
that V does not contain the varieties CSAp (for any p), LSNB,RRB andRZM.
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Lemma 3 and the fact that Q * V imply that V = K ∨ U where K = CR(V) and
U is one of the varieties T , ZM or P. If U = T or U = ZM then the variety
V = K ∨ U satisfies the identity (1). Therefore U = P and V = K ∨ P.

Thus V = K ∨ P where K is a completely regular variety that does not con-
tain the varieties CSAp, RRB and LSNB. Together with the results of the
article [14], this implies that the lattice L(V) is modular. Now Lemma 6 applies
and we conclude that any subvariety of the variety V is upper-modular.

Suppose that RZ ⊆ K. Then P ∨RZ ⊆ V, whence the variety P ∨RZ
is upper-modular. Applying Lemma 5, the claim that the variety P ∨RZ is
upper-modular and the inclusion RZ ⊆ P ∨RZ, we have

(C ∧ (P ∨RZ)
) ∨RZ = (C ∨ RZ) ∧ (P ∨RZ) = P ∨RZ.

On the other hand, the variety C ∧ (P ∨RZ) satisfies the identities xy = x2y
and xy = yx. It is well known and easily verified that these two identities
determine the variety SL ∨ ZM. Hence this variety contains C ∧ (P ∨RZ).
The opposite inclusion is evident, and therefore

P ∨RZ =
(C ∧ (P ∨RZ)

) ∨RZ = SL ∨ ZM∨RZ.

But the varieties SL ∨ ZM∨RZ and P ∨RZ are distinct because the former
variety satisfies the identity xy = xy2 which is false in the latter variety. We
have a contradiction, whence RZ * K.

Theorems 1 and 2 and results of the article [14] imply

Corollary 2. If V is a proper upper-modular semigroup variety then the lattice
L(V) is modular.

Corollary 2 and Lemma 6 imply

Corollary 3. Any subvariety of a proper upper-modular semigroup variety is
upper-modular.

Corollaries 2 and 3 give the affirmative answers to Questions 5.4b) and 5.4′

of the article [10] respectively.
Corollary 1 provides a wide class of semigroup varieties where the property

of being upper-modular implies the distributive law in their subvariety lattices.
Two more classes of varieties with such a property are given by the following
two claims.

Corollary 4. Let V be a proper upper-modular semigroup variety that is not
a variety of semigroups with completely regular square. The lattice L(V) is
distributive [satisfies a non-trivial lattice identity] if and only if the subvari-
ety lattice of any group subvariety of the variety V is distributive [satisfies this
identity ].

Proof. The necessity is evident. Let us prove the sufficiency. Let V be a proper
upper-modular semigroup variety that is not a variety of semigroups with com-
pletely regular square, and ε a non-trivial lattice identity (may be, in particular,
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the distributive law). If V is a variety of degree > 2 then the lattice L(V) is
distributive (and therefore satisfies the identity ε) by Corollary 1. Let now V
be a variety of degree ≤ 2. Applying Theorem 2, we may assume by symmetry
that V = K ∨ P where K is a completely regular variety that does not contain
RZ. Recall that a completely regular variety is called orthodox if, in every its
semigroup, the set of all idempotents forms a subsemigroup. As is well known
(see [4], for instance), a completely regular variety is orthodox if and only if it
does not contain the variety CSAp for all prime p. Since CSAp ⊇ RZ for every
prime p (see Fig. 1) and K + RZ, we obtain that the variety K is orthodox.
Now it follows from [5, Corollary 5] that the lattice L(K) satisfies the identity
ε whenever the subvariety lattice of every group subvariety of K satisfies ε. It
remains to take into account that the lattice L(V) is isomorphic to a subdirect
product of the lattice L(K) and the 3-element chain by [15, Lemma 15].

Recall that a semigroup variety is called combinatorial if all its groups are
singleton.

Corollary 5. If V is a combinatorial upper-modular semigroup variety then the
lattice L(V) is distributive.

Proof. Corollary 4 permits to assume that V is a variety of semigroups with
completely regular square. Let S ∈ V and x, y ∈ S. Since V satisfies the
identity (1), xy is a group element in S. But the variety V is combinatorial,
whence all subgroups in S are singleton. Therefore xy is an idempotent in
S. Thus V satisfies the identity xy = (xy)2. It remains to refer to the result
from [1] that the variety given by the last identity has a distributive subvariety
lattice.

We do not know any example of a proper upper-modular variety with non-
distributive subvariety lattice. We do not know also any example of a non-
upper-modular variety that satisfies one of the conditions (i)–(iii) of Theorem 2.
Thus, the following three questions arise naturally. The first of them have been
already mentioned in [10], while the second have been mentioned in [6].

Question 1. Does there exist a proper upper-modular semigroup variety with
non-distributive subvariety lattice?

Question 2. Does there exist a non-upper-modular variety of semigroups with
completely regular square?

Question 3. Does there exist a non-upper-modular semigroup variety satisfying
one of the conditions (ii) or (iii) of Theorem 2?
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