Теория вероятностей и статистика Тема 7. Статистическая проверка гипотез

Белов А.И.

Уральский федеральный университет

Екатеринбург, 2020

Статистическая гипотеза

В статистике рассматривают только статистические гипотезы:

- о виде распределения, т. е. в случае, когда закон распределения неизвестен, но есть основания предположить, что он имеет определённый вид;
- о параметре распределения, т. е. в случае, когда закон распределения известен, но его параметры неизвестны и есть основания предположить, что его параметр θ равен определённому значению θ_0 ;
- о равенстве параметров двух или более распределений;
- о независимости случайных величин и т. п.

Основная и конкурирующая гипотезы

Проверяемая гипотеза называется основной и обозначается H_0 . Зачастую наряду с ней рассматривают противоречащую ей гипотезу. Она называется конкурирующей и обозначается H_1 .

Пример

Пусть θ — неизвестный параметр распределения.

Рассмотрим основную гипотезу H_0 : $\{\theta=2\}$.

Конкурирующие гипотезы:

$$H_1$$
: $\{\theta=1\}$, H_1' : $\{\theta\neq2\}$, H_1'' : $\{\theta>2\}$ или H_1''' : $\{\theta<2\}$.

Гипотеза H_0 о параметре распределения называется простой, если она содержит только одно предполагаемое значение, и сложной в противном случае.

Ошибки первого и второго рода

Проверку основной гипотезы производят статистическими методами, т. е. на основе имеющихся выборок.

В итоге может быть принято неправильное решение, т. е. допущена ошибка одного из двух родов:

- Ошибка первого рода отвергнута правильная гипотеза.
- 2 Ошибка второго рода принята неправильная гипотеза.

Определение

Вероятность совершить ошибку первого рода называют уровнем значимости и обозначают через α . Вероятность ошибки второго рода обозначают через β .

Уровень значимости выбирают близко к нулю, как правило 0,05 или 0,01.

Статистический критерий

Правило принятия или отклонения статистической гипотезы называется статистическим критерием.

В основе статистического критерия лежит функция

$$K = K(x_1, \dots, x_n),$$

где x_1,\dots,x_n — значения выборки. Эта функция служит мерой расхождения между проверяемой гипотезой H_0 и реальным результатом. Допуская вольность речи эту функцию называют критерием, а её значения — значениями критерия.

Т. к. значения выборки — случайные числа, то можно рассмотреть

$$K = K(X_1, \dots, X_n)$$

как случайную величину, где X_1, \ldots, X_n — одинаково распределены и независимы в совокупности.

Критическая область

После выбора определённого критерия область его значений разбивают на два непересекающихся множества.

Одно из них содержит значения критерия, при которых гипотеза принимается, другое — при которых отклоняется.

Определение

Множество значений критерия $K_{\rm кp}$, при которых гипотеза отклоняется, называется критической областью. Множество значений критерия $K_{\rm np}$, при которых гипотеза принимается, называется областью принятия гипотезы.

Если для выборки x_1, \ldots, x_n имеет место $K(x_1, \ldots, x_n) \in K_{\mathsf{кp}}$, то гипотеза отклоняется.

Если $K(x_1,\ldots,x_n)\in K_{\mathsf{пр}}$, то принимается.

Критические точки

Как правило, значения критерия — это некоторый числовой (возможно, бесконечный) интервал. $K_{\rm kp}$ и $K_{\rm np}$ — совокупность интервалов.

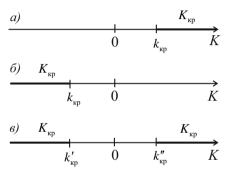
Определение

Критическими точками $k_{\rm kp}$ называют точки, отделяющие $K_{\rm kp}$ от $K_{\rm np}$. $K_{\rm kp}$ называется правосторонней, если она определяется неравенством $K>k_{\rm kp}>0$.

 $K_{\rm kp}$ называется левосторонней, если она определяется неравенством $K < k_{\rm kp} < 0$. Правостороннюю или левостороннюю $K_{\rm kp}$ называют односторонней.

 $K_{\rm kp}$ называется двусторонней, если она определяется совокупностью неравенств $K < k_{\rm kp}', \ K > k_{\rm kp}'', \ {
m rge} \ k_{\rm kp}' < k_{\rm kp}''.$

Виды критических областей

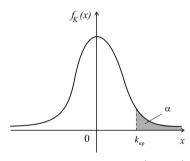


Критические области: а) правосторонняя, б) левосторонняя, в) двусторонняя.

Отыскание правосторонней критической области

При фиксированном уровне значимости α правостороннюю критическую область ищут, исходя из равенства

$$P(K > k_{\rm Kp}) = \alpha.$$

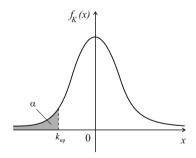


$$k_{\mathsf{kp}} = x_{(\alpha)} = x_{1-\alpha}$$
, где $x_{1-\alpha} - (1-\alpha)$ -квантиль.

Отыскание левосторонней критической области

При фиксированном уровне значимости α левостороннюю критическую область находят из равенства

$$P(K < k_{\rm Kp}) = \alpha.$$



$$k_{\mathsf{kp}} = x_{(\alpha)} = x_{\alpha}$$
, где $x_{\alpha} - \alpha$ -квантиль.

Отыскание двусторонней критической области

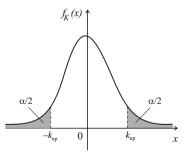
Двусторонняя критическая область определяется равенством

$$P(K < k_{\mathsf{kp}}') + P(K > k_{\mathsf{kp}}'') = \alpha.$$

Если распределение критерия K и критические точки симметричны относительно нуля:

$$k_{\rm kp}' = -k_{\rm kp}, \ k_{\rm kp}'' = k_{\rm kp}, \ P(K < -k_{\rm kp}) = P(K > k_{\rm kp}),$$
 то критические точки определяются условием

$$P(K > k_{\mathsf{Kp}}) = \frac{\alpha}{2}.$$



$$k_{\mathrm{Kp}}=x_{(lpha/2)}=x_{1-lpha/2}$$
, где $x_{1-lpha/2}$ — $\left(1-rac{lpha}{2}
ight)$ -квантиль.

Мощность критерия

Определение

Мощностью критерия называют вероятность попадания значения критерия в критическую область при условии, что верна конкурирующая гипотеза.

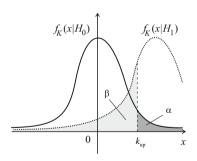
Мощность критерия — вероятность отвергнуть основную гипотезу, если верна конкурирующая гипотеза, то есть вероятность не совершить ошибку второго рода.

Если β — вероятность ошибки второго рода, то мощность критерия равна $1-\beta$.

Мощность критерия и уровень значимости

В случае правосторонней критической области

$$\beta = P(K < k_{\mathsf{KP}} \,|\, H_1).$$



При заданном объёме выборки уменьшение α ведет к увеличению β . Единственный способ уменьшения как α , так и β — увеличение объёма выборки.

Критерии согласия

Определение

Рассмотрим гипотезу о распределении:

 H_0 : генеральная совокупность имеет распределение X, где X — случайная, величина, имеющая известное распределение.

Критерии проверки таких гипотез называют критериями согласия.

Известно несколько критериев согласия — Пирсона, Колмогорова, Смирнова и др.

Распределение χ^2

Определение

Пусть X_i $(i=1,\dots k)$ — независимые в совокупности случайные величины, распределенные по нормальному закону с параметрами a=0, $\sigma=1$. Случайная величина

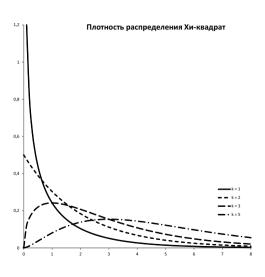
$$\chi^2 = \sum_{i=1}^k X_i^2$$

называется распределенной по закону χ^2 с k степенями свободы.

$$M(\chi^2) = k$$
, $D(\chi^2) = 2k$ (без доказательства).

При $k o \infty$ распределение χ^2 медленно приближается к нормальному.

Графики плотности распределения χ^2



Критерий согласия Пирсона

Для дискретных случайных величин с небольшим числом вариант используется статистическое распределение частот.

Для дискретных случайных величин с большим числом вариант и для непрерывных случайных величин проверка осуществляется по сгруппированным данным.

Критерий согласия Пирсона имеет вид

$$K = \sum_{i=1}^{m} \frac{(n_i - np_i)^2}{np_i}.$$

Здесь n — объём выборки, m — число вариант (интервалов группировки), n_i — (групповые) частоты, p_i — теоретические вероятности $\{X=x_i\}$ (или попадания случайной величины X в i-й интервал группировки), т. е. np_i — теоретические частоты.

Критерий согласия Пирсона (продолжение)

Карл Пирсон доказал, что критерий K как случайная величина распределена по закону χ^2 с k=m-r-1 степенями свободы, где r — число параметров предполагаемого распределения X.

В качестве K_{kp} рассматривают правостороннюю критическую область.

Критическую точку $k_{\mathsf{Kp}} = k_{(\alpha)}$ распределения χ^2 берут из таблиц.

В программе Microsoft Excel можно воспользоваться функцией XИ2.ОБР.ПХ(lpha; k), где lpha — уровень значимости, k=m-r-1 — число степеней свободы.

Если вычисленное по имеющейся выборке значение критерия $K^* < k_{(\alpha)}$, то гипотезу принимают. Если же $K^* > k_{(\alpha)}$, то её отвергают.

Практическое использование критерия согласия Пирсона

При практическом использовании критерия согласия Пирсона следует учитывать следующее:

- объём выборки должен быть достаточно большим, не менее 50;
- группировку следует делать так, чтобы значение групповых частот было не менее 5;
- малочисленные варианты (группы) следует объединять в одну группу, суммируя частоты.