Теория вероятностей и статистика Тема 4. Непрерывные случайные величины

Белов А.И.

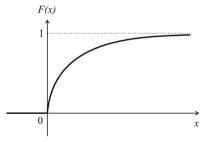
Уральский федеральный университет

Екатеринбург, 2020

Показательное распределение

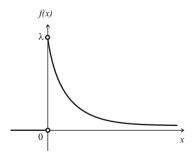
Говорят, что случайная величина X распределена по показательному закону с параметром λ ($\lambda>0$), если ее функция распределения имеет вид

$$F(x) = \begin{cases} 0, & \text{если } x < 0; \\ 1 - e^{-\lambda x}, & \text{если } x \geqslant 0. \end{cases}$$



Плотность показательного распределения

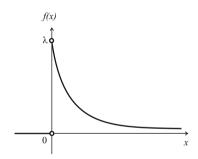
$$f(x) = \begin{cases} 0, & \text{если } x < 0; \\ \lambda e^{-\lambda x}, & \text{если } x > 0. \end{cases}$$



Показательное распределение моделирует время между двумя событиями в простейшем потоке событий.

Числовые характеристики показательного распределения

X распределена по показательному закону



$$M(X) = \frac{1}{\lambda};$$
 $D(X) = \frac{1}{\lambda^2};$ $\sigma(X) = \frac{1}{\lambda};$ $M_0(X) = 0;$ $M_e(X) = \frac{\ln 2}{\lambda};$ $\gamma_1 = 2;$ $\gamma_2 = 6.$

Функция надежности

Пусть имеется какое-то устройство.

Рассмотрим случайную величину X — время, которое проработало устройство до поломки.

X распределена по показательному закону $F(t) = P(X < t) = 1 - e^{-\lambda t}$ (где $t \geqslant 0$). F(t) — вероятность отказа за период времени длинною t.

 λ — интенсивность отказов.

Рассмотрим вероятность безотказной работы в течение периода времени длиною t:

$$R(t) = P(X > t) = 1 - F(t) = e^{-\lambda t}.$$

Функция R(t) называется функцией надежности.

Неравенство Чебышева

Лемма (Чебышев)

Для дискретной или непрерывной случайной величины X, имеющей математическое ожидание M(X) и дисперсию D(X) и для любого действительного числа $\varepsilon>0$ выполняется

$$P(|X - M(X)| < \varepsilon) \geqslant 1 - \frac{D(X)}{\varepsilon^2}.$$

Доказательство.

Пусть X — дискретная случайная величина.

$$D(X) = \sum_{k} (x_k - M(X))^2 p_k \geqslant \varepsilon^2 \sum_{|x_k - M(X)| \geqslant \varepsilon} p_k = \varepsilon^2 P(|X - M(X)| \geqslant \varepsilon) =$$

= $\varepsilon^2 (1 - P(|X - M(X)| < \varepsilon))$.

В непрерывном случае доказательство аналогично.

Сходимость по вероятности

Определение

Говорят, что последовательность случайных величин $\{Y_n\}$ сходится по вероятности к случайной величине Y при $n \to \infty$, если для любого числа $\varepsilon > 0$

$$\lim_{n\to\infty} P\left(|Y_n - Y| < \varepsilon\right) = 1.$$

Краткое обозначение сходимости по вероятности

$$Y_n \xrightarrow{P} Y$$
.

Среднее арифметическое случайных величин

Пусть X_1, \dots, X_n — случайные величины, имеющие математические ожидания и дисперсии.

Рассмотрим их среднее арифметическое

$$\overline{X} = \frac{1}{n} \sum_{k=1}^{n} X_k.$$

Имеет место $M(\overline{X}) = \frac{1}{n} \sum_{k=1}^{n} M(X_k)$.

Если X_i попарно независимы, то $D(\overline{X}) = \frac{1}{n^2} \sum_{k=1}^n D(X_k)$.

Случайная величина \overline{X} , $M(\overline{X})$ и $D(\overline{X})$ зависят от n.

Теорема Чебышева

Теорема (Чебышев)

Если $\{X_n\}$ — последовательность попарно независимых случайных величин, причём их дисперсии равномерно ограничены, т. е. существует такое число C>0, что $D(X_n)\leqslant C$ для любого n, то $\overline{X}\stackrel{P}{\longrightarrow} M(\overline{X})$.

Доказательство.

$$D(\overline{X}) = \frac{1}{n^2} \sum_{k=1}^n D(X_k) \leqslant \frac{1}{n^2} \sum_{k=1}^n C = \frac{nC}{n^2} = \frac{C}{n}.$$

По неравенству Чебышева
$$P\left(\left|\overline{X}-M(\overline{X})\right|$$

Значит
$$1 - \frac{C}{n\varepsilon^2} \leqslant P\left(\left|\overline{X} - M(\overline{X})\right| < \varepsilon\right) \leqslant 1.$$

Следовательно
$$\lim_{n \to \infty} P\left(\left|\overline{X} - M(\overline{X})\right| < \varepsilon\right) = 1.$$

Теорема Хинчина

Теорема (Хинчин)

Пусть $\{X_n\}$ — последовательность одинаково распределенных случайных величин, $M(X_n)=a$ и $D(X_n)=\sigma^2$. Тогда $\overline{X} \stackrel{P}{\longrightarrow} a$.

Доказательство.

Очевидно, что $\{X_n\}$ удовлетворяет условиям теоремы Чебышева, причём $M(\overline{X})=a.$

Теорема Бернулли (закон больших чисел)

Теорема (Бернулли)

Пусть в схеме Бернулли с параметрами n и p число k — количество успехов в серии из n испытаний. Тогда

$$\frac{k}{n} \xrightarrow{P} p$$
.

Доказательство.

Пусть X_n — число успехов в n-ом испытании.

Тогда $\frac{k}{n}=\overline{X}$. X_n одинаково распределены с $M(X_n)=p$; $D(X_n)=pq$.

По теореме Хинчина
$$\frac{k}{n} \xrightarrow{P} p$$
.

Сумма независимых случайных величин

Пусть $\{X_n\}$ — последовательность независимых случайных величин и $M(X_n)=a_n$, $D(X_n)=\sigma_n^2$.

Рассмотрим $S_n = \sum X_k$.

Введем обозначения
$$A_n = \sum_{k=1}^n a_k$$
, $B_n^2 = \sum_{k=1}^n \sigma_k^2$.

Очевидно, что $M(S_n) = A_n$, $D(S_n) = B_n^2$, $\sigma(S_n) = B_n$.

Рассмотрим функцию распределения нормированной суммы

$$F_n(x) = P\left(\frac{S_n - A_n}{B_n} < x\right).$$

Центральная предельная теорема

Определение

Говорят, что к последовательности $\{X_n\}$ применима центральная предельная теорема, если при $n\to\infty$ функция $F_n(x)$ асимптотически приближается функцией нормального распределения с параметрами 0, 1.

T. е. в этом случае для любого $x \in \mathbb{R}$

$$\lim_{n \to \infty} F_n(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{z^2}{2}} dz = 0.5 + \Phi(x),$$

где $\Phi(x)$ — функция Лапласа.

Смысл центральной предельной теоремы

Если рассмотреть сумму большого числа независимых случайных величин таких, что влияние каждой из них на общую сумму достаточно мало, то сумма распределена по закону, близкому к нормальному.

Теорема Ляпунова

Теорема (ЦПТ Ляпунова)

Пусть $\{X_n\}$ — последовательность независимых случайных величин и $\delta>0$.

Рассмотрим
$$C_n = \sum_{k=1}^n M\left(|X_k - a_k|^{2+\delta}\right)$$
. Введем обозначение $L_n = \frac{C_n}{B_n^{2+\delta}}$.

Если $\lim_{n \to \infty} L_n = 0$, то к $\{X_n\}$ применима центральная предельная теорема.

Без доказательства.

Классическая центральная предельная теорема

Теорема (классическая ЦПТ)

Пусть $\{X_n\}$ — последовательность одинаково распределённых независимых случайных величин, $M(X_n)=a$ и $D(X_n)=\sigma^2$. Тогда к ней применима центральная предельная теорема.

Без доказательства.

Заметим, что в этом случае

$$F_n(x) = P\left(\frac{S_n - na}{\sigma\sqrt{n}} < x\right).$$

Схема Бернулли с параметрами n и p (интегральная теорема Лапласа)

$$F_n(x) = P\left(\frac{k - np}{\sqrt{npq}} < x\right) \xrightarrow[n \to \infty]{} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{z^2}{2}} dz.$$