Теория вероятностей и статистика Тема 3. Дискретные случайные величины

Белов А.И.

Уральский федеральный университет

Екатеринбург, 2020

Примеры случайных величин

- Бросается игральная кость. X число очков, выпавшее на верхней грани. Множество значений X $\{1,2,3,4,5,6\}$.
- В урне 10 шаров, из которых 6 белых и 4 черных. Наудачу вынимаются 3 шара. X число вынутых белых шаров. Множество значений X $\{0,1,2,3\}$.
- Бросается игральная кость до тех пор, пока не выпадет «шестерка». X число произведенных бросков. Множество значений X $\{1,2,\ldots\}=\mathbb{N}$.
- Производится взвешивание на весах с ценой деления 10 г. X ошибка округления до ближайшего деления весов (абсолютная величина разности истинного и измеренного значений). Множество значений X промежуток [0;5].

Определение случайной величины

Определение

Пусть $\langle \Omega, S, P \rangle$ — вероятностное пространство.

Функция $X:\Omega \to \mathbb{R}$ называется случайной величиной, если для любого $x \in \mathbb{R}$

$$A_x = \{ \omega \in \Omega \, | \, X(\omega) < x \} \in S.$$

Пример случайной величины и ее множеств A_x

$$A_x = \{ \omega \in \Omega \, | \, X(\omega) < x \}$$

Бросается монета.

Случайная величина X — число выпавших орлов.

 $\{0,1\}$ — множество значений X.

$$\Omega = \{ \text{«орел»}, \text{«решка»} \}.$$

$$A_x = egin{cases} arnothing, & ext{если } x \leqslant 0; \ \{ st ext{решка}
ightarrow \}, & ext{если } 0 < x \leqslant 1; \ \Omega, & ext{если } x > 1. \end{cases}$$

Действия над случайными величинами

Определение

Пусть X случайная величина такая, что $X:\Omega\to\mathbb{R}$, а ψ — функция действительного аргумента $(\psi:\mathbb{R}\to\mathbb{R})$. Определим случайную величину $\psi(X)$ по правилу $\psi(X)(\omega)=\psi(X(\omega))$ для любого $\omega\in\Omega$.

Если Y — еще одна случайная величина такая, что $Y:\Omega\to\mathbb{R}$, то определим сумму X+Y по правилу $(X+Y)(\omega)=X(\omega)+Y(\omega)$ и произведение XY случайных величин X и Y по правилу $(XY)(\omega)=X(\omega)Y(\omega)$ для любого $\omega\in\Omega$.

Независимость случайных величин

Определение

Случайные величины X и Y назовем независимыми, если для любого $x\in\mathbb{R}$ и любого $y\in\mathbb{R}$ события $\{X< x\}$ и $\{Y< y\}$ независимы, т. е. если X и Y принимают свои значения независимо друг от друга.

Пример

Бросаются две игральные кости.

X – число очков, выпавшее на первой кости.

Y – число очков, выпавшее на второй кости.

Очевидно, что X и Y независимы.

Дискретные случайные величины

Определение

Случайная величина называется дискретной, если ее множество значений конечно или счетно.

Случайная величина с конечным множеством значений называется конечной.

- lacktriangleright X число очков, выпавшее на брошенной игральной кости. X конечная случайная величина.
- lacktriangledown X число вытащенных белых шаров при вытаскивании трех шаров из урны. X конечная случайная величина.
- lacktriangledown X число бросков игральной кости до тех пор, пока не выпадет "шестерка".
 - X дискретная (но не конечная) случайная величина.
- lacktriangle X ошибка округления при взешивании на весах с ценой деления 10 г. X не является дискретной случайной величиной.

Значения дискретной случайной величины

Пусть X — дискретная случайная величина.

Упорядочим ее значения по возрастанию:

$$\dots < x_{k-1} < x_k < x_{k+1} < \dots$$

Если x_k не является наибольшим значением, то

$$\{X = x_k\} = \{\omega \in \Omega \mid X(\omega) = x_k\} = A_{x_{k+1}} \setminus A_{x_k} \in S.$$

Если же x_k — наибольшее значение X, то $\{X=x_k\}=\Omega\setminus A_{x_k}\in S.$

В любом случае $\{X=x_k\}$ — это событие.

Обозначим

$$P({X = x_k}) = P(X = x_k) = p_k.$$

Закон распределения

Определение

Пусть X - дискретная случайная величина. Таблица

X	• • • •	x_{k-1}	x_k	x_{k+1}	
P	• • • •	p_{k-1}	p_k	p_{k+1}	

называется законом распределения случайной величины X.

В частности, для конечной случайной величины

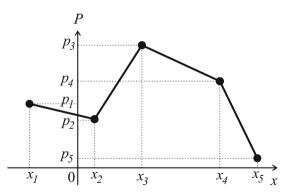
$$\begin{array}{c|ccccc}
X & x_1 & \cdots & x_n \\
\hline
P & p_1 & \cdots & p_n
\end{array}$$

Т. к.
$$\Omega = \sum_k \{X = x_k\}$$
 и слагаемые несовместны, то

$$\sum p_k = 1$$

Полигон частот

Графическим представлением закона распределения дискретной случайной величины является полигон частот — ломаная линия, соединяющая точки (x_k, p_k) .



Пример: число очков на игральной кости

Бросается игральная кость.

Случайная величина X — число очков, выпавшее на верхней грани.

X имеет б равновероятных значений $1,2,\ldots,6$.

Закон распределения X:

X	1	2	3	4	5	6
P	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Пример: число вынутых белых шаров

В урне 10 шаров, из которых 6 белых и 4 черных.

Наудачу вынимаются 3 шара.

Случайная величина X — число вынутых белых шаров.

Элементарный исход — вытащенные три шара.

Общее число исходов $N = C_{10}^3 = 120$.

Пусть m_k — число благоприятствующих исходов для $\{X=k\}$ $m_0=C_6^0\cdot C_4^3=4;\ P(X=0)=\frac{m_0}{N}=\frac{4}{120}=\frac{1}{30}.$

 $m_1 = C_6^1 \cdot C_4^2 = 36; \ P(X=1) = \frac{m_1}{N} = \frac{36}{120} = \frac{3}{10}.$

 $m_2 = C_6^2 \cdot C_4^1 = 60$; $P(X = 2) = \frac{m_2}{N} = \frac{60}{120} = \frac{1}{2}$.

 $m_3 = C_6^3 \cdot C_4^0 = 20$; $P(X=3) = \frac{m_3}{N} = \frac{20}{120} = \frac{1}{6}$.

Закон распределения X:

X	0	1	2	3
P	$\frac{1}{30}$	$\frac{3}{10}$	$\frac{1}{2}$	$\frac{1}{6}$

Пример: число бросков до появления успеха

Бросается игральная кость до тех пор, пока не выпадет «шестерка». Случайная величина X — число произведенных бросков.

Если X=k, то это означает, что на k-ом броске выпала «шестерка», а в предыдущие k-1 бросок не выпала.

Т. к. броски независимы, то
$$P(X = k) = \frac{1}{6} \cdot \left(\frac{5}{6}\right)^{k-1}$$
.

Закон распределения X:

X	1	2	 k	• • •
P	$\frac{1}{6}$	$\frac{1}{6} \cdot \frac{5}{6}$	 $\frac{1}{6} \cdot \left(\frac{5}{6}\right)^{k-1}$	

Распределение Бернулли

Пусть проводится одно испытание с вероятностью успеха p (и вероятностью неудачи q=1-p).

Случайная величина X — число успехов в одном испытании.

Говорят, что X имеет распределение Бернулли.

Закон распределения Бернулли:

X	0	1
P	q	p

Oчевидно q+p=1.

Биномиальное распределение

Пусть имеется схема Бернулли с параметрами n, p.

Случайная величина X — число успехов в серии n одинаковых независимых испытаний.

Говорят, что X имеет биномиальное распределение.

По формуле Бернулли $P(X=k) = C_n^k p^k q^{n-k}.$

Закон биномиального распределения:

X	0	1	 k	 n
P	q^n	npq^{n-1}	 $C_n^k p^k q^{n-k}$	 p^n

Заметим, что
$$\sum_{k=0}^n P(X=k) = \sum_{k=0}^n C_n^k p^k q^{n-k} = (p+q)^n = 1^n = 1.$$

Геометрическое распределение

Пусть мы проводим серию одинаковых независимых испытаний с вероятностью успеха p (и вероятностью неудачи q=1-p) до появления первого успеха.

Случайная величина X — число проведенных испытаний.

Говорят, что X имеет геометрическое распределение.

$$P(X=k)=pq^{k-1}$$
, где $k\in\mathbb{N}.$

Закон геометрического распределения:

X	1	2	\cdots k		• • •
\overline{P}	p	pq		pq^{k-1}	

$$p + pq + \dots pq^{k-1} + \dots = \frac{p}{1-q} = 1$$

Гипергеометрическое распределение

Пусть N - число элементов некоторого конечного множества, среди которых D элементов обладают некоторым свойством $(0\leqslant D\leqslant N)$. Предположим что мы наудачу выбрали n элементов из этого множества $(0\leqslant n\leqslant N)$.

Случайная величина X — число выбранных элементов, обладающих указанным свойством.

Говорят, что X имеет гипергеометрическое распределение.

Пусть k — число выбранных предметов с указанным свойством.

$$\max\{0, n - N + D\} \leqslant k \leqslant \min\{n, D\}$$

$$P(X=k) = \frac{C_D^k \cdot C_{N-D}^{n-k}}{C_N^n}$$

Распределение Пуассона

Пусть имеется простейший поток событий с интенсивностью λ . Случайная величина X — число событий потока, произошедшие за промежуток времени длиной t=1.

Говорят, что X имеет распределение Пуассона.

По теореме о простейшем потоке событий

$$P(X=k)=rac{\lambda^k}{k!}e^{-\lambda}$$
, где $k=0,1,2,\ldots$

Закон распределения Пуассона:

X	0	1	2	 k	
P	$e^{-\lambda}$	$\frac{\lambda}{1!}e^{-\lambda}$	$\frac{\lambda^2}{2!}e^{-\lambda}$	 $\frac{\lambda^k}{k!}e^{-\lambda}$	

Имеем
$$\sum_{k=0}^{\infty} P(X=k) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1.$$