
Synchronizing Finite Automata

Lecture II: Algorithmic Issues

Mikhail Volkov

Ural Federal University

Spring of 2021

Mikhail Volkov Synchronizing Finite Automata

1. Recap

Deterministic finite automata (DFA): A = 〈Q,Σ, δ〉.
• Q the state set
• Σ the input alphabet
• δ : Q× Σ→ Q the transition function

A is called synchronizing if there exists a word w ∈ Σ∗ whose action resets A ,
that is, leaves the automaton in one particular state no matter which state in
Q it started at: δ(q, w) = δ(q′, w) for all q, q′ ∈ Q.
|Q .w| = 1. Here Q . v = {δ(q, v) | q ∈ Q}.

Any w with this property is a reset word for A .

Mikhail Volkov Synchronizing Finite Automata

2. Example

0 1

23

a

b

b

b

b

a

aa

A reset word is abbbabbba. In fact, we will soon see that this is the shortest
reset word for this automaton.

Mikhail Volkov Synchronizing Finite Automata

3. Power Automaton

Not every DFA is synchronizing. Therefore, the very first question is the
following one: given an automaton, how to determine whether or not it is

synchronizing? This question is easy, and a straightforward solution comes
from the classic powerset construction by Rabin and Scott.

The power automaton P(A) of a given DFA A = 〈Q,Σ, δ〉:
- states are the non-empty subsets of Q,
- δ(P, a) = P . a = {δ(p, a) | p ∈ P}

A w ∈ Σ∗ is a reset word for the DFA A iff w labels a path in P(A) starting
at Q and ending at a singleton.
Exercise: Write down a proof of this claim!

Mikhail Volkov Synchronizing Finite Automata

4. Example

0 1

23

a, b

b

b

b

a

aa

03

01 12

23

02 13

a

a

a

b

b

b

b
a

012 013

123 0230123

b a

a

b

a

bb

b

a
a

a b

b

a

b

a

b

a

b

b
a

b

b

Mikhail Volkov Synchronizing Finite Automata

5. Polynomial Algorithm

Thus, the question of whether or not a given DFA A is synchronizing reduces
to the following reachability question in the underlying digraph of the power
automaton P(A): is there a path from Q to a singleton? The latter question
can be easily answered by BFS. This algorithm is however exponential w.r.t.
the size of A .

The following result found independently by Chung Laung Liu and Černý gives
a polynomial algorithm:

Proposition. A DFA A = 〈Q,Σ, δ〉 is synchronizing iff for every q, q′ ∈ Q
there exists a word w ∈ Σ∗ such that δ(q, w) = δ(q′, w).

Mikhail Volkov Synchronizing Finite Automata

6. Example

0 1

23

a, b

b

b

b

a

aa

03

01 12

23

02 13

a

a

a

b

b

b

b
a a b

b

a

03

01 12

23

02 13

03

01 12

23

02 13

a

03

01 0212

23

13

03

01 0212

23

13

a

b

b

03

01 12

23

02 13

03

01 12

23

02 13

a

b

ba
bb

a, Q . a = {1, 2, 3}; a · bba, Q . abba = {1, 3}

abba · babbba, Q . abbababbba = {1}

Observe that the reset word constructed this way is of length 10 while we know
a reset word of length 9.

Mikhail Volkov Synchronizing Finite Automata

7. Results-I

Thus, recognizing synchronizability reduces to a reachability problem in the
automaton whose states are the 2-subsets and the 1-subsets of Q. The latter
can be solved by BFS in O(n2 · |Σ|) time where n = |Q|.

Can one do better? It is an open problem.

Mikhail Berlinkov has developed a (non-trivial) algorithm that checks whether
or not an automaton with n states is synchronizing and spends time O(n) on
average. The worst case complexity of Berlinkov’s algorithm is still quadratic.

The algorithm has been implemented by Pavel Ageev (Implementation of the
algorithm for testing an automaton for synchronization in linear expected time.
J. Autom. Lang. Comb., 24(2-4):139–152 (2019)); the implementation
outperforms the standard algorithm for random automata with > 30 states.
The implementation can be found here:
https://github.com/birneAgeev/AutomataSynchronizationChecker

Mikhail Volkov Synchronizing Finite Automata

https://github.com/birneAgeev/AutomataSynchronizationChecker

8. Results-II

In fact, the basic algorithm not only recognizes synchronizability but also
returns a reset word provided that such exists.
If one also wants to produce a reset word, one need O(n3 + n2 · |Σ|) time.
Why? One needs time to write down the word!

Clearly, the resulting reset word has length O(n3): the algorithm makes at
most n− 1 steps and the length of the segment added in the step when k
states are still to be compressed (n ≥ k ≥ 2) is at most 1 + # of blank

2-subsets, i.e., 1 +
(

n

2

)

−
(

k

2

)

. This gives the upper bound close to n3
−n
3

.

Can we do better? What is the exact bound?

Mikhail Volkov Synchronizing Finite Automata

9. A Resource for Improvement

0 1

23

a, b

b

b

b

a

aa

a

a

a

b

b
a b

b

a

03

01 0212

23

13

a

b

b

We see that the shortest path from a light-grey 2-subset to a singleton does
not necessarily pass through all blank 2-subsets.
Consider a generic step of the algorithm at which states to be compressed form
a set P with |P | = k > 1 and let v = a1 · · · aℓ with ai ∈ Σ, i = 1, . . . , ℓ, be a
word of minimum length such that |P . v| < k.

Mikhail Volkov Synchronizing Finite Automata

10. Studying Generic Step

The sets P1 = P, P2 = P1 . a1, . . . , Pℓ = Pℓ−1 . aℓ−1 are k-subsets of Q.
Since |Pℓ . aℓ| < |Pℓ|, there exist two states qℓ, q

′

ℓ ∈ Pℓ such that
δ(qℓ, aℓ) = δ(q′ℓ, aℓ). Now define 2-subsets Ri = {qi, q

′

i} ⊆ Pi, i = 1, . . . , ℓ,
such that δ(qi, ai) = qi+1, δ(q′i, ai) = q′i+1 for i = 1, . . . , ℓ− 1.

q1

q′1

q2

q′2

qℓ

q′ℓ

a1

a1

aℓ

aℓ

P1 P2 Pℓ

a2

a2

aℓ−1

aℓ−1

. . .

. . .

The condition that v is a word of minimum length with |P . v| < |P | implies
Ri * Pj for 1 ≤ j < i ≤ ℓ.

Mikhail Volkov Synchronizing Finite Automata

11. Combinatorial Configuration

Our question reduces to the following problem in combinatorics of finite sets:

Let Q be an n-set, P1, . . . , Pℓ a sequence of its k-subsets (k > 1) such that
each Pi, 1 < i ≤ ℓ, includes a “fresh” 2-subset that does not occur in any
previous Pj (1 ≤ j < i). How long can such renewing sequences be?

A construction: fix a (k − 2)-subset W of Q, list all
(

n−k+2
2

)

2-subsets of

Q \W and let Ti be the union of W with the ith 2-subset in the list. This gives
the renewing sequence T1, . . . , Ts of length s =

(

n−k+2
2

)

. Is this the maximum?

Mikhail Volkov Synchronizing Finite Automata

12. Combinatorial Configuration

The question turned out to be very difficult and was solved (in the affirmative)
by Peter Frankl (An extremal problem for two families of sets, Eur. J. Comb.
3:125–127 (1982)).

The proof uses linearization techniques which are quite common
in combinatorics of finite sets. One reformulates the problem in linear algebra
terms and then uses the corresponding machinery.

We identify Q with {1, 2, . . . , n} and assign to each k-subset I = {i1, . . . , ik}
the following polynomial D(I) in variables xi1 , . . . , xik over the field of reals.

Mikhail Volkov Synchronizing Finite Automata

13. Linearization

I = {i1, . . . , ik} 7→ D(I) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 i1 i21 · · · ik−3
1 xi1 x2

i1

1 i2 i22 · · · ik−3
2 xi2 x2

i2

...
...

...
. . .

...
...

...

1 ik i2k · · · ik−3
k xik x2

ik

∣

∣

∣

∣

∣

∣

∣

∣

∣

k×k

Then one proves that:
• the polynomials D(P1), . . . , D(Pℓ) are linearly independent whenever the
k-subsets P1, . . . , Pℓ form a renewing sequence;
• the polynomials D(T1), . . . , D(Ts) (derived from the “standard” sequence
T1, . . . , Ts of length s =

(

n−k+2
2

)

) generate the linear space spanned by all
polynomials of the form D(I).

Mikhail Volkov Synchronizing Finite Automata

14. Linearization, Step 1

D(I) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 i1 i21 · · · ik−3
1 xi1 x2

i1

1 i2 i22 · · · ik−3
2 xi2 x2

i2

...
...

...
. . .

...
...

...

1 ik i2k · · · ik−3
k xik x2

ik

∣

∣

∣

∣

∣

∣

∣

∣

∣

k×k

Suppose that k-subsets P1, . . . , Pℓ form a renewing sequence but
D(P1), . . . , D(Pℓ) are linearly dependent.
Then some polynomial D(Pj) should be expressible as a linear combination of
the preceding polynomials D(P1), . . . , D(Pj−1).
By the definition of a renewing sequence, Pj contains a couple {p, p′} such
that {p, p′} * Pi for all i < j.
If we substitute xp = p, xp′ = p′, and xt = 0 for t 6= p, p′ in each of the
polynomials D(P1), . . . , D(Pj), then the polynomials D(P1), . . . , D(Pj−1)
vanish (since the two last columns in each of the resulting determinants
become proportional) and so does any linear combination of the polynomials.

Mikhail Volkov Synchronizing Finite Automata

15. Linearization, Step 1, completed

D(Pj)
(xp = p, xp′ = p′,
xt = 0, t 6= p, p′

)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 i1 i21 · · · ik−3
1 p p2

1 i2 i22 · · · ik−3
2 p′ (p′)2

1 i3 i23 · · · ik−3
3 0 0

...
...

...
. . .

...
...

...

1 ik i2k · · · ik−3
k 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k×k

(For simplicity, here we assume that i1 = p, i2 = p′.)

The value of D(Pj) under the substitution xp = p, xp′ = p′, and xt = 0 for
t 6= p, p′ is the determinant being the product of a Vandermonde
(k − 2)× (k − 2)-determinant with the 2× 2-determinant
∣

∣

∣

∣

p p2

p′ (p′)2

∣

∣

∣

∣

= pp′(p′ − p), whence this value is not 0.

Hence D(Pj) cannot be equal to any linear combination
of D(P1), . . . , D(Pj−1).

Mikhail Volkov Synchronizing Finite Automata

16. Linearization, Step 2

Now we aim to prove that the polynomials D(T1), . . . , D(Ts) (derived from the
“standard” sequence T1, . . . , Ts of length s =

(

n−k+2
2

)

) generate the linear
space spanned by all polynomials of the form D(I). Take an arbitrary
k-element subset I = {i1, . . . , ik} of Q. We claim that the polynomial D(I) is
a linear combination of D(T1), . . . , D(Ts).

Recall that each of the sets T1, . . . , Ts is the union of some fixed (k− 2)-subset
W of Q with a couple of states from Q \W . We prove the above claim by
induction on the cardinality of the set I \W . If |I \W | = 2, then I is the
union of W with some couple from Q \W , whence I = Ti for some
i = 1, . . . , s. Thus, D(I) = D(Ti) and our claim holds true.

Mikhail Volkov Synchronizing Finite Automata

17. Linearization, Step 2, continued

If |I \W | > 2, there is i0 ∈ W \ I . Let I ′ = I ∪ {i0}. There exists
a polynomial p(x) = α0 + α1x+ α2x

2 · · ·+ αk−3x
k−3 over R such that

p(i0) = 1 and p(i) = 0 for all i ∈W \ {i0}. Consider the determinant

∆ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p(i0) 1 i0 i20 · · · ik−3
0 xi0 x2

i0

p(i1) 1 i1 i21 · · · ik−3
1 xi1 x2

i1

p(i2) 1 i2 i22 · · · ik−3
2 xi2 x2

i2

...
...

...
...

. . .
...

...
...

p(ik) 1 ik i2k · · · ik−3
k xik x2

ik

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(k+1)×(k+1)

.

Clearly, ∆ = 0 as the first column is the sum of the next k − 2 columns with
the coefficients α0, α1, α2, . . . , αk−3.

Mikhail Volkov Synchronizing Finite Automata

18. Linearization, Step 2, completed

Expanding ∆ by the first column gives
∑k

j=0(−1)
jp(ij)D(I ′ \ {ij}) = 0.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p(i0) 1 i0 i20 · · · ik−3
0 xi0 x2

i0

p(i1) 1 i1 i21 · · · ik−3
1 xi1 x2

i1

p(i2) 1 i2 i22 · · · ik−3
2 xi2 x2

i2

...
...

...
...

. . .
...

...
...

p(ik) 1 ik i2k · · · ik−3
k xik x2

ik

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(k+1)×(k+1)

Since p(i0) = 1 and I ′ \ {i0} = I , the above equality rewrites as

D(I) =
k
∑

j=1

(−1)j+1p(ij)D(I ′ \ {ij}),

and since p(i) = 0 for all i ∈W \ {i0}, all the non-zero summands in the
right-hand side are such that ij /∈W . For each such ij , we have

(I ′ \ {ij}) \W = I ′ \ (W ∪ {ij}) = (I ∪ {i0}) \ (W ∪ {ij}) = (I \W) \ {ij},

whence |(I ′ \ {ij}) \W | = |I \W | − 1 and by the inductive assumption, the
polynomials D(I ′ \ {ij}) are linear combinations of the polynomials
D(T1), . . . , D(Ts).

Mikhail Volkov Synchronizing Finite Automata

19. Results

Thus, in the step when k states are still to be compressed, the compression can
always be achieved by applying a suitable word of length ≤

(

n−k+2
2

)

.
Summing up over k = n, . . . , 2, we see that the greedy algorithm always

returns a reset word of length ≤ n3
−n
6

:

(

2

2

)

+

(

3

2

)

+

(

4

2

)

+ · · ·+

(

n− 1

2

)

+

(

n

2

)

=

(

3

3

)

+

(

3

2

)

+

(

4

2

)

+ · · ·+

(

n− 1

2

)

+

(

n

2

)

=

(

4

3

)

+

(

4

2

)

+ · · ·+

(

n− 1

2

)

+

(

n

2

)

= · · · =

(

n+ 1

3

)

=
n3 − n

6
.

Mikhail Volkov Synchronizing Finite Automata

20. Szyku la’s Improvement

Up to recently, the bound n3
−n
6

(obtained almost 40 years ago) remained the
best upper bound for the length of the shortest reset words for synchronizing
automata with n states.

An improvement on this bound has been found by Marek Szyku la (Improving
the upper bound on the length of the shortest reset word. In STACS 2018,
volume 96 of LIPIcs, pages 56:1–56:13 (2018)): the new bound is still cubic
in n but improves the coefficient 1

6
= 0.1666 . . . at n3 by 125

511104
≈ 0.000245

so that it becomes ≈ 0.1664.

The new bound is

85059n3 + 90024n2 + 196504n − 10648

511104
.

Yaroslav Shitov (An improvement to a recent upper bound for synchronizing
words of finite automata. J. Autom. Lang. Comb., 24(2-4):367–373 (2019))
found a further improvement to ≈ 0.1654n3 + o(n3).

Mikhail Volkov Synchronizing Finite Automata

21. Greedy Algorithm

GreedyCompression(A)
1: ⊲ Initializing the current wordw← ε
2: ⊲ Initializing the current setP ← Q
3: while |P | > 1 do

4: if |P . u| = |P | for all u ∈ Σ∗ then

5: return Failure
6: else

7: take a word v ∈ Σ∗ of minimum length with |P . v| < |P |
8: ⊲ Updating the current wordw← wv
9: ⊲ Updating the current setP ← P . v

10: return w

Mikhail Volkov Synchronizing Finite Automata

22. Example Revisited

We have already seen that the greedy algorithm fails to find a reset word of
minimum length.

0 1

23

a, b

b

b

b

a

aa

03

01 12

23

02 13

a

a

a

b

b

b

b
a

012 013

123 0230123b

a

a

b

a

bb

b

a
a

a b

b

a

b

a

b

a

b

b
a

b

b

a

b

b

a

ba
b

b

b
a

Mikhail Volkov Synchronizing Finite Automata

23. Greedy Algorithm: Conclusion

Actually, the gap between the minimum length of a reset word and the length
of the word produced by the greedy algorithm may be arbitrarily large: for each
n > 1 there exists a synchronizing automaton with n states whose shortest
reset word has length (n− 1)2 while the greedy algorithm produces a reset
word of length Ω(n2 log n).

Dmitry Ananichev and Vladimir Gusev (Approximation of reset thresholds with
greedy algorithms, Fundam. Inform. 145:3, 221–227 (2016)) provided a deep
analysis of the worst case behaviour of all natural variants of the greedy
algorithm.

The behaviour of the greedy algorithm on average is not yet well understood;
practically it behaves rather satisfactory.

Mikhail Volkov Synchronizing Finite Automata

