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1. Recap

Deterministic finite automata (DFA): A = 〈Q,Σ, δ〉.
• Q the state set
• Σ the input alphabet
• δ : Q× Σ → Q the transition function
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A is called synchronizing if there exists a word w ∈ Σ∗ whose action resets A ,
that is, leaves the automaton in one particular state no matter which state in
Q it started at: δ(q, w) = δ(q′, w) for all q, q′ ∈ Q.
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1. Recap

Deterministic finite automata (DFA): A = 〈Q,Σ, δ〉.
• Q the state set
• Σ the input alphabet
• δ : Q× Σ → Q the transition function

A is called synchronizing if there exists a word w ∈ Σ∗ whose action resets A ,
that is, leaves the automaton in one particular state no matter which state in
Q it started at: δ(q, w) = δ(q′, w) for all q, q′ ∈ Q.
|Q .w| = 1. Here Q . v = {δ(q, v) | q ∈ Q}.

Any w with this property is a reset word for A .
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A reset word is abbbabbba. In fact, we have verified that this is the shortest
reset word for this automaton; that is, its reset threshold is 9.
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3. Černý Conjecture

The Černý conjecture is the claim that every synchronizing automaton with n
states possesses a reset word of length (n− 1)2.
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3. Černý Conjecture

The Černý conjecture is the claim that every synchronizing automaton with n
states possesses a reset word of length (n− 1)2. The validity of the conjecture
is main open problem of the area.

Define the Černý function C(n) as the maximum reset threshold
of all synchronizing automata with n states. In terms of this function, our
current knowledge can be summarized in one line:

(n− 1)2 ≤ C(n) ≤
min{ 85059n3+90024n2+196504n−10648

85834
, n3 − n}

6
.

Mikhail Volkov Synchronizing Finite Automata



3. Černý Conjecture

The Černý conjecture is the claim that every synchronizing automaton with n
states possesses a reset word of length (n− 1)2. The validity of the conjecture
is main open problem of the area.

Define the Černý function C(n) as the maximum reset threshold
of all synchronizing automata with n states. In terms of this function, our
current knowledge can be summarized in one line:

(n− 1)2 ≤ C(n) ≤
min{ 85059n3+90024n2+196504n−10648

85834
, n3 − n}

6
.

The Černý conjecture thus claims that in fact C(n) = (n− 1)2.
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4. Restriction to Subclasses

Since the Černý problem has proved to be hard in general, a natural approach
is to consider its restrictions to various special classes of automata.
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4. Restriction to Subclasses

Since the Černý problem has proved to be hard in general, a natural approach
is to consider its restrictions to various special classes of automata.

There are several classes in which synchronizing automata have been
investigated with (at least partial) success:
• Automata with a circular letter (Dubuc);
• One-cluster automata (Béal, Berlinkov, Perrin, Steinberg);
• Eulerian automata (Kari), see Lecture V;
• Automata with a sink (Rystsov), see Lecture VI.

In this lecture, we encounter a restriction of a different nature: aperiodicity.
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5. Aperiodic Automata

The transition monoid of a DFA A = 〈Q,Σ, δ〉 consists of all transformations
δ(xy, w) : Q → Q induced by words w ∈ Σ∗.
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q ∈ Q and every w ∈ Σ∗ there exists a positive integer m such that
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5. Aperiodic Automata

The transition monoid of a DFA A = 〈Q,Σ, δ〉 consists of all transformations
δ(xy, w) : Q → Q induced by words w ∈ Σ∗.

A monoid is said to be aperiodic if all its subgroups are singletons.

A DFA is called aperiodic (or counter-free) if its transition monoid is aperiodic.
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6. Examples

The Černý automaton C4 is not aperiodic since the letter b acts as a cyclic
permutation of the states and thus generates a 4-element subgroup in the
transition monoid of C4.
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7. Examples (2)

The following automaton is aperiodic:
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a 3 4 3 4
b 1 1 2 2
ab 2 2 2 2
ba 3 3 4 4
b2 1 1 1 1

a2 = a
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7. Examples (2)

The following automaton is aperiodic:
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1 2 3 4

a 3 4 3 4
b 1 1 2 2
ab 2 2 2 2
ba 3 3 4 4
b2 1 1 1 1
aba 4 4 4 4
b2a 3 3 3 3

a2 = a, ab2 = b2, bab = ab, b3 = b2
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8. Complexity

In general, there is no way to verify whether or not a given DFA A = 〈Q,Σ, δ〉
is aperiodic avoiding the calculation of its transition monoid
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of the monoid can reach |Q||Q|.
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of the monoid can reach |Q||Q|.
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Finite-automaton aperiodicity is PSPACE-complete, Theor. Comput. Sci. 88,
99–116 (1991)).
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8. Complexity

In general, there is no way to verify whether or not a given DFA A = 〈Q,Σ, δ〉
is aperiodic avoiding the calculation of its transition monoid and the cardinality
of the monoid can reach |Q||Q|.
The problem is known to be PSPACE-complete (Sang Cho, Dung T. Huynh,
Finite-automaton aperiodicity is PSPACE-complete, Theor. Comput. Sci. 88,
99–116 (1991)).

Also, the synchronization issues remain difficult when restricted to the class of
aperiodic automata. Indeed, inspecting the reduction from SAT to
Short-Reset-Word shown in Lecture III, one can see that the construction
gives an aperiodic automaton, and therefore, the question of whether or not a
given aperiodic automaton admits a reset word whose length does not exceed
a given positive integer is NP-complete.
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9. Monotonicity

In some cases, however, aperiodicity is granted.
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In some cases, however, aperiodicity is granted.
A DFA A = 〈Q,Σ, δ〉 is monotonic if Q admits a linear order ≤ such that, for
each a ∈ Σ, the transformation δ(xy, a) preserves ≤:

p ≤ q ⇒ δ(p, a) ≤ δ(q, a).
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9. Monotonicity

In some cases, however, aperiodicity is granted.
A DFA A = 〈Q,Σ, δ〉 is monotonic if Q admits a linear order ≤ such that, for
each a ∈ Σ, the transformation δ(xy, a) preserves ≤:

p ≤ q ⇒ δ(p, a) ≤ δ(q, a).

Monotonic automata are aperiodic (known and easy).
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10. Generalized Monotonicity

A binary relation ρ on the state set of a DFA A = 〈Q,Σ, δ〉 is stable if
(p, q) ∈ ρ implies

(

δ(p, a), δ(q, a)
)

∈ ρ for all p, q ∈ Q and a ∈ Σ.
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10. Generalized Monotonicity

A binary relation ρ on the state set of a DFA A = 〈Q,Σ, δ〉 is stable if
(p, q) ∈ ρ implies

(

δ(p, a), δ(q, a)
)

∈ ρ for all p, q ∈ Q and a ∈ Σ.
We call a DFA A generalized monotonic of level ℓ if it admits a strictly
increasing chain of stable binary relations ρ0 ⊂ ρ1 ⊂ · · · ⊂ ρℓ, satisfying the
following conditions:
• ρ0 is the equality;
• for each i = 1, . . . , ℓ, the congruence πi−1 generated by ρi−1 is contained in
ρi and the relation ρi/πi−1 is a linear order on each πi/πi−1-class;
• πℓ is the universal relation.

Monotonic automata are precisely generalized monotonic automata of level 1.
The aperiodic automaton in our example is a generalized monotonic automaton
of level 2.
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11. Example Revisited
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Endowing Q with the order ≤1 such that 1 <1 2 and 3 <1 4, we get a linear
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Endowing Q with the order ≤1 such that 1 <1 2 and 3 <1 4, we get a linear
order on each π1-class. If we order Q/π1 by letting {1, 2} <2 {3, 4}, the
quotient automaton becomes monotonic.
It can be shown that the automaton is not monotonic. Moreover, it cannot be
emulated by any monotonic automaton.

In fact, the hierarchy of generalized monotonic automata is strict: there are
automata of each level ℓ = 1, 2, . . . , and every generalized monotonic
automaton is aperiodic.
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Endowing Q with the order ≤1 such that 1 <1 2 and 3 <1 4, we get a linear
order on each π1-class. If we order Q/π1 by letting {1, 2} <2 {3, 4}, the
quotient automaton becomes monotonic.
It can be shown that the automaton is not monotonic. Moreover, it cannot be
emulated by any monotonic automaton.

In fact, the hierarchy of generalized monotonic automata is strict: there are
automata of each level ℓ = 1, 2, . . . , and every generalized monotonic
automaton is aperiodic.
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12. Why Aperiodic Automata?

The importance of aperiodic automata was understood at the beginning of
1960s. As usual, it has 3 sources and 3 components:
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12. Why Aperiodic Automata?

The importance of aperiodic automata was understood at the beginning of
1960s. As usual, it has 3 sources and 3 components:
• Star-free regular expressions (Schützenberger);
• Krohn–Rhodes decompositions of finite automata;
• Logical characterizations of regular languages (McNaughton).
It is remarkable that each of these directions has led to a major open problem,
and the 3 problems play nowadays a central role in the theory of finite
automata.
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13. Star-free Regular Expressions

By Kleene’s theorem every regular language can be described by a regular
expression, say, ((a+ ba)∗ab)∗(b+ aa)∗.
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By Kleene’s theorem every regular language can be described by a regular
expression, say, ((a+ ba)∗ab)∗(b+ aa)∗. Here words denote corresponding
singleton languages, + stands for union, concatenation means product and ∗ is
the Kleene star (iteration).
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singleton languages, + stands for union, concatenation means product and ∗ is
the Kleene star (iteration).

The Kleene star is clearly the most ‘infinite’ operation. One cannot eliminate it
because neither union nor product can produce infinite languages from finite
ones.
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expression, say, ((a+ ba)∗ab)∗(b+ aa)∗. Here words denote corresponding
singleton languages, + stands for union, concatenation means product and ∗ is
the Kleene star (iteration).

The Kleene star is clearly the most ‘infinite’ operation. One cannot eliminate it
because neither union nor product can produce infinite languages from finite
ones. However, one can use also complement (the class of regular languages is
closed under complement by Kleene’s theorem). An extended regular
expression is built from words by using union, product, Kleene star, and
complement, say, ((a+ ba)Cab)∗(b+ (aa)C)∗.
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13. Star-free Regular Expressions

By Kleene’s theorem every regular language can be described by a regular
expression, say, ((a+ ba)∗ab)∗(b+ aa)∗. Here words denote corresponding
singleton languages, + stands for union, concatenation means product and ∗ is
the Kleene star (iteration).

The Kleene star is clearly the most ‘infinite’ operation. One cannot eliminate it
because neither union nor product can produce infinite languages from finite
ones. However, one can use also complement (the class of regular languages is
closed under complement by Kleene’s theorem). An extended regular
expression is built from words by using union, product, Kleene star, and
complement, say, ((a+ ba)Cab)∗(b+ (aa)C)∗.

The complement of a finite language is infinite. Can one get rid of the Kleene
star in this setting?
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14. Star-free Regular Expressions

In some cases we can:

(ab)∗
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14. Star-free Regular Expressions

In some cases we can:

(ab)∗ = ε+ a(a+ aC)b \
(

(a+ aC)aa(a+ aC) + (a+ aC)bb(a+ aC)
)

.

Here E1 \E2 = E1 ∩EC
2 can be expressed as (EC

1 +E2)
C by De Morgan’s law.
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(ab)∗ = ε+ a(a+ aC)b \
(

(a+ aC)aa(a+ aC) + (a+ aC)bb(a+ aC)
)

.

Here E1 \E2 = E1 ∩EC
2 can be expressed as (EC

1 +E2)
C by De Morgan’s law.

To understand the formula, observe that a+ aC = Σ∗.

However, for the language (a2)∗ that looks alike (ab)∗ we would not be able to
construct a star-free extended regular expression.
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14. Star-free Regular Expressions

In some cases we can:

(ab)∗ = ε+ a(a+ aC)b \
(

(a+ aC)aa(a+ aC) + (a+ aC)bb(a+ aC)
)

.

Here E1 \E2 = E1 ∩EC
2 can be expressed as (EC

1 +E2)
C by De Morgan’s law.

To understand the formula, observe that a+ aC = Σ∗.

However, for the language (a2)∗ that looks alike (ab)∗ we would not be able to
construct a star-free extended regular expression.

How can one distinguish between regular languages that need star and
‘star-free’ languages?
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15. Schützenberger’s Theorem

Schützenberger’s Theorem, 1964

A regular language L admits a star-free extended regular expression iff the
minimal automaton of L is aperiodic.
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15. Schützenberger’s Theorem

Schützenberger’s Theorem, 1964

A regular language L admits a star-free extended regular expression iff the
minimal automaton of L is aperiodic.

For instance, for (ab)∗ and (a2)∗ the minimal automata are

a

b
ab

a, b

and

a

a

Mikhail Volkov Synchronizing Finite Automata



16. Extended Star Height Problem

By the (extended) star height of a regular language L we mean the minimum
number of nested stars over all (extended) regular expressions representing L.
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16. Extended Star Height Problem

By the (extended) star height of a regular language L we mean the minimum
number of nested stars over all (extended) regular expressions representing L.
It is known that there exist regular languages of any given star height and that,
given a language, its star height can be decided.
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By the (extended) star height of a regular language L we mean the minimum
number of nested stars over all (extended) regular expressions representing L.
It is known that there exist regular languages of any given star height and that,
given a language, its star height can be decided. However analogous problems
are open for extended star height.
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16. Extended Star Height Problem

By the (extended) star height of a regular language L we mean the minimum
number of nested stars over all (extended) regular expressions representing L.
It is known that there exist regular languages of any given star height and that,
given a language, its star height can be decided. However analogous problems
are open for extended star height.

Extended Star Height Problem

Is there a regular language of extended star height > 1?
Is the class of languages of extended star height 1 decidable?
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17. Krohn–Rhodes Theorem

A DFA is said to be a group automaton if every letter acts as a permutation of
the state set.
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antipodes of aperiodic automata.
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A DFA is said to be a group automaton if every letter acts as a permutation of
the state set. Group automata are just Cayley graphs of groups and are
antipodes of aperiodic automata.

Krohn–Rhodes Theorem, 1962

Every finite automaton A can be emulated by a cascade composition of an
alternating sequence of aperiodic and group automata derived from A .
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A DFA is said to be a group automaton if every letter acts as a permutation of
the state set. Group automata are just Cayley graphs of groups and are
antipodes of aperiodic automata.

Krohn–Rhodes Theorem, 1962

Every finite automaton A can be emulated by a cascade composition of an
alternating sequence of aperiodic and group automata derived from A .

Thus, A decomposes into counter (=group) and non-counter (=aperiodic)
components.
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17. Krohn–Rhodes Theorem

A DFA is said to be a group automaton if every letter acts as a permutation of
the state set. Group automata are just Cayley graphs of groups and are
antipodes of aperiodic automata.

Krohn–Rhodes Theorem, 1962

Every finite automaton A can be emulated by a cascade composition of an
alternating sequence of aperiodic and group automata derived from A .

Thus, A decomposes into counter (=group) and non-counter (=aperiodic)
components. Group components can be further decomposed into cascade
compositions of Cayley graphs of simple groups while aperiodic components are
cascade compositions of flip-flops and their 1-letter subautomata.

On Off

Off

On

Off

On
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18. Group Complexity

The minimum number of group components in the Krohn–Rhodes
decomposition of A is called the group complexity of A .

Mikhail Volkov Synchronizing Finite Automata



18. Group Complexity

The minimum number of group components in the Krohn–Rhodes
decomposition of A is called the group complexity of A . This parameter gives
rise to an infinite hierarchy.
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18. Group Complexity

The minimum number of group components in the Krohn–Rhodes
decomposition of A is called the group complexity of A . This parameter gives
rise to an infinite hierarchy.

Group Complexity Problem

Given a finite automaton A , can one decide the group complexity of A ?
In particular, can we decide if the group complexity of A is 1?
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19. Logic for Words

There is a magic triangle

Automata Languages

Logic

Mikhail Volkov Synchronizing Finite Automata



19. Logic for Words

There is a magic triangle

Automata Languages

Logic

Logic for words has first order variables (positions) that take values
in {1, 2, . . . }, second order variables (sets of positions) whose values are
subsets of {1, 2, . . . }, the usual connectives and quantifiers, the predicate
symbol < with the usual meaning (and maybe some additional numerical
predicates), and a special predicate Qa for each letter a with the meaning:
Qax is true iff the position x holds the letter a.
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20. Examples

Any closed formula of this logic defines a language.

Mikhail Volkov Synchronizing Finite Automata



20. Examples

Any closed formula of this logic defines a language.

Φa : ∀x
(

¬
(

∃y(y < x)
)

→ Qax
)
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20. Examples

Any closed formula of this logic defines a language.

Φa : ∀x
(

¬
(

∃y(y < x)
)

→ Qax
)

all words starting with a

Ψ : ∃x
(

¬
(

∃y(x < y)
)

)

all finite words

Ψb : Ψ&∀x
(

¬
(

∃y(x < y)
)

→ Qbx
)

all finite words ending with b

Φa &Ψb &∀x∀y
(

(y=x+1) → ((Qax → Qby)& (Qbx → Qay))
)

Here y=x+1 abbreviates (x < y)&¬
(

∃z ((x < z)&(z < y))
)

.
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20. Examples

Any closed formula of this logic defines a language.

Φa : ∀x
(

¬
(

∃y(y < x)
)

→ Qax
)

all words starting with a

Ψ : ∃x
(

¬
(

∃y(x < y)
)

)

all finite words

Ψb : Ψ&∀x
(

¬
(

∃y(x < y)
)

→ Qbx
)

all finite words ending with b

Φa &Ψb &∀x∀y
(

(y=x+1) → ((Qax → Qby)& (Qbx → Qay))
)

This (first order) formula defines the language (ab)∗.
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Φa : ∀x
(

¬
(

∃y(y < x)
)

→ Qax
)

all words starting with a

Ψ : ∃x
(

¬
(

∃y(x < y)
)

)

all finite words

Ψb : Ψ&∀x
(

¬
(

∃y(x < y)
)

→ Qbx
)

all finite words ending with b

Φa &Ψb &∀x∀y
(

(y=x+1) → ((Qax → Qby)& (Qbx → Qay))
)

This (first order) formula defines the language (ab)∗.

Ψ&∀x (Qax)
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Φa : ∀x
(

¬
(

∃y(y < x)
)
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)

all words starting with a
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(

¬
(
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)

)

all finite words
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(

¬
(

∃y(x < y)
)

→ Qbx
)

all finite words ending with b

Φa &Ψb &∀x∀y
(

(y=x+1) → ((Qax → Qby)& (Qbx → Qay))
)

This (first order) formula defines the language (ab)∗.

Ψ&∀x (Qax)&∃H
(

∀x∀y
(

(y=x+1) → ((x ∈ H) ↔ ¬(y ∈ H))
)

&
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)

all words starting with a
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(

¬
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∃y(x < y)
)

)
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Ψb : Ψ&∀x
(

¬
(

∃y(x < y)
)

→ Qbx
)

all finite words ending with b

Φa &Ψb &∀x∀y
(

(y=x+1) → ((Qax → Qby)& (Qbx → Qay))
)

This (first order) formula defines the language (ab)∗.

Ψ&∀x (Qax)&∃H
(

∀x∀y
(

(y=x+1) → ((x ∈ H) ↔ ¬(y ∈ H))
)
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This (monadic second order) formula defines the language (a2)∗.
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Any closed formula of this logic defines a language.

Φa : ∀x
(

¬
(

∃y(y < x)
)

→ Qax
)

all words starting with a

Ψ : ∃x
(

¬
(

∃y(x < y)
)

)

all finite words

Ψb : Ψ&∀x
(

¬
(

∃y(x < y)
)

→ Qbx
)

all finite words ending with b

Φa &Ψb &∀x∀y
(

(y=x+1) → ((Qax → Qby)& (Qbx → Qay))
)

This (first order) formula defines the language (ab)∗.

Ψ&∀x (Qax)&∃H
(

∀x∀y
(

(y=x+1) → ((x ∈ H) ↔ ¬(y ∈ H))
)

&

∀x
((

¬(∃y(y < x)) → (x ∈ H)
)

&
(

¬(∃y(x < y)) → ¬(x ∈ H)
))

)

This (monadic second order) formula defines the language (a2)∗.

Monadic second order formulas define precisely regular languages (Büchi,
1960), but we would not be able to construct a first order formula defining
(a2)∗.
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21. McNaughton’s Theorem

Can one distinguish between ‘second’ and ‘first’ order languages?
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Can one distinguish between ‘second’ and ‘first’ order languages?

McNaughton’s Theorem, 1966

A regular language L admits a description by a first order formula iff the
minimal automaton of L is aperiodic.
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McNaughton’s Theorem, 1966

A regular language L admits a description by a first order formula iff the
minimal automaton of L is aperiodic.

A natural complexity measure for first order formulas is the number of
alternations of logical quantifiers in the prenex form. The minimum number of
quantifier alternations over all first order formulas representing a given star-free
language L is called the dot-depth of L.
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McNaughton’s Theorem, 1966

A regular language L admits a description by a first order formula iff the
minimal automaton of L is aperiodic.

A natural complexity measure for first order formulas is the number of
alternations of logical quantifiers in the prenex form. The minimum number of
quantifier alternations over all first order formulas representing a given star-free
language L is called the dot-depth of L. This parameter gives rise to an infinite
hierarchy.
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Can one distinguish between ‘second’ and ‘first’ order languages?

McNaughton’s Theorem, 1966

A regular language L admits a description by a first order formula iff the
minimal automaton of L is aperiodic.

A natural complexity measure for first order formulas is the number of
alternations of logical quantifiers in the prenex form. The minimum number of
quantifier alternations over all first order formulas representing a given star-free
language L is called the dot-depth of L. This parameter gives rise to an infinite
hierarchy.

Dot-Depth Problem

Given a star-free language L, can one decide the dot-depth of L?
In particular, can we decide if the dot-depth of L is 3?
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21. McNaughton’s Theorem

Can one distinguish between ‘second’ and ‘first’ order languages?

McNaughton’s Theorem, 1966

A regular language L admits a description by a first order formula iff the
minimal automaton of L is aperiodic.

A natural complexity measure for first order formulas is the number of
alternations of logical quantifiers in the prenex form. The minimum number of
quantifier alternations over all first order formulas representing a given star-free
language L is called the dot-depth of L. This parameter gives rise to an infinite
hierarchy.

Dot-Depth Problem

Given a star-free language L, can one decide the dot-depth of L?
In particular, can we decide if the dot-depth of L is 3?

Dot-depth 1 and dot-depth 2 are known to be decidable (Knast, 1980, for 1
and Place-Zeitoun, 2014, for 2)
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22. Back to Synchronization

Here we aim to study aperiodic automata from the viewpoint of synchronization
(in particular, to prove the Černý conjecture for aperiodic automata).
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Here we aim to study aperiodic automata from the viewpoint of synchronization
(in particular, to prove the Černý conjecture for aperiodic automata).

As discussed in Lecture VI, we may restrict to strongly connected automata.
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Here we aim to study aperiodic automata from the viewpoint of synchronization
(in particular, to prove the Černý conjecture for aperiodic automata).

As discussed in Lecture VI, we may restrict to strongly connected automata.
Here we encounter a small surprise: every strongly connected aperiodic

automaton A = 〈Q,Σ, δ〉 is synchronizing.
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Here we aim to study aperiodic automata from the viewpoint of synchronization
(in particular, to prove the Černý conjecture for aperiodic automata).

As discussed in Lecture VI, we may restrict to strongly connected automata.
Here we encounter a small surprise: every strongly connected aperiodic

automaton A = 〈Q,Σ, δ〉 is synchronizing.

Indeed, take any q, q′ ∈ Q. Since A is strongly connected, there exists w ∈ Σ∗

such that q . w = q′.
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22. Back to Synchronization

Here we aim to study aperiodic automata from the viewpoint of synchronization
(in particular, to prove the Černý conjecture for aperiodic automata).

As discussed in Lecture VI, we may restrict to strongly connected automata.
Here we encounter a small surprise: every strongly connected aperiodic

automaton A = 〈Q,Σ, δ〉 is synchronizing.

Indeed, take any q, q′ ∈ Q. Since A is strongly connected, there exists w ∈ Σ∗

such that q . w = q′. On the other hand, A is aperiodic whence there exists a
positive integer m such that q . wm = q . wm+1.
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Here we aim to study aperiodic automata from the viewpoint of synchronization
(in particular, to prove the Černý conjecture for aperiodic automata).

As discussed in Lecture VI, we may restrict to strongly connected automata.
Here we encounter a small surprise: every strongly connected aperiodic

automaton A = 〈Q,Σ, δ〉 is synchronizing.

Indeed, take any q, q′ ∈ Q. Since A is strongly connected, there exists w ∈ Σ∗

such that q . w = q′. On the other hand, A is aperiodic whence there exists a
positive integer m such that q . wm = q . wm+1. Applying wm to the equality
q . w = q′, we get q . wm+1 = q′ . wm whence q . wm = q′ . wm.
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22. Back to Synchronization

Here we aim to study aperiodic automata from the viewpoint of synchronization
(in particular, to prove the Černý conjecture for aperiodic automata).

As discussed in Lecture VI, we may restrict to strongly connected automata.
Here we encounter a small surprise: every strongly connected aperiodic

automaton A = 〈Q,Σ, δ〉 is synchronizing.

Indeed, take any q, q′ ∈ Q. Since A is strongly connected, there exists w ∈ Σ∗

such that q . w = q′. On the other hand, A is aperiodic whence there exists a
positive integer m such that q . wm = q . wm+1. Applying wm to the equality
q . w = q′, we get q . wm+1 = q′ . wm whence q . wm = q′ . wm. Thus, every
pair of states can be synchronized, and by Černý’s criterion, this ensures that
A is synchronizing.
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Partial Order

Avraham Trahtman (The Černý conjecture for aperiodic automata, Discrete
Math. Theor. Comp. Sci. 9(2), 3–10 (2007)) has proved that every
synchronizing aperiodic automaton with n states has a reset word of length
n(n−1)

2
(so less than (n− 1)2).
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Avraham Trahtman (The Černý conjecture for aperiodic automata, Discrete
Math. Theor. Comp. Sci. 9(2), 3–10 (2007)) has proved that every
synchronizing aperiodic automaton with n states has a reset word of length
n(n−1)

2
(so less than (n− 1)2).

Recall that n(n−1)
2

is precisely Rystsov’s bound for n-state synchronizing
automata having a sink.
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Partial Order

Avraham Trahtman (The Černý conjecture for aperiodic automata, Discrete
Math. Theor. Comp. Sci. 9(2), 3–10 (2007)) has proved that every
synchronizing aperiodic automaton with n states has a reset word of length
n(n−1)

2
(so less than (n− 1)2).

Recall that n(n−1)
2

is precisely Rystsov’s bound for n-state synchronizing
automata having a sink. Thus, it remains to prove that every strongly
connected aperiodic automaton with n states has a reset word of length n(n−1)

2
.

The key observation by Trahtman is that every strongly connected aperiodic
automaton admits a non-trivial stable partial order.
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24. Constructing Partial Order

Given a DFA A = 〈Q,Σ, δ〉, its square A
[2] = 〈Q×Q,Σ, δ[2]〉 is defined by

δ[2]
(

(q, p), a
)

=
(

δ(q, a), δ(p, a)
)

.
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[2] = 〈Q×Q,Σ, δ[2]〉 is defined by

δ[2]
(

(q, p), a
)

=
(

δ(q, a), δ(p, a)
)

.
Warning: it is not quite the same as the automaton on all at most 2-element
subsets that we considered in Lecture II.
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[2] = 〈Q×Q,Σ, δ[2]〉 is defined by
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(

(q, p), a
)

=
(

δ(q, a), δ(p, a)
)

.
Warning: it is not quite the same as the automaton on all at most 2-element
subsets that we considered in Lecture II.

If A is synchronizing and strongly connected, then A
[2] has a least strongly

connected component D = {(q, q) | q ∈ Q}. Let K be a strongly connected
component immediately following D in the natural order of strongly connected
components.
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24. Constructing Partial Order

Given a DFA A = 〈Q,Σ, δ〉, its square A
[2] = 〈Q×Q,Σ, δ[2]〉 is defined by

δ[2]
(

(q, p), a
)

=
(

δ(q, a), δ(p, a)
)

.
Warning: it is not quite the same as the automaton on all at most 2-element
subsets that we considered in Lecture II.

If A is synchronizing and strongly connected, then A
[2] has a least strongly

connected component D = {(q, q) | q ∈ Q}. Let K be a strongly connected
component immediately following D in the natural order of strongly connected
components.

D

K

Then K ∪ D is a non-trivial stable
reflexive relation on Q.
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25. A is aperiodic

Let �K be the transitive closure of K ∪D. It is clear that �K is non-trivial,
stable, reflexive and transitive.
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Let �K be the transitive closure of K ∪D. It is clear that �K is non-trivial,
stable, reflexive and transitive.
Now we show that �K is antisymmetric whenever A is aperiodic.
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Let �K be the transitive closure of K ∪D. It is clear that �K is non-trivial,
stable, reflexive and transitive.
Now we show that �K is antisymmetric whenever A is aperiodic.

Suppose that there are p, q ∈ Q such that p 6= q and p �K q �K p.
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Let �K be the transitive closure of K ∪D. It is clear that �K is non-trivial,
stable, reflexive and transitive.
Now we show that �K is antisymmetric whenever A is aperiodic.

Suppose that there are p, q ∈ Q such that p 6= q and p �K q �K p. Then there
is a sequence of p0, p1, . . . , pk ∈ Q such that k > 1, p0 = p = pk, q = pj for
some j, 0 < j < k, and (pi, pi+1) ∈ K for all i = 0, 1, . . . , k − 1.
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Let �K be the transitive closure of K ∪D. It is clear that �K is non-trivial,
stable, reflexive and transitive.
Now we show that �K is antisymmetric whenever A is aperiodic.

Suppose that there are p, q ∈ Q such that p 6= q and p �K q �K p. Then there
is a sequence of p0, p1, . . . , pk ∈ Q such that k > 1, p0 = p = pk, q = pj for
some j, 0 < j < k, and (pi, pi+1) ∈ K for all i = 0, 1, . . . , k − 1. We choose
the shortest such sequence p0, p1, . . . , pk (over all possible ‘obstacles’ (p, q) to
antisymmetry).
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25. A is aperiodic

Let �K be the transitive closure of K ∪D. It is clear that �K is non-trivial,
stable, reflexive and transitive.
Now we show that �K is antisymmetric whenever A is aperiodic.

Suppose that there are p, q ∈ Q such that p 6= q and p �K q �K p. Then there
is a sequence of p0, p1, . . . , pk ∈ Q such that k > 1, p0 = p = pk, q = pj for
some j, 0 < j < k, and (pi, pi+1) ∈ K for all i = 0, 1, . . . , k − 1. We choose
the shortest such sequence p0, p1, . . . , pk (over all possible ‘obstacles’ (p, q) to
antisymmetry).

If k = 2, then we have p0 = p = p2, p1 = q and (p, q), (q, p) ∈ K.

Mikhail Volkov Synchronizing Finite Automata



25. A is aperiodic

Let �K be the transitive closure of K ∪D. It is clear that �K is non-trivial,
stable, reflexive and transitive.
Now we show that �K is antisymmetric whenever A is aperiodic.

Suppose that there are p, q ∈ Q such that p 6= q and p �K q �K p. Then there
is a sequence of p0, p1, . . . , pk ∈ Q such that k > 1, p0 = p = pk, q = pj for
some j, 0 < j < k, and (pi, pi+1) ∈ K for all i = 0, 1, . . . , k − 1. We choose
the shortest such sequence p0, p1, . . . , pk (over all possible ‘obstacles’ (p, q) to
antisymmetry).

If k = 2, then we have p0 = p = p2, p1 = q and (p, q), (q, p) ∈ K. By the
definition of K, there exists w ∈ Σ∗ such that (p, q) . w = (q, p), that is,
p .w = q, q . w = p.
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25. A is aperiodic

Let �K be the transitive closure of K ∪D. It is clear that �K is non-trivial,
stable, reflexive and transitive.
Now we show that �K is antisymmetric whenever A is aperiodic.

Suppose that there are p, q ∈ Q such that p 6= q and p �K q �K p. Then there
is a sequence of p0, p1, . . . , pk ∈ Q such that k > 1, p0 = p = pk, q = pj for
some j, 0 < j < k, and (pi, pi+1) ∈ K for all i = 0, 1, . . . , k − 1. We choose
the shortest such sequence p0, p1, . . . , pk (over all possible ‘obstacles’ (p, q) to
antisymmetry).

If k = 2, then we have p0 = p = p2, p1 = q and (p, q), (q, p) ∈ K. By the
definition of K, there exists w ∈ Σ∗ such that (p, q) . w = (q, p), that is,
p .w = q, q . w = p. This clearly contradicts the assumption that A is
aperiodic:

p q
w

w
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26. Antisymmetry

Suppose that k > 2. Then p0, p1, p2 are all distinct.
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26. Antisymmetry

Suppose that k > 2. Then p0, p1, p2 are all distinct. By the definition of K,
there exists w ∈ Σ∗ such that (p0, p1) . w = (p1, p2), that is, p0 . w = p1,
p0 . w

2 = p1 . w = p2.
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Suppose that k > 2. Then p0, p1, p2 are all distinct. By the definition of K,
there exists w ∈ Σ∗ such that (p0, p1) . w = (p1, p2), that is, p0 . w = p1,
p0 . w

2 = p1 . w = p2. Since A is aperiodic, there exists m such that
p0 . w

m+1 = p0 . w
m; we choose the least m with this property.
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there exists w ∈ Σ∗ such that (p0, p1) . w = (p1, p2), that is, p0 . w = p1,
p0 . w

2 = p1 . w = p2. Since A is aperiodic, there exists m such that
p0 . w

m+1 = p0 . w
m; we choose the least m with this property. Observe that

m > 1 since p0 . w
2 6= p0 . w.
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Suppose that k > 2. Then p0, p1, p2 are all distinct. By the definition of K,
there exists w ∈ Σ∗ such that (p0, p1) . w = (p1, p2), that is, p0 . w = p1,
p0 . w

2 = p1 . w = p2. Since A is aperiodic, there exists m such that
p0 . w

m+1 = p0 . w
m; we choose the least m with this property. Observe that

m > 1 since p0 . w
2 6= p0 . w.

Now we apply wm−1 to each state in the sequence p0, p1, . . . , pk. Since K ∪D
is stable, we get that for all i = 0, 1, . . . , k − 1 either
(pi . w

m−1, pi+1 . w
m−1) ∈ K or pi . w

m−1 = pi+1 . w
m−1.
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Suppose that k > 2. Then p0, p1, p2 are all distinct. By the definition of K,
there exists w ∈ Σ∗ such that (p0, p1) . w = (p1, p2), that is, p0 . w = p1,
p0 . w

2 = p1 . w = p2. Since A is aperiodic, there exists m such that
p0 . w

m+1 = p0 . w
m; we choose the least m with this property. Observe that

m > 1 since p0 . w
2 6= p0 . w.

Now we apply wm−1 to each state in the sequence p0, p1, . . . , pk. Since K ∪D
is stable, we get that for all i = 0, 1, . . . , k − 1 either
(pi . w

m−1, pi+1 . w
m−1) ∈ K or pi . w

m−1 = pi+1 . w
m−1. The choice of m

ensures p0 . w
m−1 6= p1 . w

m−1 = p0 . w
m whence the new sequence still

contains an obstacle to antisymmetry.
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Suppose that k > 2. Then p0, p1, p2 are all distinct. By the definition of K,
there exists w ∈ Σ∗ such that (p0, p1) . w = (p1, p2), that is, p0 . w = p1,
p0 . w

2 = p1 . w = p2. Since A is aperiodic, there exists m such that
p0 . w

m+1 = p0 . w
m; we choose the least m with this property. Observe that

m > 1 since p0 . w
2 6= p0 . w.

Now we apply wm−1 to each state in the sequence p0, p1, . . . , pk. Since K ∪D
is stable, we get that for all i = 0, 1, . . . , k − 1 either
(pi . w

m−1, pi+1 . w
m−1) ∈ K or pi . w

m−1 = pi+1 . w
m−1. The choice of m

ensures p0 . w
m−1 6= p1 . w

m−1 = p0 . w
m whence the new sequence still

contains an obstacle to antisymmetry. On the other hand,
p1 . w

m−1 = p0 . w
m = p0 . w

m+1 = p2 . w
m−1, and therefore, if we retain in

the new sequence only the first state from each group of adjacent equal states,
the sequence becomes shorter.
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Suppose that k > 2. Then p0, p1, p2 are all distinct. By the definition of K,
there exists w ∈ Σ∗ such that (p0, p1) . w = (p1, p2), that is, p0 . w = p1,
p0 . w

2 = p1 . w = p2. Since A is aperiodic, there exists m such that
p0 . w

m+1 = p0 . w
m; we choose the least m with this property. Observe that

m > 1 since p0 . w
2 6= p0 . w.

Now we apply wm−1 to each state in the sequence p0, p1, . . . , pk. Since K ∪D
is stable, we get that for all i = 0, 1, . . . , k − 1 either
(pi . w

m−1, pi+1 . w
m−1) ∈ K or pi . w

m−1 = pi+1 . w
m−1. The choice of m

ensures p0 . w
m−1 6= p1 . w

m−1 = p0 . w
m whence the new sequence still

contains an obstacle to antisymmetry. On the other hand,
p1 . w

m−1 = p0 . w
m = p0 . w

m+1 = p2 . w
m−1, and therefore, if we retain in

the new sequence only the first state from each group of adjacent equal states,
the sequence becomes shorter. This contradicts the minimality of
p0, p1, . . . , pk.
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27. Using the Order

Thus, �K is a non-trivial partial order. How does it help?
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Thus, �K is a non-trivial partial order. How does it help?
We denote by πK the symmetric closure of �K . Clearly, πK is a congruence of
the automaton A .
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Thus, �K is a non-trivial partial order. How does it help?
We denote by πK the symmetric closure of �K . Clearly, πK is a congruence of
the automaton A .
The quotient automaton A /πK has < n states and so it has a short reset word
v by the induction assumption (we induct on the number of states).
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We denote by πK the symmetric closure of �K . Clearly, πK is a congruence of
the automaton A .
The quotient automaton A /πK has < n states and so it has a short reset word
v by the induction assumption (we induct on the number of states). In A , the
word v sends the whole state set into a single πK -class, say, T .
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Thus, �K is a non-trivial partial order. How does it help?
We denote by πK the symmetric closure of �K . Clearly, πK is a congruence of
the automaton A .
The quotient automaton A /πK has < n states and so it has a short reset word
v by the induction assumption (we induct on the number of states). In A , the
word v sends the whole state set into a single πK -class, say, T . In order to
quickly synchronize T choose a minimum state q ∈ T and a maximum state
p ∈ T w.r.t. �K (p 6= q whenever |T | > 1).
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27. Using the Order

Thus, �K is a non-trivial partial order. How does it help?
We denote by πK the symmetric closure of �K . Clearly, πK is a congruence of
the automaton A .
The quotient automaton A /πK has < n states and so it has a short reset word
v by the induction assumption (we induct on the number of states). In A , the
word v sends the whole state set into a single πK -class, say, T . In order to
quickly synchronize T choose a minimum state q ∈ T and a maximum state
p ∈ T w.r.t. �K (p 6= q whenever |T | > 1). Since A is strongly connected,
there is a word u1 of length < n such that p . u1 = q. Then for each r ∈ T such
that p �K r we have q = p . u1 �K r . u1 whence q = r . u1 as q is minimal. If
still |T . u1| > 1, we can take a maximum state p′ ∈ T . u1 and repeat the
process by taking a word u2 of length < n such that p′ . u2 = q, and so on.
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28. Estimations

How long can be a reset word constructed this way?
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How long can be a reset word constructed this way?
From the minimum-maximum symmetry it follows that the number of steps is
at most |T |

2
.
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How long can be a reset word constructed this way?
From the minimum-maximum symmetry it follows that the number of steps is
at most |T |

2
. In the case when T = Q (actually, this is the worst case) we get

at most n
2
steps and a word of length at most n− 1 is added at each step.
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How long can be a reset word constructed this way?
From the minimum-maximum symmetry it follows that the number of steps is
at most |T |

2
. In the case when T = Q (actually, this is the worst case) we get

at most n
2
steps and a word of length at most n− 1 is added at each step. The

resulting reset word is of length at most n(n−1)
2

. If |T | = m < n, then the
quotient automaton A /πK has at most n−m+ 1 states and we first need a

word v of length at most (n−m+1)(n−m)
2

to send Q to T and then a word of

length at most m(n−1)
2

to synchronize T .
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How long can be a reset word constructed this way?
From the minimum-maximum symmetry it follows that the number of steps is
at most |T |

2
. In the case when T = Q (actually, this is the worst case) we get

at most n
2
steps and a word of length at most n− 1 is added at each step. The

resulting reset word is of length at most n(n−1)
2

. If |T | = m < n, then the
quotient automaton A /πK has at most n−m+ 1 states and we first need a

word v of length at most (n−m+1)(n−m)
2

to send Q to T and then a word of

length at most m(n−1)
2

to synchronize T . It remains to calculate that

(n−m+ 1)(n−m)

2
+

m(n− 1)

2
≤

n(n− 1)

2

for all m = 2, . . . , n− 1.
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28. Estimations

How long can be a reset word constructed this way?
From the minimum-maximum symmetry it follows that the number of steps is
at most |T |

2
. In the case when T = Q (actually, this is the worst case) we get

at most n
2
steps and a word of length at most n− 1 is added at each step. The

resulting reset word is of length at most n(n−1)
2

. If |T | = m < n, then the
quotient automaton A /πK has at most n−m+ 1 states and we first need a

word v of length at most (n−m+1)(n−m)
2

to send Q to T and then a word of

length at most m(n−1)
2

to synchronize T . It remains to calculate that

(n−m+ 1)(n−m)

2
+

m(n− 1)

2
≤

n(n− 1)

2

for all m = 2, . . . , n− 1. If m = 1, then v itself is a reset word for A .
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29. Weakly Monotonic Automata

In my paper (Synchronizing automata preserving a chain of partial orders,
Theor. Comput. Sci. 410, 3513–3519 (2009)) Trahtman’s theorem has been
extended to a larger class automata.
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Theor. Comput. Sci. 410, 3513–3519 (2009)) Trahtman’s theorem has been
extended to a larger class automata.
A DFA A is weakly monotonic of level ℓ if it has a strictly increasing chain of
stable binary relations ρ0 ⊂ ρ1 ⊂ · · · ⊂ ρℓ satisfying the following conditions:
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• ρ0 is the equality relation;
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29. Weakly Monotonic Automata

In my paper (Synchronizing automata preserving a chain of partial orders,
Theor. Comput. Sci. 410, 3513–3519 (2009)) Trahtman’s theorem has been
extended to a larger class automata.
A DFA A is weakly monotonic of level ℓ if it has a strictly increasing chain of
stable binary relations ρ0 ⊂ ρ1 ⊂ · · · ⊂ ρℓ satisfying the following conditions:
• ρ0 is the equality relation;
• for each i = 1, . . . , ℓ, the congruence πi−1 generated by ρi−1 is contained in
ρi and the relation ρi/πi−1 is a partial order on Q/πi−1;

Mikhail Volkov Synchronizing Finite Automata



29. Weakly Monotonic Automata

In my paper (Synchronizing automata preserving a chain of partial orders,
Theor. Comput. Sci. 410, 3513–3519 (2009)) Trahtman’s theorem has been
extended to a larger class automata.
A DFA A is weakly monotonic of level ℓ if it has a strictly increasing chain of
stable binary relations ρ0 ⊂ ρ1 ⊂ · · · ⊂ ρℓ satisfying the following conditions:
• ρ0 is the equality relation;
• for each i = 1, . . . , ℓ, the congruence πi−1 generated by ρi−1 is contained in
ρi and the relation ρi/πi−1 is a partial order on Q/πi−1;
• πℓ is the universal relation.
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In my paper (Synchronizing automata preserving a chain of partial orders,
Theor. Comput. Sci. 410, 3513–3519 (2009)) Trahtman’s theorem has been
extended to a larger class automata.
A DFA A is weakly monotonic of level ℓ if it has a strictly increasing chain of
stable binary relations ρ0 ⊂ ρ1 ⊂ · · · ⊂ ρℓ satisfying the following conditions:
• ρ0 is the equality relation;
• for each i = 1, . . . , ℓ, the congruence πi−1 generated by ρi−1 is contained in
ρi and the relation ρi/πi−1 is a partial order on Q/πi−1;
• πℓ is the universal relation.

This differs from the notion of a generalized monotonic automaton by just
dropping the restriction that the order ρi/πi−1 is linear on each πi/πi−1-class.
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• every aperiodic automaton is weakly monotonic;
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31. WM + SC Automata

• Every weakly monotonic automaton with a strongly connected underlying
digraph is synchronizing.

Mikhail Volkov Synchronizing Finite Automata



31. WM + SC Automata

• Every weakly monotonic automaton with a strongly connected underlying
digraph is synchronizing. (A non-trivial generalization of the corresponding
result for aperiodic automata.)

Mikhail Volkov Synchronizing Finite Automata



31. WM + SC Automata

• Every weakly monotonic automaton with a strongly connected underlying
digraph is synchronizing. (A non-trivial generalization of the corresponding
result for aperiodic automata.)

• Every weakly monotonic automaton with a strongly connected underlying

digraph and n states has a reset word of length ≤
⌊

n(n+1)
6

⌋

.

Mikhail Volkov Synchronizing Finite Automata



31. WM + SC Automata

• Every weakly monotonic automaton with a strongly connected underlying
digraph is synchronizing. (A non-trivial generalization of the corresponding
result for aperiodic automata.)

• Every weakly monotonic automaton with a strongly connected underlying

digraph and n states has a reset word of length ≤
⌊

n(n+1)
6

⌋

. (This upper

bound is new even for the aperiodic case – recall that Trahtman’s bound was 3
times higher, namely, n(n−1)

2
.)

Mikhail Volkov Synchronizing Finite Automata



31. WM + SC Automata

• Every weakly monotonic automaton with a strongly connected underlying
digraph is synchronizing. (A non-trivial generalization of the corresponding
result for aperiodic automata.)

• Every weakly monotonic automaton with a strongly connected underlying

digraph and n states has a reset word of length ≤
⌊

n(n+1)
6

⌋

. (This upper

bound is new even for the aperiodic case – recall that Trahtman’s bound was 3
times higher, namely, n(n−1)

2
.)

• Every weakly monotonic synchronizing automaton with n states has a reset
word of length n(n−1)

2
.
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32. Lower Bounds

A bad news is that there are no matching lower bounds for the upper bounds
just discussed.
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32. Lower Bounds

A bad news is that there are no matching lower bounds for the upper bounds
just discussed. No aperiodic (even no weakly monotonic) strongly connected
automaton is known for which the reset threshold would be greater than or
equal to the number of states.

Let CSCA(n) denote the restriction of the Černý function to the class of all
strongly connected aperiodic automata, that is, CSCA(n) is the maximum reset
threshold for strongly connected aperiodic automata with n states. Then our
current knowledge can be summarized as follows:

n− 1 ≤ CSCA(n) ≤

⌊

n(n+ 1)

6

⌋

(Volkov, 2009).
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33. Ananichev’s Series

Similarly, if CA(n) denotes the restriction of the Černý function to the class of
all aperiodic automata, we have:
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This is the first automaton in Ananichev’s series that yields the best up to now
lower bound for CA(n).
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Similarly, if CA(n) denotes the restriction of the Černý function to the class of
all aperiodic automata, we have:

(Ananichev, 2010) n+
⌊n

2

⌋

− 2 ≤ CA(n) ≤
n(n− 1)

2
(Trahtman, 2007).
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0
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a
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b b b b b

b
a

a, b

This is the first automaton in Ananichev’s series that yields the best up to now
lower bound for CA(n). It has 7 states and its shortest reset word is a4b3a of
length 7 +

⌊

7
2

⌋

− 2 = 8.
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