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1. Recap

Deterministic finite automata (DFA): A = 〈Q,Σ, δ〉.
• Q the state set
• Σ the input alphabet
• δ : Q× Σ → Q the transition function
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2. Algebraic Perspective

One can treat DFAs as unary algebras: each letter of the input alphabet defines
a unary operation on the state set.
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One can treat DFAs as unary algebras: each letter of the input alphabet defines
a unary operation on the state set.
This allows us to apply to automata all standard algebraic notions, e.g., the
notions of a subalgebra (subautomaton), a congruence, a quotient automaton.

Subautomata: if A = 〈Q,Σ, δ〉 is a DFA, and S ⊆ Q is such that δ(s, a) ∈ S
for all s ∈ S and a ∈ Σ, consider the DFA S := 〈S,Σ, τ 〉 where τ := δ|S×Σ.
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Subautomata: if A = 〈Q,Σ, δ〉 is a DFA, and S ⊆ Q is such that δ(s, a) ∈ S
for all s ∈ S and a ∈ Σ, consider the DFA S := 〈S,Σ, τ 〉 where τ := δ|S×Σ.
The latter equality means that τ (s, a) := δ(s, a) for all s ∈ S and a ∈ Σ.
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2. Algebraic Perspective

One can treat DFAs as unary algebras: each letter of the input alphabet defines
a unary operation on the state set.
This allows us to apply to automata all standard algebraic notions, e.g., the
notions of a subalgebra (subautomaton), a congruence, a quotient automaton.

Subautomata: if A = 〈Q,Σ, δ〉 is a DFA, and S ⊆ Q is such that δ(s, a) ∈ S
for all s ∈ S and a ∈ Σ, consider the DFA S := 〈S,Σ, τ 〉 where τ := δ|S×Σ.
The latter equality means that τ (s, a) := δ(s, a) for all s ∈ S and a ∈ Σ.

Any such DFA is said to be a subautomaton of A .
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3. Subautomata

A = 〈Q,Σ, δ〉

Q S
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3. Subautomata

S = 〈S,Σ, τ 〉

S
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3. Subautomata

S = 〈S,Σ, τ 〉

S

Exercise: show that a DFA has no proper subautomata iff it is strongly
connected.
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4. Automata with Zero

A singleton subautomaton is normally called a sink state or just a sink. At a
sink state each letter must have a loop.
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We study synchronizing automata and, clearly, a synchronizing automaton may
have at most one sink.
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A singleton subautomaton is normally called a sink state or just a sink. At a
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4. Automata with Zero

A singleton subautomaton is normally called a sink state or just a sink. At a
sink state each letter must have a loop.
We study synchronizing automata and, clearly, a synchronizing automaton may
have at most one sink.
If a DFA has a unique sink state, this state is called a zero state or just a zero.
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5. Congruences and Quotient Automata

An equivalence π on the state set Q of a DFA A = 〈Q,Σ, δ〉 is called a
congruence if (p, q) ∈ π implies

(

δ(p, a), δ(q, a)
)

∈ π for all p, q ∈ Q and all
a ∈ Σ.
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δ(p, a), δ(q, a)
)

∈ π for all p, q ∈ Q and all
a ∈ Σ. For π being a congruence, [q]π is the π-class containing the state q.
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5. Congruences and Quotient Automata

An equivalence π on the state set Q of a DFA A = 〈Q,Σ, δ〉 is called a
congruence if (p, q) ∈ π implies

(

δ(p, a), δ(q, a)
)

∈ π for all p, q ∈ Q and all
a ∈ Σ. For π being a congruence, [q]π is the π-class containing the state q.
The quotient A /π is the DFA 〈Q/π,Σ, δπ〉 where Q/π := {[q]π | q ∈ Q} and
the function δπ is defined by the rule δπ([q]π , a) := [δ(q, a)]π.
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5. Congruences and Quotient Automata

An equivalence π on the state set Q of a DFA A = 〈Q,Σ, δ〉 is called a
congruence if (p, q) ∈ π implies

(

δ(p, a), δ(q, a)
)

∈ π for all p, q ∈ Q and all
a ∈ Σ. For π being a congruence, [q]π is the π-class containing the state q.
The quotient A /π is the DFA 〈Q/π,Σ, δπ〉 where Q/π := {[q]π | q ∈ Q} and
the function δπ is defined by the rule δπ([q]π , a) := [δ(q, a)]π.
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6. Rees Congruences

Suppose that A = 〈Q,Σ, δ〉 is a DFA and S = 〈S,Σ, τ 〉 is a subautomaton of
A .
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6. Rees Congruences

Suppose that A = 〈Q,Σ, δ〉 is a DFA and S = 〈S,Σ, τ 〉 is a subautomaton of
A .
The partition of Q into classes one of which is S and all others are singletons is
a congruence of A .
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A .
The partition of Q into classes one of which is S and all others are singletons is
a congruence of A .
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6. Rees Congruences

Suppose that A = 〈Q,Σ, δ〉 is a DFA and S = 〈S,Σ, τ 〉 is a subautomaton of
A .
The partition of Q into classes one of which is S and all others are singletons is
a congruence of A .
It is called the Rees congruence corresponding to S and is denoted by ρS .
Clearly, in the quotient automaton A /ρS the state S is a sink.
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7. Useful Observations

1. Any subautomaton of a synchronizing automaton is synchronizing, and every
reset word for an automaton also serves as a reset word for any of its
subautomata.
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7. Useful Observations

1. Any subautomaton of a synchronizing automaton is synchronizing, and every
reset word for an automaton also serves as a reset word for any of its
subautomata.

2. Any quotient of a synchronizing automaton is synchronizing, and every reset
word for an automaton also serves as a reset word for any of its quotients.
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8. A Reduction

Let C be any class of automata closed under taking subautomata and
quotients, and let Cn stand for the class of all automata with n states in C.
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Let C be any class of automata closed under taking subautomata and
quotients, and let Cn stand for the class of all automata with n states in C.
Consider any function f : Z+ → N such that

f(n) ≥ f(n−m+ 1) + f(m) whenever n ≥ m ≥ 1.
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Let C be any class of automata closed under taking subautomata and
quotients, and let Cn stand for the class of all automata with n states in C.
Consider any function f : Z+ → N such that

f(n) ≥ f(n−m+ 1) + f(m) whenever n ≥ m ≥ 1.

Examples: f(n) = n− 1, f(n) = (n− 1)2
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8. A Reduction

Let C be any class of automata closed under taking subautomata and
quotients, and let Cn stand for the class of all automata with n states in C.
Consider any function f : Z+ → N such that

f(n) ≥ f(n−m+ 1) + f(m) whenever n ≥ m ≥ 1.

Examples: f(n) = n− 1, f(n) = (n− 1)2

Theorem (Folklore)

If each synchronizing automaton in Cn which either is strongly connected or
possesses a zero has a reset word of length f(n), then the same holds true for
all synchronizing automata in Cn.
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9. A Reduction: Proof

Let A = 〈Q,Σ, δ〉 be a synchronizing automaton in Cn.
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Consider the set S of all states to which the automaton A can be reset and let
m = |S|.
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9. A Reduction: Proof

Let A = 〈Q,Σ, δ〉 be a synchronizing automaton in Cn.
Consider the set S of all states to which the automaton A can be reset and let
m = |S|.
If q ∈ S, then there exists a reset word w ∈ Σ∗ such that Q.w = {q}.
Then wa also is a reset word and Q.wa = {δ(q, a)} whence δ(q, a) ∈ S.
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If q ∈ S, then there exists a reset word w ∈ Σ∗ such that Q.w = {q}.
Then wa also is a reset word and Q.wa = {δ(q, a)} whence δ(q, a) ∈ S.
This means that, restricting the transition function δ to S ×Σ, we get a
subautomaton S with the state set S.
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9. A Reduction: Proof

Let A = 〈Q,Σ, δ〉 be a synchronizing automaton in Cn.
Consider the set S of all states to which the automaton A can be reset and let
m = |S|.
If q ∈ S, then there exists a reset word w ∈ Σ∗ such that Q.w = {q}.
Then wa also is a reset word and Q.wa = {δ(q, a)} whence δ(q, a) ∈ S.
This means that, restricting the transition function δ to S ×Σ, we get a
subautomaton S with the state set S.
Since S is synchronizing and strongly connected and since the class C is
closed under taking subautomata, we have S ∈ C.
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9. A Reduction: Proof

Let A = 〈Q,Σ, δ〉 be a synchronizing automaton in Cn.
Consider the set S of all states to which the automaton A can be reset and let
m = |S|.
If q ∈ S, then there exists a reset word w ∈ Σ∗ such that Q.w = {q}.
Then wa also is a reset word and Q.wa = {δ(q, a)} whence δ(q, a) ∈ S.
This means that, restricting the transition function δ to S ×Σ, we get a
subautomaton S with the state set S.
Since S is synchronizing and strongly connected and since the class C is
closed under taking subautomata, we have S ∈ C.
Hence, S has a reset word v of length f(m).
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10. A Reduction: End of the Proof

Now consider the Rees congruence ρS of the automaton A .
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Now consider the Rees congruence ρS of the automaton A .
The quotient A /ρS is synchronizing, has S as a zero, and has n−m+ 1
states.
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Hence A /ρS has a reset word u of length f(n−m+ 1).
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10. A Reduction: End of the Proof

Now consider the Rees congruence ρS of the automaton A .
The quotient A /ρS is synchronizing, has S as a zero, and has n−m+ 1
states.
Since the class C is closed under taking quotients, we have A /ρS ∈ C.
Hence A /ρS has a reset word u of length f(n−m+ 1).
Since Q.u ⊆ S and S.v is a singleton, we conclude that also Q.uv ⊆ S.v is a
singleton.
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10. A Reduction: End of the Proof

Now consider the Rees congruence ρS of the automaton A .
The quotient A /ρS is synchronizing, has S as a zero, and has n−m+ 1
states.
Since the class C is closed under taking quotients, we have A /ρS ∈ C.
Hence A /ρS has a reset word u of length f(n−m+ 1).
Since Q.u ⊆ S and S.v is a singleton, we conclude that also Q.uv ⊆ S.v is a
singleton.
Thus, uv is reset word for A , and the length of this word does not exceed
f(n−m+ 1) + f(m) ≤ f(n) according to the condition imposed on the
function f .
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10. A Reduction: End of the Proof

Now consider the Rees congruence ρS of the automaton A .
The quotient A /ρS is synchronizing, has S as a zero, and has n−m+ 1
states.
Since the class C is closed under taking quotients, we have A /ρS ∈ C.
Hence A /ρS has a reset word u of length f(n−m+ 1).
Since Q.u ⊆ S and S.v is a singleton, we conclude that also Q.uv ⊆ S.v is a
singleton.
Thus, uv is reset word for A , and the length of this word does not exceed
f(n−m+ 1) + f(m) ≤ f(n) according to the condition imposed on the
function f .

Recall that the function f(n) = (n− 1)2 satisfies the condition
f(n) ≥ f(n−m+ 1) + f(m) for n ≥ m ≥ 1.

Mikhail Volkov Synchronizing Finite Automata



10. A Reduction: End of the Proof

Now consider the Rees congruence ρS of the automaton A .
The quotient A /ρS is synchronizing, has S as a zero, and has n−m+ 1
states.
Since the class C is closed under taking quotients, we have A /ρS ∈ C.
Hence A /ρS has a reset word u of length f(n−m+ 1).
Since Q.u ⊆ S and S.v is a singleton, we conclude that also Q.uv ⊆ S.v is a
singleton.
Thus, uv is reset word for A , and the length of this word does not exceed
f(n−m+ 1) + f(m) ≤ f(n) according to the condition imposed on the
function f .

Recall that the function f(n) = (n− 1)2 satisfies the condition
f(n) ≥ f(n−m+ 1) + f(m) for n ≥ m ≥ 1.
We see that it suffices to prove the Černý conjecture
1) for strongly connected automata and
2) for automata with zero.
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11. Automata with Zero

If a synchronizing automaton with n states has a zero, then it has a reset word
of length ≤ n(n−1)

2
≤ (n− 1)2.

Mikhail Volkov Synchronizing Finite Automata



11. Automata with Zero

If a synchronizing automaton with n states has a zero, then it has a reset word
of length ≤ n(n−1)

2
≤ (n− 1)2.

0a, b
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a
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b

b

b

b
a a b

b

a
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11. Automata with Zero

If a synchronizing automaton with n states has a zero, then it has a reset word
of length ≤ n(n−1)

2
≤ (n− 1)2.

0a, b

a

a

a

b

b

b

b
a a b

b

a

We cover all non-zero states with coins and move the closest coin to 0 until all
coins disappear.
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If a synchronizing automaton with n states has a zero, then it has a reset word
of length ≤ n(n−1)
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11. Automata with Zero

If a synchronizing automaton with n states has a zero, then it has a reset word
of length ≤ n(n−1)

2
≤ (n− 1)2.

0a, b

a

a

a

b

b

b

b
a a b

b

a

a

b

ba
bb

We cover all non-zero states with coins and move the closest coin to 0 until all
coins disappear.
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11. Automata with Zero

If a synchronizing automaton with n states has a zero, then it has a reset word
of length ≤ n(n−1)

2
≤ (n− 1)2.

0a, b

a

a

a

b

b

b

b
a a b

b

a

We cover all non-zero states with coins and move the closest coin to 0 until all
coins disappear.
The algorithm makes at most n− 1 steps and the length of the segment added
in the step when t states still hold coins (n− 1 ≥ t ≥ 1) is at most n− t. The

total length is ≤ 1 + 2 + · · ·+ (n− 1) = n(n−1)
2

.
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12. Rystsov’s Series

The upper bound n(n−1)
2

for the reset threshold of n-state synchronizing
automata with 0 is tight.
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12. Rystsov’s Series

The upper bound n(n−1)
2

for the reset threshold of n-state synchronizing
automata with 0 is tight.
For each n ≥ 2, Igor Rystsov (Reset words for commutative and solvable
automata, Theoret. Comput. Sci. 172, 273–279 (1997)) constructed an
n-state and (n− 1)-letter synchronizing automaton Rn = 〈Q,Σ, δ〉 with zero

and reset threshold equal to n(n−1)
2

.
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12. Rystsov’s Series

The upper bound n(n−1)
2

for the reset threshold of n-state synchronizing
automata with 0 is tight.
For each n ≥ 2, Igor Rystsov (Reset words for commutative and solvable
automata, Theoret. Comput. Sci. 172, 273–279 (1997)) constructed an
n-state and (n− 1)-letter synchronizing automaton Rn = 〈Q,Σ, δ〉 with zero

and reset threshold equal to n(n−1)
2

.

0 1 2 3 q q q n−2 n−1a1 a2

a2

a3

a3

an−1

an−1

Σ Σ\{a1, a2} Σ\{a2, a3} Σ\{a3, a4} Σ\{an−2, an−1} Σ\{an−1}
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13. Rystsov’s Series: Proof

0 1 2 3 q q q n−2 n−1a1 a2

a2

a3

a3

an−1

an−1

Σ Σ\{a1, a2} Σ\{a2, a3} Σ\{a3, a4} Σ\{an−2, an−1} Σ\{an−1}
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13. Rystsov’s Series: Proof

0 1 2 3 q q q n−2 n−1a1 a2

a2

a3

a3

an−1

an−1

Σ Σ\{a1, a2} Σ\{a2, a3} Σ\{a3, a4} Σ\{an−2, an−1} Σ\{an−1}

Let w be a reset word for Rn.
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13. Rystsov’s Series: Proof

0 1 2 3 q q q n−2 n−1a1 a2

a2

a3

a3

an−1

an−1

Σ Σ\{a1, a2} Σ\{a2, a3} Σ\{a3, a4} Σ\{an−2, an−1} Σ\{an−1}

Let w be a reset word for Rn. Clearly, Q .w = {0}.
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13. Rystsov’s Series: Proof

0 1 2 3 q q q n−2 n−1a1 a2

a2

a3

a3

an−1

an−1

Σ Σ\{a1, a2} Σ\{a2, a3} Σ\{a3, a4} Σ\{an−2, an−1} Σ\{an−1}

Let w be a reset word for Rn. Clearly, Q .w = {0}.
For S = {s1, . . . , st} ⊆ Q, let f(S) :=

∑t

i=1 si. Then f({0}) = 0 and

f(Q) = n(n−1)
2

.
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13. Rystsov’s Series: Proof

0 1 2 3 q q q n−2 n−1a1 a2

a2

a3

a3

an−1

an−1

Σ Σ\{a1, a2} Σ\{a2, a3} Σ\{a3, a4} Σ\{an−2, an−1} Σ\{an−1}

Let w be a reset word for Rn. Clearly, Q .w = {0}.
For S = {s1, . . . , st} ⊆ Q, let f(S) :=

∑t

i=1 si. Then f({0}) = 0 and

f(Q) = n(n−1)
2

. For any S and any letter aj , we have f(S . aj) ≥ f(S)− 1
since each letter only swaps two neighbor states or maps 1 and 0 to 0.
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13. Rystsov’s Series: Proof

0 1 2 3 q q q n−2 n−1a1 a2

a2

a3

a3

an−1

an−1

Σ Σ\{a1, a2} Σ\{a2, a3} Σ\{a3, a4} Σ\{an−2, an−1} Σ\{an−1}

Let w be a reset word for Rn. Clearly, Q .w = {0}.
For S = {s1, . . . , st} ⊆ Q, let f(S) :=

∑t

i=1 si. Then f({0}) = 0 and

f(Q) = n(n−1)
2

. For any S and any letter aj , we have f(S . aj) ≥ f(S)− 1
since each letter only swaps two neighbor states or maps 1 and 0 to 0. Thus,

0 = f({0}) = f(Q .w) ≥ f(Q)− |w| =
n(n− 1)

2
− |w|

whence |w| ≥ n(n−1)
2

.
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14. Binary Case

In Rystsov’s series the alphabet grows with the number of states.
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This contrasts with the Černý series in which the alphabet is independent of
the state number and leads to the following natural problem: to determine the
reset threshold of n-state synchronizing automata with 0 over a fixed alphabet.
This is an open problem, which is of independent interest and has connections
with some questions of language theory.

In the binary case (2 input letters), for quite a long time, the lower bound for
the reset threshold of n-state synchronizing automata with 0 found by Pavel
Martyugin (A series of slowly synchronizing automata with zero state over a
small alphabet, Inf. Comput. 19, 517–536 (2009)) remained the best.
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14. Binary Case

In Rystsov’s series the alphabet grows with the number of states.
This contrasts with the Černý series in which the alphabet is independent of
the state number and leads to the following natural problem: to determine the
reset threshold of n-state synchronizing automata with 0 over a fixed alphabet.
This is an open problem, which is of independent interest and has connections
with some questions of language theory.

In the binary case (2 input letters), for quite a long time, the lower bound for
the reset threshold of n-state synchronizing automata with 0 found by Pavel
Martyugin (A series of slowly synchronizing automata with zero state over a
small alphabet, Inf. Comput. 19, 517–536 (2009)) remained the best. Namely,
he has constructed, for every n ≥ 8, a binary n-state synchronizing automaton

with 0 and reset threshold equal to
⌈

n2+6n−16
4

⌉

.
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15. Martyugin’s Series

Here is the automaton Mn from Martyugin’s series for n = 2m.

0 1 2 q q q m−2 m−1

2m−1

2m−2

2m−3

q

q

q

m+3

m+2

m+1

ma, b

a

b

b

a a a

a

a

a

a
a

b

b

b

b

b

b

b

b
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q

q

q

m+3

m+2

m+1

ma, b
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b

b

a a a

a

a

a

a
a

b

b

b

b

b

b

b

b

Mn consists of the “body” formed by m,m+ 1, . . . , 2m− 1
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15. Martyugin’s Series

Here is the automaton Mn from Martyugin’s series for n = 2m.

0 1 2 q q q m−2 m−1

2m−1

2m−2

2m−3

q

q

q

m+3

m+2

m+1

ma, b

a

b

b

a a a

a

a

a

a
a

b

b

b

b

b

b

b

b

Mn consists of the “body” formed by m,m+ 1, . . . , 2m− 1 and the “tail”
formed by 0, 1, . . . ,m− 1.
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16. Recent Developments: Vorel’s Idea

Vojtěch Vorel (Synchronization, Road Coloring, and Jumps in Finite Automata.
Master Thesis, Charles University, Prague, 2015) has described a general
construction for appending a tail to an almost permutation automaton with
sink state.
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Vojtěch Vorel (Synchronization, Road Coloring, and Jumps in Finite Automata.
Master Thesis, Charles University, Prague, 2015) has described a general
construction for appending a tail to an almost permutation automaton with
sink state. Using this idea, Ananichev and Vorel (A new lower bound for reset
threshold of synchronizing automata with sink state. J. Automata, Languages
and Combinatorics 24(2-4), 153–164 (2019)) have constructed for each
n ≥ 16, n ≡ 4 (mod 12), a binary n-state synchronizing automaton with 0
that has reset threshold 1

4
n2 + 2n− 9.
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Vojtěch Vorel (Synchronization, Road Coloring, and Jumps in Finite Automata.
Master Thesis, Charles University, Prague, 2015) has described a general
construction for appending a tail to an almost permutation automaton with
sink state. Using this idea, Ananichev and Vorel (A new lower bound for reset
threshold of synchronizing automata with sink state. J. Automata, Languages
and Combinatorics 24(2-4), 153–164 (2019)) have constructed for each
n ≥ 16, n ≡ 4 (mod 12), a binary n-state synchronizing automaton with 0
that has reset threshold 1

4
n2 + 2n− 9.

A synchronizing binary DFA (Q, {a, b}, δ) with a sink state q0 ∈ Q is an almost

permutation automaton if it fulfils the following three conditions:
1. There is a unique state pre-sink r ∈ Q \ {q0} such that δ(r, b) = q0.
2. The letter b acts as a permutation on the set Q \ {r}.
3. The letter a acts as a permutation on Q.
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17. Recent Developments: Vorel’s Idea (2)

For instance, the “body” of Martyugin’s automaton M2m is the following
almost permutation automaton:

m−1

2m−1

2m−2

2m−3

q

q

q

m+3

m+2

m+1

m a, b

a

b

a

a

a

a a

b

b

b

b

b
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17. Recent Developments: Vorel’s Idea (2)

For instance, the “body” of Martyugin’s automaton M2m is the following
almost permutation automaton:

m−1

2m−1

2m−2

2m−3

q

q

q

m+3

m+2

m+1

m a, b

a

b

a

a

a

a a

b

b

b

b

b

Here the state m− 1 is a sink and m is pre-sink state.
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18. Recent Developments: Vorel’s Idea (3)

If A = (Q, {a, b}, δ) is an almost permutation automaton, the least k such that
ak acts as the identity permutation is called the order of a. Clearly, the order
of a is the least common multiple of the lengths of cycles with respect to a.
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If A = (Q, {a, b}, δ) is an almost permutation automaton, the least k such that
ak acts as the identity permutation is called the order of a. Clearly, the order
of a is the least common multiple of the lengths of cycles with respect to a.

Vorel’s Lemma

Let A = 〈Q, {a, b}, δ〉 be an n-state synchronizing almost permutation
automaton and let k be a multiple of the order of a. Then one can add a “tail”
to A so that the reset threshold of the resulting automaton is rt(A ) + nk.
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Vorel’s Lemma

Let A = 〈Q, {a, b}, δ〉 be an n-state synchronizing almost permutation
automaton and let k be a multiple of the order of a. Then one can add a “tail”
to A so that the reset threshold of the resulting automaton is rt(A ) + nk.

Thus, in order to obtain a series of binary synchronizing automata with 0 and

large reset threshold, it is sufficient to construct a series of almost permutation

automata with large reset threshold.
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If A = (Q, {a, b}, δ) is an almost permutation automaton, the least k such that
ak acts as the identity permutation is called the order of a. Clearly, the order
of a is the least common multiple of the lengths of cycles with respect to a.

Vorel’s Lemma

Let A = 〈Q, {a, b}, δ〉 be an n-state synchronizing almost permutation
automaton and let k be a multiple of the order of a. Then one can add a “tail”
to A so that the reset threshold of the resulting automaton is rt(A ) + nk.

Thus, in order to obtain a series of binary synchronizing automata with 0 and

large reset threshold, it is sufficient to construct a series of almost permutation

automata with large reset threshold.

Suppose there is a series of n-state almost permutation automata An such that

rt(An) = An2 +Bn+ C,

where A, B and C are some constants. (Of course, 0 ≤ A ≤ 1/2.)
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If A = (Q, {a, b}, δ) is an almost permutation automaton, the least k such that
ak acts as the identity permutation is called the order of a. Clearly, the order
of a is the least common multiple of the lengths of cycles with respect to a.

Vorel’s Lemma

Let A = 〈Q, {a, b}, δ〉 be an n-state synchronizing almost permutation
automaton and let k be a multiple of the order of a. Then one can add a “tail”
to A so that the reset threshold of the resulting automaton is rt(A ) + nk.

Thus, in order to obtain a series of binary synchronizing automata with 0 and

large reset threshold, it is sufficient to construct a series of almost permutation

automata with large reset threshold.

Suppose there is a series of n-state almost permutation automata An such that

rt(An) = An2 +Bn+ C,

where A, B and C are some constants. (Of course, 0 ≤ A ≤ 1/2.)
Then one can add tails of lengths k = k(n) and obtain a series of binary
automata BN with 0 and N = n+ k states. If k(n) is chosen to be the order
of the letter a in An, then Vorel’s Lemma implies that

rt(BN) = An2 +Bn+ C + nk.
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19. Recent Developments: Vorel’s Idea (4)

Suppose that k = Dn+E, where D and E are constants. Then,

rt(BN) =
A+D

(1 +D)2
·N2 +O(N).

If D = 1− 2A, then the first coefficient is maximal and is equal to 1
4(1−A)

.

This implies that if A < 1/2, then rt(BN ) grows faster than rt(An).
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Suppose that k = Dn+E, where D and E are constants. Then,

rt(BN) =
A+D

(1 +D)2
·N2 +O(N).

If D = 1− 2A, then the first coefficient is maximal and is equal to 1
4(1−A)

.

This implies that if A < 1/2, then rt(BN ) grows faster than rt(An).

In Martyugin’s example, the reset threshold of the “body” grows as 3n+C,
thus, A = 0 (and hence D = 1). Also k = n− 2. This gives

rt(MN) =
1

4
N2 +

3

2
N +O(1).
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Suppose that k = Dn+E, where D and E are constants. Then,

rt(BN) =
A+D

(1 +D)2
·N2 +O(N).

If D = 1− 2A, then the first coefficient is maximal and is equal to 1
4(1−A)

.

This implies that if A < 1/2, then rt(BN ) grows faster than rt(An).

In Martyugin’s example, the reset threshold of the “body” grows as 3n+C,
thus, A = 0 (and hence D = 1). Also k = n− 2. This gives

rt(MN) =
1

4
N2 +

3

2
N +O(1).

Ananichev and Vorel (loc. cit.) constructed n-state synchronizing almost
permutation automata with reset threshold 4n− 13. This gives

rt(A V N) =
1

4
N2 + 2N +O(1).
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Suppose that k = Dn+E, where D and E are constants. Then,

rt(BN) =
A+D

(1 +D)2
·N2 +O(N).

If D = 1− 2A, then the first coefficient is maximal and is equal to 1
4(1−A)

.

This implies that if A < 1/2, then rt(BN ) grows faster than rt(An).

In Martyugin’s example, the reset threshold of the “body” grows as 3n+C,
thus, A = 0 (and hence D = 1). Also k = n− 2. This gives

rt(MN) =
1

4
N2 +

3

2
N +O(1).

Ananichev and Vorel (loc. cit.) constructed n-state synchronizing almost
permutation automata with reset threshold 4n− 13. This gives

rt(A V N) =
1

4
N2 + 2N +O(1).

An intriguing question: is there a series of n-state almost permutation
synchronizing automata with reset threshold An2 +O(n) where A > 0?
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Suppose that k = Dn+E, where D and E are constants. Then,

rt(BN) =
A+D

(1 +D)2
·N2 +O(N).

If D = 1− 2A, then the first coefficient is maximal and is equal to 1
4(1−A)

.

This implies that if A < 1/2, then rt(BN ) grows faster than rt(An).

In Martyugin’s example, the reset threshold of the “body” grows as 3n+C,
thus, A = 0 (and hence D = 1). Also k = n− 2. This gives

rt(MN) =
1

4
N2 +

3

2
N +O(1).

Ananichev and Vorel (loc. cit.) constructed n-state synchronizing almost
permutation automata with reset threshold 4n− 13. This gives

rt(A V N) =
1

4
N2 + 2N +O(1).

An intriguing question: is there a series of n-state almost permutation
synchronizing automata with reset threshold An2 +O(n) where A > 0?
If so, then rt(BN ) would grow faster than 1

4
N2.
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