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1. Finite Automata

A finite automaton is a simple but extremely productive concept that captures
the very important idea of an object interacting with its environment.
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2. Finite Automata

This notion originates in the seminal work by Alan Turing (“On Computable
Numbers, With an Application to the Entscheidungsproblem”, Proc. London
Math. Soc., Ser. 2, 42 (1936), 230–265).

“The behavior of the computer at any moment is determined by the symbols
which he is observing, and his state of mind at that moment”.
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2. Finite Automata

This notion originates in the seminal work by Alan Turing (“On Computable
Numbers, With an Application to the Entscheidungsproblem”, Proc. London
Math. Soc., Ser. 2, 42 (1936), 230–265).

“The behavior of the computer at any moment is determined by the symbols
which he is observing, and his state of mind at that moment”.

Another important source is the work by neurobiologists Warren McCulloch
and Walter Pitts (“A Logical Calculus of the Ideas Immanent in Nervous
Activity”, Bull. Math. Biophys. 5 (1943), 115–133).
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3. Visualization

Finite automata admit a convenient visual representation.
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3. Visualization

Finite automata admit a convenient visual representation.
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Here one sees 4 states called 0,1,2,3, an action called a and another action
called b.
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4. Definitions and Terminology

We consider complete deterministic finite automata (DFA):

A = 〈Q,Σ, δ〉.
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Here
• Q is the state set;
• Σ is the input alphabet;
• δ : Q× Σ → Q is the transition function.
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4. Definitions and Terminology

We consider complete deterministic finite automata:

A = 〈Q,Σ, δ〉.

Here
• Q is the state set;
• Σ is the input alphabet;
• δ : Q× Σ → Q is the transition function.

We need neither initial nor final states.
Σ∗ stands for the set of all words over Σ including the empty word. The
function δ uniquely extends to a function Q× Σ∗ → Q still denoted by δ.
To simplify notation we often write q . w for δ(q, w)
and P .w for {δ(q, w) | q ∈ P}.

Mikhail Volkov Synchronizing Finite Automata



5. Definitions and terminology

An automaton A = 〈Q,Σ, δ〉 is called synchronizing if there exists a word
w ∈ Σ∗ whose action resets A , that is, leaves the automaton in one particular
state no matter which state in Q it started at: δ(q, w) = δ(q′, w) for all
q, q′ ∈ Q.
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5. Definitions and terminology

An automaton A = 〈Q,Σ, δ〉 is called synchronizing if there exists a word
w ∈ Σ∗ whose action resets A , that is, leaves the automaton in one particular
state no matter which state in Q it started at: δ(q, w) = δ(q′, w) for all
q, q′ ∈ Q.

We can also write this as |Q .w| = 1.

Any word w with this property is a reset word for A .

Other names:
• for automata: directable, cofinal, collapsible, etc;
• for words: directing, recurrent, synchronizing, etc.
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A reset word is abbbabbba: applying it at any state brings the automaton to the
state 1.
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7. Cerný’s Paper

The notion was formalized in 1964 in a paper by Jan Černý (Poznámka k
homogénnym eksperimentom s konečnými automatami, Matematicko-fyzikalny
Časopis Slovensk. Akad. Vied, 14, no.3, 208–216 [in Slovak]) though implicitly
it had been around since at least 1956.
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7. Cerný’s Paper

The notion was formalized in 1964 in a paper by Jan Černý (Poznámka k
homogénnym eksperimentom s konečnými automatami, Matematicko-fyzikalny
Časopis Slovensk. Akad. Vied, 14, no.3, 208–216 [in Slovak]) though implicitly
it had been around since at least 1956.

The idea of synchronization is pretty natural and of obvious importance: we
aim to restore control over a device whose current state is not known.

Think of a satellite which loops around the Moon and cannot be controlled
from the Earth while “behind” the Moon (Černý’s original motivation).
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8. Ashby’s Ghost Taming Automaton

The earliest synchronizing automaton that I was able to trace back in the
literature appeared in Ross Ashby’s ‘An Introduction to Cybernetics’ (1956),
pp. 60–61.
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8. Ashby’s Ghost Taming Automaton

The earliest synchronizing automaton that I was able to trace back in the
literature appeared in Ross Ashby’s ‘An Introduction to Cybernetics’ (1956),
pp. 60–61.

‘4/15. Materiality. The reader may now like to test the methods of this
chapter as an aid to solving the problem set by the following letter. It justifies
the statement made in S.1/2 that cybernetics is not bound to the properties
found in terrestrial matter, nor does it draw its laws from them. What is
important in cybernetics is the extent to which the observed behaviour is
regular and reproducible.’
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8. Ashby’s Ghost Taming Automaton

The earliest synchronizing automaton that I was able to trace back in the
literature appeared in Ross Ashby’s ‘An Introduction to Cybernetics’ (1956),
pp. 60–61.

The letter presents a puzzle about two ghostly noises, Singing and Laughter, in
a haunted mansion. Each of the noises can be either on or off, and their
behaviour depends on combinations of two possible actions, playing the organ
or burning incense.
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8. Ashby’s Ghost Taming Automaton

The earliest synchronizing automaton that I was able to trace back in the
literature appeared in Ross Ashby’s ‘An Introduction to Cybernetics’ (1956),
pp. 60–61.

The letter presents a puzzle about two ghostly noises, Singing and Laughter, in
a haunted mansion. Each of the noises can be either on or off, and their
behaviour depends on combinations of two possible actions, playing the organ
or burning incense.
Under a suitable encoding, this leads to an automaton with 4 states and 4
input letters shown in the next slide.
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9. Ashby’s Ghost Taming Automaton
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It is easy to see that this is a synchronizing automaton and acb is its shortest
reset word.
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10. Other Sources

It is not surprising that synchronizing automata were re-invented a number of
times:

Mikhail Volkov Synchronizing Finite Automata



10. Other Sources

It is not surprising that synchronizing automata were re-invented a number of
times:

• The notion was very natural by itself and fitted fairly well in what was
considered as the mainstream of automata theory in the 1960s.
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• Černý’s paper published in Slovak language remained unknown in the
English-speaking world for quite a long time.
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10. Other Sources

It is not surprising that synchronizing automata were re-invented a number of
times:

• The notion was very natural by itself and fitted fairly well in what was
considered as the mainstream of automata theory in the 1960s.

• Černý’s paper published in Slovak language remained unknown in the
English-speaking world for quite a long time.

Example: A. E. Laemmel, B. Rudner, Study of the application of coding theory,
Report PIBEP-69-034, Polytechnic Inst. Brooklyn, Dept. Electrophysics,
Farmingdale, N.Y., 94 pp.
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11. Crash Course in Coding Theory

Suppose we deal with data presented as a huge word w in some finite source
alphabet Θ, and we know—or can estimate—the probability of occurrence in w

for each letter from Θ.
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recherche du temps perdu” with its approx. 9,609,000 characters, each letter
and space being counted as one character.
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Mikhail Volkov Synchronizing Finite Automata



11. Crash Course in Coding Theory

Suppose we deal with data presented as a huge word w in some finite source
alphabet Θ, and we know—or can estimate—the probability of occurrence in w

for each letter from Θ.

A good example is a long text in a natural language, like Marcel Proust’s “À la
recherche du temps perdu” with its approx. 9,609,000 characters, each letter
and space being counted as one character. We can quite accurately estimate
the probability of occurrence in this text for each character using available
information about relative frequencies of letters in the French language. For
instance, ‘e’ occurs in French words approx. twice as often as ‘a’ and the
frequency of occurrence of ‘k’ is less than 0.9% of that of ‘l’.
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12. Crash Course in Coding Theory

If we want to digitalize the data (for storing or transmitting them), we have to
encode the letters of Θ with some words over a smaller alphabet Σ, usually, the
binary alphabet {0, 1}.
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12. Crash Course in Coding Theory

If we want to digitalize the data (for storing or transmitting them), we have to
encode the letters of Θ with some words over a smaller alphabet Σ, usually, the
binary alphabet {0, 1}.
An encoding of letters by binary words of constant length (such as
ANSII-codes) requires ⌈log2 |Θ|⌉ bits for each letter and thus |w| · ⌈log2 |Θ|⌉
bits for the whole word w.
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12. Crash Course in Coding Theory

If we want to digitalize the data (for storing or transmitting them), we have to
encode the letters of Θ with some words over a smaller alphabet Σ, usually, the
binary alphabet {0, 1}.
An encoding of letters by binary words of constant length (such as
ANSII-codes) requires ⌈log2 |Θ|⌉ bits for each letter and thus |w| · ⌈log2 |Θ|⌉
bits for the whole word w. However, by a clever variable-length encoding we
may save much space (in the case of data storage) and/or time (in the case of
data transmission).
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12. Crash Course in Coding Theory

If we want to digitalize the data (for storing or transmitting them), we have to
encode the letters of Θ with some words over a smaller alphabet Σ, usually, the
binary alphabet {0, 1}.
An encoding of letters by binary words of constant length (such as
ANSII-codes) requires ⌈log2 |Θ|⌉ bits for each letter and thus |w| · ⌈log2 |Θ|⌉
bits for the whole word w. However, by a clever variable-length encoding we
may save much space (in the case of data storage) and/or time (in the case of
data transmission). For this, we should encode letters that occur in w more
frequently by shorter binary words while letters with low probability of
occurrence in w may be encoded by longer binary words without much harm.
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12. Crash Course in Coding Theory

If we want to digitalize the data (for storing or transmitting them), we have to
encode the letters of Θ with some words over a smaller alphabet Σ, usually, the
binary alphabet {0, 1}.
An encoding of letters by binary words of constant length (such as
ANSII-codes) requires ⌈log2 |Θ|⌉ bits for each letter and thus |w| · ⌈log2 |Θ|⌉
bits for the whole word w. However, by a clever variable-length encoding we
may save much space (in the case of data storage) and/or time (in the case of
data transmission). For this, we should encode letters that occur in w more
frequently by shorter binary words while letters with low probability of
occurrence in w may be encoded by longer binary words without much harm.
This simple idea was already used in Morse code of the 19th century: ‘e’, the
most common letter in English has the shortest Morse code, a single dot.
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13. Crash Course in Coding Theory

A complication has to be taken into account when variable-length encoding is
used: the process of decoding, i.e., restoring the original word w from a stream
of bits in that w has been encoded, may be not easy in general.

Mikhail Volkov Synchronizing Finite Automata



13. Crash Course in Coding Theory

A complication has to be taken into account when variable-length encoding is
used: the process of decoding, i.e., restoring the original word w from a stream
of bits in that w has been encoded, may be not easy in general.
There is however a class of encodings for which this complication does not
appear.
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13. Crash Course in Coding Theory

A complication has to be taken into account when variable-length encoding is
used: the process of decoding, i.e., restoring the original word w from a stream
of bits in that w has been encoded, may be not easy in general.
There is however a class of encodings for which this complication does not
appear. A prefix code is a set X of words over some alphabet such that no
word of X is a prefix of another word of X.
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13. Crash Course in Coding Theory

A complication has to be taken into account when variable-length encoding is
used: the process of decoding, i.e., restoring the original word w from a stream
of bits in that w has been encoded, may be not easy in general.
There is however a class of encodings for which this complication does not
appear. A prefix code is a set X of words over some alphabet such that no
word of X is a prefix of another word of X. Data encoded with a prefix code
can be decoded on-the-fly: a decoder just keeps finding and removing prefixes
that form valid code words from the incoming stream.
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13. Crash Course in Coding Theory

A complication has to be taken into account when variable-length encoding is
used: the process of decoding, i.e., restoring the original word w from a stream
of bits in that w has been encoded, may be not easy in general.
There is however a class of encodings for which this complication does not
appear. A prefix code is a set X of words over some alphabet such that no
word of X is a prefix of another word of X. Data encoded with a prefix code
can be decoded on-the-fly: a decoder just keeps finding and removing prefixes
that form valid code words from the incoming stream. At the same time, it is
known that the most economical binary presentation of data that can be
achieved by any variable-length encoding always can be achieved by a suitable
encoding with a prefix code.
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14. Crash Course in Coding Theory

Consider the sentence YOU USE A CODE C.

Mikhail Volkov Synchronizing Finite Automata



14. Crash Course in Coding Theory

Consider the sentence YOU USE A CODE C. It involves 9 different characters
(8 letters and space) and has length 16 so that every its constant-length binary
encoding requires 16 · ⌈log2 9⌉ = 64 bits.
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14. Crash Course in Coding Theory

Consider the sentence YOU USE A CODE C. It involves 9 different characters
(8 letters and space) and has length 16 so that every its constant-length binary
encoding requires 16 · ⌈log2 9⌉ = 64 bits.
The prefix code

X = {000, 0010, 0011, 010, 0110, 0111, 10, 110, 111}

allows one to encode the sentence more efficiently:

space C E O U A D S Y

10 000 010 110 111 0010 0011 0110 0111
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14. Crash Course in Coding Theory

Consider the sentence YOU USE A CODE C. It involves 9 different characters
(8 letters and space) and has length 16 so that every its constant-length binary
encoding requires 16 · ⌈log2 9⌉ = 64 bits.
The prefix code

X = {000, 0010, 0011, 010, 0110, 0111, 10, 110, 111}

allows one to encode the sentence more efficiently:

space C E O U A D S Y

10 000 010 110 111 0010 0011 0110 0111

The sentence YOU USE A CODE C is then encoded with the binary word

0111|110|111|10|111|0110|010|10|0010|10|000|110|0011|010|10|000

of length 48 (vertical lines separating code words are inserted for readability
only).
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14. Crash Course in Coding Theory

Consider the sentence YOU USE A CODE C. It involves 9 different characters
(8 letters and space) and has length 16 so that every its constant-length binary
encoding requires 16 · ⌈log2 9⌉ = 64 bits.
The prefix code

X = {000, 0010, 0011, 010, 0110, 0111, 10, 110, 111}

allows one to encode the sentence more efficiently:

space C E O U A D S Y

10 000 010 110 111 0010 0011 0110 0111

The sentence YOU USE A CODE C is then encoded with the binary word

0111|110|111|10|111|0110|010|10|0010|10|000|110|0011|010|10|000

of length 48 (vertical lines separating code words are inserted for readability
only). We have thus reduced the binary representation size by 25%.
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15. Crash Course in Coding Theory

A prefix code over a finite alphabet Σ is a set X of words in Σ∗ such that no
word of X is a prefix of another word of X.
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15. Crash Course in Coding Theory

A prefix code over a finite alphabet Σ is a set X of words in Σ∗ such that no
word of X is a prefix of another word of X. A prefix code is maximal if it is
not contained in another prefix code over the same alphabet.
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15. Crash Course in Coding Theory

A prefix code over a finite alphabet Σ is a set X of words in Σ∗ such that no
word of X is a prefix of another word of X. A prefix code is maximal if it is
not contained in another prefix code over the same alphabet. A maximal prefix
code X over Σ is synchronized if there is a word x ∈ X∗ such that for any word
w ∈ Σ∗, one has wx ∈ X∗. Such a word x is called a synchronizing word for X.
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15. Crash Course in Coding Theory

A prefix code over a finite alphabet Σ is a set X of words in Σ∗ such that no
word of X is a prefix of another word of X. A prefix code is maximal if it is
not contained in another prefix code over the same alphabet. A maximal prefix
code X over Σ is synchronized if there is a word x ∈ X∗ such that for any word
w ∈ Σ∗, one has wx ∈ X∗. Such a word x is called a synchronizing word for X.
The advantage of synchronized codes is that they are able to recover after a
loss of synchronization between the decoder and the coder caused by channel
errors.
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16. Synchronized Codes

Σ = {0, 1}, X = {000, 0010, 0011, 010, 0110, 0111, 10, 110, 111}.
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16. Synchronized Codes

Σ = {0, 1}, X = {000, 0010, 0011, 010, 0110, 0111, 10, 110, 111}. Then X is a
maximal prefix code and one can easily check that each of the words 010,
011110, 011111110, . . . is a synchronizing word for X.
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16. Synchronized Codes

Σ = {0, 1}, X = {000, 0010, 0011, 010, 0110, 0111, 10, 110, 111}. Then X is a
maximal prefix code and one can easily check that each of the words 010,
011110, 011111110, . . . is a synchronizing word for X.

Sent 0 0 0
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16. Synchronized Codes

Σ = {0, 1}, X = {000, 0010, 0011, 010, 0110, 0111, 10, 110, 111}. Then X is a
maximal prefix code and one can easily check that each of the words 010,
011110, 011111110, . . . is a synchronizing word for X.

Sent 0 0 0 | 0 0 1 0
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16. Synchronized Codes

Σ = {0, 1}, X = {000, 0010, 0011, 010, 0110, 0111, 10, 110, 111}. Then X is a
maximal prefix code and one can easily check that each of the words 010,
011110, 011111110, . . . is a synchronizing word for X.

Sent 0 0 0 | 0 0 1 0 | 0 1 1 1 | . . .

The vertical lines show the partition into code words.
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16. Synchronized Codes

Σ = {0, 1}, X = {000, 0010, 0011, 010, 0110, 0111, 10, 110, 111}. Then X is a
maximal prefix code and one can easily check that each of the words 010,
011110, 011111110, . . . is a synchronizing word for X.

Sent 0 0 0 | 0 0 1 0 | 0 1 1 1 | . . .
Received 1 0 0 0 0 1 0 0 1 1 1 . . .

The vertical lines show the partition into code words.
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16. Synchronized Codes

Σ = {0, 1}, X = {000, 0010, 0011, 010, 0110, 0111, 10, 110, 111}. Then X is a
maximal prefix code and one can easily check that each of the words 010,
011110, 011111110, . . . is a synchronizing word for X.

Sent 0 0 0 | 0 0 1 0 | 0 1 1 1 | . . .
Received 1 0 0 0 0 1 0 0 1 1 1 . . .

The vertical lines show the partition into code words.

Mikhail Volkov Synchronizing Finite Automata



16. Synchronized Codes

Σ = {0, 1}, X = {000, 0010, 0011, 010, 0110, 0111, 10, 110, 111}. Then X is a
maximal prefix code and one can easily check that each of the words 010,
011110, 011111110, . . . is a synchronizing word for X.

Sent 0 0 0 | 0 0 1 0 | 0 1 1 1 | . . .
Received 1 0 0 0 0 1 0 0 1 1 1 . . .
Decoded 1 0

The vertical lines show the partition into code words.
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16. Synchronized Codes

Σ = {0, 1}, X = {000, 0010, 0011, 010, 0110, 0111, 10, 110, 111}. Then X is a
maximal prefix code and one can easily check that each of the words 010,
011110, 011111110, . . . is a synchronizing word for X.

Sent 0 0 0 | 0 0 1 0 | 0 1 1 1 | . . .
Received 1 0 0 0 0 1 0 0 1 1 1 . . .
Decoded 1 0 | 0 0 0

The vertical lines show the partition into code words.
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16. Synchronized Codes

Σ = {0, 1}, X = {000, 0010, 0011, 010, 0110, 0111, 10, 110, 111}. Then X is a
maximal prefix code and one can easily check that each of the words 010,
011110, 011111110, . . . is a synchronizing word for X.

Sent 0 0 0 | 0 0 1 0 | 0 1 1 1 | . . .
Received 1 0 0 0 0 1 0 0 1 1 1 . . .
Decoded 1 0 | 0 0 0 | 1 0

The vertical lines show the partition into code words.
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16. Synchronized Codes

Σ = {0, 1}, X = {000, 0010, 0011, 010, 0110, 0111, 10, 110, 111}. Then X is a
maximal prefix code and one can easily check that each of the words 010,
011110, 011111110, . . . is a synchronizing word for X.

Sent 0 0 0 | 0 0 1 0 | 0111 | . . .
Received 1 0 0 0 0 1 0 0 1 1 1 . . .
Decoded 1 0 | 0 0 0 | 1 0 | 0111 | . . .

The vertical lines show the partition into code words.
The boldfaced code words indicate the position at which the decoder
resynchronizes.
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17. Codes vs Automata

If X is a finite maximal prefix code, then its decoding can be implemented by a
DFA.
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17. Codes vs Automata

If X is a finite maximal prefix code, then its decoding can be implemented by a
DFA.

0010 0011 0110 0111

001000 011010 110 111

00 01 1110

0 1

ε
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17. Codes vs Automata

If X is a finite maximal prefix code, then its decoding can be implemented by a
DFA.

0010 0011 0110 0111

001000 011010 110 111

00 01 1110

0 1

ε

00 01 11

001 011

0 1

ε
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17. Codes vs Automata

If X is a finite maximal prefix code, then its decoding can be implemented by a
DFA.

0010 0011 0110 0111

001000 011010 110 111

00 01 1110

0 1

ε

00 01 11

001 011

0 1

ε

Synchronized codes precisely correspond to synchronizing automata!
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18. Re-inventing by Engineers

Since the 60s synchronizing automata have been considered as a useful tool for
testing of reactive systems (first circuits, later protocols)
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18. Re-inventing by Engineers

Since the 60s synchronizing automata have been considered as a useful tool for
testing of reactive systems (first circuits, later protocols) and have been also
applied in coding theory.
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18. Re-inventing by Engineers

Since the 60s synchronizing automata have been considered as a useful tool for
testing of reactive systems (first circuits, later protocols) and have been also
applied in coding theory.
In the 80s, the notion was reinvented by engineers working in a branch of
robotics which deals with part handling problems in industrial automation.
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18. Re-inventing by Engineers

Since the 60s synchronizing automata have been considered as a useful tool for
testing of reactive systems (first circuits, later protocols) and have been also
applied in coding theory.
In the 80s, the notion was reinvented by engineers working in a branch of
robotics which deals with part handling problems in industrial automation.
Suppose that one of the parts of a certain device has the following shape:
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18. Re-inventing by Engineers

Since the 60s synchronizing automata have been considered as a useful tool for
testing of reactive systems (first circuits, later protocols) and have been also
applied in coding theory.
In the 80s, the notion was reinvented by engineers working in a branch of
robotics which deals with part handling problems in industrial automation.
Suppose that one of the parts of a certain device has the following shape:

Such parts arrive at manufacturing sites in boxes and they need to be sorted
and oriented before assembly.
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19. Re-inventing by Engineers

Assume that only four initial orientations of the part shown above are possible,
namely, the following ones:
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19. Re-inventing by Engineers

Assume that only four initial orientations of the part shown above are possible,
namely, the following ones:

Suppose that prior the assembly the part should take the ‘bump-left’
orientation (the second one in the picture). Thus, one has to construct an
orienter which action will put the part in the prescribed position independently
of its initial orientation.
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20. Re-inventing by Engineers

We put parts to be oriented on a conveyer belt which takes them to the
assembly point and let the stream of the parts encounter a series of passive
obstacles of two types (tall and short) positioned along the belt.
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20. Re-inventing by Engineers

We put parts to be oriented on a conveyer belt which takes them to the
assembly point and let the stream of the parts encounter a series of passive
obstacles of two types (tall and short) positioned along the belt.
A tall obstacle is tall enough so that any part on the belt encounters this
obstacle by its rightmost low angle.

❅
❅
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20. Re-inventing by Engineers

We put parts to be oriented on a conveyer belt which takes them to the
assembly point and let the stream of the parts encounter a series of passive
obstacles of two types (tall and short) positioned along the belt.
A tall obstacle is tall enough so that any part on the belt encounters this
obstacle by its rightmost low angle.

❅
❅ ❅

❅

Being carried by the belt, the part then is forced to turn 90◦ clockwise.
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20. Re-inventing by Engineers

We put parts to be oriented on a conveyer belt which takes them to the
assembly point and let the stream of the parts encounter a series of passive
obstacles of two types (tall and short) positioned along the belt.
A tall obstacle is tall enough so that any part on the belt encounters this
obstacle by its rightmost low angle.

❅
❅ ❅

❅
❅
❅

Being carried by the belt, the part then is forced to turn 90◦ clockwise.
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21. Re-inventing by Engineers

A short obstacle has the same effect whenever the part is in the “bump-down”
orientation; otherwise it does not touch the part which therefore passes by
without changing the orientation.
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21. Re-inventing by Engineers

A short obstacle has the same effect whenever the part is in the “bump-down”
orientation; otherwise it does not touch the part which therefore passes by
without changing the orientation.
The following schema summarizes how the obstacles effect the orientation of
the part in question:

TALL

short

TALL

TALL

TALL

short

shortshort
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22. Re-inventing by Engineers

We met this picture a few slides ago:

0 1

23

a

b

b

b

b

a

aa

– this was our example of a synchronizing automaton, and we saw that
abbbabbba is a reset sequence of actions.
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22. Re-inventing by Engineers

We met this picture a few slides ago:

0 1

23

a

b

b

b

b

a

aa

– this was our example of a synchronizing automaton, and we saw that
abbbabbba is a reset sequence of actions. Hence the series of obstacles

short-TALL-TALL-TALL-short-TALL-TALL-TALL-short

yields the desired sensorless orienter.
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23. Re-inventing by Dynamics Theorists

A substitution on a finite alphabet X is a map σ : X → X+; the substitution is
said to be of constant length if all words σ(x), x ∈ X, have the same length.
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23. Re-inventing by Dynamics Theorists

A substitution on a finite alphabet X is a map σ : X → X+; the substitution is
said to be of constant length if all words σ(x), x ∈ X, have the same length.
One says that σ satisfies the coincidence condition if there exist positive
integers m and k such that all words σk(x) have the same letter in the m-th
position.
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23. Re-inventing by Dynamics Theorists

A substitution on a finite alphabet X is a map σ : X → X+; the substitution is
said to be of constant length if all words σ(x), x ∈ X, have the same length.
One says that σ satisfies the coincidence condition if there exist positive
integers m and k such that all words σk(x) have the same letter in the m-th
position. For an example, consider the substitution τ on X = {0, 1, 2} defined
by 0 7→ 11, 1 7→ 12, 2 7→ 20. Calculate the iterations of τ up to τ 4:

0 7→ 11
1 7→ 12
2 7→ 20
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23. Re-inventing by Dynamics Theorists

A substitution on a finite alphabet X is a map σ : X → X+; the substitution is
said to be of constant length if all words σ(x), x ∈ X, have the same length.
One says that σ satisfies the coincidence condition if there exist positive
integers m and k such that all words σk(x) have the same letter in the m-th
position. For an example, consider the substitution τ on X = {0, 1, 2} defined
by 0 7→ 11, 1 7→ 12, 2 7→ 20. Calculate the iterations of τ up to τ 4:

0 7→ 11 7→ 1212
1 7→ 12 7→ 1220
2 7→ 20 7→ 2011
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23. Re-inventing by Dynamics Theorists

A substitution on a finite alphabet X is a map σ : X → X+; the substitution is
said to be of constant length if all words σ(x), x ∈ X, have the same length.
One says that σ satisfies the coincidence condition if there exist positive
integers m and k such that all words σk(x) have the same letter in the m-th
position. For an example, consider the substitution τ on X = {0, 1, 2} defined
by 0 7→ 11, 1 7→ 12, 2 7→ 20. Calculate the iterations of τ up to τ 4:

0 7→ 11 7→ 1212 7→ 12201220
1 7→ 12 7→ 1220 7→ 12202011
2 7→ 20 7→ 2011 7→ 20111212
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23. Re-inventing by Dynamics Theorists

A substitution on a finite alphabet X is a map σ : X → X+; the substitution is
said to be of constant length if all words σ(x), x ∈ X, have the same length.
One says that σ satisfies the coincidence condition if there exist positive
integers m and k such that all words σk(x) have the same letter in the m-th
position. For an example, consider the substitution τ on X = {0, 1, 2} defined
by 0 7→ 11, 1 7→ 12, 2 7→ 20. Calculate the iterations of τ up to τ 4:

0 7→ 11 7→ 1212 7→ 12201220 7→ 1220201112202011
1 7→ 12 7→ 1220 7→ 12202011 7→ 1220201120111212
2 7→ 20 7→ 2011 7→ 20111212 7→ 2011121212201220
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23. Re-inventing by Dynamics Theorists

A substitution on a finite alphabet X is a map σ : X → X+; the substitution is
said to be of constant length if all words σ(x), x ∈ X, have the same length.
One says that σ satisfies the coincidence condition if there exist positive
integers m and k such that all words σk(x) have the same letter in the m-th
position. For an example, consider the substitution τ on X = {0, 1, 2} defined
by 0 7→ 11, 1 7→ 12, 2 7→ 20. Calculate the iterations of τ up to τ 4:

0 7→ 11 7→ 1212 7→ 12201220 7→ 1220201112202011
1 7→ 12 7→ 1220 7→ 12202011 7→ 1220201120111212
2 7→ 20 7→ 2011 7→ 20111212 7→ 2011121212201220

Thus, τ satisfies the coincidence condition (with k = 4, m = 7).
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23. Re-inventing by Dynamics Theorists

A substitution on a finite alphabet X is a map σ : X → X+; the substitution is
said to be of constant length if all words σ(x), x ∈ X, have the same length.
One says that σ satisfies the coincidence condition if there exist positive
integers m and k such that all words σk(x) have the same letter in the m-th
position. For an example, consider the substitution τ on X = {0, 1, 2} defined
by 0 7→ 11, 1 7→ 12, 2 7→ 20. Calculate the iterations of τ up to τ 4:

0 7→ 11 7→ 1212 7→ 12201220 7→ 1220201112202011
1 7→ 12 7→ 1220 7→ 12202011 7→ 1220201120111212
2 7→ 20 7→ 2011 7→ 20111212 7→ 2011121212201220

Thus, τ satisfies the coincidence condition (with k = 4, m = 7).
The coincidence condition completely characterizes the constant length
substitutions that give rise to dynamical systems measure-theoretically
isomorphic to a translation on a compact Abelian group (Dekking, 1978).
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24. Re-inventing by Dynamics Theorists

There is a straightforward bijection between DFAs and constant length
substitutions. Each DFA A = 〈Q,Σ, δ〉 with Σ = {a1, . . . , aℓ} defines a length
ℓ substitution on Q that maps every q ∈ Q to the word (q . a1) . . . (q . aℓ) ∈ Q+.
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24. Re-inventing by Dynamics Theorists

There is a straightforward bijection between DFAs and constant length
substitutions. Each DFA A = 〈Q,Σ, δ〉 with Σ = {a1, . . . , aℓ} defines a length
ℓ substitution on Q that maps every q ∈ Q to the word
(q . a1) . . . (q . aℓ) ∈ Q+. For instance, the automaton

0 1

23

a

b

b

b

b

a

aa

induces the substitution 0 7→ 11, 1 7→ 12, 2 7→ 23, 3 7→ 30.
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25. Re-inventing by Dynamics Theorists

Conversely, each substitution σ : X → X+ such that all words σ(x), x ∈ X,
have the same length ℓ gives rise to a DFA for which X is the state set and
which has ℓ input letters a1, . . . , aℓ acting on X as follows: x . ai is the symbol
in the i-th position of the word σ(x).
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have the same length ℓ gives rise to a DFA for which X is the state set and
which has ℓ input letters a1, . . . , aℓ acting on X as follows: x . ai is the symbol
in the i-th position of the word σ(x). For instance, the substitution τ on
X = {0, 1, 2} defined by 0 7→ 11, 1 7→ 12, 2 7→ 20 induces the automaton:

0

12

a1

a2

a2

a2

a1a1
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Conversely, each substitution σ : X → X+ such that all words σ(x), x ∈ X,
have the same length ℓ gives rise to a DFA for which X is the state set and
which has ℓ input letters a1, . . . , aℓ acting on X as follows: x . ai is the symbol
in the i-th position of the word σ(x). For instance, the substitution τ on
X = {0, 1, 2} defined by 0 7→ 11, 1 7→ 12, 2 7→ 20 induces the automaton:

0

12

a1

a2

a2

a2

a1a1

Under this bijection substitutions satisfying the coincidence condition
correspond precisely to synchronizing automata, and moreover, given a
substitution, the number of iterations at which the coincidence first occurs is
equal to the minimum length of reset word for the corresponding automaton.
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26. An Algebraic Framework

One may treat DFAs as unary algebras since each letter of the input alphabet
defines a unary operation on the state set.
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unary algebras is an expression t of the form x .w, where x is a variable and w

is a word over an alphabet Σ.
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One may treat DFAs as unary algebras since each letter of the input alphabet
defines a unary operation on the state set. A term in the language of such
unary algebras is an expression t of the form x .w, where x is a variable and w

is a word over an alphabet Σ. An identity is a formal equality between two
terms. A DFA A = 〈Q,Σ, δ〉 satisfies an identity t1 = t2, where the words
involved in the terms t1 and t2 are over Σ, if t1 and t2 take the same value
under each interpretation of their variables in the set Q.
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Identities of unary algebras can be of the from either x . u = x . v or x . u = y . v

with x 6= y.
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One may treat DFAs as unary algebras since each letter of the input alphabet
defines a unary operation on the state set. A term in the language of such
unary algebras is an expression t of the form x .w, where x is a variable and w

is a word over an alphabet Σ. An identity is a formal equality between two
terms. A DFA A = 〈Q,Σ, δ〉 satisfies an identity t1 = t2, where the words
involved in the terms t1 and t2 are over Σ, if t1 and t2 take the same value
under each interpretation of their variables in the set Q.
Identities of unary algebras can be of the from either x . u = x . v or x . u = y . v

with x 6= y. A DFA is synchronizing if and only if it satisfies an identity of the
second type. Thus studying synchronizing automata may be considered as a
part of the equational logic of unary algebras.
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One may treat DFAs as unary algebras since each letter of the input alphabet
defines a unary operation on the state set. A term in the language of such
unary algebras is an expression t of the form x .w, where x is a variable and w

is a word over an alphabet Σ. An identity is a formal equality between two
terms. A DFA A = 〈Q,Σ, δ〉 satisfies an identity t1 = t2, where the words
involved in the terms t1 and t2 are over Σ, if t1 and t2 take the same value
under each interpretation of their variables in the set Q.
Identities of unary algebras can be of the from either x . u = x . v or x . u = y . v

with x 6= y. A DFA is synchronizing if and only if it satisfies an identity of the
second type. Thus studying synchronizing automata may be considered as a
part of the equational logic of unary algebras. In particular, synchronizing
automata over a fixed alphabet form a pseudovariety of unary algebras.
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27. Possible Use in Biocomputing

In DNA-computing, there is fast progressing work by Ehud Shapiro’s group on
“soup of automata” (Programmable and autonomous computing machine
made of biomolecules, Nature 414, no.1 (November 22, 2001) 430–434; DNA
molecule provides a computing machine with both data and fuel, Proc.
National Acad. Sci. USA 100 (2003) 2191–2196, etc).
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They have produced a solution containing 3× 1012 identical DNA-based
automata per µl.
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automata per µl. These automata can work in parallel on different inputs
(DNA strands), thus ending up in different and unpredictable states.
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27. Possible Use in Biocomputing

In DNA-computing, there is fast progressing work by Ehud Shapiro’s group on
“soup of automata” (Programmable and autonomous computing machine
made of biomolecules, Nature 414, no.1 (November 22, 2001) 430–434; DNA
molecule provides a computing machine with both data and fuel, Proc.
National Acad. Sci. USA 100 (2003) 2191–2196, etc).
They have produced a solution containing 3× 1012 identical DNA-based
automata per µl. These automata can work in parallel on different inputs
(DNA strands), thus ending up in different and unpredictable states. One has
to feed the automata with an reset sequence (again encoded by a DNA-strand)
in order to get them ready for a new use.
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28. Outline of these Lectures

• From the viewpoint of applications, real or yet imaginary, algorithmic issues
are of crucial importance.
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28. Outline of these Lectures

• From the viewpoint of applications, real or yet imaginary, algorithmic issues
are of crucial importance.

• Synchronizing automata constitute an interesting combinatorial object. Their
studies from a combinatorial viewpoint are mainly motivated by the Černý
Conjecture.

• Interesting connections to symbolic dynamics have led to the Road Coloring
Problem.

• We present in detail a proof of the Černý Conjecture for the special case of
aperiodic automata.

• There are also interesting connections with the Perron–Frobenius theory of
non-negative matrices.
• We also formulate several tantalizing open problems.
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