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Abstract. We survey results concerning special elements of eight types (modu-

lar, lower-modular, upper-modular, distributive, codistributive, standard, co-

standard and neutral elements) in the lattice of all semigroup varieties and

three of its sublattices, namely, the lattices of commutative varieties, of permu-

tative varieties and of overcommutative ones. These results are due to Ježek,

McKenzie, Shaprynskǐı, Volkov and the author. Several open questions are

formulated.

1. Introduction

The collection of all semigroup varieties forms a lattice with respect to class-

theoretical inclusion. This lattice will be denoted by SEM. The lattice SEM

has been intensively studied since the beginning of 1960s. A systematic overview

of the material accumulated here is given in the survey [20].

The lattice SEM has an extremely complicated structure. In particular, it

contains an anti-isomorphic copy of the partition lattice over a countably infinite

set [1,6], and therefore does not satisfy any non-trivial lattice identity. Identities in

subvariety lattices of semigroup varieties were intensively examined in many articles.
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These articles contain a number of interesting and deep results (see [20, Section 11]).

The next natural step is to consider varieties that guarantee, so to speak, ‘nice

lattice behavior’ in their neighborhood. Specifically, our attention is to study special

elements of different types in the lattice SEM.

We will consider eight types of special elements: modular, lower-modular, upper-

modular, distributive, codistributive, standard, costandard and neutral elements.

Recall the corresponding definitions. An element x of a lattice 〈L;∨,∧〉 is called

modular if ∀ y, z ∈ L : y ≤ z −→ (x ∨ y) ∧ z = (x ∧ z) ∨ y;

lower-modular if ∀ y, z ∈ L : x ≤ y −→ x ∨ (y ∧ z) = y ∧ (x ∨ z);

distributive if ∀ y, z ∈ L : x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z);

standard if ∀ y, z ∈ L : (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z);

neutral if, for all y, z ∈ L, the sublattice of L generated by x, y and z is distributive.

It is well known (see [4, Theorem 254 on p. 226], for instance) that an element x ∈ L

is neutral if and only if

∀ y, z ∈ L : (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x) = (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x).

Upper-modular, codistributive and costandard elements are defined dually to lower-

modular, distributive and standard ones respectively.

Special elements play an important role in the general lattice theory (see [4,

Section III.2], for instance). In particular, it is well known that if a is a neutral

element in a lattice L then L is decomposable into a subdirect product of the

principal ideal and the principal filter of L generated by a (see [4, Theorem 254 on

p. 226], for instance). Thus the knowledge of which elements of a lattice are neutral

gives essential information on the structure of the lattice as a whole.

There is a number of interrelations between types of elements we consider. It

is evident that a neutral element is both standard and costandard; a standard or

costandard element is modular; a [co]distributive element is lower-modular [upper-

modular]. It is well known also that a [co]standard element is [co]distributive (see [4,

Theorem 253 on p. 224], for instance). These interrelations between types of elements

in abstract lattices are shown in Fig. 1.
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Figure 1. Interrelations between types of elements in abstract lattices

The first results about special elements in the lattice SEM were obtained in the

articles [8, 32] where these results play an auxiliary role. A systematic examination

of special elements in SEM is the objective of the articles [15,16,18,23–28,30,33,37];

see also [20, Section 14]. Briefly speaking, the mentioned articles contain complete

descriptions of lower-modular, distributive, standard, costandard and neutral ele-

ments of the lattice SEM
1 and essential information about modular, upper-modular

and codistributive elements of this lattice (including strong necessary conditions

and descriptions in wide and important partial cases). In particular, it turns out

that there are some interrelations between special elements of different types in

SEM that do not hold in abstract lattices. Namely, an element of SEM is standard

if and only if it is distributive; is costandard if and only if it is neutral; is modular

whenever it is lower-modular. Interrelations between types of elements in the lattice

SEM are shown in Fig. 2. Note that there are no other interrelations between types

of elements under consideration. Corresponding examples will be given below.

The lattice SEM contains a number of wide and important sublattices

(see [20, Section 1 and Chapter 2]). It is natural to examine special elements in these

sublattices. One of the most important sublattices of SEM is the lattice Com of

all commutative semigroup varieties. It follows from results of [2] that this lattice

1To prevent a possible confusion, we note that the description of standard elements of SEM is

not formulated explicitly anywhere but readily follows from results of [30], see a comment to

Theorem 3.3 below.
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Figure 2. Interrelations between types of elements in SEM

contains an isomorphic copy of any finite lattice, and therefore does not satisfy

any non-trivial lattice identity. On the other hand, the lattice Com is known to

be countably infinite [11] and can be characterized [9] (see also [20, Section 8]).

Special elements in the lattice Com are examined in [14,15] where lower-modular,

distributive, standard and neutral elements of Com are completely determined and

essential information about modular elements of this lattice is obtained. As in the

case of the lattice SEM, it turns out that an element of Com is standard if and

only if it is distributive; is modular whenever it is lower-modular. Interrelations

between types of elements in the lattice Com are shown in Fig. 3. Two dotted

arrows in this figure correspond to interrelations for which it is unknown whether

they hold or not. No interrelations between types of elements in Com not specified

in Fig. 3 hold. Corresponding examples will be given below.

Recall that a semigroup variety is called permutative if it satisfies a permuta-

tional identity, that is, an identity of the type

x1x2 · · ·xn = x1πx2π · · ·xnπ (1)

where π is a non-trivial permutation on the set {1, 2, . . . , n}. The collection of all

permutative varieties forms a sublattice Perm of the lattice SEM. This lattice

is located between SEM and Com. It seems quite natural to examine special

elements in Perm. There are no published results here so far. Recently, Shaprynskǐı
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Figure 3. Interrelations between types of elements in Com

has obtained some information about modular and lower-modular elements in the

lattice Perm.

The ‘antipode’ of the lattice Com is the lattice OC of all overcommutative

semigroup varieties (that is, varieties containing the variety of all commutative

semigroups). It is well known that the lattice SEM is the disjoint union of OC

and the lattice of all periodic semigroup varieties (that is, varieties consisting of

periodic semigroups). Results of the papers [8, 24, 26] imply that if a semigroup

variety V different from the variety of all semigroups belongs to one of the eight

types mentioned above (with respect to SEM), then V is periodic (a somewhat

more general fact is proved in [16], see Proposition 3.1 below). Thus an examination

of special elements of all mentioned types in SEM a priori can not give any informa-

tion about the lattice OC. Note that the lattice OC contains an isomorphic copy

of any finite lattice [36], whence it does not satisfy any non-trivial lattice identity.

Overcommutative varieties whose lattice of overcommutative subvarieties satisfies a

particular lattice identity were intensively studied (see [20, Subsection 5.2] and the

recent article [17]). All these arguments make the examination of special elements

of OC very natural. Such an examination has been started in the article [22]. It is

proved there that the properties of being a distributive, a codistributive, a standard,

a costandard and a neutral element of the lattice OC are equivalent, and a cer-

tain description of corresponding overcommutative varieties is proposed. But this

description turns out to be incorrect (while the result that the five mentioned condi-
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tions are equivalent is true). The correct description of distributive, codistributive,

standard, costandard and neutral elements of the lattice OC is contained in the

article [19]. Interrelations between types of elements in the lattice OC are shown

in Fig. 4.

neutral = standard = costandard = distributive = codistributive

lower-modular modular upper-modular

Figure 4. Interrelations between types of elements in OC

This survey consists of six sections. In Section 2, we provide some preliminary

results about special elements in abstract lattices, lattices of equivalence relations,

congruence lattices of G-sets and the lattices SEM and Com. These preliminary

results play an important role in the proofs of the results that we survey in Sections 3–

6. In Sections 3 and 4, we overview results about special elements in the lattices

SEM and Com respectively. Section 5 contains results about modular and lower-

modular elements in lattices located between SEM and Com, namely in subvariety

lattice of overcommutative varieties and in the lattice Perm. Sections 3–5 also

contain several open questions. Finally, Section 6 is devoted to special elements in

the lattice OC.

2. Preliminary results

2.1. ε-elements and Id-elements of lattices

All types of special elements introduced above are defined by the same scheme.

Namely, we take a particular identity and consider it as an open formula. Then,

one of the variables is left free while all the others are subjected to a universal

quantifier2. One can generalize this approach to an arbitrary lattice identity. This

seems to be natural a priori and turns out to be quite fruitful a posteriori.

Let ε be a lattice identity of the form s = t where terms s and t depend on

an ordered set of variables x0, x1, . . . , xn. An element x of a lattice L is called an

2Formally speaking, the definitions of modular, lower-modular and upper-modular elements are

based on a lattice quasiidentity rather than an identity. But we give such definitions for the

sake of brevity and convenience only. It is fairly easy to redefine these types of elements in the

language of lattice identities.
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ε-element of L if

∀x1, . . . , xn ∈ L : s(x, x1, . . . , xn) = t(x, x1, . . . , xn).

Note that we consider here two copies of the same identity with different orderings

of its variables as distinct identities. An element of a lattice L is called an Id-element

of L if it is an ε-element of L for some non-trivial identity ε.

For an element a of a lattice L, we put (a] = {x ∈ L | x ≤ a}. If a ∈ L and

the lattice (a] satisfies the identity p(x1, . . . , xn) = q(x1, . . . , xn) then

p(a ∧ x1, . . . , a ∧ xn) = q(a ∧ x1, . . . , a ∧ xn)

for all x1, . . . , xn ∈ L because a ∧ x1, . . . , a ∧ xn ∈ (a]. Therefore, in this situation,

a is an ε-element of L with the following identity ε:

p(x0 ∧ x1, . . . , x0 ∧ xn) = q(x0 ∧ x1, . . . , x0 ∧ xn).

So, we have the following

Observation 2.1. If a is an element of a lattice L and the ideal (a] of L satisfies

some non-trivial lattice identity then a is an Id-element of L.

The subvariety lattice of a variety V is denoted by L(V). A semigroup variety

V is called an Id-variety if it is an Id-element of the lattice SEM. The following

assertion is a specialization of Observation 2.1 for the lattice SEM.

Corollary 2.2. If V is a semigroup variety and the lattice L(V) satisfies some non-

trivial lattice identity then V is an Id-variety.

The following fact turns out to be very helpful.

Proposition 2.3. ([14, Corollary 2.1]) Let a be an atom and a neutral element of

a lattice L and ε a lattice identity that holds in the 2-element lattice. An element

x ∈ L is an ε-element of the lattice L if and only if the element x∨ a has the same

property.

We denote by varΣ the semigroup variety given by the identity system Σ.

Put SL = var{x2 = x, xy = yx}. It is well known that SL is an atom of the

lattice SEM (see [20, Section 1], for instance) and a neutral element of this lattice

(see [37, Proposition 4.1] or Theorem 3.4 below). Moreover, SL is a neutral atom

of Com. Thus Proposition 2.3 implies the following

Corollary 2.4. Let ε be a lattice identity that holds in the 2-element lattice. A

[commutative] semigroup variety V is an ε-element of the lattice SEM [respectively

Com] if and only if the variety V ∨ SL has the same property.
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Note that a number of partial cases of Proposition 2.3 and Corollary 2.4 for

special elements of different concrete types were proved earlier in [24,28,30,33,37].

2.2. Modular and upper-modular elements in lattices of equivalence relations

If S is a set then Eq(S) stands for the lattice of equivalence relations on S.

Proposition 2.5. Let S be a non-empty set. For an equivalence relation α on S, the

following are equivalent:

a) α is a modular element of the lattice Eq(S);

b) α is an upper-modular element of the lattice Eq(S);

c) α has at most one non-singleton class.

The equivalence of the claims a) and c) of this proposition was proved in [7,

Proposition 2.2], while the equivalence of the claims b) and c) was verified in [32,

Proposition 3].

Proposition 2.5 turns out to be very helpful for the examination of modular and

lower-modular elements in varietal lattices. In order to explain how this proposition

can be applied, we need some new definitions and notation. Note that a semigroup S

satisfies the identity system wx = xw = w where the letter x does not occur in the

word w if and only if S contains a zero element 0 and all values of w in S are equal

to 0. We adopt the usual convention of writing w = 0 as a short form of such a system

and referring to the expression w = 0 as to a single identity. Identities of the form

w = 0 are called 0-reduced. Further, let X be a semigroup variety, V a subvariety

of X , F the X -free object and ν the fully invariant congruence on F corresponding

to V . It is clear that if V may be given within X by 0-reduced identities then ν has

only one non-singleton class (the one that contains the equivalence classes modulo

X that correspond to the left sides of those 0-reduced identities). Now recall the

generally known fact that the lattice L(X ) is anti-isomorphic to the lattice of all

fully invariant congruences on F . Therefore, the lattice Eq(F ) contains an anti-

isomorphic copy of L(X ). Combining all these observations with Proposition 2.5,

we have the following

Corollary 2.6. Let X be a semigroup variety and V its subvariety. If V is defined

within X by 0-reduced identities then V is a modular and lower-modular element of

the lattice L(X ).

This statement permits to obtain important information about modular and

lower-modular elements of the lattices SEM and Com (see Subsections 3.2, 3.6, 4.1

and 4.4 below).
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2.3. Special elements in congruence lattices of G-sets

A unary algebra with the carrier A and the set of (unary) operations G is called

a G-set if G is equipped by a structure of a group and this group structure on

G is compatible with the unary structure on A (this means that if g, h ∈ G,

x ∈ A and e is the unit element of G then g
(
h(x)

)
= (gh)(x) and e(x) = x). Our

interest in G-sets is explained by the fact that the lattice OC admits a concise and

transparent description in terms of congruence lattices of G-sets. More precisely,

OC is anti-isomorphic to a subdirect product of congruence lattices of countably

infinite series of certain G-sets (see [36] or [20, Subsection 5.1]). To apply this result

for examination of special elements in OC, some information about special elements

in congruence lattices of G-sets is required.

A G-set A is said to be transitive if, for all a, b ∈ A, there exists g ∈ G such

that g(a) = b. If A is a G-set and a ∈ A then we put

StabA(a) =
{
g ∈ G | g(a) = a

}
.

Clearly, StabA(a) is a subgroup in G. This subgroup is called the stabilizer of an

element a in A. The congruence lattice of a G-set A is denoted by Con(A).

Proposition 2.7. ([22, Theorem 1]) Let A be a non-transitive G-set such that

StabA(x) = StabA(y) for all elements x, y ∈ A. For a congruence α on A, the

following are equivalent:

a) α is a distributive element of the lattice Con(A);

b) α is a codistributive element of the lattice Con(A);

c) α is a standard element of the lattice Con(A);

d) α is a costandard element of the lattice Con(A);

e) α is a neutral element of the lattice Con(A);

f) α is either the universal relation or the equality relation on A.

G-sets that appear in [36] in the description of the lattice OC have the property

that the stabilizer of any element in these G-sets is the trivial group. Thus, the

application of Proposition 2.7 is not hindered by the hypothesis that stabilizers of

all elements in A coincide. It is presently unknown if the proposition holds without

this hypothesis.

2.4. Upper-modular and codistributive elements: interrelations between

lattice identities and a hereditary property

The following easy observation turns out to be helpful.
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Observation 2.8. Let L be a lattice. If an element a ∈ L is upper-modular [codis-

tributive] in L and the lattice (a] is modular [distributive] then every element of (a]

is upper-modular [codistributive] in L.

This claim was noted in [26, Lemma 2.1] for upper-modular elements and

in [28, Lemma 2.2] for codistributive ones.

Observation 2.8 immediately implies the following

Corollary 2.9. Let Lat be one of the lattices SEM or Com. If a semigroup variety

V is an upper-modular [codistributive] element of the lattice Lat and the lattice

L(V) is modular [distributive] then every subvariety of V is an upper-modular

[codistributive] element of the lattice Lat.

3. The lattice SEM

For convenience, we call a semigroup variety modular if it is a modular element of

the lattice SEM and adopt an analogous convention for all other types of special

elements. The main results of this section provide:

(1) a complete classification of lower-modular, distributive, standard, costandard

or neutral varieties (Theorems 3.2, 3.3 and 3.4),

(2) a classification of modular, upper-modular or codistributive varieties in some

wide partial cases (Theorems 3.10, 3.11, 3.18 and 3.26),

(3) strong necessary conditions for a semigroup variety to be modular, upper-

modular or codistributive (Theorems 3.6, 3.7, 3.12 and 3.25),

(4) a sufficient condition for a semigroup variety to be modular (Theorem 3.8).

One can mention also Proposition 3.1 that gives important information about

Id-varieties.

3.1. Id-varieties

We denote by SEM the variety of all semigroups. A semigroup variety V is called

proper if V 6= SEM.

The class of Id-varieties includes all varieties with non-trivial identities in

subvariety lattices (see Corollary 2.2). It follows from results of [2] that a semigroup

variety V is periodic whenever the lattice L(V) satisfies some non-trivial identity.

As we have already mentioned in Section 1, results of the articles [8, 24,26] imply

that if a proper variety V belongs to one of the eight considered types in SEM then

it is periodic too. All these statements are generalized by the following

Proposition 3.1. ([16, Theorem 1]) A proper Id-variety of semigroups is periodic.
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On the other hand, it is verified in [16, Theorem 2] that there are periodic

varieties (moreover, nil-varieties) that are not Id-varieties.

3.2. Lower-modular varieties

Varieties that may be given by 0-reduced identities only are called 0-reduced. We

denote by T the trivial semigroup variety. A number of partial results concerning

lower-modular varieties were obtained in [24,25,32]. All of them are covered by the

following

Theorem 3.2. A semigroup variety V is lower-modular if and only if either

V = SEM or V =M∨N where M is one of the varieties T or SL and N is

a 0-reduced variety.

This theorem was verified for the first time in [18, Theorem 1.1] and was

reproved in a simpler and shorter way in [15]. The proof of Theorem 3.2 given

in [15] is based on Theorem 5.1 below. Note that the ‘if’ part of Theorem 3.2

immediately follows from Corollaries 2.6 (with X = SEM) and 2.4.

Neutral, standard and distributive varieties are lower-modular. In view of

Theorem 3.2, a description of varieties of these three types should look as follows:

A semigroup variety V is distributive [standard, neutral ] if and only if either

V = SEM or V =M∨N where M is one of the varieties T or SL and N is a

0-reduced variety such that . . . (with some additional restriction to N depending

on the type of element we consider).

Exact formulations of corresponding results are given in the following two

subsections.

3.3. Distributive and standard varieties

Put

Q = var{x2y = xyx = yx2 = 0},

Qn = var{x2y = xyx = yx2 = x1x2 · · ·xn = 0},

R = var{x2 = xyx = 0},

Rn = var{x2 = xyx = x1x2 · · ·xn = 0}

where n is a natural number. It is easy to see that varieties of these four types are

precisely all 0-reduced varieties satisfying the identities x2y = xyx = yx2 = 0.
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Theorem 3.3. For a semigroup variety V, the following are equivalent:

a) V is distributive;

b) V is standard;

c) either V = SEM or V =M∨N where M is one of the varieties T or SL

and N is one of the varieties Q, Qn, R or Rn.

The equivalence of the claims a) and c) of this theorem is proved in [30,

Theorem 1.1]. Note that the proof of the implication a)−→ c) given in [30] may be

essentially simplified by using Theorem 3.2. The implication b)−→ a) is evident.

To verify the implication a)−→b), we need two ingredients. First, it is verified

in [30, Corollary 1.2] that a distributive element of the lattice SEM is a modular

element of this lattice3. Second, it is fairly easy to check that an element of a lattice

is standard whenever it is both distributive and modular (see [6, Lemma II.1.1], for

instance). Note that the former statement is strengthened by Corollary 3.9 below.

3.4. Costandard and neutral varieties

Put ZM = var{xy = 0}. It is well known that ZM is an atom of the lattice SEM.

The following statement is a compilation of several published results.

Theorem 3.4. For a semigroup variety V, the following are equivalent:

a) V is both lower-modular and upper-modular;

b) V is both distributive and codistributive;

c) V is costandard;

d) V is neutral;

e) V is one of the varieties T , SL, ZM, SL ∨ ZM or SEM.

Clearly, claim e) of this theorem may be reformulated in the manner specified

in Subsection 3.2: either V = SEM or V =M∨N whereM is one of the varieties

T or SL and N is a 0-reduced variety such that xy = 0 in N .

We do not include in Theorem 3.4 the claim that V is both standard and

costandard because it is well known that an element of arbitrary lattice is both

standard and costandard if and only if it is neutral (see [4, Theorem 255 on p. 228],

for instance). The equivalence of claims a) and e) of Theorem 3.4 was verified

in [25, Corollary 3.5], the equivalence of c) and e) was checked in [28, Theorem 1.3],

the equivalence of d) and e) was proved in [37, Proposition 4.1], while the implica-

tions d)−→ b)−→ a) are evident.

Since a neutral element of a lattice is standard, Theorem 3.4 implies the

following

3This immediately follows from the implication a)−→ c) of Theorem 3.3 and Corollaries 2.6 (with

X = SEM) and 2.4.
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Corollary 3.5. ([28, Corollary 1.1]) Every costandard semigroup variety is standard.

3.5. An application to definable varieties

Here we discuss an interesting application of the results overviewed above. We need

some new definitions. A subset A of a lattice 〈L;∨,∧〉 is called definable in L if

there exists a first-order formula Φ(x) with one free variable x in the language of

lattice operations ∨ and ∧ which defines A in L. This means that, for an element

a ∈ L, the sentence Φ(a) is true if and only if a ∈ A. If A consists of a single element,

then we talk about definability of this element. A set X of semigroup varieties (or

a single semigroup variety X ) is said to be definable if it is definable in SEM. In

this situation we will say that the corresponding first-order formula defines the set

X or the variety X .

A number of deep results about definable varieties and sets of varieties of semi-

groups have been obtained in [8] by Ježek and McKenzie4. It has been conjectured

there that every finitely based semigroup variety is definable up to duality. The

conjecture is confirmed in [8] for locally finite finitely based varieties. On their way

to obtaining this fundamental result, Ježek and McKenzie proved the definability

of several important sets of semigroup varieties such as the sets of all finitely based,

all locally finite, all finitely generated and all 0-reduced semigroup varieties. But

the article [8] contains no explicit first-order formulas that define any of these sets

of varieties. The task of writing an explicit formula that defines the set of all finitely

based or the set of all locally finite or the set of all finitely generated varieties seems

to be extremely difficult. On the other hand, the set of all 0-reduced varieties can be

defined by a quite simple first-order formula based on descriptions of lower-modular

and neutral varieties.

Indeed, Theorem 3.2 shows that a semigroup variety is 0-reduced if and only

if it is lower-modular and does not contain the variety SL. It remains to define the

variety SL. Theorem 3.4 together with the well-known description of atoms of the

lattice SEM (see [20, Section 1], for instance) imply that this lattice contains exactly

two neutral atoms, namely the varieties SL and ZM. Recall that a semigroup

variety V is called a chain if the lattice L(V) is a chain. It is well known that the

variety ZM is properly contained in some chain variety, while the variety SL is

not (see [29], for instance, for more details). Combining the mentioned observations,

we see that the class of all 0-reduced varieties may be defined as the class K of

semigroup varieties with the following properties:

4Note that paper [8] deals with the lattice of equational theories of semigroups, that is, the dual

of SEM rather than the lattice SEM itself. When reproducing results from [8], we adapt them

to the terminology of the present article.
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(i) every member of K is a lower-modular variety;

(ii) if V ∈ K and V contains some neutral atom A then A is properly contained

in some chain variety.

It is evident that properties (i) and (ii) may be written by simple first-order formulas

with one free variable.

An explicit formula that defines the class of all 0-reduced varieties is written

in [29, Section 3]. Note that the description of distributive semigroup varieties

given by Theorem 3.3 may also be applied to define some interesting varieties

(see [29, Section 6]).

3.6. Modular varieties

The problem of description of modular semigroup varieties is open so far. Here we

provide some partial results concerning this problem.

Recall that a semigroup variety is called a nil-variety if it consists of nilsemi-

groups or, equivalently, satisfies an identity of the form xn = 0 for some natural

n. Clearly, every 0-reduced variety is a nil-variety. The following theorem gives a

strong necessary condition for a semigroup variety to be modular.

Theorem 3.6. If V is a modular semigroup variety then either V = SEM or

V =M∨N where M is one of the varieties T or SL and N is a nil-variety.

This theorem readily follows from [8, Proposition 1.6]. A deduction of The-

orem 3.6 from [8, Proposition 1.6] is given explicitly in [23, Proposition 2.1]. A

direct and transparent proof of Theorem 3.6 is given in [15]. This proof is based on

Theorem 5.1 below.

Theorem 3.6 and Corollary 2.4 completely reduce the examination of modular

varieties to nil-varieties. There is a strong necessary condition for a nil-variety to

be modular. To formulate this result, we need some additional definitions.

We call an identity u = v substitutive if the words u and v depend on the same

letters and v may be obtained from u by renaming of letters. In [7], Ježek describes

modular elements of the lattice of all varieties (more precisely, all equational theories)

of any given type. In particular, it follows from [7, Lemma 6.3] that if a nil-variety

of semigroups V is a modular element of the lattice of all groupoid varieties then

V may be given by 0-reduced and substitutive identities only. This does not imply

directly the same conclusion for modular nil-varieties because a modular element

of SEM need not be a modular element of the lattice of all groupoid varieties.

Nevertheless, the following assertion shows that the ‘semigroup analogue’ of the

mentioned result of Ježek holds true.
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Theorem 3.7. ([23, Proposition 2.2]) A modular nil-variety of semigroups may be

given by 0-reduced and substitutive identities only.

Corollary 2.6 with X = SEM immediately implies the following

Theorem 3.8. Every 0-reduced semigroup variety is modular.

This fact was noted for the first time in [32, Corollary 3] and rediscovered (in

different terminology) in [8, Proposition 1.1].

Theorems 3.7 and 3.8 provide a necessary and a sufficient condition for a

nil-variety to be modular respectively. The gap between these conditions seems to

be not very large. But the necessary condition is not a sufficient one, while the

sufficient condition is not a necessary one (this follows from Theorem 3.10 below).

Theorems 3.2 and 3.8 and Corollary 2.4 immediately imply the following

Corollary 3.9. ([18, Corollary 1.2] Every lower-modular semigroup variety is mod-

ular.

By the way, neither of the five other possible interrelations between properties

of being a modular variety, a lower-modular variety and an upper-modular variety

holds. For instance:

• the variety var{x2 = 0, xy = yx} is modular (by Theorem 3.10 below) but

not lower-modular (by Theorem 3.2);

• the variety var{xyz = 0} is modular and lower-modular (by Corollary 2.6

with X = SEM) but not upper-modular (by Theorem 3.11 below);

• an arbitrary Abelian periodic group variety is upper-modular (by Theo-

rem 3.11 below) but neither modular nor lower-modular (by Theorems 3.6

and 3.2 respectively).

Theorems 3.7 and 3.8 show that in order to describe modular nil-varieties (and

therefore all modular varieties) we need to examine nil-varieties satisfying substi-

tutive identities. A natural partial case of substitutive identities are permutational

ones, while the strongest permutational identity is the commutative law. Modular

varieties satisfying this law are completely classified by the following

Theorem 3.10. ([23, Theorem 3.1]) A commutative semigroup variety is modular

if and only if it satisfies the identity

x2y = 0. (2)

3.7. Upper-modular varieties

The problem of description of upper-modular semigroup varieties is open so far. Here

we provide some partial results concerning this problem. The first result classifies
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upper-modular varieties in some wide class of varieties. To formulate this statement

we need some additional definitions and notation.

A semigroup variety V is called a variety of finite degree [a variety of degree

n] if all nilsemigroups in V are nilpotent [if nilpotency degrees of nilsemigroups in

V are bounded by the number n and n is the least number with this property]. We

say that a semigroup variety is a variety of degree > n if it is either a variety of a

finite degree m with m > n or not a variety of finite degree. Put

An = var{xny = y, xy = yx} where n ≥ 1,

C = var{x2 = x3, xy = yx}.

In particular, A1 = T . Note that An is the variety of all Abelian groups whose

exponent divides n.

Theorem 3.11. ([27, Theorem 1]) A semigroup variety V of degree > 2 is upper-

modular if and only if one of the following holds:

(i) V = SEM;

(ii) V =M∨N where M is one of the varieties T or SL and N is a nil-variety

satisfying the identities x2y = xy2 and xy = yx;

(iii) V = An ∨M∨N where n ≥ 1,M is one of the varieties T , SL or C and N

is a commutative variety satisfying the identity (2).

We note that Theorem 3.11 readily implies a necessary condition for a semi-

group variety to be upper-modular given by [26, Theorem 1.1] and a description of

upper-modular nil-varieties obtained in [33, Theorem 2].

Theorem 3.11 reduces the examination of upper-modular varieties to varieties

of degree at most 2. To formulate a result concerning this case, we need some new

definitions and notation. Recall that a semigroup variety is called completely regular

if it consists of completely regular semigroups — unions of groups. A semigroup

variety V is called a variety of semigroups with completely regular square if, for any

member S of V, the semigroup S2 is completely regular. Put

LZ = var{xy = x},

RZ = var{xy = y},

P = var{xy = x2y, x2y2 = y2x2},
←−
P = var{xy = xy2, x2y2 = y2x2}.

All we know about upper-modular varieties of degree at most 2 is the following
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Theorem 3.12. ([27, Theorem 2]) If V is an upper-modular semigroup variety of

degree at most 2 then one of the following holds:

(i) V is a variety of semigroups with completely regular square;

(ii) V = K ∨ P where K is a completely regular semigroup variety such that

RZ * K;

(iii) V = K ∨
←−
P where K is a completely regular semigroup variety such that

LZ * K.

We do not know any example of a non-upper-modular variety that satisfies one

of the claims (i)–(iii) of Theorem 3.12. This inspires the following two questions.

Question 3.13. Is it true that every variety of semigroups with completely regular

square is upper-modular?

Question 3.14. Is it true that every semigroup variety satisfying one of the

claims (ii) or (iii) of Theorem 3.12 is upper-modular?

A natural weaker version of Question 3.13 is the following

Question 3.15. Is it true that every completely regular semigroup variety is upper-

modular?

Although Theorems 3.11 and 3.12 do not provide a classification of all upper-

modular varieties, they permit the deduction of some important and surprising

properties of such varieties. Theorems 3.11 and 3.12, together with results of the

articles [35,38], imply the following

Corollary 3.16. ([27, Corollary 2]) A proper upper-modular semigroup variety has

a modular subvariety lattice.

Corollaries 3.16 and 2.9 imply the following

Corollary 3.17. ([27, Corollary 3]) If a proper semigroup variety is upper-modular

then every subvariety of it is also upper-modular.

Now we describe upper-modular varieties in one more class of varieties. A

semigroup variety is called strongly permutative if it satisfies an identity of the

form (1) with 1π 6= 1 and nπ 6= n.

Theorem 3.18. A strongly permutative semigroup variety V is upper-modular if

and only if it satisfies one of the claims (ii) or (iii) of Theorem 3.11.



Acta Scientiarum Mathematicarum 81:1–2 (2015) c© Bolyai Institute, University of Szeged

96 B. M. Vernikov

A partial case of this statement concerning commutative varieties is proved

in [26, Theorem 1.2]. Theorem 3.18 may be easily deduced from the proof of this

partial case. A scheme of this deduction is provided in [25].

As we have seen above (see Corollary 3.16), the subvariety lattice of an ar-

bitrary proper upper-modular variety is modular. It turns out that such a lattice

is even distributive in several wide classes of varieties. So, Theorem 3.11, together

with results of the paper [34], implies the following

Corollary 3.19. ([27, Corollary 1]) A proper upper-modular semigroup variety of

degree > 2 has a distributive subvariety lattice.

Theorem 3.18, together with results of [34], implies the following

Corollary 3.20. A strongly permutative upper-modular semigroup variety has a

distributive subvariety lattice.

The special case of this claim dealing with commutative varieties was men-

tioned in [26, Corollary 4.4].

Theorem 3.12, together with results of the articles [12] and [35], readily implies

the following

Corollary 3.21. ([27, Corollary 4]) Let V be a proper upper-modular semigroup

variety that is not a variety of semigroups with completely regular square and let ε

be a non-trivial lattice identity. The lattice L(V) satisfies the identity ε (in particular,

is distributive) if and only if the subvariety lattice of any group subvariety of V has

the same property.

Further, a semigroup variety V is called combinatorial if all groups in V are

trivial. Corollary 3.21, together with the result of the paper [3], readily implies the

following

Corollary 3.22. ([27, Corollary 5]) A combinatorial upper-modular semigroup variety

has a distributive subvariety lattice.

Corollaries 3.19–3.22 inspire the following open

Question 3.23. Is it true that the subvariety lattice of every proper upper-modular

semigroup variety is distributive?

All proper upper-modular varieties that appeared above are varieties mentioned

in Theorem 3.11. These varieties are commutative. Based on this observation, one

can conjecture that any proper upper-modular variety is commutative. But this is

not the case. Evident counter-examples are the varieties LZ and RZ. The claim
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that these two varieties are upper-modular immediately follows from the fact that

they are atoms of the lattice SEM. Two more examples of proper non-commutative

upper-modular varieties are the varieties P and
←−
P . Indeed, it is well known that if

a variety V is properly contained in one of these two varieties then V ⊆ SL ∨ ZM,

whence V is lower-modular by Theorem 3.2. This readily implies that P and
←−
P are

upper-modular.

3.8. Varieties that are both modular and upper-modular

It is interesting to examine varieties that satisfy different combinations of the

properties we consider. Corollary 3.9 implies that a variety is both modular and

lower-modular if and only if it is lower-modular. So, Theorem 3.2 gives, in fact, a

complete description of varieties that are both modular and lower-modular (this

result was obtained for the first time in [37, Theorem 3.1]). A description of varieties

that are both lower-modular and upper-modular as well as varieties that are both

distributive and codistributive is given in Theorem 3.4. The following assertion

classifies varieties that are both modular and upper-modular.

Proposition 3.24. ([33, Theorem 1]) A semigroup variety V is both modular and

upper-modular if and only if either V = SEM or V =M∨N where M is one of

the varieties T or SL and N is a commutative variety satisfying the identity (2).

3.9. Codistributive varieties

The problem of description of codistributive semigroup varieties is open so far. Here

we provide some partial results concerning this problem. The following theorem

gives a strong necessary condition for a semigroup variety to be codistributive.

Theorem 3.25. ([28, Theorem 1.1]) If a semigroup variety V is codistributive then

either V = SEM or V is a variety of semigroups with completely regular square.

Note that Theorems 3.11 and 3.12 are crucial in the proof of Theorem 3.25.

It is easy to see that a variety of semigroups with completely regular square

is a variety of degree at most 2 (this readily follows from [13, Lemma 1] or [26,

Proposition 2.11]). Therefore, Theorem 3.25 implies that a proper codistributive

variety has degree at most 2. The following assertion shows that, for strongly

permutative varieties, the converse statement holds as well.

Theorem 3.26. ([28, Theorem 1.2]) For a strongly permutative semigroup variety

V, the following are equivalent:

a) V is codistributive;
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b) V is a variety of degree at most 2;

c) V = An ∨ X where n ≥ 1 and X is one of the varieties T , SL, ZM or

SL ∨ ZM.

Clearly, every costandard variety is codistributive, while every codistributive

variety is upper-modular. But the reverse statements do not hold. For instance:

• the variety An with n > 1 is codistributive (by Theorem 3.26) but not costan-

dard (by Theorem 3.4);

• the variety C is upper-modular (by Theorem 3.11) but not codistributive (by

Theorem 3.25).

It is easy to see that there exist non-codistributive varieties of semigroups

with completely regular square and moreover, non-codistributive periodic group

varieties. Indeed, the lattice of periodic group varieties is modular but not distribu-

tive. Therefore it contains the 5-element modular non-distributive sublattice. It

is evident that all three pairwise non-comparable elements of this sublattice are

non-codistributive periodic group varieties. We see that the problem of description

of codistributive varieties is closely related to the problem of description of periodic

group varieties with distributive subvariety lattice. The latter problem seems to be

extremely difficult (see [20, Subsection 11.2] for more detailed comments), whence

the former problem is extremely difficult too.

However, we do not know any examples of non-codistributive varieties of

semigroups with completely regular square except the ones mentioned in the previous

paragraph. This inspires us to eliminate an examination of codistributive varieties

with non-trivial groups. In other words, it seems natural to consider combinatorial

codistributive varieties only. It is easy to see that if V is a combinatorial variety of

semigroups with completely regular square then, for every S ∈ V, the semigroup

S2 is a band. A variety with the last property is called a variety of semigroups with

idempotent square. In view of Theorem 3.25, every combinatorial codistributive

variety is a variety of semigroups with idempotent square. Thus the following

question seems to be natural.

Question 3.27. Is it true that an arbitrary variety of semigroups with idempotent

square is codistributive?

A natural weaker version of this question is the following

Question 3.28. Is it true that an arbitrary variety of bands is codistributive?

Clearly, every variety of semigroups with idempotent square satisfies the iden-

tity xy = (xy)2. Put

IS = var
{
xy = (xy)2

}
, BAND = var{x = x2}.
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It is verified in [3] that the lattice L(IS) is distributive. Then Corollary 2.9 shows

that Question 3.27 is equivalent to the following: is the variety IS codistributive?

Analogously, Question 3.28 is equivalent to asking whether the variety BAND is

codistributive or not, that is, whether the equality

BAND ∧ (X ∨ Y) = (BAND ∧ X ) ∨ (BAND ∧ Y)

holds for arbitrary varieties X and Y or not. It is verified in [10, Corollary 5.9] that

this is the case whenever the varieties X and Y are locally finite.

A strongly permutative codistributive variety has a distribitive subvariety

lattice (this follows from Corollary 3.20 and may be easily deduced from Theo-

rem 3.26). Combinatorial codistributive varieties also have a distribitive subvariety

lattice (here it suffices to refer to either Corollary 3.22 or Theorem 3.25 and the

mentioned result of [3]). We do not know any example of a proper codistributive

variety with non-distributive subvariety lattice. This inspires the following

Question 3.29. Is it true that the subvariety lattice of an arbitrary proper codis-

tributive semigroup variety is distributive?

This question is closely related to the following

Question 3.30. Is it true that every subvariety of an arbitrary proper codistributive

semigroup variety is codistributive?

Corollary 2.9 shows that the affirmative answer to Question 3.29 would imply

the affirmative answer to Question 3.30.

All proper codistributive varieties that appeared above are varieties mentioned

in Theorem 3.26. These varieties are commutative. Based on this observation, one

can conjecture that any proper codistributive variety is commutative. But this is

not the case. To provide a corresponding example, we formulate the following

Remark 3.31. ([28, Remark 4.1]) If V1, V2, . . . , Vk are atoms of the lattice SEM

then the variety
k∨

i=1

Vi is codistributive.

In particular, the non-commutative varieties LZ and RZ are codistributive.

In connection with Questions 3.29 and 3.30, we note that if V1, V2, . . . , Vk are

atoms of the lattice SEM and V =
k∨

i=1

Vi then

(i) the lattice L(V) is distributive (in fact, L(V) is a direct product of k copies

of 2-element chains),

(ii) if X ⊆ V then X is the join of those of the atoms V1, V2, . . . , Vk that are

contained in V, and therefore X is codistributive by Remark 3.31.

The claim (i) is a part of [31, Proposition 1], while the statement (ii) follows from (i).
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4. The lattice Com

For convenience, we call a commutative semigroup variety Com-modular if it is

a modular element of the lattice Com and adopt an analogous convention for all

other types of special elements. The main results of this section provide:

• a complete classification of Com-lower-modular, Com-distributive, Com-

standard or Com-neutral varieties (Theorems 4.1, 4.2 and 4.3),

• necessary conditions for a commutative semigroup variety to be Com-modular

(Theorems 4.6 and 4.7),

• a sufficient condition for a commutative semigroup variety to be Com-modular

(Theorem 4.8).

4.1. Com-lower-modular varieties

We denote by COM the variety of all commutative semigroups. A commutative

semigroup variety is called Com-0-reduced if it may be given by the commutative law

and some non-empty set of 0-reduced identities only. Some partial information about

Com-lower-modular varieties was obtained in [14]. It is covered by the following

‘commutative analogue’ of Theorem 3.2.

Theorem 4.1. ([15, Theorem 1.6]) A commutative semigroup variety V is Com-

lower-modular if and only if either V = COM or V =M∨N where M is one of

the varieties T or SL and N is a Com-0-reduced variety.

Note that the ‘if’ part of Theorem 4.1 immediately follows from Corollaries 2.6

(with X = COM) and 2.4. The proof of the ‘only if’ part given in [15] is based on

Theorem 5.1 below.

As in the case of the lattice SEM (see Subsection 3.2), Theorem 4.1 implies

that a description of Com-distributive, Com-standard and Com-neutral varieties

should look as follows:

A commutative semigroup variety V is Com-distributive [Com-standard,

Com-neutral ] if and only if either V = COM or V =M∨N where M is one

of the varieties T or SL and N is a Com-0-reduced variety such that . . . (with

some additional restriction to N depending on the type of element we consider).

Exact formulations of corresponding results are given in the following two

subsections.

4.2. Com-distributive and Com-standard varieties

The following statement is the ‘commutative analogue’ of Theorem 3.3.
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Theorem 4.2. ([14, Theorem 1.1]) For a commutative semigroup variety V, the

following are equivalent:

a) V is Com-distributive;

b) V is Com-standard;

c) either V = COM or V =M∨N whereM is one of the varieties T or SL and

N is a Com-0-reduced variety that satisfies the identities x3yz = x2y2z = 0

and either satisfies both the identities x3 = 0 and x2y2 = 0 or does not satisfy

any of them.

It is verified in [14, Corollary 1.1] that a Com-distributive variety is Com-

modular. This statement also follows from Corollary 4.9 below.

4.3. Com-neutral varieties

A complete description of Com-neutral varieties is given by the following partial

analogue of Theorem 3.4.

Theorem 4.3. For a commutative semigroup variety V, the following are equivalent:

a) V is both Com-upper-modular and Com-lower-modular;

b) V is both Com-distributive and Com-codistributive;

c) V is Com-neutral;

d) either V = COM or V =M∨N where M is one of the varieties T or SL

and the variety N satisfies the identity (2).

The equivalence of the claims b)–d) of this theorem is verified in [14, Theo-

rem 1.2], while the equivalence of the claims a) and c) is proved in [15, Corollary 4.2].

Theorem 4.3, together with results of [34], implies the following

Corollary 4.4. If V is a Com-neutral commutative semigroup variety and V 6= COM

then the lattice L(V) is distributive.

Theorem 4.3 also implies the following

Corollary 4.5. If V is a Com-neutral commutative semigroup variety and V 6= COM

then every subvariety of V is Com-neutral.

It is interesting to compare Theorems 4.3 and 3.10. We see that a commutative

semigroup variety V with V 6= COM is Com-neutral if and only if it is modular.

4.4. Com-modular varieties

The problem of description of Com-modular semigroup varieties is open so far.

Here we provide some partial results concerning this problem. Note that these

results are ‘commutative analogues’ of Theorems 3.6, 3.7 and 3.8.
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First of all, the following necessary condition for a commutative semigroup

variety to be Com-modular is true.

Theorem 4.6. ([15, Theorem 1.4]) If V is a Com-modular commutative semigroup

variety then either V = COM or V =M∨N where M is one of the varieties T

or SL and N is a nil-variety.

In fact, this theorem readily follows from Theorem 5.1 below. Theorem 4.6

and Corollary 2.4 completely reduce an examination of Com-modular varieties to

the nil-case. The following theorem is yet another analogue of the result of Ježek [7]

(see Theorem 3.7 and the paragraph before this theorem).

Theorem 4.7. ([15, Theorem 1.5]) A Com-modular commutative nil-variety of

semigroups may be given within the variety COM by 0-reduced and substitutive

identities only.

Corollary 2.6 with X = COM immediately implies the following

Theorem 4.8. ([14, Proposition 2.1]) Every Com-0-reduced commutative semigroup

variety is Com-modular.

Theorems 4.7 and 4.8 provide, respectively, a necessary and a sufficient con-

dition for a commutative nil-variety to be Com-modular. The gap between these

conditions does not seem to be very large. But the necessary condition is not a

sufficient one, while the sufficient condition is not a necessary one. Indeed, it may

be checked that:

• the variety var{xyzt = x3 = 0, x2y = y2x, xy = yx} is Com-modular

although it is not Com-0-reduced,

• the variety var{x5 = 0, x3y2 = y3x2, xy = yx} is not Com-modular although

it is given within COM by 0-reduced and substitutive identities only

(Shaprynskǐı, private communication).

Theorems 4.1 and 4.8 and Corollary 2.4 imply the following ‘commutative

analogue’ of Corollary 3.9.

Corollary 4.9. ([15, Corollary 4.1]) Every Com-lower-modular commutative semi-

group variety is Com-modular.

We note that neither of the five other possible interrelations between properties

of being a Com-modular, a Com-lower-modular and a Com-upper-modular variety

holds. For instance:

• the variety var{xyzt = x3 = 0, x2y = y2x, xy = yx} is Com-modular (as we

have already mentioned above) but not Com-lower-modular (by Theorem 4.1);
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• the variety var{x3 = 0, xy = yx} is Com-modular and Com-lower-modular

(by Corollary 2.6 with X = COM) but not Com-upper-modular (by Propo-

sition 4.10 below);

• the variety Ap with p prime is Com-upper-modular (because this variety is

an atom of Com) but neither Com-modular nor Com-lower-modular (by

Theorems 4.6 and 4.1 respectively).

4.5. Com-upper-modular, Com-codistributive and Com-costandard varieties

The problems of description of these three types of varieties are open so far. The

only partial result here is the following

Proposition 4.10. For a Com-0-reduced commutative semigroup variety V, the

following are equivalent:

a) V is Com-upper-modular;

b) V is Com-codistributive;

c) V is Com-costandard;

d) V is Com-neutral;

e) V satisfies the identity (2).

The implication a)−→ e) of this proposition (as well as the reverse implication)

is verified in [14, Proposition 2.3], the implication e)−→ d) follows from Theorem 4.3,

while the implications d)−→ c)−→ b)−→ a) are evident.

At the conclusion of Section 4, we discuss interrelations between properties

to be a Com-neutral, a Com-costandard and a Com-upper-modular variety. It is

easy to see that there exist Com-codistributive but not Com-costandard varieties.

Indeed, the variety Ap with a prime p is codistributive by Remark 3.31, and more-

over is Com-codistributive. But this variety is not Com-modular by Theorem 4.6,

whence it is not Com-costandard. The following two questions are open so far.

Question 4.11. Is it true that an arbitrary Com-costandard commutative semigroup

variety is Com-neutral?

Question 4.12. Is it true that an arbitrary Com-upper-modular commutative semi-

group variety is Com-codistributive?

5. Lattices located between SEM and Com

In this section, we examine modular and lower-modular elements only. It turns

out that properties of such elements in the lattices SEM and Com discussed in
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Subsections 3.2, 3.6, 4.1 and 4.4 may be partially extended to some sublattices of

SEM that contain Com. More precisely, we have in mind subvariety lattices of

overcommutative semigroup varieties and the lattice Perm.

5.1. Subvariety lattices of overcommutative varieties

As we have seen in Subsections 4.1 and 4.4, there are numerous parallels between

results about modular and lower-modular elements in the lattices SEM and Com.

The following result partially explains these parallels and permits us to give unified

proofs of several results about [lower-]modular elements in SEM and Com.

Theorem 5.1. ([15, Proposition 3.3]) Let X be an overcommutative semigroup

variety and V a periodic subvariety of X . If V is either a modular or a lower-modular

element of the lattice L(X ) then V =M∨N where M is one of the varieties T or

SL and N is a nil-variety.

Applying this theorem with X = SEM [respectively X = COM], we obtain

important information about [Com-]modular and [Com-]lower-modular varieties.

After that, only some simple additional arguments are needed to verify Theorems 3.8

and 4.8, as well as the ‘if’ parts of Theorems 3.2 and 4.1. One can speculate if it is

possible to eliminate these additional arguments altogether. To do this, we should

verify an analogue of Theorem 5.1 without the assumption that the variety V is

periodic. Unfortunately, it turns out that this is impossible. Indeed, it is verified

in [21] that every proper semigroup variety is covered in SEM by some other variety

(see also [20, Subsection 3.1]). It is evident that if an overcommutative variety V

is covered by a variety X then X is overcommutative and V is a lower-modular

element of the lattice L(X ). Thus, the ‘lower-modular half’ of Theorem 5.1 would

be false if we eliminate the assumption that V is periodic. The same is true for

the ‘modular half’ of this theorem. For example, the variety COM is a modular

element in the lattice L(W) where W = var{xyz = yzx = zyx} (Shaprynskǐı,

private communication). Note that COM is also a lower-modular element in L(W)

because W covers COM.

5.2. The lattice Perm

By analogy with the commutative case, we call a permutative semigroup variety

Perm-[lower-]modular if it is a [lower-]modular element of the lattice Perm. The

following assertion has been proved recently by Shaprynskǐı (unpublished).
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Theorem 5.2. If a permutative semigroup variety V is either Perm-modular or

Perm-lower-modular then V =M∨N where M is one of the varieties T or SL

and N is a nil-variety.

This result does not give any information about Perm-modular or Perm-

lower-modular nil-varieties. Recall that

(i) by Theorems 3.7 and 4.7, every [Com-]modular nil-variety may be given

[within Com] by substitutive and 0-reduced identities only;

(ii) by Theorems 3.2 and 4.1, every [Com-]lower-modular nil-variety is [Com-]0-

reduced;

(iii) by Corollary 2.6, every [Com-]0-reduced variety is both [Com-]modular and

[Com-]lower-modular.

Note that we cannot use Corollary 2.6 to obtain a ‘permutational analogue’ of the

claim (iii) because the class of all permutative semigroups does not form a variety.

We do not know whether a ‘permutational analogue’ of the claim (i) true. So,

we formulate the following

Question 5.3. Is it true that an arbitrary Perm-modular permutative nil-variety

of semigroups may be given by substitutive and 0-reduced identities only?

As to ‘permutational analogues’ of claims (ii) and (iii), they do not hold. For

instance:

• the variety var{xyzt = 0, x2y = xyx} is Perm-lower-modular although it

may not be given by permutational and 0-reduced identities only;

• the variety var{x1x2x3x4x5 = 0, xy = yx} is neither Perm-modular nor

Perm-lower-modular although it is permutative and is given by permutational

and 0-reduced identities only

(Shaprynskǐı, private communication).

6. The lattice OC

For convenience, we call an overcommutative semigroup variety OC-modular if it

is a modular element of the lattice OC and adopt an analogous convention for all

other types of special elements.

The problems of description of OC-modular, OC-lower-modular and OC-

upper-modular varieties are open so far. Moreover, any essential information about

varieties of these three types is absent. On the other hand, OC-distributive, OC-

codistributive, OC-standard, OC-costandard and OC-neutral varieties are com-

pletely determined. To formulate their description, we need some new definitions

and notation.
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Let m and n be positive integers with 2 ≤ m ≤ n. A sequence of positive

integers (ℓ1, ℓ2, . . . , ℓm) is called a partition of n into m parts if

m∑

i=1

ℓi = n and ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓm.

The set of all partitions of n into m parts is denoted by Λn,m. Let λ =

(ℓ1, ℓ2, . . . , ℓm) ∈ Λn,m. We define numbers q(λ), r(λ) and s(λ) as follows:

q(λ) is the number of ℓi’s with ℓi = 1;

r(λ) = n− q(λ) (in other words, r(λ) is the sum of all ℓi’s with ℓi > 1);

s(λ) = max
{
r(λ)− q(λ)− δ, 0

}
where

δ =

{

0, if n = 3, m = 2 and λ = (2, 1),

1, otherwise.

If k ≥ 0 then λ(k) stands for the following partition of n+ k into m+ k parts:

λ(k) = (ℓ1, ℓ2, . . . , ℓm, 1, . . . , 1
︸ ︷︷ ︸

k times

)

(in particular, λ(0) = λ). If µ = (m1,m2, . . . ,ms) ∈ Λr,s then Wr,s,µ stands for the

set of all words u such that

• the length of u equals r;

• u depends on the letters x1, x2, . . . , xs;

• for every i = 1, 2, . . . , s, the number of occurrences of xi in u equals mi.

For a partition λ = (ℓ1, ℓ2, . . . , ℓm) ∈ Λn,m, we put

Sλ = var
{
u = v | there is i ∈

{
0, 1, . . . , s(λ)

}
such that u, v ∈Wn+i,m+i,λ(i)

}
.

We call sets of the form Wn,m,λ transversals. We say that an overcommutative

variety V reduces [collapses] a transversal Wn,m,λ if V satisfies some non-trivial

identity [all identities] of the form u = v with u, v ∈Wn,m,λ. An overcommutative

variety V is said to be greedy if it collapses any transversal it reduces.

Theorem 6.1. For an overcommutative semigroup variety V, the following are equiv-

alent:

a) V is OC-distributive;

b) V is OC-codistributive;

c) V is OC-standard;

d) V is OC-costandard;

e) V is OC-neutral;
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f) V is greedy;

g) either V = SEM or V =
k∧

i=1

Sλi
for some partitions λ1, λ2, . . . , λk.

The equivalence of claims a)–f) of this theorem was proved in [22] (claim f)

was not mentioned in [22] explicitly but the fact that this claim is equivalent to each

of the claims a)–e) readily follows from the proofs in [22]). The results of paper [36]

and Proposition 2.7 play a crucial role in this part of the proof of Theorem 6.1. The

equivalence of claims f) and g) is verified in [19].
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Added in proof

Recently, the author completely determined all Com-uppermodular, Com-codistributive

and Com-costandard commutative semigroup varieties (see http://arxiv.org/abs/1501.

02650). In particular, we answer Question 4.11 in negative and Question 4.12 in affirmative.

These answers seem to be quite surprising because they contrast sharply with the situation

in the lattice SEM (see Theorems 3.4, 3.18 and 3.26).
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