Homework №2

Predicates

1) A) Are the formulas equivalent

$$
\begin{aligned}
& F_{1}=(\forall x) F(x) \rightarrow(\exists x) G(x) \text { and } \\
& F_{2}=(\exists x)(F(x) \rightarrow G(x)) ?
\end{aligned}
$$

B) Are the formulas equivalent
$F_{1}=(\forall x) F(x) \rightarrow(\forall x) G(x)$ and
$F_{2}=(\forall x)(F(x) \rightarrow G(x))$?
C) Are the formulas equivalent

$$
\begin{aligned}
& F_{1}=(\forall x)(\exists y)(F(x, y) \wedge G(x, y)) \text { and } \\
& F_{2}=(\forall x)(\exists y) F(x, y) \wedge(\forall x)(\exists y) G(x, y) ?
\end{aligned}
$$

2) Reduce to the Skolem normal form $\neg[(\forall x)(\exists y)[P(x, y) \rightarrow Q(y)]]$.
3) Show that the reasoning is wrong: Some students like their teachers. No one likes ignorant people.
Therefore, there are ignorant teachers.
4) Write the predicate "There exist at least two integers" as a logical formula of the signature $<\boldsymbol{R}, P(x), Q(x, y)>$, where $P(x)$ - "x is Integer", $Q(x, y)$ - "x is equal to $y^{\prime \prime}$.
5) Using the resolution method prove that the formula G is a logical consequence of formulas F_{i} :

$$
\begin{aligned}
& F_{1}=(\forall x)[P(x) \rightarrow(\exists y)[Q(y) \wedge S(x, y)]], \\
& F_{2}=(\exists x)[R(x) \vee(\forall y) \neg[\neg Q(y) \rightarrow S(x, y)]], \\
& F_{3}=(\exists x) P(x), \\
& G=(\exists x)[\neg P(x) \vee R(x)] .
\end{aligned}
$$

6) Prove that the reasoning is right. (Sorit L. Carroll).
(1) Of all birds, only ostriches reach a height of 9 feet.
(2) In this aviary, there are no birds that belong to anyone except me.
(3) No ostriches eat pies with filling.
(4) I do not have any birds that do not reach a height of 9 feet. Therefore, no bird in this birdhouse eats pies with filling.
Take the set of birds as the main set.
7) Is the formula F satisfiable? Is the formula F true identically? Is the formula F false identically?
A) $F=(\forall x)(P(x) \rightarrow(\forall y) P(y))$
B) $F=P(x) \rightarrow(\forall y) P(y)$
C) $T=(\forall x)(P(x) \rightarrow(\exists y) P(y))$
D) $R(x)=P(x) \rightarrow(\exists y) P(y)$

Some laws of predicate logic

22) $\quad(\forall x)(F(x) \wedge G(x))$ is equal to $(\forall x) F(x) \wedge(\forall x) G(x)$,
23) $(\exists x)(F(x) \vee G(x))$ is equal to $(\exists x) F(x) \vee(\exists x) G(x)$,
24) $(\forall x)(\forall y) F(x, y)$ is equal to $(\forall y)(\forall x) F(x, y)$,
25) $(\exists x)(\exists y) F(x, y)$ is equal to ($\exists \mathrm{y})(\exists \mathrm{x}) F(x, y)$,
26) $\neg(\forall x) F(x)$ is equal to $(\exists x) \neg F(x)$,
27) $\neg(\exists x) F(x)$ is equal to $(\forall x) \neg F(x)$,
28) $(\forall x)(F(x) \vee G)$ is equal to $(\forall x) F(x) \vee G$,
29) $(\exists x)(F(x) \wedge G)$ is equal to $(\exists x) F(x) \wedge G$,
30) $(\forall x) F(x)$ is equal to $(\forall z) F(z)$,
31) $\quad(\exists x) F(x)$ is equal to $(\exists z) F(z)$.

Solutions

№1. A) Are the formulas equivalent?
$F_{1}=(\forall x) F(x) \rightarrow(\exists x) G(x)$ and
$F_{2}=(\exists x)(F(x) \rightarrow G(x))$?

Solution:

$F_{1}=(\forall x) F(x) \rightarrow(\exists x) G(x)|=|$ expanding the implication $|=|$

Answer: Formulas F_{1} and F_{2} are equivalent.
B) Are the formulas equivalent?

$$
\begin{aligned}
& F_{1}=(\forall x) F(x) \rightarrow(\forall x) G(x) \text { and } \\
& F_{2}=(\forall x)(F(x) \rightarrow G(x)) ?
\end{aligned}
$$

Solution:

Let's build an interpretation (model) $\underline{M}=\langle M ; \sigma\rangle, M=\{a, b\}, \sigma=\langle F, G\rangle$, such on that on this model $F_{1}=1, F_{2}=0$.

$F(a)=1, F(b)=0, G(a)=0, G(b)=1$.
Answer: Formulas F_{1} and F_{2} are not equivalent.
C) Are the formulas equivalent?
$F_{1}=(\forall x)(\exists y)(F(x, y) \wedge G(x, y)) n$
$F_{2}=(\forall x)(\exists y) F(x, y) \wedge(\forall x)(\exists y) G(x, y)$?

Solution:

Let's build an interpretation (model) $\underline{M}=\langle M ; \sigma\rangle, M=\{a, b\}, \sigma=\langle F, G\rangle$, such on that on this model $F_{1}=0, F_{2}=1$.

$F(a, b)=F(b, a)=1, F(a, a)=F(b, b)=0$,
$G(a, b)=G(b, a)=0, G(a, a)=G(b, b)=1$.
Answer: Formulas F_{1} and F_{2} are not equivalent.
№2. Reduce to the Skolem normal form
$\neg[(\forall x)(\exists y)[P(x, y) \rightarrow Q(y)]]$

Solution:

$\neg[(\forall x)(\exists y)[P(x, y) \rightarrow Q(y)]]|=|$ expanding the implication $|=|$

$\sim(\forall y)[P(c, y) \wedge \neg Q(y)]$
Answer: $(\forall y)[P(c, y) \wedge \neg Q(y)]$
№3. Show that the reasoning is wrong:
Some students like their teachers. No one likes ignorant people. Therefore, there are ignorant teachers.

Solution:

Let's take the set of people as the main set M .
Let

$$
\begin{aligned}
& P(x)=1: " x \text { - is student", } D(x)=1: " x-\text { is teacher", } \\
& Q(x)=1: " x \text { - ignorant", } L(x, y)=1: " x \text { likes } y " .
\end{aligned}
$$

Then
(1) $F_{1}:(\exists x)[P(x) \wedge(\forall y)(D(y) \rightarrow L(x, y))]$
(2) $F_{2}:(\forall x)(\forall y)[Q(y) \rightarrow \neg L(x, y)]$
(3) $\mathrm{G}:(\exists x)[D(x) \wedge Q(x)]$

Let's take the negation of G :

$$
\neg \mathrm{G}=\neg(\exists x)[D(x) \wedge Q(x)]|=|(\forall x)[\neg D(x) \vee \neg Q(x)]
$$

Let's build an interpretation (model) $\underline{M}=\langle M ; \sigma\rangle, M=\{a, b, c\}, \sigma=\langle Q, P, D, L\rangle$, such on that on this model $F_{1}=F_{2}=1, \mathrm{G}=0$.

Let
$P(a)=1, P(b)=0, P(c)=0$,
$D(a)=0, D(b)=1, D(c)=0$,
$Q(a)=0, Q(b)=0, Q(c)=1$,
$L(a, b)=1, L(x, y)=0$, if $x \neq a$ or $y \neq b$
Then as it is easy to understand, $F_{1}=F_{2}=1, \mathrm{G}=0$.
Answer: This reasoning is illogical.
№4. Write the predicate "There exist at least two integers" as a logical formula of the signature $<\boldsymbol{R}, P(x), Q(x, y)>$, where $P(x)$ - " x is Integer", $Q(x, y)$ - " x is equal to $y^{\prime \prime}$.

Solution:

F - " There exist at least two integers",
$P(x)=1$: " x - is Integer",
$P(y)=1:$ " y-is Integer",
$Q(x, y)=1$: " x is equal to y ".
" There exist at least two unequal integers":
$F=(\exists x)(\exists y)[P(x) \wedge P(y) \wedge \neg Q(x, y)]$
Answer: $F=(\exists x)(\exists y)[P(x) \wedge P(y) \wedge \neg Q(x, y)]$
№5. Using the resolution method prove that the formula G is a logical consequence of formulas F_{i} :

$$
\begin{aligned}
& F_{1}=(\forall x)[P(x) \rightarrow(\exists y)(Q(y) \wedge S(x, y))] \\
& F_{2}=(\exists x)[R(x) \vee(\forall y) \neg(Q(y) \wedge S(x, y))] \\
& F_{3}=(\exists x) P(x) \\
& G=(\exists x)[\neg P(x) \vee R(x)] .
\end{aligned}
$$

Solution:

Let's build the set $\left\{F_{1}, F_{2}, F_{3}, \neg \mathrm{G}\right\}$. We will convert each of the formulas into Skolem normal form, resulting in the following formulas:

The set S will consist of seven disjunctions:

$$
\begin{gathered}
S=\{\neg P(x) \vee Q(a), \neg P(u) \vee S(u, a), R(b) \vee \neg Q(y) \\
R(b) \vee \neg S(b, z), P(c), P(v), \neg R(v)\}
\end{gathered}
$$

Let's build a resolutive conclusion:

1. $\neg P(x) \vee Q(a)$
2. $\neg P(u) \vee S(u, a)$
3. $R(b) \vee \neg Q(y)$
4. $R(b) \vee \neg S(b, z)$
5. $P(c)$
6. $P(v)$
7. $\neg R(v)$
8. $Q(a)\{x=v\}$ from 1,6
9. $\neg Q(y)\{v=b\}$ from 3,7
10. $\square\{y=a\}$ from 8,9

Answer: G is a logical consequence of the formulas F_{i}.
№6. Prove that the reasoning is right.
(1) Of all birds, only ostriches reach a height of 9 feet.
(2) In this aviary, there are no birds that belong to anyone except me.
(3) No ostriches eat pies with filling.
(4) I do not have any birds that do not reach a height of 9 feet. Therefore, no bird in this birdhouse eats pies with filling.

Решение:

Пусть $M=$ \{The set of birds $\}$
$\mathrm{C}(x)=1 \Leftrightarrow x$ - Ostrich
$\mathrm{H}(x)=1 \Leftrightarrow x-$ Reach a height of 9 feet
$\mathrm{B}(x)=1 \Leftrightarrow x$ - Bird in this birdhouse
$M(x)=1 \Leftrightarrow x-$ A bird belonging to me
$P(x)=1 \Leftrightarrow x$ Eats pies with filling

$$
\begin{aligned}
& F_{1}=\forall x(H(x) \rightarrow C(x)) \equiv \forall x(\neg H(x) \vee C(x)) . \text { Disjunct: } \neg H(x) \vee C(x) . \\
& F_{2}=\neg \exists x(\mathrm{~B}(x) \wedge \neg M(x) \equiv \forall x(\neg B(x) \vee M(x)) . \text { Disjunct: } \neg B(y) \vee M(y) . \\
& F_{3}=\neg \exists x(\mathrm{C}(x) \wedge P(x)) \equiv \forall x(\neg \mathrm{C}(x) \vee \neg P(x)) . \text { Disjunct: } \neg \mathrm{C}(u) \vee \neg P(u) . \\
& F_{4}=\neg \exists x(M(x) \wedge \neg \mathrm{H}(x) \equiv \forall x(\neg M(x) \vee \mathrm{H}(x)) . \text { Disjunct: } \neg M(v) \vee \mathrm{H}(v) \\
& G=\neg \exists x(B(x) \wedge P(x)) \equiv \forall x(\neg B(x) \vee \neg P(x)) \\
& \neg G=\exists x(B(x) \wedge P(x)) \sim B(a) \wedge P(a) . \text { Disjunctions: } B(\mathrm{a}), P(a) .
\end{aligned}
$$

Let's derive the empty disjunct from a set of disjunctions.
$S=\{\neg H(x) \vee C(x), \neg B(y) \vee M(y), \neg \mathrm{C}(u) \vee \neg P(u)$,
$\neg M(v) \vee \mathrm{H}(v), B(a), P(a)\}$

$$
\begin{gathered}
\neg H(x) \vee C(x), \neg B(y) \vee M(y), \neg C(u) \vee \neg P(u), \neg M(v) \vee H(v), B(a), P(a) ; \\
\sigma_{1}=\{u=x\}, \neg H(x) \vee \neg P(x) \vee \sigma_{2}=\{y=a\}, M(a) \\
\sigma_{3}=\{x=a\}, \neg H(a) \\
\sigma_{4}=\{v=a\}, \neg M(a) \\
\sigma_{5}=\{y=a\}, \neg B(a)
\end{gathered}
$$

№7. Is the formula F satisfiable? Is the formula F true identically? Is the formula F false identically?
A) $F=(\forall x)(P(x) \rightarrow(\forall y) P(y))$
B) $F=P(x) \rightarrow(\forall y) P(y)$
C) $T=(\forall x)(P(x) \rightarrow(\exists y) P(y))$
D) $R(x)=P(x) \rightarrow(\exists y) P(y)$

Let us first recall the definitions from the lectures.
The formula F of signature σ is called satisfiable [true] on the model $\underline{M}=\langle M ; \sigma\rangle$, if it is true for some [respectively, for any] interpretation into this model. The formula F is simply satisfiable if it is satisfiable on some model. Note that for closed formulas the concepts of satisfiability and on the model and truth on the model coincide.

The formula F is called logically valid if it is true on any model of signature σ. Finally, the formula F is called logically contradictory if the formula $\neg F$ is logically valid.

Solution:

A) Let's build an interpretation (model) $\underline{M}=\langle M ; \sigma\rangle, M=\{a\}, \sigma=\langle P\rangle$, such that the closed formula F is true on this model. To do this, it suffices to define $P(a)=1$. Therefore, the formula F is satisfiable.

Let's show that the formula $\neg F$ is also satisfiable. Since the formula

$$
\begin{gathered}
\neg F \equiv(\exists x)(P(x) \wedge \neg(\forall y) P(y)) \equiv(\exists x)(P(x) \wedge(\exists y) \neg P(y)) \\
\equiv(\exists x)(\exists y)(P(x) \wedge \neg P(y))
\end{gathered}
$$

Has a (Skolem normal form) $G=P(a) \wedge \neg P(b)$, which is satisfiable or unsatisfiable at the same time as the formula $\neg F$, we need to construct a model that satisfies this condition $\underline{N}=\left\langle N ; \sigma^{\prime}\right\rangle$, where $\sigma^{\prime}=\langle P, a, b\rangle$, such that G is true on this model. To do this, it is enough to take

$$
N=\{a, b\}, P(a)=1, P(b)=0
$$

Therefore, the formula $\neg F$ is satisfiable, which means that there exists a model on which the formula F is false. Hence, the formula F is not logically valid.
Furthermore, since there exists a model for which F is true, i.e. $\neg F$ is false, $\neg F$ is not logically valid, and therefore F is not logically contradictory.
B) On a model, $\underline{M}=\langle M ; \sigma\rangle, M=\{a\}, \sigma=\langle P\rangle, P(a)=1$, the formula $H(x)$ is true at $x=a$. Therefore, the formula $H(x)$ is satisfiable on this model, i.e. simply satisfiable.

The formula $\neg H(x) \equiv P(x) \wedge \neg(\forall y) P(y) \equiv(\exists y)(P(x) \wedge \neg P(y))$ has a (Skolem normal form) $K(x)=P(x) \wedge \neg P(b)$, which is satisfiable or unsatisfiable at the same time as the formula $\neg H(x)$. Clearly, the formula $K(x)$ is true in the model
$\underline{N}=\left\langle N ; \sigma^{\prime}\right\rangle$ at $x=a$, т.e. is satisfiable on this model, i.e. simply satisfiable. Therefore, the formula $\neg H(x)$ is also satisfiable. This means that the formula $H(x)$ is false in some model for some interpretation of the free variable x, and therefore, it is not logically valid. Since $\neg H(x)$ is false in the model $\underline{M}=$ $\langle M ; \sigma\rangle$ for some interpretation of the free variable x, then the formula $\neg H(x)$ is not logically valid, and therefore the formula $H(x)$ is not logically contradictory.
C) Let's show that the closed formula T is logically valid. To do this, we will prove that the formula $\neg T$ is logically contradictory, i.e. false in any model. By definition (see theoretical material on the resolution method in predicate logic), this means that the formula $\neg T$ has no model. To do this, we can show that from the set S of disjuncts in the (Skolem normal form) of this formula, an empty disjunct is derived (see the same theoretical material). Let's transform the formula $\neg T$ to (ПНФ = не понятно что именно значит) and then to (СНФ = не понятно что именно значит):

$$
\begin{aligned}
\neg T & \equiv(\exists x)(P(x) \wedge \neg(\exists y) P(y)) \equiv(\exists x)(P(x) \wedge(\forall y) \neg P(y)) \\
& \equiv(\exists x)(\forall y)(P(x) \wedge \neg P(y)) \sim(\forall y)(P(a) \wedge \neg P(y))
\end{aligned}
$$

Then, from the set $S=\{P(a), \neg P(y)\}$, it is obvious that an empty disjunct is derived (for this, it is sufficient to take the most general unifier $\sigma=\{y=a\}$).

Thus, the formula $\neg T$ has no model, i.e. logically contradictory, and therefore the formula T is logically valid. Consequently, the last formula is satisfiable and not logically contradictory.
D) Consider the closure of the formula $R(x)$. It is a formula T. Since the formula T is logically valid, i.e. true on any model, the formula $R(x)$. is also logically valid, which means it is satisfiable and not logically contradictory.

Answer:

A) and B) are satisfiable, but not logically valid and not logically contradictory.
C) and G) are satisfiable, logically valid, and not logically contradictory.

