Мощность множества. Кардинальные и ординальные числа.

Михайлова Инна Анатольевна

Институт математики и естественных наук. Кафедра алгебры и фундаментальной информатики.

12 сентября 2018 г.

Мощность конечного множества — количество элементов в нем. Ясно, что |A|=|B| тогда и только тогда, когда существует биекция $f:A\to B$.

Мощность конечного множества — количество элементов в нем. Ясно, что |A|=|B| тогда и только тогда, когда существует биекция $f:A \to B$.

Определение

Два произвольных множества A и B называются равномощными, если существует биекция $f:A\to B$.

Мощность конечного множества — количество элементов в нем. Ясно, что |A|=|B| тогда и только тогда, когда существует биекция $f:A \to B$.

Определение

Два произвольных множества A и B называются равномощными, если существует биекция $f: A \to B$.

Убедитесь, что "быть равномощным" является отношением эквивалентности.

Мощность конечного множества — количество элементов в нем. Ясно, что |A|=|B| тогда и только тогда, когда существует биекция $f:A \to B$.

Определение

Два произвольных множества A и B называются равномощными, если существует биекция $f: A \to B$.

Убедитесь, что "быть равномощным" является отношением эквивалентности.

Определение

Каждому классу эквивалентности можно сопоставить мощность этого класса или кардинальное число. card(A) — кардинальное число того класса, которому принадлежит множество A.

Определение

Множество называется счетным, если оно равномощно множеству натуральных чисел \mathbb{N} .

$$|\mathbb{N}|=\aleph_0$$

Определение

Множество называется счетным, если оно равномощно множеству натуральных чисел \mathbb{N} .

$$|\mathbb{N}| = \aleph_0$$

Пусть множество A счетно, тогда существует биекция $f: \mathbb{N} \to A$. В матанализе такие отображения называются последовательностями. Таким образом, любое счетное множество A можно представить в виде последовательности различных элементов $\{a_1, a_2, a_3, \ldots\}$

Определение

Множество называется счетным, если оно равномощно множеству натуральных чисел \mathbb{N} .

$$|\mathbb{N}| = \aleph_0$$

Множество целых чисел счетно.

Чтобы это доказать, нужно построить биекцию $f\colon \mathbb{N} o \mathbb{Z}.$

Рассмотрим биекцию $f(m)=\left\{ egin{array}{ll} k, & \mbox{если} & \mbox{m=2k+1;} \\ -k, & \mbox{если} & \mbox{m=2k.} \end{array} \right.$ Тогда $\{1,2,3,4,5\ldots\}
ightarrow \{0,-1,1,-2,2,\ldots\}$

Определение

Множество называется счетным, если оно равномощно множеству натуральных чисел \mathbb{N} .

$$|\mathbb{N}| = \aleph_0$$

Множество целых чисел счетно.

Чтобы это доказать, нужно построить биекцию $f\colon \mathbb{N} o \mathbb{Z}$.

Рассмотрим биекцию $f(m)=\left\{ egin{array}{ll} k, & \mbox{если} & \mbox{m=2k+1}; \\ -k, & \mbox{если} & \mbox{m=2k}. \end{array} \right.$ Тогда $\left\{ 1,2,3,4,5\ldots \right\}
ightarrow \left\{ 0,-1,1,-2,2,\ldots \right\}$

Mножество $\mathbb{N} \times \mathbb{N}$ счетно

Лестница Кантора

Бесконечные множества

Множество бесконечно, если при удалении любого конечного числа элементов множество остается непустым.

Лемма 1

Любое бесконечное множество содержит счетное подмножество.

Бесконечные множества

Множество бесконечно, если при удалении любого конечного числа элементов множество остается непустым.

Лемма 1

Любое бесконечное множество содержит счетное подмножество.

Пусть B — счетное множество. Оно непусто, следовательно, в нем есть элемент a_1 . Множество $B\setminus\{a_1\}$ непусто, в нем есть элемент $\{a_2\}$. Продолжая этот процесс мы построим последовательность различных элементов множества $\{a_1,a_2,\ldots\}$

Лемма 2

Пусть B произвольное бесконечное множество, а множество A счетно или конечно. Тогда $|B \cup A| = |B|$

Лемма 2

Пусть B произвольное бесконечное множество, а множество A счетно или конечно. Тогда $|B \cup A| = |B|$

Будем считать, что $B \cap A = \emptyset$, иначе $B \cup A = B \cup (A \setminus (B \cap A))$ и множество $A \setminus (B \cap A)$ также счетно или конечно. По лемме 1 в множестве B есть счетное подмножество $B_1 = \{b_1, b_2, \ldots\}$.

Лемма 2

Пусть B произвольное бесконечное множество, а множество A счетно или конечно. Тогда $|B \cup A| = |B|$

Будем считать, что $B \cap A = \emptyset$, иначе $B \cup A = B \cup (A \setminus (B \cap A))$ и множество $A \setminus (B \cap A)$ также счетно или конечно. По лемме 1 в множестве B есть счетное подмножество $B_1 = \{b_1, b_2, \ldots\}$. Пусть сначала $A = \{a_1, a_2, \ldots, a_n\}$ конечно. Построим отображение $f \colon B \cup A \to B$ по правилу:

$$f(x) = \begin{cases} x, & x \in B \setminus B_1; \\ b_i, & x = a_i \in A; \\ b_{i+n}, & x = b_i \in B_1. \end{cases}$$

Это отображение оставляется все элементы множества $B \setminus B_1$ на месте, а множество $B_1 \cup A = \{a_1, a_2, \ldots, a_n, b_1, b_2 \ldots\}$ переводит в $\{b_1, b_2, \ldots, \}$. Очевидно, что если из счетной последовательности убрать первые n элементов, то оставшиеся снова будут образовывать счетную последовательность. Нетрудно убедиться, используя определение, что f будет биекцией.

Лемма 2

Пусть B произвольное бесконечное множество, а множество A счетно или конечно. Тогда $|B \cup A| = |B|$

Будем считать, что $B \cap A = \emptyset$, иначе $B \cup A = B \cup (A \setminus (B \cap A))$ и множество $A \setminus (B \cap A)$ также счетно или конечно. По лемме 1 в множестве B есть счетное подмножество $B_1 = \{b_1, b_2, \ldots\}$. Теперь рассмотрим случай, когда $A = \{a_1, a_2, \ldots\}$ счетно. По аналогии с предыдущим случаем мы построим биекцию $g \colon B \cup A \to B$, которая будет оставлять элементы множества $B \setminus B_1$ на месте. Нам останется только определить g на $B_1 \cup A_1$ по правилу: $g(x) = \left\{ \begin{array}{ll} b_{2i}, & x = b_i \\ b_{2i+1}, & b = a_i. \end{array} \right.$ Тогда

$$\begin{cases}
b_1, b_2, \ldots \\
a_1, a_2, \ldots
\end{cases} \to \{b_1, a_1, b_2, a_2 \ldots\} \xrightarrow{g} \{b_1, b_2, b_3, b_4, \ldots\}$$

Теорема 1 (Критерий бесконечности)

Множество бесконечно тогда и только тогда, когда оно равномощно некоторому своему собственному подмножеству

Теорема 1 (Критерий бесконечности)

Множество бесконечно тогда и только тогда, когда оно равномощно некоторому своему собственному подмножеству

Пусть B бесконечно, тогда рассмотрим произвольный элемент $a \in B$ и множества $A = \{a\}, B_1 = B \setminus \{a\}$. Тогда по лемме 2 $|B_1| = |B_1 \cup A| = |B|$.

Теорема 1 (Критерий бесконечности)

Множество бесконечно тогда и только тогда, когда оно равномощно некоторому своему собственному подмножеству

Пусть B бесконечно, тогда рассмотрим произвольный элемент $a \in B$ и множества $A = \{a\}, B_1 = B \setminus \{a\}$. Тогда по лемме 2 $|B_1| = |B_1 \cup A| = |B|$.

И обратно, если предположим противное, что конечное множество равномощно своему собственному подмножеству, то немедленно получим противоречие.

Теорема 1 (Критерий бесконечности)

Множество бесконечно тогда и только тогда, когда оно равномощно некоторому своему собственному подмножеству

Следствие

Объединение счетного множества с счетным или конечным снова счетно.

Лемма 3

Счетное объединение счетных множеств счетно.

Лемма 3

Счетное объединение счетных множеств счетно.

Пусть $A=\bigcup_{i=1}^\infty A_i$, где каждое A_i счетное. Убедимся сначала, что можно считать, что $A_i\cap A_j=\emptyset$, где $i\neq j$.

Лемма 3

Счетное объединение счетных множеств счетно.

Пусть $A=\bigcup_{i=1}^\infty A_i$, где каждое A_i счетное. Убедимся сначала, что можно считать, что $A_i\cap A_j=\emptyset$, где $i\neq j$.

Проведем соответствующее доказательство по индукции по $n\in\mathbb{N}.$

Лемма 3

Счетное объединение счетных множеств счетно.

Пусть $A=\bigcup_{i=1}^{\infty}A_i$, где каждое A_i счетное. Убедимся сначала, что можно считать, что $A_i\cap A_j=\emptyset$, где $i\neq j$. Проведем соответствующее доказательство по индукции по $n\in\mathbb{N}$. Пусть $A_1\cap A_2\neq\emptyset$. Рассмотрим множество $A_2'=A_2\setminus(A_1\cap A_2)$. Если оно конечно, то выбросим A_2 из объединения и в качестве A_1 возьмем $A_1'=A_1\cup A_2'$, которое будет счетным по лемме 2.

Лемма 3

Счетное объединение счетных множеств счетно.

Пусть $A=\bigcup_{i=1}^{\infty}A_i$, где каждое A_i счетное. Убедимся сначала, что можно считать, что $A_i\cap A_j=\emptyset$, где $i\neq j$. Проведем соответствующее доказательство по индукции по $n\in\mathbb{N}$. Пусть $A_1\cap A_2\neq\emptyset$. Рассмотрим множество $A_2'=A_2\setminus(A_1\cap A_2)$. Если оно конечно, то выбросим A_2 из объединения и в качестве A_1 возьмем $A_1'=A_1\cup A_2'$, которое будет счетным по лемме 2. Если же A_2' счетно, то берем $A_1'=A_1$. В итоге получили два непересекающихся множества A_1',A_2' таких, что $A_1\cup A_2=A_1'\cup A_2'$.

Лемма 3

Счетное объединение счетных множеств счетно.

Пусть $A=\bigcup_{i=1}^\infty A_i$, где каждое A_i счетное. Убедимся сначала, что можно считать, что $A_i\cap A_j=\emptyset$, где $i\neq j$. Проведем соответствующее доказательство по индукции по $n\in\mathbb{N}$. Пусть $A_1\cap A_2\neq\emptyset$. Рассмотрим множество $A_2'=A_2\setminus(A_1\cap A_2)$. Если оно конечно, то выбросим A_2 из объединения и в качестве A_1 возьмем $A_1'=A_1\cup A_2'$, которое будет счетным по лемме 2. Если же A_2' счетно, то берем $A_1'=A_1$. В итоге получили два непересекающихся множества A_1' , A_2' таких, что $A_1\cup A_2=A_1'\cup A_2'$. Пусть множества A_1,\ldots,A_n попарно не пересекаются. Возьмем множество A_{n+1} и проведем с каждым множеством A_i процедуру, описанную выше.

Лемма 3

Счетное объединение счетных множеств счетно.

Пусть $A = \bigcup_{i=1}^{\infty} A_i$, где каждое A_i счетное. Убедимся сначала, что можно считать, что $A_i \cap A_i = \emptyset$, где $i \neq j$. Проведем соответствующее доказательство по индукции по $n \in \mathbb{N}$. Пусть $A_1 \cap A_2 \neq \emptyset$. Рассмотрим множество $A_2' = A_2 \setminus (A_1 \cap A_2)$. Если оно конечно, то выбросим A_2 из объединения и в качестве A_1 возьмем $A_1' = A_1 \cup A_2'$, которое будет счетным по лемме 2. Если же A_2' счетно, то берем $A_1' = A_1$. В итоге получили два непересекающихся множества A_1', A_2' таких, что $A_1 \cup A_2 = A_1' \cup A_2'$. Пусть множества A_1, \ldots, A_n попарно не пересекаются. Возьмем множество A_{n+1} и проведем с каждым множеством A_i процедуру, описанную выше. После того, как мы получили разбиение множества A, рассмотрим таблицу, в которой в строке с номером i и столбце с номером j стоит j-й элемент множества A_i . Лестница Кантора строит биекцию из \mathbb{N} в $\bigcup_{i=1}^{\infty} A_i$.

Множество **Q** рациональных чисел счетно

Для каждого числа $p\in\mathbb{N}$ рассмотрим множество $\mathbb{Q}_p=\{rac{m}{p}\mid m\in\mathbb{Z}\}.$

Множество **Q** рациональных чисел счетно

Для каждого числа $p\in\mathbb{N}$ рассмотрим множество $\mathbb{Q}_p=\{\frac{m}{p}\mid m\in\mathbb{Z}\}.$ Очевидно, что $|\mathbb{Z}|=|\mathbb{Q}_p|$, откуда \mathbb{Q}_p счетно. Тогда $\mathbb{Q}=\bigcup_p\mathbb{Q}_p$, откуда \mathbb{Q} счетно по лемме 3.

Сравнение мощностей

Определение

Будем говорить $|A| \leq |B|$, если множество A равномощно некоторому подмножеству множества B.

Сравнение мощностей

Определение

Будем говорить $|A| \le |B|$, если множество A равномощно некоторому подмножеству множества B.

Упражнение. Убедитесь, что это определение равносильно существованию инъекции $f:A \to B$.

Сравнение мощностей

Определение

Будем говорить $|A| \le |B|$, если множество A равномощно некоторому подмножеству множества B.

Упражнение. Убедитесь, что это определение равносильно существованию инъекции $f: A \to B$.

Теорема Кантора-Бернштейна

Если $|A| \le |B|$ и $|B| \le |A|$, то |A| = |B|.

Доказательство теоремы Кантора-Бернштейна

Так как $|A| \leq |B|$ и $|B| \leq |A|$, то существуют биекции $f: A \to B' \subseteq B$, $g: B \to A' \subseteq A$. Кроме того, $A'' = g(f(A)) \subseteq A'$. Откуда получаем |A| = |B'| = |A''|, |B| = |A'|. Мы покажем, что |A| = |A'|, откуда получится |A| = |B|.

Доказательство теоремы Кантора-Бернштейна

Так как $|A| \leq |B|$ и $|B| \leq |A|$, то существуют биекции $f: A \to B' \subseteq B$, $g: B \to A' \subseteq A$. Кроме того, $A'' = g(f(A)) \subseteq A'$. Откуда получаем |A| = |B'| = |A''|, |B| = |A'|. Мы покажем, что |A| = |A'|, откуда получится |A| = |B|. Для этого воспользуемся следующей леммой, взяв $A_1 = A''$, $C = A' \setminus A''$.

Лемма 5

Пусть A бесконечно, $A_1\subset A$, $|A_1|=|A|$. Тогда $\forall C\subseteq A\setminus A_1$ $|A_1\cup C|=|A|$.

Доказательство леммы 5

Так как $|A_1| = |A|$, то существует биекция $f: A \to A_1$. рассмотрим произвольное множество $C \subseteq A \setminus A_1$ и обозначим $f^0(C) = C$, $f^{(n)}(C) = f(f^{(n-1)}(C))$. Кроме того, $D = \bigcup_{n=0}^{\infty} f^{(n)}(C)$.

Доказательство леммы 5

Так как $|A_1|=|A|$, то существует биекция $f\colon A\to A_1$. рассмотрим произвольное множество $C\subseteq A\setminus A_1$ и обозначим $f^0(C)=C$, $f^{(n)}(C)=f(f^{(n-1)}(C))$. Кроме того, $D=\bigcup_{n=0}^{\infty}f^{(n)}(C)$. Построим отображение $\varphi\colon A\to A_1\cup C$ по правилу: $\varphi(x)=\left\{\begin{array}{ll}f(x), & x\in A\setminus D\\ x, & x\in D\end{array}\right.$

Доказательство леммы 5

Так как $|A_1|=|A|$, то существует биекция $f\colon A\to A_1$. рассмотрим произвольное множество $C\subseteq A\setminus A_1$ и обозначим $f^0(C)=C$, $f^{(n)}(C)=f(f^{(n-1)}(C))$. Кроме того, $D=\bigcup_{n=0}^{\infty}f^{(n)}(C)$. Построим отображение $\varphi\colon A\to A_1\cup C$ по правилу:

$$\varphi(x) = \begin{cases} f(x), & x \in A \setminus D \\ x, & x \in D \end{cases}$$

Сначала покажем, что φ — инъекция. Рассмотрим $x_1 \neq x_2$ и следующие три случая:

Так как $|A_1| = |A|$, то существует биекция $f: A \to A_1$. рассмотрим произвольное множество $C \subseteq A \setminus A_1$ и обозначим $f^0(C) = C$, $f^{(n)}(C) = f(f^{(n-1)}(C))$. Кроме того, $D = \bigcup_{n=0}^{\infty} f^{(n)}(C)$.

Построим отображение $\varphi\colon A \to A_1 \cup C$ по правилу:

$$\varphi(x) = \begin{cases} f(x), & x \in A \setminus D \\ x, & x \in D \end{cases}$$

Сначала покажем, что φ — инъекция. Рассмотрим $x_1 \neq x_2$ и следующие три случая:

Сл. 1 $x_1, x_2 \in D$. Тогда очевидно $x_1 = \varphi(x_1) \neq \varphi(x_2) = x_2$;

Так как $|A_1| = |A|$, то существует биекция $f: A \to A_1$. рассмотрим произвольное множество $C \subseteq A \setminus A_1$ и обозначим $f^0(C) = C$, $f^{(n)}(C) = f(f^{(n-1)}(C))$. Кроме того, $D = \bigcup_{n=0}^{\infty} f^{(n)}(C)$.

Построим отображение $\varphi \colon A \to A_1 \cup C$ по правилу:

$$\varphi(x) = \begin{cases} f(x), & x \in A \setminus D \\ x, & x \in D \end{cases}$$

Сначала покажем, что φ — инъекция. Рассмотрим $x_1 \neq x_2$ и следующие три случая:

Сл. 1 $x_1, x_2 \in D$. Тогда очевидно $x_1 = \varphi(x_1) \neq \varphi(x_2) = x_2$;

Сл. 2 $x_1 \in A \setminus D$, $x_2 \in D$. Тогда $f(x_1) \in A \setminus D$, $x_2 \in D$ и $\varphi(x_1) \neq \varphi(x_2)$;

Так как $|A_1| = |A|$, то существует биекция $f: A \to A_1$. рассмотрим произвольное множество $C \subseteq A \setminus A_1$ и обозначим $f^0(C) = C$, $f^{(n)}(C) = f(f^{(n-1)}(C))$. Кроме того, $D = \bigcup_{n=0}^{\infty} f^{(n)}(C)$.

Построим отображение $\varphi \colon A \to A_1 \cup C$ по правилу:

$$\varphi(x) = \begin{cases} f(x), & x \in A \setminus D \\ x, & x \in D \end{cases}$$

Сначала покажем, что φ — инъекция. Рассмотрим $x_1 \neq x_2$ и следующие три случая:

- **Сл.** 1 $x_1, x_2 \in D$. Тогда очевидно $x_1 = \varphi(x_1) \neq \varphi(x_2) = x_2$;
- Сл. 2 $x_1 \in A \setminus D$, $x_2 \in D$. Тогда $f(x_1) \in A \setminus D$, $x_2 \in D$ и $\varphi(x_1) \neq \varphi(x_2)$;
- Сл. 3 $x_1, x_2 \in A \setminus D$. Так как f является биекцией, то $\varphi(x_1) = f(x_1) \neq f(x_2) = \varphi(x_2)$.

Так как $|A_1|=|A|$, то существует биекция $f\colon A\to A_1$. рассмотрим произвольное множество $C\subseteq A\setminus A_1$ и обозначим $f^0(C)=C$, $f^{(n)}(C)=f(f^{(n-1)}(C))$. Кроме того, $D=\bigcup_{n=0}^{\infty}f^{(n)}(C)$. Построим отображение $\varphi\colon A\to A_1\cup C$ по правилу:

$$\varphi(x) = \begin{cases} f(x), & x \in A \setminus D \\ x, & x \in D \end{cases}$$

Теперь покажем, что φ — сюръекция. Возьмем $y \in A_1 \cup C$ и рассмотрим случаи:

Так как $|A_1| = |A|$, то существует биекция $f: A \to A_1$. рассмотрим произвольное множество $C \subseteq A \setminus A_1$ и обозначим $f^0(C) = C$, $f^{(n)}(C) = f(f^{(n-1)}(C))$. Кроме того, $D = \bigcup_{n=0}^{\infty} f^{(n)}(C)$. Построим отображение $\varphi: A \to A_1 \cup C$ по правилу:

$$\varphi(x) = \begin{cases} f(x), & x \in A \setminus D \\ x, & x \in D \end{cases}$$

Теперь покажем, что arphi — сюръекция. Возьмем $y \in A_1 \cup C$ и рассмотрим случаи:

Сл. 1 $y \in D$. Следовательно, $y = \varphi(y)$;

Так как $|A_1| = |A|$, то существует биекция $f: A \to A_1$. рассмотрим произвольное множество $C \subseteq A \setminus A_1$ и обозначим $f^0(C) = C$, $f^{(n)}(C) = f(f^{(n-1)}(C))$. Кроме того, $D = \bigcup_{n=0}^{\infty} f^{(n)}(C)$. Построим отображение $\varphi: A \to A_1 \cup C$ по правилу:

$$\varphi(x) = \begin{cases} f(x), & x \in A \setminus D \\ x, & x \in D \end{cases}$$

Теперь покажем, что φ — сюръекция. Возьмем $y \in A_1 \cup C$ и рассмотрим случаи:

- **Сл. 1** $y \in D$. Следовательно, $y = \varphi(y)$;
- Сл. 2 $y \in A_1 \setminus D \subseteq A_1$. Так как $f \colon A \to A_1$ является биекцией, то существует $x \in A$ такой, что f(x) = y. Заметим, что $x \notin D$, так как $f(D) \subseteq D$. Следовательно $\varphi(x) = f(x) = y$.

Определение

Мощность множества всех действительных чисел на отрезке [0;1] континуум.

$$|[0;1]|=\aleph_1=C.$$

Лемма 4

Множества [0;1] и множество всех бесконечных последовательностей из 0 и 1 равномощны.

Лемма 4

Множества [0;1] и множество всех бесконечных последовательностей из 0 и 1 равномощны.

Рассмотрим число $a\in[0;1]$. Рассмотрим соответствующее ему двоичное число: $0,\alpha_1\alpha_2\ldots$, $\alpha_i\in\{0,1\}$. Очевидно, что различным числам соответствуют различные такие последовательности. Однако последовательности $0,1,1,\ldots$ (имеет бесконечное число 1 в конце) и $1,0,0,\ldots$ соответствуют одному числу $\frac{1}{2}$.

Лемма 4

Множества [0;1] и множество всех бесконечных последовательностей из 0 и 1 равномощны.

Рассмотрим число $a \in [0; 1]$. Рассмотрим соответствующее ему двоичное число: $0, \alpha_1 \alpha_2 \dots, \alpha_i \in \{0, 1\}$. Очевидно, что различным числам соответствуют различные такие последовательности. Однако последовательности $0, 1, 1, \dots$ (имеет бесконечное число 1 в конце) и $1,0,0,\ldots$ соответствуют одному числу $\frac{1}{2}$. Обозначим множество всех последовательностей из 0 и 1 через M. Рассмотрим его подмножество A всех бесконечных последовательностей из 0 и 1, у которых бесконечное количество единиц в конце. Множество A счетно, так как $A = \bigcup_{k=1}^{\infty} A_k$, где A_k все последовательности, у которых все элементы, начиная с α_k , равны 1. Поэтому по лемме 2 $|M| = |M \setminus A|$. А выше было доказано, что $|M \setminus A| = |[0; 1]|$.

Теорема Кантора

Теорема(Кантор)

Множество бесконечных последовательностей из 0 и 1 несчетно ($\aleph_0 \neq \aleph_1$).

Теорема Кантора

Теорема(Кантор)

Множество бесконечных последовательностей из 0 и 1 несчетно $(\aleph_0 \neq \aleph_1)$.

Предположим, что множество последовательностей счетно, тогда его элементы можно перенумеровать и записать в виде последовательности $\{a_1, a_2, a_3, \ldots\}$:

$$a_1 = \underline{\alpha_{11}}, \alpha_{12}, \alpha_{13} \dots$$

 $a_2 = \alpha_{21}, \underline{\alpha_{22}}, \alpha_{23} \dots$
 $a_3 = \alpha_{31}, \alpha_{32}, \underline{\alpha_{33}}, \dots$

Теорема Кантора

Теорема(Кантор)

Множество бесконечных последовательностей из 0 и 1 несчетно $(\aleph_0 \neq \aleph_1)$.

Предположим, что множество последовательностей счетно, тогда его элементы можно перенумеровать и записать в виде последовательности $\{a_1, a_2, a_3, \ldots\}$:

$$a_1 = \underline{\alpha_{11}}, \alpha_{12}, \alpha_{13} \dots$$

 $a_2 = \alpha_{21}, \underline{\alpha_{22}}, \alpha_{23} \dots$
 $a_3 = \alpha_{31}, \alpha_{32}, \underline{\alpha_{33}}, \dots$

Пусть $\overline{0}=1,\overline{1}=0$. Рассмотрим последовательность $\{\overline{\alpha_{11}},\overline{\alpha_{22}},\overline{\alpha_{33}},\ldots\}$. Этой последовательности не совпадает ни с одной последовательностью в списке, следовательно, нет биекции из $\mathbb N$ в множество последовательностей из 0 и 1.

Мощность булеана

Предложение 1

 $\mathcal{B}(\mathbb{N})$ равномощно множеству всех бесконечных последовательностей из 0 и 1.

Мощность булеана

Предложение 1

 $\mathcal{B}(\mathbb{N})$ равномощно множеству всех бесконечных последовательностей из 0 и 1.

Для каждого подмножества $M\subseteq \mathbb{N}$ рассмотрим характеристическую последовательность (функцию) $I_M(x)=\left\{egin{array}{ll} 1, & x\in M\\ 0, & x\notin M \end{array}\right.$ Такое отображение очевидно будет биекцией между $\mathcal{B}(\mathbb{N})$ и множеством всех последовательностей из 0 и 1.

Мощность булеана

Предложение 1

 $\mathcal{B}(\mathbb{N})$ равномощно множеству всех бесконечных последовательностей из 0 и 1.

Для каждого подмножества $M\subseteq\mathbb{N}$ рассмотрим характеристическую последовательность (функцию) $I_M(x)=\left\{egin{array}{ll} 1, & x\in M\\ 0, & x\notin M \end{array}\right.$ Такое отображение очевидно будет биекцией между $\mathcal{B}(\mathbb{N})$ и множеством всех последовательностей из 0 и 1. Рассмотрим отображение $f\colon\mathbb{N}\to\mathcal{B}(\mathbb{N})$ заданное по правилу $f(n)=\{n\}$. Очевидно, что f инъекция, откуда $|\mathbb{N}|\leq \mathcal{B}(\mathbb{N})$. По теореме Кантора и предложению 1 мы получаем $|\mathbb{N}|<|\mathcal{B}(\mathbb{N})|$.

Теорема (Кантора о булеане)

Для любого множества $A \quad |A| < |\mathcal{B}(A)|$ (или $2^{|A|} > |A|$, где $2^{|A|} = |\mathcal{B}(A)|$)

Теорема (Кантора о булеане)

Для любого множества $A \quad |A| < |\mathcal{B}(A)|$ (или $2^{|A|} > |A|$, где $2^{|A|} = |\mathcal{B}(A)|$)

Так как существует инъекция $f:A o \mathcal{B}(A)$ заданная по правилу $f(a)=\{a\}$, то $|A|\leq |\mathcal{B}(A)|$.

Теорема (Кантора о булеане)

Для любого множества $A \quad |A| < |\mathcal{B}(A)|$ (или $2^{|A|} > |A|$, где $2^{|A|} = |\mathcal{B}(A)|$)

Так как существует инъекция $f:A\to \mathcal{B}(A)$ заданная по правилу $f(a)=\{a\}$, то $|A|\leq |\mathcal{B}(A)|$. От противного, пусть $|A|=|\mathcal{B}(A)|$. Тогда существует биекция $g:A\to \mathcal{B}(A)$. Рассмотрим множество $Z=\{z\in A\mid z\notin g(z)\}$ всех элементов, которые не принадлежат своему образу. Покажем, что у Z нет прообраза.

Теорема (Кантора о булеане)

Для любого множества $A \quad |A| < |\mathcal{B}(A)|$ (или $2^{|A|} > |A|$, где $2^{|A|} = |\mathcal{B}(A)|$)

Так как существует инъекция $f:A \to \mathcal{B}(A)$ заданная по правилу $f(a)=\{a\}$, то $|A|\leq |\mathcal{B}(A)|$.

От противного, пусть $|A| = |\mathcal{B}(A)|$. Тогда существует биекция $g: A \to \mathcal{B}(A)$. Рассмотрим множество $Z = \{z \in A \mid z \notin g(z)\}$ всех элементов, которые не принадлежат своему образу. Покажем, что у Z нет прообраза.

От противного, пусть $z \in A$ такой элемент, что g(z) = Z. Тогда

Теорема (Кантора о булеане)

Для любого множества $A \quad |A| < |\mathcal{B}(A)|$ (или $2^{|A|} > |A|$, где $2^{|A|} = |\mathcal{B}(A)|$)

Так как существует инъекция $f:A\to \mathcal{B}(A)$ заданная по правилу $f(a)=\{a\}$, то $|A|\leq |\mathcal{B}(A)|$.

От противного, пусть $|A| = |\mathcal{B}(A)|$. Тогда существует биекция $g: A \to \mathcal{B}(A)$. Рассмотрим множество $Z = \{z \in A \mid z \notin g(z)\}$ всех элементов, которые не принадлежат своему образу. Покажем, что у Z нет прообраза.

От противного, пусть $z\in A$ такой элемент, что g(z)=Z. Тогда

ullet Если $z\in Z$, то $z\notin g(z)=Z$;

Теорема (Кантора о булеане)

Для любого множества $A \quad |A| < |\mathcal{B}(A)|$ (или $2^{|A|} > |A|$, где $2^{|A|} = |\mathcal{B}(A)|$)

Так как существует инъекция $f:A o \mathcal{B}(A)$ заданная по правилу $f(a)=\{a\}$, то $|A|\leq |\mathcal{B}(A)|$.

От противного, пусть $|A| = |\mathcal{B}(A)|$. Тогда существует биекция $g: A \to \mathcal{B}(A)$. Рассмотрим множество $Z = \{z \in A \mid z \notin g(z)\}$ всех элементов, которые не принадлежат своему образу. Покажем, что у Z нет прообраза.

От противного, пусть $z \in A$ такой элемент, что g(z) = Z. Тогда

- Если $z \in Z$, то $z \notin g(z) = Z$;
- ullet Если $z \notin Z$, то $z \notin g(z) = Z$, и значит $z \in Z$.

Теорема (Кантора о булеане)

Для любого множества $A \quad |A| < |\mathcal{B}(A)|$ (или $2^{|A|} > |A|$, где $2^{|A|} = |\mathcal{B}(A)|$)

Так как существует инъекция $f:A \to \mathcal{B}(A)$ заданная по правилу $f(a) = \{a\}$, то $|A| \leq |\mathcal{B}(A)|$.

От противного, пусть $|A| = |\mathcal{B}(A)|$. Тогда существует биекция $g \colon A \to \mathcal{B}(A)$. Рассмотрим множество $Z = \{z \in A \mid z \notin g(z)\}$ всех элементов, которые не принадлежат своему образу. Покажем, что у Z нет прообраза.

От противного, пусть $z \in A$ такой элемент, что g(z) = Z. Тогда

- Если $z \in Z$, то $z \notin g(z) = Z$;
- ullet Если z
 otin Z, то z
 otin g(z) = Z, и значит $z \in Z$.

Мы получили, что у некоторого подмножества множества A нет прообраза, откуда g не биекция. Следовательно, $|A|<|\mathcal{B}(A)|$.

Континуум гипотеза

Иерархия алефов

Следствие из теоремы Кантора:

$$\aleph_0 < 2^{\aleph_0} = \aleph_1 < 2^{\aleph_1} = \aleph_2 < \dots$$

Континуум гипотеза

Иерархия алефов

Следствие из теоремы Кантора:

$$\aleph_0 < 2^{\aleph_0} = \aleph_1 < 2^{\aleph_1} = \aleph_2 < \dots$$

Континуум гипотеза (Кантор, 1871)

Существует множество S такое, что $\aleph_0 < |S| < \aleph_1.$

Континуум гипотеза

Иерархия алефов

Следствие из теоремы Кантора:

$$\aleph_0 < 2^{\aleph_0} = \aleph_1 < 2^{\aleph_1} = \aleph_2 < \dots$$

Континуум гипотеза (Кантор, 1871)

Существует множество S такое, что $\aleph_0 < |S| < \aleph_1$.

Теорема (Гедель, 1940; Коэн, 1965)

Континуум гипотезу нельзя ни доказать, ни опровергнуть в текущей системе аксиом (система аксиом Цермело-Френкеля).