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Semicomplements in lattices of  varieties 

B. M. VERNIKOV 

Let 3; be a (quasi)variety of  universal algebras and L(3;) be the lattice of  its 

sub(quasi)varieties. The class of  all lattices of  the kind L(3;) for all (quasi)varieties 
3; is denoted by V (resp., Q). 

In the paper  [6] complemented lattices from V w Q  were investigated. In 

particular it was proved there that for varieties and quasivarieties 3; of  all 

'~ algebras L(3;) is Boolean whenever it is complemented (see Corollary 3 
below). 

A natural generalization of complementedness is upper semicomplementedness. 

Recall that a lattice L is called upper semicomplemented if for each non-zero element 

x E L, the set Ux = {y e L [y r 1, x v y = 1 } is non-empty; an arbitrary element of  

Ux is called an upper semicomplement to x. Lower semicomplemented lattices and 
lower semicomplements to their elements are defined dually. 

Upper  semicomplements in V were studied by Je~ek. In [2] he discovered that 
upper semicomplemented elements exist in the lattice of  all varieties of  a given type 

r and described all such elements. Some further details for the case �9 = (2 )  can be 

seen in [3]. In the paper [6] was proved that a lattice from Q is complemented 
whenever it is upper semicomplemented. This fact has incited myself and M. V. 

Volkov to formulate the following question in [6]: is the same true for varieties, i.e. 
is a lattice from V complemented whenever it is upper semicomplemented? 

The question is still open in the general case. The aim of the present paper  is to 
give an affirmative answer in several wide partial cases including all "classical" 
varieties (see Theorems 1 and 2 below). 

Let us fix some definitions and notations. The set of  all atoms (coatoms) of  a 

lattice L is denoted by A(L) (resp., C(L)). Recall that a lattice with zero is called 
(O-distributive (O-modular) if it satisfies the implication x A y = 0 & x  A z = 0  

--,x A (y v z) = 0 (resp., x -< y & x/x  z = 0 ~ x / x  (y  v z) = x). We shall say that a 

lattice L with zero is (9-semimodular if a /x  x = 0 implies that a v x covers x for all 

x e L and a ~ A(L). The crucial basic fact for our considerations is the Lampe 's  
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discovery [4] that a lattice L from V satisfies the following condition (he named it 
"Zipper condition"): 

if y, z e L, S c_L, A S =O and x v y = z  ( . )  

for all x ~ S then y = z. 

Define 7/ to the class of all complete atomic lattices with cocompact 0 satisfying 
Zipper condition. Thus V c Z. We use this fact below without references. 

THEOREM 1. I f  L ~ Z is upper semicomplemented then it is lower semicornple- 
mented and each of  the following conditions implies that L is even complemented: 

(a) for all x ~ L\{0, 1} and y ~ U~ there exists an element y* ~ U~ with y < y* 

and either a < x or a ~ y* for all a ~ A(L); 
(b) for all A ~_ A(L) there exists a finite F ~_ A with ~/ A = ~/ F; 

(c) A c(L) = 0; 
(d) L is coatomic: 
(e) L is (9-semimoduIar; 

( f) L is O-distributive. 

Proof. Let x eL \{0 ,  1} and x ' =  A U~. Then x ' r  by (*). Suppose that 
x A x ' r  T h e n ( x A x ' ) v y = l f o r s o m e y s L ,  y r  W e s e e t h a t x ' v y = l .  On 
the other h a n d y ~ U ~ , h e n c e y > - A U ~ = x ' a n d x ' v y = y r  T h u s x A x ' = 0 .  
We prove that x '  is a lower semicomplement to x and hence L is lower semicomple- 

mented. 
The scheme of our further considerations is: 

(d) (b) 

(c) --* (a) 
I" T 

(e) (0 

--* L is complemented. 

(a) -*L is complemented. Let x ~ L\{0, 1}. Put x '  = / ~ .~ u ,  Y*. If a ~ A(L) then 
either a < x or a <-x' by (a). Hence x v x ' >  V A(L). It is easy to verify that 
V A(M)  = 1 for an arbitrary complete atomic and lower semicomplemented lattice 
M. Hence V A ( L ) = I  and x v x ' = l .  Suppose that x / x x ' - r  Then 
( x , x x ' )  v y = l  for some y e L ,  y r  It is clear that y s U ~ .  We have 
(x /xx ' )  v y * = l  a n d  x ' v y * = l .  On the other hand y * > A z ~ v x z * = x '  and 
x '  v y* = y *  -r 1, a contradiction. We see that x '  is a complement to x. 

(b) ~ (a ) .  Let x ~L\{0 ,  1}, y e Ux and Ax,y = {a e A(L) Ia ~ x ,  a f~y}~ Put 
b = V Ax,y and y* = y  v b. It is clear that y < y* and either a < x or a -< y* for all 
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a ~ A(L). It  remains to prove that y* e Ux. Since x v y* = 1 we need only verify 

that y * r  Suppose that y * =  1. By the hypothesis b = W T = l a i  for some 
n - - I  al . . . . .  anEAx,y. Put b ' = W ; = l  ai. Then ( y v b ' ) v x = l ,  ( y v b ' ) v a , =  

y v b = y * = l  and x A a , = 0 .  Hence y v b ' = l  by (,) .  Analogously y v b " = l  

where b " =  VT= 2 ai. Repeating these considerations we prove that y - - 1 .  It is 

impossible because y E Ux. 
(c) ~ ( a ) .  Let x ~ L\{0,  1} and y E Ux. I f y  v c = 1 for all e ~ C(L) then y = 1 

by ( ,) .  Hence there exists an element y* ~ C(L) with y < y*. It  is evident that 

y * ~  Ux. Suppose that a ~ x  and a ~ y *  for some a ~A(L) .  Then x v y * =  1, 
a v y* = 1, and x ^ a = 0. By ( , )  this means that y* = 1, a contradiction. 

(d) ~ (c). It  is easy to see that /~\  C(M) = 0 for an arbitrary complete coatomic 

and upper semicomplemented lattice M. H e n c e / ~  C(L) = O. 

(e) ~ (c). Suppose that k = A C(L) 4: O. Then k -> a for some a ~ A(L). Let 

b ~ U~. It is clear that a /x  b = 0. Since L is (9-semimodular, it wou ld  follow that 

l = a v b  covers b, i.e. b ~ C ( L ) .  Then b > - A C ( L ) = k > - a  and a v b = b r  a 

contradiction. 

(f) ~ (a). Let x ~ L\{0,  1} and y ~ U~. Suppose that a ~ x and a ~ y for some 

a ~ A(L). Then a ^ x = 0, a /~  y = 0 and a A (x v y) = a ^ 1 = a which contradicts 
(9-distributivity of  L. Putting y* = y, we see that (a) holds. 

Theorem is proved. 

One can note that (b) generalizes simultaneously several natural lattice condi- 

tions such as: L satisfies ascending chain condition (this implies ( d ) t o o ) ;  A(L) is 

finite; L has a finite width or a finite breadth. Thus an upper semicomplemented 

lattice of  Z satisfying one of these conditions is complemented. 

Observing that a lattice L is upper semicomplemented if A C(L) = 0 and using 
Theorem l(c), we have 

C O R O L L A R Y  1. I f  L ~ Y_ and A C(L) = 0 then L is complemented. 

C O R O L L A R Y  2. Let L E ~_ & (9-distribut&e and (9-modular. The following are 
equivalent: 

(1) L is upper semicomplemented; 
(2) L is complemented; 

(3) L is a finite Boolean algebra; 

(4) ~ /A(L)  = 1 and A(L) is finite. 

Proof. ( 1 ) ~ ( 2 )  by Theorem l(e) or (f). 
(2) --, (1) is evident. 
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(2)--+ (3). It is easy to see that a O-distributive and O-modular complemented 
lattice is uniquely complemented. Further O-modular uniquely complemented lat- 
tice is Boolean [1]. Finally a Boolean lattice L E ;~ must be finite because 0 is 
cocompact in L. 

(3)--* (4) is evident. 
(4) ~ (2). Let x e L\{0, 1}. Using the (9-distributivity of L and the fact that 

A(L) is finite it is easy to see that x '  = V {a ~ A(L) ]a ~ x} is a complement to x. 
Corollary is proved. 

It is evident that the analogue of Corollary 2 is not valid for an arbitrary lattice 
L from Z. Furthermore it is not valid even for an arbitrary lattice L Of V. This 
follows, e.g., from the fact that V contains the 5-element non-modular lattice (see 

[41, e.g.). 
Let us turn from the lattice language to the varietal one. 

THEOREM 2. I f  L = L(Y.) ~ V is upper semicomplemented then each of the 
following conditions implies that L is' complemented: 

(a) X is a locally finite variety of a finite type; 
(b) 3E is congruence-modular; 
(c) 3E is a semigroup variety; 
(d) for each A ~ 3~ and each non-trivial eL ~ Con (A) there exists a non-singleton 

e-class being a subalgebra of A. 

Proof It is well known that A(L) is finite in case (a), L is modular in case (b) 
and L is O-distributive in case (c). In case (d) L is O-distributive too by Lemma t 
of [6]. It remains to take into account Theorem l(b), (e), (f). 

One can note case (d) of Theorem 2 embraces some interesting classes of 
varieties which are not covered by (a)-(c),  e.g. varieties of completely regular 
semigroups, inverse semigroups, idempotent groupoids. 

COROLLARY 3. Let L = L(2Q ~ V and either t is congruence-permutable or 3i 
is a semigroup variety or 31 satisfies condition (d) of Theorem 2. Then conditions 

(1)-(4) of Corollary 2 are equivalent. 

Proof If  �9 is congruence-permutable (satisfies condition (d) of Theorem 2) then 
L satisfies implication x A z = 0-~(x v y) z, z = X /x y by [5], [,emma 3 (resp., [6], 
Lemma 1). In both cases it remains to take into account Corollary 2. For 
semigroup varieties the equivalence of (1) and (2) is guaranteed by Theorem 2(e) 
and equivalence of (2)-(4) was proved in [6]. 

At the conclusion let us formulate two open questions. 
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QUESTION 1. Are conditions (1)-(4) of Corollary 2 equivalent for an arbi- 
trary congruence-modular variety ~? 

QUESTION 2. Has an arbitrary congruence-modular variety a O-distributive 
subvariety lattice? 

Corollary 2 shows that if the answer to Question 2 is affirmative then the answer 
to Question 1 is affirmative too. Note that not all varieties have O-distributive 
subvariety lattices. Corresponding example (of a variety of 3-unary algebras) was 
constructed by P. P. Palfy (unpublished). 
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