ЗАДАЧИ для подготовки к контрольным, проверочным и самостоятельным работам по курсу «Математика», II семестр. Часть 3 «Определенный интеграл»

Непосредственное применение формулы Ньютона-Лейбница

No॒	Условие задачи	Ответы,
		указания
1	$\int_{0}^{1} \sqrt{1 + x} dx \ (\text{No2231 Берман})$	$\frac{2(\sqrt{8}-1)}{3}$
2	$\int_{4}^{9} \frac{y-1}{\sqrt{y}+1} dy \ (\text{N} \ge 2234 \text{ Берман})$	$7\frac{2}{3}$
3	$\int_{1}^{e^2} \frac{dx}{x\sqrt{1+\ln x}} $ (№2244 Берман)	2
4	$\int_{-0.5}^{1} \frac{dx}{\sqrt{8 + 2x - x^2}} $ (№2250 Берман)	$\frac{\pi}{6}$
5	$\int_{-\frac{\pi}{2}}^{-\frac{\pi}{4}} \frac{\cos^3 x}{\sqrt[3]{\sin x}} dx \text{ (No2255 Берман)}$	-0,083

Замена переменной в определенном интеграле

$N_{\underline{0}}$	Условие задачи	Ответы,
		указания
6	$\int_{4}^{9} \frac{\sqrt{x}}{\sqrt{x} - 1} dx \ (N_{2}275 \text{ Берман})$	7+2ln2
7	$\int_{3}^{8} \frac{x}{\sqrt{1+x}} dx \ (\text{N}_{2}2277 \text{ Берман})$	$\frac{32}{3}$
8	$\int_{3}^{8} \frac{x}{1 + \sqrt{x}} dx \ (\text{N} \text{_}2278 \ \text{Берман})$	$\frac{5}{3}$ - 2ln 2

Интегрирование по частям в определенном интеграле

No	Условие задачи	Ответы,
		указания
9	$\int_{0}^{\frac{\pi}{2}} x \cos x dx \ (\mathbb{N}2260 \text{ Берман})$	$\frac{\pi}{2}$ -1
10	$\int_{0}^{\pi} x^{3} \sin x dx $ (№2262 Берман)	$\pi^3-6\pi$

13	$\int_{0}^{e-1} \ln(x+1) dx \ (\text{No}2264 Берман})$	1
12	$\int_{0}^{\frac{\pi}{2}} e^{2x} \cos x dx $ (№2267 Берман)	$\frac{e^{\pi}-2}{5}$

Площадь фигуры с помощью определенного интеграла

№	Условие задачи	Ответы,
		указания
13	Вычислить площадь фигуры, ограниченной параболами $y = x^2$ и $y = \sqrt{x}$.	1
	(№2458 Берман)	3
14	Вычислить площадь одного из криволинейных треугольников,	$2 - \sqrt{2}$
	ограниченных осью абсцисс и линиями $y = \sin x$ и $y = \cos x$. (№2485	
	Берман)	

Длины дуг кривых, заданных уравнениями в прямоугольной системе координат.

№	Условие задачи	Ответы, указания
15	Вычислить длину дуги кривой $y = \ln \sin x$ от $x = \frac{\pi}{3}$ до $x = \frac{\pi}{2}$. (Данко №1613)	$\frac{1}{2}\ln 3$
16	Вычислить длину дуги кривой $y = \frac{x^2}{2}$ от $x = 0$ до $x = 1$. (Данко №1615)	$0.5\left[\sqrt{2} + \ln\left(1 + \sqrt{2}\right)\right]$

Длины дуг кривых, заданных параметрическими уравнениями.

No	Условие задачи	Ответы,
		указания
17	Вычислить длину дуги кривой $x = \frac{t^3}{3} - t$, $y = t^2 + 2$ от $t = 0$ до $t = 3$. (Данко №1618)	12
18	Вычислить длину дуги кривой $x = e^t \cos t$, $y = e^t \sin t$ от $t = 0$ до $t = \ln \pi$. (Данко №1619)	$\sqrt{2}(\pi-1)$

Вычисление объемов тел вращения вокруг оси Ox и Oy с помощью определенного интеграла

No	Условие задачи	Ответы,
		указания
19	Фигура, ограниченная дугами парабол $y=x^2$ и $y^2=x$, вращается вокруг	3π
	оси <i>Ох</i> . Найти объем тела, полученного вращением указанной фигуры. (№2561 Берман)	10
20	Фигура, ограниченная линиями $xy = 5$, $x = 1$, $x = 2$, $y = 0$, вращается	25π
	вокруг оси <i>Ох</i> . Найти объем тела, полученного вращением указанной фигуры. [3, стр. 144-145]	2

21	Фигура, ограниченная линиями $y = 3\cos x$, $x = 0$, $y = 0$, вращается вокруг	$9\pi^2$
	оси <i>Ox</i> . Найти объем тела, полученного вращением указанной фигуры. [3, стр. 144-145]	4
22	Фигура, ограниченная линиями $x = 3\sqrt{y}$, $x = 0$, $y = 9$, вращается вокруг	729π
	оси <i>Oy</i> . Найти объем тела, полученного вращением указанной фигуры. [3, стр. 144-145]	2
23	Фигура, ограниченная линиями $y = x^2$, $x = 0$, $y = 2$, вращается вокруг оси	2π
	$\textbf{\textit{Oy}}$. Найти объем тела, полученного вращением указанной фигуры. [3, стр. 144-145]	

- **Использовались учебные пособия:**1) Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах: Учебн. пособие для студентов втузов. В 2-х ч. Ч. І.-4-е изд.,испр. и доп. М.: Высш. шк., 1986.-304 с., ил.
- 2) Берман Г.Н. Сборник задач по математическому анализу. Изд. 20. М.: «Наука», 1985 3) С. Е. Демин, Е. Л. Демина Определенный интеграл: учеб.-метод. пособие. ССЫЛКА: https://elar.urfu.ru/bitstream/10995/27719/1/Demin_OprIntegral_2013.pdf