Тема II. Линейные операторы

§ 9. Корневые подпространства

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Инвариантные подпространства

Пусть V – линейное пространство над произвольным полем F, $\dim V < \infty$, $\mathcal{A} \colon V \to V$ – линейный оператор.

Мы хотим найти базис пространства V, в котором матрица оператора $\mathcal A$ устроена как можно проще и действие оператора $\mathcal A$ наиболее понятно. Если поле F произвольно, то скалярного произведения на V, вообще говоря, нет, и построения из предыдущих лекций, увы, неприменимы. Вспомним идеи, связанные с инвариантными подпространствами.

Определение

Пусть V – векторное пространство, $\mathcal{A}\colon V\to V$ – линейный оператор. Подпространство $S\subseteq V$ называется инвариантным относительно \mathcal{A} или \mathcal{A} -инвариантным, если $\mathcal{A}\mathbf{x}\in S$ для любого $\mathbf{x}\in S$.

Мы знаем, что если пространство V является $\mathit{прямой}$ суммой ненулевых \mathcal{A} -инвариантных подпространств S_1,\ldots,S_t , то в базисе пространства V, полученном объединением базисов подпространств S_1,\ldots,S_t , матрица оператора \mathcal{A} будет блочно-диагональной, причем i-й диагональный блок будет матрицей ограничения \mathcal{A} на подпространство S_i в выбранном в этом подпространстве базисе. Но где взять такие подпространства?

Цепочки ядер и образов степеней линейного оператора

Для любого линейного оператора $\mathcal{A}\colon V\to V$ его ядро $\operatorname{Ker}\mathcal{A}$ и образ $\operatorname{Im}\mathcal{A}$ будут \mathcal{A} -инвариантными подпространствами. Однако для «типичного» оператора \mathcal{A} эти подпространства имеют ненулевое пересечение, и потому разложить пространство V в их прямую сумму не получится.

Так как $\mathcal{A}^{k+1}\mathbf{x} = \mathcal{A}(\mathcal{A}^k\mathbf{x})$ для любого $\mathbf{x} \in V$, имеем $\operatorname{Ker} \mathcal{A}^k \subseteq \operatorname{Ker} \mathcal{A}^{k+1}$ для любого натурального k. Кроме того, ясно, что $\operatorname{Im} \mathcal{A}^k \supseteq \operatorname{Im} \mathcal{A}^{k+1}$. Получаем две цепочки подпространств – растущую и убывающую:

$$\{\mathbf{0}\} \subseteq \operatorname{Ker} \mathcal{A} \subseteq \operatorname{Ker} \mathcal{A}^2 \subseteq \cdots \subseteq \operatorname{Ker} \mathcal{A}^s \subseteq \cdots$$
$$V \supseteq \operatorname{Im} \mathcal{A} \supseteq \operatorname{Im} \mathcal{A}^2 \supseteq \cdots \supseteq \operatorname{Im} \mathcal{A}^s \supseteq \cdots$$

Так как $\dim V < \infty$, в обеих цепочках возникнут равные подпространства. Пусть s таково, что $\operatorname{Im} \mathcal{A}^s = \operatorname{Im} \mathcal{A}^{s+1}$. Индукцией по k покажем, что тогда имеет место $\operatorname{Im} \mathcal{A}^{s+k} = \operatorname{Im} \mathcal{A}^s$ для любого натурального k. База очевидна. Шаг: $\operatorname{Im} \mathcal{A}^{s+k} = \mathcal{A}(\operatorname{Im} \mathcal{A}^{s+k-1}) = \mathcal{A}(\operatorname{Im} \mathcal{A}^s) = \operatorname{Im} \mathcal{A}^{s+1} = \operatorname{Im} \mathcal{A}^s$.

По теореме о сумме ранга и дефекта $\dim\operatorname{Im}\mathcal{A}^s+\dim\operatorname{Ker}\mathcal{A}^s=\dim V.$ Поэтому обе цепочки стабилизируются одновременно.

Заметим еще, что все подпространства в обеих цепочках A-инвариантны.

Разложение Фиттинга

Положим $U_{\mathcal{A}} := \operatorname{Im} \mathcal{A}^s, \ N_{\mathcal{A}} := \operatorname{Ker} \mathcal{A}^s,$ где s — наименьшее со свойством $\operatorname{Im} \mathcal{A}^s = \operatorname{Im} \mathcal{A}^{s+1} = \dots$ Как отмечено, тогда и $\operatorname{Ker} \mathcal{A}^s = \operatorname{Ker} \mathcal{A}^{s+1} = \dots$ Инвариантное подпространство $U_{\mathcal{A}}$ называется 1-компонентой оператора \mathcal{A} , а инвариантное подпространство $N_{\mathcal{A}}$ — его 0-компонентой. Оператор, некоторая степень которого — нулевой оператор, называют нильпотентным.

Предложение (лемма Фиттинга)

 $V=U_{\mathcal{A}}\oplus N_{\mathcal{A}}$ для любого линейного оператора $\mathcal{A}\colon V\to V$. При этом ограничение \mathcal{A} на 1-компоненту $U_{\mathcal{A}}$ – невырожденный оператор, а ограничение \mathcal{A} на 0-компоненту $N_{\mathcal{A}}$ – нильпотентный оператор.

 \mathcal{L} оказательство. Поскольку $\dim\operatorname{Im}\mathcal{A}^s+\dim\operatorname{Ker}\mathcal{A}^s=\dim V$, равенство $V=U_{\mathcal{A}}\oplus N_{\mathcal{A}}$ равносильно равенству $U_{\mathcal{A}}\cap N_{\mathcal{A}}=\{\mathbf{0}\}$. Возьмем вектор $\mathbf{x}\in U_{\mathcal{A}}\cap N_{\mathcal{A}}$. Раз $\mathbf{x}\in U_{\mathcal{A}}=\operatorname{Im}\mathcal{A}^s$, имеем $\mathbf{x}=\mathcal{A}^s\mathbf{y}$ для некоторого \mathbf{y} . Раз $\mathbf{x}\in N_{\mathcal{A}}=\operatorname{Ker}\mathcal{A}^s$, имеем $\mathbf{0}=\mathcal{A}^s\mathbf{x}=\mathcal{A}^{2s}\mathbf{y}$. Отсюда $\mathbf{y}\in\operatorname{Ker}\mathcal{A}^{2s}=\operatorname{Ker}\mathcal{A}^s$, а значит, $\mathbf{x}=\mathcal{A}^s\mathbf{y}=\mathbf{0}$.

По определению 0-компоненты ограничение \mathcal{A}^s на нее — нулевой оператор, т.е. ограничение \mathcal{A} на нее — нильпотентный оператор. Из того, что $U_{\mathcal{A}} \cap \operatorname{Ker} \mathcal{A}^s = \{0\}$, следует, что ограничение \mathcal{A}^s на 1-компоненту невырождено, но тогда невырождено и ограничение \mathcal{A} на нее.

Корневые подпространства

Пусть V – линейное пространство над произвольным полем $F, \dim V < \infty$, $\mathcal{A}\colon V \to V$ – линейный оператор. Предполагаем, что все собственные значения оператора \mathcal{A} лежат в F, – этого можно добиться, расширив F до поля разложения характеристического многочлена оператора \mathcal{A} . Возьмем собственное значение α оператора \mathcal{A} и положим $\mathcal{A}_{\alpha}:=\mathcal{A}-\alpha\mathcal{E}$. Отметим, что у \mathcal{A} и \mathcal{A}_{α} одинаковые инвариантные подпространства.

Определение

Корневым подпространством линейного оператора \mathcal{A} , соответствующим собственному значению α , называется 0-компонента $N_{\mathcal{A}_{\alpha}}$ оператора \mathcal{A}_{α} .

Более подробно, корневое подпространство, отвечающее собственному значению α , – это $\operatorname{Ker} (\mathcal{A} - \alpha \mathcal{E})^s$, где s – наименьшее число со свойством $\operatorname{Ker} (\mathcal{A} - \alpha \mathcal{E})^s = \operatorname{Ker} (\mathcal{A} - \alpha \mathcal{E})^{s+1} = \dots$ Число s называют высотой корневого подпространства $\operatorname{Ker} (\mathcal{A} - \alpha \mathcal{E})^s$, а его ненулевые вектора – корневыми векторами, принадлежащими собственному значению α .

Отметим, что собственные вектора оператора \mathcal{A} , принадлежащие α , являются корневыми – ведь собственные вектора лежат в $\mathrm{Ker}\,(\mathcal{A}-\alpha\mathcal{E})$. Итак, корневые вектора – обобщение собственных.

Корневые подпространства (2)

Зачем нужны корневые вектора? Вспомним, чем хороши собственные вектора: матрица оператора в базисе из собственных векторов диагональна, причем по диагонали стоят собственные значения. Однако базис из собственных векторов есть далеко не у всех операторов.

Пример. Рассмотрим оператор дифференцирования $\mathcal D$ на пространстве квадратных трехчленов над $\mathbb R$. Матрица оператора $\mathcal D$ в стандартном

базисе
$$1, x, x^2$$
 равна $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$. Ее характеристический многочлен

$$egin{bmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 2 \\ 0 & 0 & -\lambda \end{bmatrix} = -\lambda^3$$
 имеет корень 0 кратности 3. Собственные вектора оператора $\mathcal D$ принадлежащие 0 суть ненулевые константы, поэтому

оператора \mathcal{D} , принадлежащие 0, суть ненулевые константы, поэтому у \mathcal{D} нет базиса из собственных векторов. Отметим, что *базис из корневых векторов* у \mathcal{D} *есть*: многочлены $1,x,x^2$ — корневые вектора.

Мы докажем, что базис из корневых векторов есть у любого линейного оператора, собственные значения которого лежат в поле скаляров. После этого надо будет еще разобраться, как устроена матрица оператора в базисе из корневых векторов, но это тема следующей лекции.

Корневое разложение

Спектр оператора $\mathcal A$ – это множество всех его собственных значений. Спектр оператора $\mathcal A$ обозначается через $\operatorname{Spec} \mathcal A$.

Теорема (корневое разложение)

Если V – линейное пространство над полем F, а $\mathcal{A}\colon V\to V$ – такой линейный оператор, что $\operatorname{Spec}\mathcal{A}\subseteq F$, то V – прямая сумма всех корневых подпространств оператора \mathcal{A} . Размерность корневого подпространства, отвечающего $\alpha\in\operatorname{Spec}\mathcal{A}$, равна кратности корня α в характеристическом многочлене оператора \mathcal{A} .

Если корневое подпространство, отвечающее α , обозначить через V_{α} , корневое разложение запишется так:

$$V = \bigoplus_{\alpha \in \operatorname{Spec} \mathcal{A}} V_{\alpha}.$$

Доказательство. Индукция по $\dim V$. База $\dim V = 1$ очевидна.

Пусть $\dim V>1$. Возьмем $\alpha\in\operatorname{Spec}\mathcal{A}$ и запишем для оператора $\mathcal{A}_{\alpha}=\mathcal{A}-\alpha\mathcal{E}$ разложение Фиттинга: $V=U_{\mathcal{A}_{\alpha}}\oplus N_{\mathcal{A}_{\alpha}}=U_{\mathcal{A}_{\alpha}}\oplus V_{\alpha}$.

Корневое разложение (2)

Составим базис пространства V из базисов прямых слагаемых $U_{\mathcal{A}_{\alpha}}$ и V_{α} . Поскольку подпространства $U_{\mathcal{A}_{\alpha}}$ и V_{α} инвариантны относительно \mathcal{A} , матрица оператора \mathcal{A} в этом базисе имеет вид $A=\begin{pmatrix} B&O\\O&C \end{pmatrix}$, где B и C – матрицы ограничений \mathcal{A} на $U_{\mathcal{A}_{\alpha}}$ и V_{α} в базисах этих подпространств, а через O обозначены нулевые блоки соответствующих размеров. Тогда характеристический многочлен $f_{\mathcal{A}}(\lambda)$ оператора \mathcal{A} равен произведению характеристических многочленов матриц B и C:

$$f_{\mathcal{A}}(\lambda) = |A - \lambda E| = \begin{vmatrix} B - \lambda E & O \\ O & C - \lambda E \end{vmatrix} = |B - \lambda E| \cdot |C - \lambda E|.$$

Пусть β – корень многочлена $|C-\lambda E|$. Возьмем в подпространстве V_{α} собственный вектор ${\bf x}$, принадлежащий β . Применим к ${\bf x}$ оператор ${\cal A}_{\alpha}$:

$$\mathcal{A}_{\alpha}\mathbf{x} = (\mathcal{A} - \alpha \mathcal{E})\mathbf{x} = \mathcal{A}\mathbf{x} - \alpha \mathbf{x} = \beta \mathbf{x} - \alpha \mathbf{x} = (\beta - \alpha)\mathbf{x}.$$

Отсюда $\mathcal{A}_{\alpha}^2\mathbf{x}=(\beta-\alpha)^2\mathbf{x}$, $\mathcal{A}_{\alpha}^3\mathbf{x}=(\beta-\alpha)^3\mathbf{x}$, и т.д. Если s – высота корневого подпространства V_{α} , то $\mathcal{A}_{\alpha}^s\mathbf{x}=\mathbf{0}$, так как $V_{\alpha}=\operatorname{Ker}\mathcal{A}_{\alpha}^s$. Отсюда $(\beta-\alpha)^s\mathbf{x}=\mathbf{0}$. Поскольку $\mathbf{x}\neq\mathbf{0}$, заключаем, что $(\beta-\alpha)^s=0$, т.е. $\beta=\alpha$. Раз все корни многочлена $|C-\lambda E|$ равны α , то $|C-\lambda E|=(-1)^k(\lambda-\alpha)^k$, где k – размер матрицы C, т.е. $\dim V_{\alpha}$.

Корневое разложение (3)

Множитель $|B-\lambda E|$ в разложении $f_{\mathcal{A}}(\lambda)=|B-\lambda E|\cdot |C-\lambda E|$ – это характеристический многочлен ограничения оператора \mathcal{A} на подпространство $U_{\mathcal{A}_{\alpha}}$, т.е. на 1-компоненту оператора $\mathcal{A}_{\alpha}=\mathcal{A}-\alpha\mathcal{E}.$ Ограничение \mathcal{A}_{α} на свою 1-компоненту невырождено, т.е. $\mathcal{A}_{\alpha}\mathbf{x}\neq\mathbf{0}$ для ненулевых $\mathbf{x}\in U_{\mathcal{A}_{\alpha}}$. Это значит, что $\mathcal{A}\mathbf{x}\neq\alpha\mathbf{x}$, если $\mathbf{x}\in U_{\mathcal{A}_{\alpha}}$ и $\mathbf{x}\neq\mathbf{0}$, т.е. подпространство $U_{\mathcal{A}_{\alpha}}$ не содержит собственных векторов оператора \mathcal{A} , принадлежащих α . Поэтому α не является корнем многочлена $|B-\lambda E|.$ Из равенства $f_{\mathcal{A}}(\lambda)=|B-\lambda E|\cdot |C-\lambda E|=|B-\lambda E|\cdot (-1)^k(\lambda-\alpha)^k$ заключаем, что $k=\dim V_{\alpha}$ есть кратность корня α в характеристическом многочлене оператора $\mathcal{A}.$

Для завершения доказательства остается применить предположение индукции к ограничению оператора ${\mathcal A}$ на подпространство $U_{{\mathcal A}_{\alpha}}$, размерность которого меньше размерности V.

Отметим, что теорема о корневом разложении сводит задачу об устройстве «простейшей» матрицы произвольного линейного оператора к случаю нильпотентных операторов.

Матричное следствие

Следствие (Камилл Жордан, 1870)

Если $\mathcal{A}\colon V \to V$ — такой линейный оператор, что $\operatorname{Spec} \mathcal{A}$ содержится в поле скаляров, то в V можно выбрать базис из его корневых векторов. В этом базисе матрица оператора \mathcal{A} блочно-диагональна.

Число диагональных блоков равно $|\operatorname{Spec} \mathcal{A}|$, размер блока, отвечающего $\alpha \in \operatorname{Spec} \mathcal{A}$, равен кратности k корня α в характеристическом многочлене оператора \mathcal{A} , а блок равен $\alpha E_k + A_\alpha$, где A_α есть матрица ограничения оператора $\mathcal{A}_\alpha = \mathcal{A} - \alpha \mathcal{E}$ на его 0-компоненту.

Если
$$\operatorname{Spec} \mathcal{A} = \{ \alpha_1, \alpha_2, \dots, \alpha_t \}$$
 и

$$f_{\mathcal{A}}(\lambda) = \pm (\lambda - \alpha_1)^{k_1} (\lambda - \alpha_2)^{k_2} \cdots (\lambda - \alpha_t)^{k_t},$$

то

$$A = \begin{pmatrix} \alpha_1 E_{k_1} + A_{\alpha_1} & O & \dots & O \\ O & \alpha_2 E_{k_2} + A_{\alpha_2} & \dots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \dots & \alpha_t E_{k_t} + A_{\alpha_t} \end{pmatrix}.$$

Многочлены от операторов. Аннулирующие многочлены

Пусть $f=a_px^p+a_{p-1}x^{p-1}+\cdots+a_1x+a_0$ – многочлен над полем F, а ${\mathcal A}$ – линейный оператор на пространстве V над F. Значением многочлена f от ${\mathcal A}$ называется оператор

$$f(\mathcal{A}) = a_p \mathcal{A}^p + a_{p-1} \mathcal{A}^{p-1} + \dots + a_1 \mathcal{A}x + a_0 \mathcal{E},$$

где $\mathcal E$ – единичный оператор. Многочлен f аннулирует оператор $\mathcal A$, если $f(\mathcal A)=\mathcal O$, где $\mathcal O$ – нулевой оператор.

Предложение (существование аннулирующих многочленов)

Для любого линейного оператора на конечномерном пространстве существует ненулевой аннулирующий многочлен.

Доказательство. Если $\dim V = n$, то размерность пространства всех линейных операторов на пространстве V равна n^2 . Поэтому для любого оператора \mathcal{A} система $\mathcal{E}, \mathcal{A}, \mathcal{A}^2, \ldots, \mathcal{A}^{n^2}$ линейно зависима. Значит, есть такие скаляры $a_0, a_1, a_2, \ldots, a_{n^2}$, не все равные 0, что

$$a_0\mathcal{E} + a_1\mathcal{A} + a_2\mathcal{A}^2 + \dots + a_{n^2}\mathcal{A}^{n^2} = \mathcal{O}.$$

Если
$$f := a_0 + a_1 x + a_2 x^2 + \dots + a_{n^2} x^{n^2}$$
, то $f \neq 0$ и $f(A) = \mathcal{O}$.

Минимальный многочлен оператора

Mинимальным многочленом линейного оператора ${\mathcal A}$ называется ненулевой многочлен наименьшей степени, аннулирующий ${\mathcal A}$.

Предложение (свойство минимального многочлена)

Минимальный многочлен линейного оператора делит любой его аннулирующий многочлен.

Доказательство. Пусть f — произвольный аннулирующий многочлен оператора \mathcal{A} , а m — минимальный многочлен. Поделим с остатком: f=qm+r, где $\deg r < \deg m$. Подставив в это равенство оператор \mathcal{A} , получим $f(\mathcal{A})=q(\mathcal{A})m(\mathcal{A})+r(\mathcal{A})$, откуда $r(\mathcal{A})=\mathcal{O}$. Но m — ненулевой многочлен наименьшей степени, аннулирующий \mathcal{A} , следовательно, r=0 и m делит f.

Из предложения следует, что минимальный многочлен оператора единствен с точностью до ассоциированности.

Теорема (о минимальном многочлене)

Пусть $\mathcal{A}\colon V \to V$ – линейный оператор, $\operatorname{Spec} \mathcal{A} = \{\alpha_1, \alpha_2, \dots, \alpha_t\}$ содержится в поле скаляров и s_i – высота корневого подпространства V_{α_i} . Минимальный многочлен оператора \mathcal{A} есть

$$m(\lambda) := (\lambda - \alpha_1)^{s_1} (\lambda - \alpha_2)^{s_2} \cdots (\lambda - \alpha_t)^{s_t}.$$

Доказательство. Сперва поймем, что многочлен $m(\lambda)$ аннулирует \mathcal{A} . Пользуясь корневым разложением, представим произвольный вектор $\mathbf{x} \in V$ как $\mathbf{x} = \sum_{i=1}^t \mathbf{x}_i$, где $\mathbf{x}_i \in V_{\alpha_i}$. По определению корневого подпространства имеем $(\mathcal{A} - \alpha_i \mathcal{E})^{s_i} \mathbf{x}_i = \mathbf{0}$. Поэтому

$$m(\mathcal{A})\mathbf{x} = \sum_{i=1}^{t} m(\mathcal{A})\mathbf{x}_{i} = \sum_{i=1}^{t} \prod_{j \neq i} (\mathcal{A} - \alpha_{j}\mathcal{E})^{s_{j}} \cdot (\mathcal{A} - \alpha_{i}\mathcal{E})^{s_{i}}\mathbf{x}_{i} = \mathbf{0}.$$

Здесь использовано, что многочлены от оператора перестановочны. По доказанному выше минимальный многочлен должен делить $m(\lambda)$. Проверим, что никакой собственный делитель этого многочлена не аннулирует оператор $\mathcal A$.

Теорема о минимальном многочлене (2)

Любой собственный делитель многочлена $m(\lambda)$ имеет вид

$$n(\lambda) := (\lambda - \alpha_1)^{q_1} (\lambda - \alpha_2)^{q_2} \cdots (\lambda - \alpha_t)^{q_t},$$

где $q_i \leq s_i$ для всех $i=1,\ldots,t$ и $q_j < s_j$ для какого-то j. Возмем вектор $\mathbf{y} \in \mathrm{Ker}(\mathcal{A}-\alpha_j\mathcal{E})^{s_j} \setminus \mathrm{Ker}(\mathcal{A}-\alpha_j\mathcal{E})^{s_j-1}$ – он существует по определению высоты корневого подпространства. Тогда $(\mathcal{A}-\alpha_j\mathcal{E})^{q_j}\mathbf{y} \neq \mathbf{0}$, откуда

$$n(\mathcal{A})\mathbf{y} = \prod_{i \neq j} (\mathcal{A} - \alpha_i \mathcal{E})^{q_i} \cdot (\mathcal{A} - \alpha_j \mathcal{E})^{q_j} \mathbf{y} \neq \mathbf{0},$$

ибо при $i \neq j$ оператор $\mathcal{A} - \alpha_i \mathcal{E}$ невырожден на подпространстве V_{α_i} . \square Ясно, что высота корневого подпространства не больше его размерности. Поэтому характеристический многочлен $(\lambda - \alpha_1)^{k_1}(\lambda - \alpha_2)^{k_2} \cdots (\lambda - \alpha_t)^{k_t}$ делится на минимальный многочлен $(\lambda - \alpha_1)^{s_1}(\lambda - \alpha_2)^{s_2} \cdots (\lambda - \alpha_t)^{s_t}$. Из этого наблюдения вытекает красивое следствие:

Теорема Гамильтона-Кэли (Фердинанд Георг Фробениус, 1878)

Характеристический многочлен оператора аннулирует оператор.

Это – мощное тождество, неочевидное даже для 3×3 -матриц.

Критерий диагонализируемости

Другим важным следствием теоремы о минимальном многочлене является критерий диагонализируемости линейного оператора. Напомним, что *диагонализируемыми* или *приводимыми* к *диагональному виду* называют операторы, допускающие базис из собственных векторов.

Теорема (критерий диагонализируемости)

Оператор, спектр которого лежит в поле скаляров, диагонализируем, если и только если его минимальный многочлен не имеет кратных корней.

Доказательство. Если минимальный многочлен не имеет кратных корней, то высота каждого корневого подпространства равна 1, а тогда все корневые вектора будут собственными. Поэтому у такого оператора есть базис из собственных векторов.

Обратно, если оператор $\mathcal A$ диагонализируем и $\operatorname{Spec} \mathcal A = \{\alpha_1, \alpha_2, \dots, \alpha_t\}$, то используя диагональную матрицу оператора $\mathcal A$, легко подсчитать, что многочлен $(\lambda - \alpha_1)(\lambda - \alpha_2) \cdots (\lambda - \alpha_t)$ аннулирует $\mathcal A$.

Отмечавшийся ранее факт, что операторы, у которых характеристический многочлен не имеет кратных корней, диагонализируемы, является простейшим частным случаем доказанного сейчас критерия.

Критерий диагонализируемости (2)

Как использовать критерий диагонализируемости? Вычисление минимального многочлена – непростая задача, удобной явной формулы (как для характеристического многочлена) в этом случае нет.

Оказывается, над полем нулевой характеристики можно проверить, имеются ли у минимального многочлена кратные корни, не вычисляя его! Применим технику отделения кратных множителей из §1.6.

Пусть f – характеристический многочлен линейного оператора \mathcal{A} , определенного на векторном пространстве над полем характеристики 0.

Вычислим многочлен
$$g:=rac{f}{\mathrm{HOД}(f,f')}$$
. Если $f=(\lambda-lpha_1)^{k_1}\cdots(\lambda-lpha_t)^{k_t}$,

то $g=(\lambda-\alpha_1)\cdots(\lambda-\alpha_t)$ – многочлен без кратных корней с теми же корнями, что у f. Теперь подсчитаем значение $g(\mathcal{A})$. Если $g(\mathcal{A})=\mathcal{O}$, то g – минимальный многочлен оператора \mathcal{A} . В этом случае у минимального многочлена нет кратных корней. Если же $g(\mathcal{A})\neq\mathcal{O}$, то у минимального многочлена есть кратные корни.

Отметим еще, что иногда удается вывести отсутствие у минимального многочлена оператора $\mathcal A$ кратных корней из свойств самого оператора. Например, если $\mathcal A^2=\mathcal A$ (идемпотентный оператор), то $\mathcal A$ аннулируется многочленом $\lambda^2-\lambda=\lambda(\lambda-1)$ без кратных корней. Поэтому минимальный многочлен идемпотентного оператора не имеет кратных корней.