Special elements in lattices of semigroup varieties

Boris M. Vernikov

Ural Federal University

Workshop on General Algebra AAA-82 Potsdam, 25 June, 2011

An element x of a lattice L is called *neutral* if x, y and z generate a distributive sublattice of L for all $y, z \in L$.

Theorem

(Volkov, 2005) The following varieties and only they are neutral elements of the lattice **SEM**: T, SEM, SL, ZM, $SL \lor ZM$.

Theorem

(Shaprynskii, 2011) A variety of commutative semigroups \mathcal{V} is a neutral element of the lattice **Com** if and only if either $\mathcal{V} = \mathcal{COM}$ or $\mathcal{V} = \mathcal{M} \lor \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or \mathcal{SL} , while \mathcal{N} satisfies the identities $x^2y = 0$ and xy = yx.

An element x of a lattice L is called *neutral* if x, y and z generate a distributive sublattice of L for all $y, z \in L$.

Theorem

(Volkov, 2005) The following varieties and only they are neutral elements of the lattice **SEM**: T, SEM, SL, ZM, $SL \lor ZM$.

Theorem

(Shaprynskii, 2011) A variety of commutative semigroups \mathcal{V} is a neutral element of the lattice **Com** if and only if either $\mathcal{V} = \mathcal{COM}$ or $\mathcal{V} = \mathcal{M} \lor \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or \mathcal{SL} , while \mathcal{N} satisfies the identities $x^2y = 0$ and xy = yx.

An element x of a lattice L is called *neutral* if x, y and z generate a distributive sublattice of L for all $y, z \in L$.

Theorem

(Volkov, 2005) The following varieties and only they are neutral elements of the lattice **SEM**: \mathcal{T} , \mathcal{SEM} , \mathcal{SL} , \mathcal{ZM} , $\mathcal{SL} \lor \mathcal{ZM}$.

Theorem

(Shaprynskii, 2011) A variety of commutative semigroups \mathcal{V} is a neutral element of the lattice **Com** if and only if either $\mathcal{V} = \mathcal{COM}$ or $\mathcal{V} = \mathcal{M} \lor \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or \mathcal{SL} , while \mathcal{N} satisfies the identities $x^2y = 0$ and xy = yx.

An element x of a lattice L is called *distributive* if

 $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$

for all $y, z \in L$.

Theorem

(Shaprynskii, Vernikov, 2010) A variety of semigroups \mathcal{V} is a distributive element of the lattice **SEM** if and only if either $\mathcal{V} = S\mathcal{EM}$ or $\mathcal{V} = \mathcal{M} \lor \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or $S\mathcal{L}$, while \mathcal{N} is a 0-reduced variety and \mathcal{N} satisfies the identities $x^2y = xyx = yx^2 = 0$.

An element x of a lattice L is called *distributive* if

$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

for all $y, z \in L$.

Theorem

(Shaprynskii, Vernikov, 2010) A variety of semigroups \mathcal{V} is a distributive element of the lattice **SEM** if and only if either $\mathcal{V} = \mathcal{SEM}$ or $\mathcal{V} = \mathcal{M} \lor \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or \mathcal{SL} , while \mathcal{N} is a 0-reduced variety and \mathcal{N} satisfies the identities $x^2y = xyx = yx^2 = 0$.

(Shaprynskii, 2011) A commutative variety of semigroups \mathcal{V} is a distributive element of the lattice **Com** if and only if either $\mathcal{V} = \mathcal{COM}$ or $\mathcal{V} = \mathcal{M} \lor \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or \mathcal{SL} , while \mathcal{N} is a 0-reduced in **Com** variety, \mathcal{N} satisfies the identities $x^2y^2z = x^3yz = 0$ and either both the identities $x^2y^2 = 0$ and $x^3y = 0$ hold in \mathcal{N} or both these identities false in \mathcal{N} .

An element x of a lattice L is called *modular* if

$$(x \lor y) \land z = (x \land z) \lor y$$

for all $y, z \in L$ with $y \leq z$.

Definition

An element x of a lattice L is called *lower-modular* if $x \lor (y \land z) = y \land (x \lor z)$

for all $y, z \in L$ with $x \leq y$.

Observation

Every distributive element is lower-modular.

An element x of a lattice L is called *modular* if

$$(x \lor y) \land z = (x \land z) \lor y$$

for all $y, z \in L$ with $y \leq z$.

Definition

An element x of a lattice L is called *lower-modular* if $x \lor (y \land z) = y \land (x \lor z)$

for all $y, z \in L$ with $x \leq y$.

Observation

Every distributive element is lower-modular.

An element x of a lattice L is called *modular* if

$$(x \lor y) \land z = (x \land z) \lor y$$

for all $y, z \in L$ with $y \leq z$.

Definition

An element x of a lattice L is called *lower-modular* if $x \lor (y \land z) = y \land (x \lor z)$

for all $y, z \in L$ with $x \leq y$.

Observation

Every distributive element is lower-modular.

(Shaprynskii, Vernikov, 2010) A variety of semigroups \mathcal{V} is a lower-modular element of the lattice **SEM** if and only if either $\mathcal{V} = \mathcal{SEM}$ or $\mathcal{V} = \mathcal{M} \lor \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or \mathcal{SL} , while \mathcal{N} is a 0-reduced variety.

Theorem

(Shaprynskii) A variety of commutative semigroups \mathcal{V} is a lower-modular element of the lattice **Com** if and only if either $\mathcal{V} = \mathcal{COM}$ or $\mathcal{V} = \mathcal{M} \lor \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or \mathcal{SL} , while \mathcal{N} is a 0-reduced in **Com** variety.

(Shaprynskii, Vernikov, 2010) A variety of semigroups \mathcal{V} is a lower-modular element of the lattice **SEM** if and only if either $\mathcal{V} = \mathcal{SEM}$ or $\mathcal{V} = \mathcal{M} \lor \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or \mathcal{SL} , while \mathcal{N} is a 0-reduced variety.

Theorem

(Shaprynskii) A variety of commutative semigroups \mathcal{V} is a lower-modular element of the lattice **Com** if and only if either $\mathcal{V} = \mathcal{COM}$ or $\mathcal{V} = \mathcal{M} \lor \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or \mathcal{SL} , while \mathcal{N} is a 0-reduced in **Com** variety.

An identity u = v is called *substitutive* if u and v depend on the same letters and v may be obtained from u by renaming of letters

Fheorem

- (Jezek, McKenzie, 1993; reproved in a shorter and simpler way by Shaprynskii) If a variety of semigroups \mathcal{V} is a modular element of the lattice **SEM** and $\mathcal{V} \neq S\mathcal{EM}$ then $\mathcal{V} = \mathcal{M} \vee \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or $S\mathcal{L}$, while \mathcal{N} is a nil-variety.
- b) (Vernikov, 2007) If a nil-variety N is a modular element of the lattice **SEM** then N may be given by 0-reduced and substitutive identities only.
- c) (Vernikov, Volkov, 1988; independently Jezek, McKenzie, 1993) If N is a 0-reduced variety then N is a modular element of the lattice **SEM**.

An identity u = v is called *substitutive* if u and v depend on the same letters and v may be obtained from u by renaming of letters

Theorem

- a) (Jezek, McKenzie, 1993; reproved in a shorter and simpler way by Shaprynskii) If a variety of semigroups \mathcal{V} is a modular element of the lattice **SEM** and $\mathcal{V} \neq \mathcal{SEM}$ then $\mathcal{V} = \mathcal{M} \lor \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or \mathcal{SL} , while \mathcal{N} is a nil-variety.
- b) (Vernikov, 2007) If a nil-variety N is a modular element of the lattice **SEM** then N may be given by 0-reduced and substitutive identities only.
- c) (Vernikov, Volkov, 1988; independently Jezek, McKenzie, 1993) If N is a 0-reduced variety then N is a modular element of the lattice **SEM**.

An identity u = v is called *substitutive* if u and v depend on the same letters and v may be obtained from u by renaming of letters

Theorem

- a) (Jezek, McKenzie, 1993; reproved in a shorter and simpler way by Shaprynskii) If a variety of semigroups \mathcal{V} is a modular element of the lattice **SEM** and $\mathcal{V} \neq \mathcal{SEM}$ then $\mathcal{V} = \mathcal{M} \lor \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or \mathcal{SL} , while \mathcal{N} is a nil-variety.
- b) (Vernikov, 2007) If a nil-variety N is a modular element of the lattice **SEM** then N may be given by 0-reduced and substitutive identities only.
- c) (Vernikov, Volkov, 1988; independently Jezek, McKenzie, 1993) If N is a 0-reduced variety then N is a modular element of the lattice **SEM**.

An identity u = v is called *substitutive* if u and v depend on the same letters and v may be obtained from u by renaming of letters

Theorem

- a) (Jezek, McKenzie, 1993; reproved in a shorter and simpler way by Shaprynskii) If a variety of semigroups \mathcal{V} is a modular element of the lattice **SEM** and $\mathcal{V} \neq \mathcal{SEM}$ then $\mathcal{V} = \mathcal{M} \lor \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or \mathcal{SL} , while \mathcal{N} is a nil-variety.
- b) (Vernikov, 2007) If a nil-variety N is a modular element of the lattice **SEM** then N may be given by 0-reduced and substitutive identities only.
- c) (Vernikov, Volkov, 1988; independently Jezek, McKenzie, 1993) If N is a 0-reduced variety then N is a modular element of the lattice **SEM**.

Corollary

A lower-modular element of the lattice $\ensuremath{\mathsf{SEM}}$ is a modular element of this lattice.

Theorem

(Vernikov, 2007) A variety of commutative semigroups \mathcal{V} is a modular element of the lattice **SEM** if and only if $\mathcal{V} = \mathcal{M} \vee \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or \mathcal{SL} , while \mathcal{N} satisfies the identities $x^2y = 0$ and xy = yx.

Corollary

A lower-modular element of the lattice **SEM** is a modular element of this lattice.

Theorem

(Vernikov, 2007) A variety of commutative semigroups \mathcal{V} is a modular element of the lattice **SEM** if and only if $\mathcal{V} = \mathcal{M} \lor \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or \mathcal{SL} , while \mathcal{N} satisfies the identities $x^2y = 0$ and xy = yx.

- a) (Shaprynskii) If a variety of semigroups \mathcal{V} is a modular element of the lattice **Com** and $\mathcal{V} \neq \mathcal{COM}$ then $\mathcal{V} = \mathcal{M} \lor \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or \mathcal{SL} , while \mathcal{N} is a commutative nil-variety.
- b) (Shaprynskii) If a commutative nil-variety N is a modular element of the lattice **Com** then N may be given within COM by 0-reduced and substitutive identities only.
- c) (Shaprynskii) If N is a 0-reduced in **Com** variety then N is a modular element of the lattice **Com**.

Corollary

- a) (Shaprynskii) If a variety of semigroups \mathcal{V} is a modular element of the lattice **Com** and $\mathcal{V} \neq \mathcal{COM}$ then $\mathcal{V} = \mathcal{M} \lor \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or \mathcal{SL} , while \mathcal{N} is a commutative nil-variety.
- b) (Shaprynskii) If a commutative nil-variety \mathcal{N} is a modular element of the lattice **Com** then \mathcal{N} may be given within \mathcal{COM} by 0-reduced and substitutive identities only.
- c) (Shaprynskii) If N is a 0-reduced in **Com** variety then N is a modular element of the lattice **Com**.

Corollary

- a) (Shaprynskii) If a variety of semigroups \mathcal{V} is a modular element of the lattice **Com** and $\mathcal{V} \neq \mathcal{COM}$ then $\mathcal{V} = \mathcal{M} \lor \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or \mathcal{SL} , while \mathcal{N} is a commutative nil-variety.
- b) (Shaprynskii) If a commutative nil-variety \mathcal{N} is a modular element of the lattice **Com** then \mathcal{N} may be given within \mathcal{COM} by 0-reduced and substitutive identities only.
- c) (Shaprynskii) If ${\cal N}$ is a 0-reduced in Com variety then ${\cal N}$ is a modular element of the lattice Com.

Corollary

- a) (Shaprynskii) If a variety of semigroups \mathcal{V} is a modular element of the lattice **Com** and $\mathcal{V} \neq \mathcal{COM}$ then $\mathcal{V} = \mathcal{M} \lor \mathcal{N}$ where \mathcal{M} is one of the varieties \mathcal{T} or \mathcal{SL} , while \mathcal{N} is a commutative nil-variety.
- b) (Shaprynskii) If a commutative nil-variety \mathcal{N} is a modular element of the lattice **Com** then \mathcal{N} may be given within \mathcal{COM} by 0-reduced and substitutive identities only.
- c) (Shaprynskii) If N is a 0-reduced in **Com** variety then N is a modular element of the lattice **Com**.

Corollary