SPECIAL ELEMENTS OF LATTICES OF SEMIGROUP VARIETIES

B.M.Vernikov

Ural Federal University

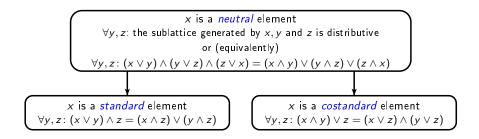
Algebraic theory of semigroups and applications

Porto, 2015

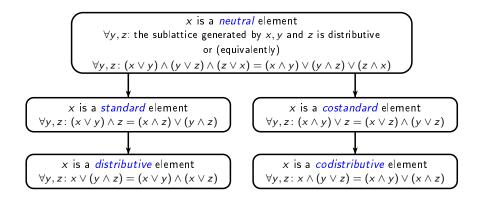
x is a *neutral* element $\forall y, z$: the sublattice generated by x, y and z is distributive or (equivalently) $\forall y, z$: $(x \lor y) \land (y \lor z) \land (z \lor x) = (x \land y) \lor (y \land z) \lor (z \land x)$

э

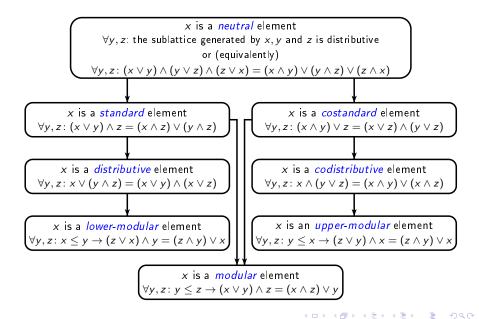
Abstract lattices



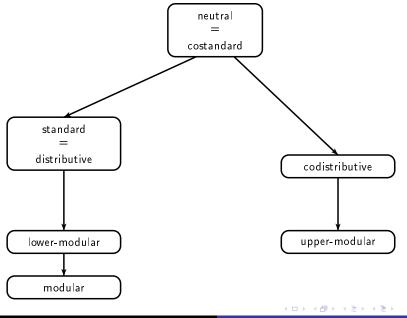
Abstract lattices



Abstract lattices

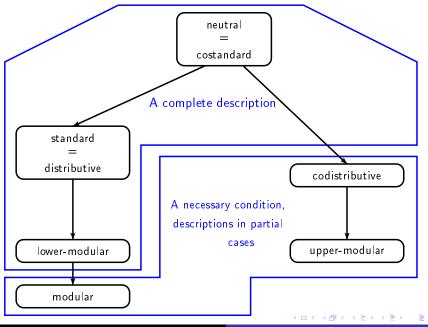


The lattice SEM of all semigroup varieties



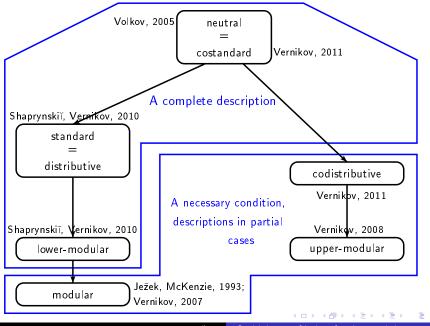
Ξ.

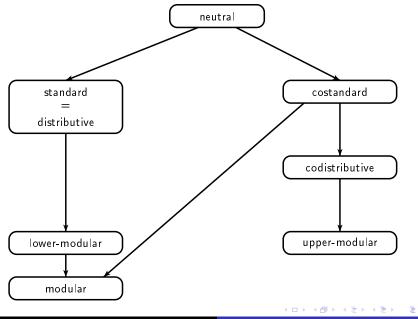
The lattice SEM of all semigroup varieties

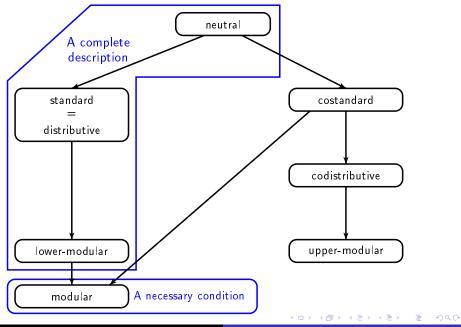


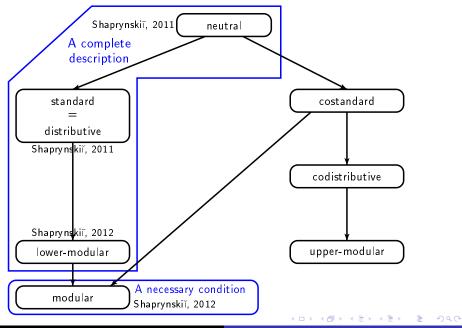
B.M.Vernikov Special elements of lattices of semigroup varieties

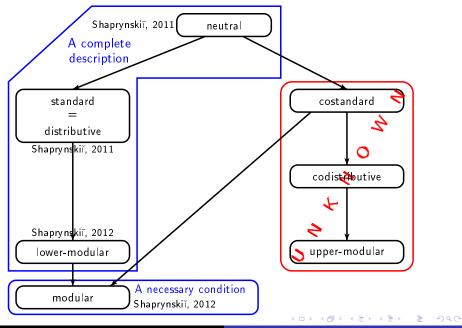
The lattice SEM of all semigroup varieties

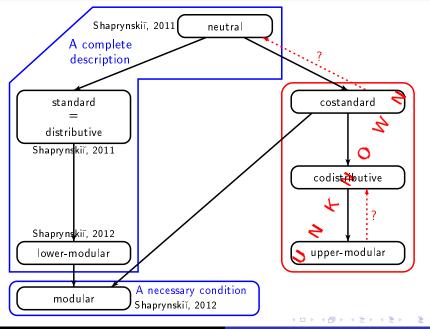






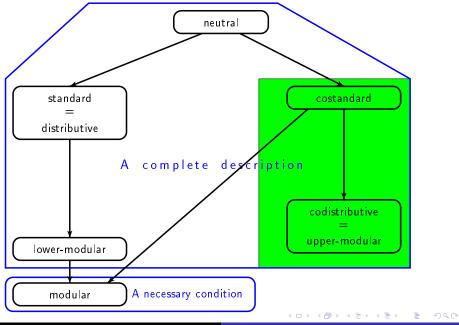




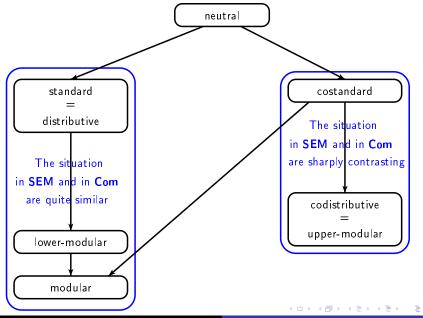


B.M.Vernikov Special elements of lattices of semigroup varieties

The lattice Com (now)



The lattice Com (now)



In both the lattices SEM and Com:

- an element is distributive if and only if it is standard;
- an element is modular whenever it is lower-modular.

Results concerning modular or lower-modular or distributive (= standard) elements in these two lattices have quite similar formulations. For instance:

Lower-modular elements in SEM (Shaprynskiĭ and Vernikov, 2010)

A semigroup variety \mathcal{V} is a lower-modular element in **SEM** \iff either \mathcal{V} is the variety \mathcal{SEM} of all semigroups or $\mathcal{V} = \mathcal{N}$ or $\mathcal{V} = \mathcal{SL} \lor \mathcal{N}$ where \mathcal{N} is given by identities of the form w = 0 only, and \mathcal{SL} is the variety of semilattices.

Lower-modular elements in in **Com** (Shaprynskiĭ, 2012)

A commutative semigroup variety V is a lower-modular element in **Com** \iff either V is the variety COM of all commutative semigroups or V = N or $V = SL \lor N$ where N is given within COM by identities of the form w = 0 only, and SL is the variety of semilattices.

In both the lattices SEM and Com:

- an element is distributive if and only if it is standard;
- an element is modular whenever it is lower-modular.

Results concerning modular or lower-modular or distributive (= standard) elements in these two lattices have quite similar formulations. For instance:

Lower-modular elements in **SEM** (Shaprynskiĭ and Vernikov, 2010)

A semigroup variety \mathcal{V} is a lower-modular element in **SEM** \iff either \mathcal{V} is the variety \mathcal{SEM} of all semigroups or $\mathcal{V} = \mathcal{N}$ or $\mathcal{V} = \mathcal{SL} \lor \mathcal{N}$ where \mathcal{N} is given by identities of the form w = 0 only, and \mathcal{SL} is the variety of semilattices.

Lower-modular elements in in **Com** (Shaprynskiĭ, 2012)

A commutative semigroup variety V is a lower-modular element in **Com** \iff either V is the variety COM of all commutative semigroups or V = N or $V = SL \lor N$ where N is given within COM by identities of the form w = 0 only, and SL is the variety of semilattices.

In both the lattices SEM and Com:

- an element is distributive if and only if it is standard;
- an element is modular whenever it is lower-modular.

Results concerning modular or lower-modular or distributive (= standard) elements in these two lattices have quite similar formulations. For instance:

Lower-modular elements in **SEM** (Shaprynskiĭ and Vernikov, 2010)

A semigroup variety \mathcal{V} is a lower-modular element in **SEM** \iff either \mathcal{V} is the variety \mathcal{SEM} of all semigroups or $\mathcal{V} = \mathcal{N}$ or $\mathcal{V} = \mathcal{SL} \lor \mathcal{N}$ where \mathcal{N} is given by identities of the form w = 0 only, and \mathcal{SL} is the variety of semilattices.

Lower-modular elements in in **Com** (Shaprynskiĭ, 2012)

A commutative semigroup variety \mathcal{V} is a lower-modular element in **Com** \iff either \mathcal{V} is the variety \mathcal{COM} of all commutative semigroups or $\mathcal{V} = \mathcal{N}$ or $\mathcal{V} = \mathcal{SL} \lor \mathcal{N}$ where \mathcal{N} is given within \mathcal{COM} by identities of the form w = 0 only, and \mathcal{SL} is the variety of semilattices.

In both the lattices SEM and Com:

- an element is distributive if and only if it is standard;
- an element is modular whenever it is lower-modular.

Results concerning modular or lower-modular or distributive (= standard) elements in these two lattices have quite similar formulations. For instance:

Lower-modular elements in SEM (Shaprynskii and Vernikov, 2010)

A semigroup variety \mathcal{V} is a lower-modular element in **SEM** \iff either \mathcal{V} is the variety \mathcal{SEM} of all semigroups or $\mathcal{V} = \mathcal{N}$ or $\mathcal{V} = \mathcal{SL} \lor \mathcal{N}$ where \mathcal{N} is given by identities of the form w = 0 only, and \mathcal{SL} is the variety of semilattices.

Lower-modular elements in in **Com** (Shaprynskiĭ, 2012)

A commutative semigroup variety \mathcal{V} is a lower-modular element in **Com** \iff either \mathcal{V} is the variety \mathcal{COM} of all commutative semigroups or $\mathcal{V} = \mathcal{N}$ or $\mathcal{V} = \mathcal{SL} \lor \mathcal{N}$ where \mathcal{N} is given within \mathcal{COM} by identities of the form w = 0 only, and \mathcal{SL} is the variety of semilattices.

In the lattice **SEM**:

- an element is neutral if and only if it is costandard;
- the properties of being upper-modular and codistributive elements are not equivalent.

In the lattice Com:

- the properties of being neutral and costandard elements are not equivalent;
- an element is upper-modular if and only if it is codistributive.

In the lattice **SEM**:

- an element is neutral if and only if it is costandard;
- the properties of being upper-modular and codistributive elements are not equivalent.

In the lattice **Com**:

- the properties of being neutral and costandard elements are not equivalent;
- an element is upper-modular if and only if it is codistributive.

$\mathcal{I} = var\{x^2yz = 0, x^2y = xy^2, xy = yx\}, \quad \mathcal{J} = var\{x^2y = 0, xy = yx\}$

If $\mathcal{X} \subseteq \mathcal{I}$ then \mathcal{X} is given within \mathcal{I}

- either by the identity w = 0 where $w \in \{x^2, x^3, x^2y\}$,
- or by the identity $x_1x_2\cdots x_n = 0$ for some n,
- or by these two identities together.

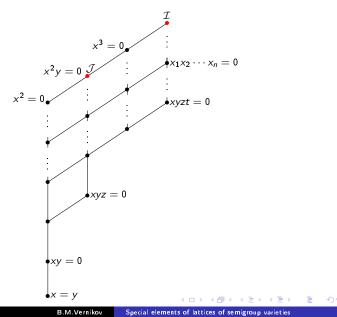
$$\mathcal{I} = var\{x^2yz = 0, x^2y = xy^2, xy = yx\}, \quad \mathcal{J} = var\{x^2y = 0, xy = yx\}$$

If $\mathcal{X} \subseteq \mathcal{I}$ then \mathcal{X} is given within \mathcal{I}

- either by the identity w = 0 where $w \in \{x^2, x^3, x^2y\}$,
- or by the identity $x_1 x_2 \cdots x_n = 0$ for some n,
- or by these two identities together.

Subvariety lattices of ${\mathcal I}$ and ${\mathcal J}$

$$\mathcal{I} = var\{x^2yz = 0, x^2y = xy^2, xy = yx\}, \quad \mathcal{J} = var\{x^2y = 0, xy = yx\}$$



Upper-modular and codistributive elements in Com

For a commutative semigroup variety \mathcal{V} , the following are equivalent:

- a) \mathcal{V} is an upper-modular element of Com;
- b) \mathcal{V} is a codistributive element of **Com**;
- c) one of the following holds:
 - (i) $\mathcal{V} = \mathcal{COM};$
 - (ii) $\mathcal{V} \subseteq \mathcal{A} \lor \mathcal{SL} \lor \mathcal{I}$ where \mathcal{A} is an Abelian periodic group variety;
 - (iii) $\mathcal{V} \subseteq \mathcal{C} \lor \mathcal{J}$ where $\mathcal{C} = \operatorname{var}\{x^2 = x^3, xy = yx\}$.

Costandard elements in Com

A commutative semigroup variety \mathcal{V} is a costandard element of **Com** if and only if either $\mathcal{V} = \mathcal{COM}$ or $\mathcal{V} \subseteq \mathcal{SL} \lor \mathcal{I}$.

For comparison: \mathcal{V} is a neutral element of **Com** if and only if either $\mathcal{V} = \mathcal{COM}$ or $\mathcal{V} \subseteq S\mathcal{L} \lor \mathcal{J}$ (Shaprynskiĩ, 2011).

Upper-modular and codistributive elements in Com

For a commutative semigroup variety \mathcal{V} , the following are equivalent:

- a) \mathcal{V} is an upper-modular element of Com;
- b) \mathcal{V} is a codistributive element of **Com**;
- c) one of the following holds:
 - (i) $\mathcal{V} = \mathcal{COM};$
 - (ii) $\mathcal{V} \subseteq \mathcal{A} \lor \mathcal{SL} \lor \mathcal{I}$ where \mathcal{A} is an Abelian periodic group variety;
 - (iii) $\mathcal{V} \subseteq \mathcal{C} \lor \mathcal{J}$ where $\mathcal{C} = \operatorname{var}\{x^2 = x^3, xy = yx\}$.

Costandard elements in Com

A commutative semigroup variety \mathcal{V} is a costandard element of **Com** if and only if either $\mathcal{V} = COM$ or $\mathcal{V} \subseteq SL \lor I$.

For comparison: \mathcal{V} is a neutral element of **Com** if and only if either $\mathcal{V} = \mathcal{COM}$ or $\mathcal{V} \subseteq \mathcal{SL} \lor \mathcal{J}$ (Shaprynskiĭ, 2011).

Upper-modular and codistributive elements in Com

For a commutative semigroup variety \mathcal{V} , the following are equivalent:

- a) \mathcal{V} is an upper-modular element of Com;
- b) \mathcal{V} is a codistributive element of **Com**;
- c) one of the following holds:
 - (i) $\mathcal{V} = \mathcal{COM};$
 - (ii) $\mathcal{V} \subseteq \mathcal{A} \lor \mathcal{SL} \lor \mathcal{I}$ where \mathcal{A} is an Abelian periodic group variety;
 - (iii) $\mathcal{V} \subseteq \mathcal{C} \lor \mathcal{J}$ where $\mathcal{C} = \operatorname{var}\{x^2 = x^3, xy = yx\}$.

Costandard elements in Com

A commutative semigroup variety \mathcal{V} is a costandard element of **Com** if and only if either $\mathcal{V} = COM$ or $\mathcal{V} \subseteq SL \lor I$.

For comparison: \mathcal{V} is a neutral element of **Com** if and only if either $\mathcal{V} = \mathcal{COM}$ or $\mathcal{V} \subseteq \mathcal{SL} \lor \mathcal{J}$ (Shaprynskiĭ, 2011).

Upper modularity in Com and SEM

A commutative semigroup variety V with $V \neq COM$ is an upper-modular element of **Com** if and only if it is an upper-modular element of **SEM**.

A nil-case

For a commutative nil-variety of semigroups $\mathcal N,$ the following are equivalent:

- a) N is an upper-modular element of **Com**;
- b) \mathcal{N} is a codistributive element of **Com**;
- c) \mathcal{N} is a costandard element of **Com**;
- d) $\mathcal{V} \subseteq \mathcal{I}$.

A hereditary property

If a commutative semigroup variety V is an upper-modular element of **Com** and $V \neq COM$ then every subvariety of V is an upper-modular element of **Com**.

Distributivity of subvariety lattice

Upper modularity in Com and SEM

A commutative semigroup variety V with $V \neq COM$ is an upper-modular element of **Com** if and only if it is an upper-modular element of **SEM**.

A nil-case

For a commutative nil-variety of semigroups \mathcal{N} , the following are equivalent:

- a) \mathcal{N} is an upper-modular element of **Com**;
- b) \mathcal{N} is a codistributive element of Com;
- c) \mathcal{N} is a costandard element of **Com**;
- d) $\mathcal{V} \subseteq \mathcal{I}$.

A hereditary property

If a commutative semigroup variety V is an upper-modular element of **Com** and $V \neq COM$ then every subvariety of V is an upper-modular element of **Com**.

Distributivity of subvariety lattice

Upper modularity in Com and SEM

A commutative semigroup variety V with $V \neq COM$ is an upper-modular element of **Com** if and only if it is an upper-modular element of **SEM**.

A nil-case

For a commutative nil-variety of semigroups \mathcal{N} , the following are equivalent:

- a) \mathcal{N} is an upper-modular element of **Com**;
- b) \mathcal{N} is a codistributive element of **Com**;
- c) \mathcal{N} is a costandard element of **Com**;
- d) $\mathcal{V} \subseteq \mathcal{I}$.

A hereditary property

If a commutative semigroup variety V is an upper-modular element of **Com** and $V \neq COM$ then every subvariety of V is an upper-modular element of **Com**.

Distributivity of subvariety lattice

Upper modularity in Com and SEM

A commutative semigroup variety V with $V \neq COM$ is an upper-modular element of **Com** if and only if it is an upper-modular element of **SEM**.

A nil-case

For a commutative nil-variety of semigroups \mathcal{N} , the following are equivalent:

- a) \mathcal{N} is an upper-modular element of **Com**;
- b) \mathcal{N} is a codistributive element of **Com**;
- c) \mathcal{N} is a costandard element of **Com**;
- d) $\mathcal{V} \subseteq \mathcal{I}$.

A hereditary property

If a commutative semigroup variety V is an upper-modular element of **Com** and $V \neq COM$ then every subvariety of V is an upper-modular element of **Com**.

Distributivity of subvariety lattice