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1 Introduction

This famous theorem has numerous applications, but to apply it you should understand it.
The proof of a theorem provides the best way of understanding it. Many texts on the Perron�
Frobenius theorem can be found on the internet, and some of them contain proofs. However,
usually these are proofs of special cases: either for primitive matrices only or even for positive
matrices only (the latter is Perron's Theorem). But at least for the applications in graph theory
and Markov chains it is better to know the theorem in its full extent, and this is the reason
for the appearance of this text. The main line of the proof follows the classical �The Theory of
Matrices� book by Felix Gantmacher; some simpli�cations and clari�cations are added.

The text is mainly addressed to graduate students. The reader is supposed to be familiar
with the notions and concepts of linear algebra (a two-semester undergraduate course would
suit well). For convenience, many of the used notions are recalled in the footnotes.

2 Notation

We write capitals A,B,C, . . . (sometimes with an index) for matrices, Aij or, say, (AkB)ij for
their elements (or entries), I for the identity matrix. For vectors: ~u,~v, ~x, ~y, ~z; xj, (A~x)j for their
components. Vectors are columns, to get a row vector we use the transpose of a column: ~x>.
By default, the matrices involved are n× n and the vectors have size n (n ≥ 2).

The notation A ≥ B (or A > B) means that this inequality holds elementwise. Thus,
nonnegative (positive) matrices are de�ned by A ≥ 0 (resp., A > 0). For a complex-valued
matrix C, the notation C+ stands for the matrix obtained from C by replacing the elements
with their absolute values: (C+)ij = |Cij| for all i, j ∈ {1, . . . , n}. All the same applies for
vectors.

We write ı for the imaginary unit and use exponential form ρeıφ for complex numbers,
assuming ρ ≥ 0 and 0 ≤ φ < 2π.

3 Digraphs and Irreducibility

Every nonnegative n×n matrix A has an associated digraph GA with the vertex set {1, . . . , n}
in which the edge (i, j) exists i� Aij > 0. (We can put this another way: if we replace each
positive entry in A with 1, the resulting matrix will be the adjacency matrix of GA.)

A nonnegative matrix A is called irreducible if its associated digraph GA is strongly con-
nected. This means that for any i, j ∈ {1, . . . , n} there exists an integer k such that there is
an (i, j)-walk of length k in GA. This fact leads to an alternative, purely algebraic de�nition of
irreducibility: A ≥ 0 is irreducible if for any i, j ∈ {1, . . . , n} there exists k such that (Ak)ij > 0.
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Note that all irreducible matrices are nonzero. The matrices that are not irreducible are called
reducible.

Let π be an arbitrary permutation of {1, . . . , n}. Then π(A) is the matrix whose entries
are de�ned by the equalities Aij = (π(A))π(i),π(j) for all i, j. In other terms, one can write
π(A) = Π−1AΠ, where Π is the matrix of π; indeed, computing (π(A))π(i),π(j), we get the only
nonzero term:

(π(A))π(i),π(j) = (Π−1)π(i),i · Aij · Πj,π(j).

Thus, π(A) de�nes the same linear operator as A in a di�erent basis, obtained from the initial
one by permuting the coordinates1; as for the digraph, the permutation just renames its vertices.

Remark 1. A matrix A ≥ 0 is reducible i� for some permutation π one has π(A) =
[
B C
0 D

]
,

where B and D are square matrices. An easy way to see this is to look at digraphs: a digraph
is not strongly connected i� its vertices can be partitioned into two classes such that no edge
goes from the second class to the �rst class; an appropriate numeration of vertices gives the
adjacency matrix of the form

[
B C
0 D

]
.

4 Perron�Frobenius Theorem for Irreducible Matrices

Theorem 1 (Perron�Frobenius Theorem). Let A ≥ 0 be an irreducible matrix with the
spectral radius r. Then

1. r is an eigenvalue of A;

2. r has (algebraic and geometric) multiplicity 1;

3. r possesses a positive eigenvector;

4. all eigenvalues of A with the absolute value r have multiplicity 1; if there are h of them,
then they are exactly the (complex) solutions to the equation λh = rh;

5. the spectrum of A, viewed as a multiset, maps to itself under the rotation of the complex
plane by the angle 2π

h
;

6. if h > 1, then for some permutation π one has π(A) =


0 B1 0 ··· 0
0 0 B2 ··· 0
...

...
...
...

...
0 0 0 ··· Bh−1

Bh 0 0 ··· 0

, where all

blocks on the main diagonal are square2.

1Recall that a linear operator A has matrix A in the basis Y = {~y(1), . . . , ~y(n)} if A(~x) = A~x for any ~x,
where the vectors are given by their coordinates in Y . If we change the basis to Z = {~z(1), . . . , ~z(n)}, then
the new coordinates of ~x are given by T−1~x, and the matrix of A changes to an equivalent matrix T−1AT ,
where T =

[
~z(1), . . . , ~z(n)

]
is the transition matrix, in which the vectors are given by their coordinates in Y .

Equivalent matrices share characteristic polynomials, Jordan normal forms, and other spectral characteristics.
2Recall that the spectrum of a matrix is the (multi)set of its eigenvalues, and the spectral radius is the

maximum absolute value of an eigenvalue (or the minimum radius of a zero-centered circle in the complex plane,
containing the spectrum). Algebraic multiplicity of an eigenvalue is its multiplicity as a root of the characteristic
polynomial of the matrix, and its geometric multiplicity is the dimension of its eigenspace (the number of linearly
independent eigenvectors it possesses). For the Jordan normal form of a matrix A (see footnote 7 for details),
the meaning of the multiplicities of an eigenvalue λ is as follows: its geometric multiplicity is the number of
Jordan cells with λ, and its algebraic multiplicity is the total size of these cells.

2



5 Proof of Statements 1�3

Lemma 1. Let A ≥ 0 be an irreducible matrix. Then (A+ I)n−1 > 0.

Proof. Note that a matrix B is positive i� the vector B~x for any ~x ≥ 0, ~x 6= 0, is positive3.
Compare the number of nonzero coordinates of an arbitrary nonzero vector ~x ≥ 0 and of the
vector ~y = (A+ I)~x. If xj > 0, then ~yj = (A~x)j + xj > 0. Thus the set of zero coordinates of ~y
is a subset of such a set for ~x. Assume that these two sets coincide. Change the basis with the
permutation π such that the new coordinates of ~x and ~y are

[
~u
0

]
and

[
~v
0

]
respectively, where

~u,~v > 0 have the same size. Represent π(A) as the block matrix
[
B C
D F

]
, where B,F are square

matrices, and the size of B equals the size of ~u. Now the equality[
B C
D F

][
~u
0

]
=
[
~v
0

]
implies D = 0 because ~u > 0. Then A is reducible by Remark 1, contradicting the conditions
of the lemma. Hence ~y has strictly less zero coordinates than ~x.

Applying this fact to the vectors ~x, (A + I)~x, . . . , (A + I)n−2~x and given that the number
of zero coordinates of ~x is at most n− 1, we obtain (A+ I)n−1~x > 0, whence the result.

Step 1. Consider the function

r(~x) = min
j=1,...,n
xj 6=0

(A~x)j
xj

(1)

in the orthant X = {~x ∈ Rn | ~x ≥ 0, ~x 6= 0}. Since A represents a linear operator, r(~x) is
continuous at any point ~x > 0; but it can have the points of discontinuity at the borders of the
orthant4. A straightforward property of r(~x) is r(~x)~x ≤ A~x and, moreover,

r(~x) = max{ρ | ρ~x ≤ A~x}. (2)

We are going to prove the existence of an �extremal� vector ~z such that

r(~z) = sup{r(~x) | ~x ∈ X}. (3)

The Weierstrass theorem (extreme value theorem) says that a continuous function from a
non-empty compact set to a subset of R attains its maximum (and minimum). Further, the
Bolzano�Weierstrass theorem says that a subset of Rn is compact i� it is bounded and closed.
The set X is neither bounded nor closed. However, r(~x) = r(α~x) for any α > 0, and thus
sup{r(~x) | ~x ∈ X} = sup{r(~x) | ~x ∈ X(1)}, where X(1) consists of vectors of unit length:
X(1) = {~x ∈ X | |~x| = 1}. The set X(1) is bounded and closed, and thus compact, but r(~x)
can have discontinuities at some elements of X(1) which are not positive vectors. So instead of
X(1) we consider the set

Y = {~y | ~y = (A+ I)n−1~x for some ~x ∈ X(1)}.

This set is compact as the image of a compact set under a continuous function (a linear oper-
ator). Further, all vectors ~y ∈ Y are positive by Lemma 1. Hence the function r is continuous
on Y and, by the Weierstrass theorem, there exists ~z such that r(~z) = max{r(~y) | ~y ∈ Y }.
Finally, let ~y = (A+ I)n−1~x for some x ≥ 0, x 6= 0, and ρ~x ≤ A~x. Applying the positive matrix
(A + I)n−1 to both sides of this inequality5, we get ρ~y ≤ A~y. By (2), this means r(x) ≤ r(y).
So we have found the vector required by (3):

sup{r(~x) | ~x ∈ X} = sup{r(~x) | ~x ∈ X(1)} ≤ sup{r(~y) | ~y ∈ Y } = max{r(~y) | ~y ∈ Y } = r(~z).
3Indeed, if B > 0 and xj > 0 then for any i one has (B~x)i ≥ Bijxj > 0; and if Bij = 0, we can take xj > 0,

xk = 0 for k 6= j, obtaining (B~x)i = 0.
4For example, let A =

[
0 1
1 0

]
, ~x(k) =

[
1/k
1

]
, ~x = limk→∞ ~x

(k). Then r(~x(k)) = k while r(~x) = 0.
5Note that the matrices A and (A+ I)n−1 commute.
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Step 2. Let r̂ = r(~z) and ~u ∈ X be any vector satisfying r(~u) = r̂. We establish some
properties of r̂ and ~u. The main conclusions are written in boldface.
(i) If ~x > 0, then A~x > 0 and thus r(~x) > 0. Hence r̂ > 0.
(ii) Let ~y = (A+I)n−1~u. By (2), r̂~u ≤ A~u. If this is not an equality, then (A+I)n−1(A~u−r̂~u) > 0
by Lemma 1, implying r̂~y < A~y. Then there exists ε > 0 such that (r̂ + ε)~y < A~y. Hence
r(~y) ≥ r̂ + ε, contradicting (3). Therefore, r̂~u = A~u. Thus, r̂ is an eigenvalue of A with

the eigenvector ~u.
(iii) The vector ~u is positive, because ~y = (A+ I)n−1~u = (r+ 1)n−1~u and ~y > 0 by Lemma 1.
(iv) Let α be a (complex) eigenvalue of A with an eigenvector ~v. The equality A~v = α~v implies
(A~v)+ = (α~v)+. We have, for any i = j, . . . , n,

((α~v)+)j = |αvj| = |α||vj| = (|α|~v+)j, (4)

((A~v)+)j = |Aj1v1 + · · ·+ Ajnvn| ≤ Aj1|v1|+ · · ·+ Ajn|vn| = (A~v+)j, (5)

and then |α|~v+ ≤ A~v+. Since ~v+ ≥ 0, ~v+ 6= 0, we have |α| ≤ r(~v+) ≤ r̂. Therefore, r̂ is

an eigenvalue which is greater than or equal to the absolute value of any other

eigenvalue of A. Hence r̂ = r, and we are done with statement 1 of the theorem; as r~u = A~u
(ii) and ~u is positive (iii), we have also proved statement 3.
(v) Reproduce the argument of (iv) for α = r̂ = r. Since r~v+ ≤ A~v+, we have r(~v+) = r; then ~v+

is a positive eigenvector of A corresponding to r by (ii),(iii). But A~v+ = r~v+ implies the equality
in (5). Therefore, the complex numbers v1, . . . , vn must have the same argument φ, yielding
~v = eıφ~v+. Thus any eigenvector corresponding to r is collinear to a positive eigenvector. It
remains to note that r cannot have two linearly independent positive eigenvectors, since two
such vectors would have a nonzero linear combination ~u which is a non-negative but not positive
eigenvector; this is impossible by (iii). Thus, r has a unique eigenvector6, which can be

taken positive. This positive vector, denoted below by ~z, is the principal eigenvector of A.

Step 3. We have proved in step 2, (v) that r has geometric multiplicity 1, and thus the Jordan
form7 J of A has a unique cell with the number r. For statement 2, it remains to prove that

(∗) the Jordan form J of A has a cell of size 1 with the number r

Consider the transpose A> of A. It is nonnegative, irreducible, and shares the characteristic
polynomial with A. Hence all the proof above works for A>, and there is a positive vector ~y
such that A>~y = r~y.

Consider A as the matrix of a linear operator A in some basis. The orthocomplement
~y⊥ = {~x | ~y>~x = 0} of ~y is invariant under A, since ~y>~x = 0 implies ~y>(A~x) = r~y>~x = 0. Note
that ~z /∈ ~y⊥ because both ~y and ~z are positive. Thus, Rn is the direct sum of two invariant
subspaces: ~y⊥ and the eigenspace 〈~z〉. Then the matrix of A in the basis (~z, ~y(2), . . . , ~y(n)),
where ~y⊥ = 〈~y(2), . . . , ~y(n)〉, has the block diagonal form A′ =

[
r 0
0 Y

]
with some matrix Y of size

n − 1. Bringing Y to the Jordan normal form with some change of basis, we also bring A′ to
this form (note that A′ and A, being equivalent, have the same Jordan normal form). In the
upper corner this form has a 1 × 1 cell with the number r. So we have shown (∗) and then
statement 2.

6Up to multiplication by a scalar, of course.

7Recall some facts. A Jordan matrix has the form J =

 J1 0 ··· 0
0 J2 ··· 0

...
...
. . .

...
0 0 ··· Js

, where Jk =


λk 1 0 ··· 0 0
0 λk 1 ··· 0 0

...
...
...
. . .

...
...

0 0 0 ··· λk 1
0 0 0 ··· 0 λk

 are

Jordan cells (a 1×1 cell contains the number λk). Jordan's theorem says that any matrix A ∈ Cn×n has a unique,
up to the order of blocks, equivalent Jordan matrix, called Jordan normal form of A. Since equivalent matrices
share the same characteristic polynomial, the numbers λk in the Jordan normal form of A are eigenvalues of A,
each appearing the number of times equal to its algebraic multiplicity. Note that if a jth column of J is the
�rst column of some cell Jk, it is an eigenvector corresponding to λk.
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6 Proof of Statements 4�6

Lemma 2. Let α be an eigenvalue of a matrix C ∈ Cn×n such that C+ ≤ A. Then |α| ≤ r, and
the equality implies C = eıφDAD−1, where α = reıφ and D is a diagonal matrix with D+ = I.

Proof. Let C~y = α~y. Repeating the argument of step 2 (iv) and using the relation C+ ≤ A, we
get

|α|~y+ ≤ C+~y+ ≤ A~y+. (6)

Then |α| ≤ r(~y+) ≤ r by (2),(3) (recall that r = r(~z)). Now move to the second statement.
If |α| = r, then r(~y+) = r, and thus ~y+ is a positive eigenvector of A corresponding to r by
Step 2 (ii),(iii). Hence we have equalities in (6):

r~y+ = C+~y+ = A~y+; (7)

from (A− C+)~y+ = 0, A− C+ ≥ 0, and ~y+ > 0 we get C+ = A. Let

~y =

[ y1
...
yn

]
=

[
|y1|eıφ1

...
|yn|eıφn

]
, D =

[
eıφ1 ··· 0
...

...
...

0 ··· eıφn

]
.

Then ~y = D~y+. Substituting α = reıφ, we obtain

C~y = CD~y+ = reıφD~y+ and e−ıφD−1CD︸ ︷︷ ︸
F

~y+ = r~y+.

So F~y+ = A~y+ by (7) and clearly F+ = C+(= A), implying F~y+ = F+~y+ by (7). Since ~y+ > 0
and the real parts of all elements of (F+ − F ) are nonnegative, these parts must all be zero,
which is possible only if F = F+. Hence F = A = e−ıφD−1CD, implying C = eıφDAD−1.

Step 4. Let λ0 = r, λ1 = reıφ1 , . . . , λh−1 = reıφh−1 be all eigenvalues of A of absolute value r,
and 0 = φ0 < φ1 < · · · < φh−1 < 2π. Applying Lemma 2 for C = A, α = λk, we get the set of
equations

A = eıφkDkAD
−1
k (k = 0, . . . , h−1; D+

k = I). (8)

Thus the matrix e−ıφkA = DkAD
−1
k is equivalent to A and has the same spectrum. On the

other hand, multiplying a matrix by a scalar, we multiply all its eigenvalues by this scalar.
Thus, the spectrum of A is preserved by the rotation of the complex plane by any

angle φk. Since the rotation by φk maps r to λk, their multiplicities coincide; so, each λk
has multiplicity 1. Further, the spectrum is preserved, for any k, l ∈ {0, . . . , h − 1}, by the
rotation by φk + φl, −φk, and also by 0. Each of these rotations also maps r to some λj; so
the sums and di�erences, taken modulo 2π, of angles from Φ = {φ0, . . . , φh−1} also belong to
this set. Hence Φ is a group under addition modulo 2π. Note that φ1 + φ1 = φ2 (otherwise
0 < φ1 + φ1 − φ2 < φ1 /∈ Φ), φ1 + φ2 = φ3, . . . , φ1 + φh−1 = 0 (mod 2π). So we have φk = kφ1

for all k and hφ1 = 2π. Therefore, φk = 2πk
h

φk = 2πk
hφk = 2πk
h
, implying statements 4 and 5 of the theorem. We

can also write λk = rεk, where ε = eı
2π
h is the �rst root of unity of degree h.

Step 5. (i) To prove statement 6, we �rst return to the equations (8). Such an equation
remains true if Dk is replaced by αDk for any α ∈ C\{0}. Let D = (D1)

−1
11 ·D1. Then D11 = 1;

taking into account that λk = rεk, we have

A = εDAD−1 = ε2D2AD−2 = · · · = εh−1Dh−1AD−(h−1) = DhAD−h. (9)
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(ii) The last equation in (9) implies Aij = (Dh)iiAij(D
−h)jj for all i, j ∈ {1, . . . , n}. If Aij > 0,

this means (Dh)ii = (Dh)jj. Since the digraph GA of A is strongly connected, it has a (1, j)-
path for any j ∈ {2, . . . , n}. Then the elements A1j1 , Aj1j2 , . . . , Ajkj, representing the edges
of this path, are all positive. Hence (Dh)jj = (Dh)11. On the other hand, we know that
(Dh)11 = (D11)

h = 1, so Dh = IDh = IDh = I. Thus, all diagonal elements of D are the roots of unity

of degree h.
(iii) The �rst equality (9) means that

Aij = εDiiAijD
−1
jj for any i, j ∈ {1, . . . , n} . (10)

Let Dii = εk. Since A is irreducible, Aij > 0 for some j 6= i. So we have Djj = εk+1. Therefore,
all roots of unity of degree h are elements of D.
(iv) Consider the permutation π which sorts the diagonal entries of D such that if Dii = εk and
Di+1,i+1 = εl, then k ≤ l (with the ties broken arbitrarily; 1 is considered as ε0). Since (10) can
be rewritten as

Aπ(i),π(j) = εDπ(i),π(i)Aπ(i),π(j)D
−1
π(j),π(j) ,

we have π(A) = επ(D)π(A)π(D)−1. The diagonal entries of π(D) are arranged into h blocks,
with the elements of kth block containing εk−1. Take some i, j such that (π(A))ij > 0. If
(π(D))ii = εk, then we have, as in (iii), (π(D))jj = εk+1 (or (π(D))jj = 1 if k = h− 1). Due to
the way π sorts the entries of D, all nonempty entries of π(A) occur inside the blocks Bj above

the main diagonal: π(A) =


0 B1 0 ··· 0
0 0 B2 ··· 0
...

...
...
...

...
0 0 0 ··· Bh−1

Bh 0 0 ··· 0

. Statement 6 and Theorem 1 are thus proved.

7 Useful Related Results on Nonnegative Matrices

Here we collect a few useful facts that are densely related to Theorem 1 and its proof.

Proposition 1. An irreducible matrix has exactly one nonnegative eigenvector.

Proof. In fact, all necessary argument is contained in step 3 (see Sect. 5), but we repeat it in
a direct way. Let A be an irreducible matrix, r be its spectral radius, ~z, ~y > 0 be the principal
eigenvectors of A and A> respectively. Assume to the contrary that ~u ≥ 0 is an eigenvector of
A not collinear to ~z. Since r possesses a unique eigenvector, A~u = α~u for some α 6= r. One has

r~u>~y = ~u>A>~y = (A~u)>~y = α~u>~y,

implying ~u>~y = 0, which is impossible since ~y > 0, ~u ≥ 0, ~u 6= 0.

In steps 1,2 (Sect. 5) we have shown the following characteristic of the spectral radius r of
an irreducible matrix A ≥ 0:

r = max
~x≥0

r(~x) = max
~x≥0

min
j=1,...,n
xj 6=0

(A~x)j
xj

.

The choice of maximin looks somewhat arbitrary; what would happen if we would choose the
minimax? Let

r̃(~x) =


+∞ if (A~x)j > 0, xj = 0 for some j,

max
j=1,...,n
xj 6=0

(A~x)j
xj

otherwise (11)
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and
r̃ = r̃(~v) = min

~x≥0
r̃(~x). (12)

(The existence of the minimum can be proved in exactly the same way as the existence of the
maximum of r(~x) in step 1 (Sect. 5.)

Proposition 2. For the number r̃ and the vector ~v de�ned by (11),(12), r̃ = r and ~v is the
principal eigenvector of A.

Proof. From (12) we get r̃~v − A~v ≥ 0. Assume that this vector is nonzero. Then by Lemma 1

(A+ I)n−1(r̃~v − A~v) > 0 and ~u = (A+ I)n−1~v > 0

Since A and (A + I)n−1 commute, we have r̃~u − A~u > 0; so there exists ε > 0 such that
(r̃ − ε)~u−A~u ≥ 0. This implies r̃(~u) < r̃, which is impossible. Therefore, A~v = r̃~v. Thus, v is
a nonnegative eigenvector of A. By the Theorem 1 (3) and Proposition 1, v is collinear to the
principal eigenvector ~z and thus r̃ = r.

Proposition 3. Let s and S be the minimum and the maximum row sum of an irreducible
matrix A with the spectral radius r. Then s ≤ r ≤ S and, moreover, s < S implies s < r < S.

Proof. Let ~v = (1, 1, . . . , 1)⊥. Then s = r(~v), S = r̃(~v); see (1),(11). From Proposition 2 we
have r(~v) ≤ r = r̃ ≤ r̃(~v). Moreover, if the right inequality turns into equality, then ~v is the
principal eigenvector of A; the same is true for the left inequality (see step 2, Sect. 5). The
result now follows.

Proposition 4. Let A,B ≥ 0 be two unequal irreducible matrices with the spectral radii r and
ρ respectively. Then A ≤ B implies r < ρ.

Proof. Let ~z be the principal eigenvector of A, i.e., A~z = r~z. Further, let

r(~x) = min
j=1,...,n
xj 6=0

(A~x)j
xj

, ρ(~x) = min
j=1,...,n
xj 6=0

(B~x)j
xj

for any ~x ≥ 0, ~x 6= 0. Recall from steps 1,2 of the proof of Theorem 1 that

r = max
~x≥0
~x6=0

r(~x), ρ = max
~x≥0
~x6=0

ρ(~x) .

Since (B~x)j ≥ (A~x)j for any j, one has r(~x) ≤ ρ(~x) for any ~x, and thus r ≤ ρ. Note that
ρ(~z) ≥ r. If ρ = r, then ~z is the principal eigenvector of B (step 2 of the proof of Theorem 1);
hence B~z = r~z = A~z, which is impossible since (B − A) ≥ 0 is a non-zero matrix and ~z > 0.
Therefore, ρ > r.

For arbitrary nonnegative matrices the following weak version of Theorem 1 holds.

Theorem 2. Let A be a nonnegative matrix with the spectral radius r > 0. Then

1. r is an eigenvalue of A;

2. r possesses a nonnegative eigenvector.
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Proof. Consider a sequence {Am}∞m=1 of positive matrices such that A = limm→∞Am. Say, we
set (Am)ij = 1/m whenever Aij = 0 and (Am)ij = Aij otherwise. Let rm be the spectral radius
of Am. By Proposition 4, the sequence {rm}∞1 is decreasing and thus has a limit, say r̄. One
has

r̄ ≥ r (13)

because rm > r by Proposition 4. Let ~z(m) be the positive eigenvector of Am of length 1. Then
we have

Am~z
(m) = rm~z

(m) (14)

(cf. Proposition 1). The sequence {~z(m)}∞m=1 is bounded and belongs to the compact set of all
size-n nonnegative vectors of length 1. Hence it has a subsequence converging to some length
1 nonnegative vector ~z. Taking limits for both sides of (14) along this subsequence, we get
A~z = r̄~z. So r̄ is an eigenvalue of A; then (13) and the de�nition of spectral radius imply r̄ = r.
Both statements now follow.

Theorem 2 says nothing about the multiplicity of r. So we end this note with the statement
on the algebraic multiplicity of r. Recall that the condensation of a digraph G is the acyclic
digraph Con(G) such that
- the vertices of Con(G) are the strongly connected components of G;
- two components are connected by a directed edge in Con(G) if some of their vertices are
connected by an edge of the same direction in G.
Let us take Con(GA) (suppose it has s vertices) and assign numbers 1, . . . , s to these vertices
in topological order8. Next we apply to the matrix A (and the graph GA) any permutation π
such that for any j = 1, . . . , s− 1 any vertex of the jth component precedes any vertex of the
(j+1)th component. So we obtain the block matrix

π(A) =

 B11 B12 ··· B1,s−1 B1s

0 B22 ··· B2,s−1 B2s

...
...

...
...

...
0 0 ··· 0 Bss

 , (15)

where the graphs of square matrices Bjj are exactly the strongly connected components of GA.

Proposition 5. Let A be a nonnegative matrix with the spectral radius r > 0. Then the
algebraic multiplicity of r as the eigenvalue of A equals the number of matrices Bjj with the
spectral radius r in the representation (15) of A.

Proof. According to (15), the characteristic polynomial of π(A) (and thus of A) equals the prod-
uct of characteristic polynomials of the matrices B11, . . . , Bss. Then the algebraic multiplicity
of r as the eigenvalue of A coincides with the sum of its algebraic multiplicities for B11, . . . , Bss.
These matrices are irreducible since their graphs are strongly connected. By Theorem 1, if r is
an eigenvalue of Bjj, it has algebraic multiplicity 1 (since r is the spectral radius of A, it is the
spectral radius of such matrix Bjj). The result now follows.
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