Глава IV. Многочлены

§ 6. Разложение рациональных дробей на простейшие

А. Я. Овсянников

Уральский федеральный университет Институт естественных наук и математики Департамент математики, механики и компьютерных наук Основы алгебры для направлений Механика и математическое моделирование и Прикладная математика (1 семестр)

Подготовка к определению поля частных

Пусть K — область целостности. Положим $P = K \times (K \setminus \{0\})$. Определим отношение ρ на множестве P:

$$(a, x)\rho(b, y) \Leftrightarrow a \cdot y = x \cdot b$$

Предложение

Отношение ρ является отношением эквивалентности на множестве P.

 \Downarrow Отношение ρ рефлексивно, так как $a\cdot x=x\cdot a\Rightarrow (a,x)\rho(a,x).$ Оно симметрично: $(a,x)\rho(b,y)\Rightarrow a\cdot y=x\cdot b\Rightarrow b\cdot x=y\cdot a\Rightarrow (b,y)\rho(a,x).$ Проверим, что отношение ρ транзитивно. Пусть $(a,x)\rho(b,y)\rho(c,z).$ Тогда $a\cdot y=x\cdot b$ и $b\cdot z=y\cdot c.$ Умножим обе части равенства $a\cdot y=x\cdot b$ на z: $a\cdot y\cdot z=x\cdot b\cdot z$ и используем равенство $b\cdot z=y\cdot c.$ $a\cdot y\cdot z=x\cdot y\cdot c.$ откуда $(a\cdot z-x\cdot c)\cdot y=0.$ Так как $y\neq 0$ и K – кольцо без делителей нуля, $a\cdot z-x\cdot c=0$ и $a\cdot z=x\cdot c.$ т.е. $(a,x)\rho(c,z)$. \uparrow

Положим $F=P/\rho$ и обозначим класс $(a,x)^\rho$ через a/x. Определим на F операции сложения $a/x+b/y=(a\cdot y+b\cdot x)/(x\cdot y)$ и умножения $(a/x)\cdot (b/y)=(a\cdot b)/(x\cdot y)$.

Теорема и определение

Указанные операции определены корректно и относительно них $F=P/\rho$ является полем. Отображение $\varphi:K\longrightarrow F$, определенное правилом $\varphi(a)=a/1$, является изоморфизмом кольца K на подкольцо $\{a/1|a\in K\}$ поля F.

Поле F называется полем частных области целостности K.

```
\begin{align*} \be
```

Продолжение доказательства

```
Легко видеть, что элемент 0/1 является нулем: a/x+0/1=(a\cdot 1+0\cdot x)/(x\cdot 1)=a/x для любого элемента a/x\in F. Наконец, элемент (-a)/x будет противоположным к элементу a/x\in F: a/x+(-a)/x=(ax-ax)/(x^2)=0/x^2=0/1, так как 0/1=0/z для любого z\in K\setminus\{0\}.
```

Так как кольцо K коммутативное и ассоциативное, ясно, что операция умножения на F также является коммутативной и ассоциативной. Для любого $z \in K \setminus \{0\}$ и любого $a/x \in F$ справедливо равенство (az)/(xz) = a/x.

Проверим, что F является кольцом: (a/x+b/y)(c/z)=((ay+bx)/(xy))(c/z)=((ay+bx)c)/(xyz)=(ayc+bxc)/(xyz); $(a/x)(c/z)+(b/y)(c/z)=(ac)/(xz)+(bc)/(yz)=(acyz+bcxz)/(xyz^2)=(acy+bcx)z/(xyz)z=(acy+bcx)/(xyz).$ Так как умножение в F коммутативно, этого достаточно.

Ясно, что 1/1 является единицей кольца F. Для любого $a/x \neq 0/1$ справедливо $a \neq 0$ и поэтому элемент x/a является обратным к a/x: (a/x)(x/a) = (ax)/(xa) = 1/1 Таким образом, F является полем.

Окончание доказательства

Так как $a/1=b/1\Longrightarrow a=b$, отображение $\varphi:a\mapsto a/1$ является инъективным. Очевидно, оно является сюръективным отображением на множество $K'=\{a/1|a\in K\}$, т.е. биекцией.

Поскольку a/1+b/1=(a+b)/1 и (a/1)(b/1)=(ab)/1, множество K' замкнуто относительно операций сложения и умножения в поле F.

Проверим, что оно является кольцом относительно этих операций, т.е. подкольцом поля ${\cal F}.$

(Одной замкнутости относительно операций сложения и умножения в поле недостаточно. Приведите пример подмножества поля $\mathbb Q$, замкнутого относительно сложения и умножения, но не являющегося подкольцом.) Нуль 0/1 содержится в K' и для любого $a/1 \in K'$ справедливо $(-a)/1 \in K'$. Остальные аксиомы, определяющие кольцо, используют только кванторы всеобщности, поэтому из их истинности в поле F следует истинность в его подмножестве K'.

Ясно, что отображение φ является изоморфизмом кольца K на кольцо $\{a/1|a\in K\}$.

Обычно кольцо K отождествляется с подкольцом K' поля частных F, т.е. считается, что $K\subseteq F$.

Например, поле рациональных чисел $\mathbb Q$ изоморфно полю частных кольца целых чисел $\mathbb Z.$

Разложение рациональной дроби в сумму простейших дробей

Пусть теперь F – произвольное поле. Кольцо многочленов F[x] является областью целостности (см. сл.4 §1). С помощью построения поля частных из кольца многочленов F[x] строится поле рациональных дробей, которое обозначается через F(x).

Определения

Рациональной дробью над полем F называется элемент поля частных F(x), т.е. дробь f(x)/g(x), где $f(x),g(x)\in F[x]$ и $g(x)\neq 0$. Рациональная дробь f(x)/g(x) называется правильной, если

 $\deg(f) < \deg(g)$.

Рациональная дробь f(x)/g(x) называется *простейшей*, если $f \neq 0$, $g = p^n$ – некоторая степень неприводимого над полем F многочлена p и $\deg(f) < \deg(p)$.

Теорема

Любая правильная дробь может быть представлена в виде суммы простейших дробей. Это представление единственно с точностью до перестановки слагаемых.

Доказательство

↓Сначала докажем следующее утверждение.

Лемма

Пусть f(x)/g(x) — правильная дробь и $g=g_1g_2$, где $(g_1,g_2)=1$. Тогда $f(x)/g(x)=f_1(x)/g_1(x)+f_2(x)/g_2(x)$, где $f_j(x)/g_j(x)$ (j=1,2) — правильные дроби.

 \Downarrow Согласно теореме сл.12 §2 существуют многочлены u_1,u_2 такие что $u_1g_1+u_2g_2=1.$ Умножив обе части этого равенства на f, получим $f=fu_1g_1+fu_2g_2.$ Разделим fu_1 на g_2 с остатком: $fu_1=qg_2+r,$ $\deg(r)<\deg(g_2).$ Имеем $f=(qg_2+r)g_1+fu_2g_2=rg_1+(qg_1+fu_2)g_2.$ Так как $(qg_1+fu_2)g_2=f-rg_1$ и $\deg(f)<\deg(g)=\deg(g_1)+\deg(g_2),$ $\deg(r)<\deg(g)$, заключаем, что $\deg(qg_1+fu_2)<\deg(g_1).$ Положим $f_1=qg_1+fu_2$ и $f_2=r.$ Тогда $f/g=(f_1g_2+f_2g_1)/(g_1g_2)=f_1/g_1+f_2/g_2,$ что и требуется доказать. \Uparrow

Пусть f/g — ненулевая правильная дробь и $g=p_1^{k_1}\dots p_m^{k_m}$ — неприводимое разложение ее знаменателя. Применяя несколько раз лемму, получаем $f/g=f_1/p_1^{k_1}+\dots+f_m/p_m^{k_m}$, где $\deg(f_j)< k_j\deg(p_j)\ (j=1,\dots,m)$.

Окончание доказательства

Пусть h/p^k — правильная дробь, где p — неприводимый многочлен. Разделим h на p^{k-1} с остатком: $h=q_1p^{k-1}+r_1$. Тогда $\deg(q_1)<\deg(p)$ и $\deg(r_1)<(k-1)\deg(p)$. Разделим r_1 на p^{k-2} с остатком: $r_1=q_2p^{k-2}+r_2$. Тогда $\deg(q_2)<\deg(p)$ и $\deg(r_2)<(k-2)\deg(p)$. Продолжая эти действия, получим последовательность равенств $r_j=q_{j+1}p^{k-j-1}+r_{j+1}$, где $\deg(q_{j+1})<\deg(p)$ и $\deg(r_{j+1})<(k-j-1)\deg(p)$, $j=2,\ldots,k-2$. Отсюда $h=q_1p^{k-1}+q_2p^{k-2}+\ldots+q_{k-1}p+r_{k-1}$ и $h/p^k=q_1/p+q_2/p^2+\ldots+q_{k-1}/p^{k-1}+r_{k-1}/p^k$. Существование представления правильной дроби в виде суммы простейших дробей доказано.

Докажем единственность. Пусть S_1 и S_2 — два представления одной правильной дроби в виде суммы простейших дробей. Тогда $S_1-S_2=0$. От противного, предположим, что не все слагаемые в левой части взаимно уничтожаются, остается сумма S. Если f/p^k — простейшая дробь с наибольшим показателем степени k из всех дробей суммы S, то умножая S на $p^{k-1}P$, где P — общий знаменатель всех остальных простейших дробей S, не имеющих степени p в знаменателе (в частности, (p,P)=1), получим равенство (fP)/p+q=0 для некоторого многочлена $q\neq 0$. Отсюда fP=-pq и p делит fP, что противоречит условиям (p,f)=1 (так как $\deg(f)<\deg(p)$) и (p,P)=1. Полученное противоречие показывает, что S_1 и S_2 отличаются лишь порядком слагаемых. \uparrow

Алгоритм разложения правильной дроби в сумму простейших дробей

Чтобы разложить правильную дробь f(x)/g(x) в сумму простейших дробей, нужно разложить знаменатель g(x) на неприводимые множители над полем F, затем записать сумму простейших дробей с неопределенными коэффициентами в числителях. Приведя полученное выражение к общему знаменателю и приравняв его числитель к f(x), можно определить значения неизвестных коэффицентов, либо составив для них систему линейных уравнений, либо подставляя вместо x конкретные числовые значения.

Представление правильных рациональных дробей в виде суммы простейших дробей над полем $\mathbb R$ играет важную роль при вычислении неопределенных интегралов от дробно-рациональных функций в математическом анализе.

Разложить дробь $\frac{2x^4-10x^3+7x^2+4x+3}{x^5-2x^3+2x^2-3x+2}$ в сумму простейших дробей над полем $\mathbb R.$

Для того, чтобы разложить знаменатель на неприводимые множители над полем \mathbb{R} , находим рациональные корни знаменателя, используя предложение сл.2 $\S 5$. Имеем

$$\frac{x^5-2x^3+2x^2-3x+2=(x-1)^2(x+2)(x^2+1).}{2x^4-10x^3+7x^2+4x+3}=\frac{\alpha}{x-1}+\frac{\beta}{(x-1)^2}+\frac{\gamma}{x+2}+\frac{\delta x+\lambda}{x^2+1}.$$

Приводим в правой части к общему знаменателю и записываем равенство числителей: $2x^4-10x^3+7x^2+4x+3=\alpha(x-1)(x+2)(x^2+1)+\beta(x+2)(x^2+1)+\gamma(x-1)^2(x^2+1)+(\delta x+\lambda)(x-1)^2(x+2).$

Так как многочлены равны, они принимают одинаковые значения при всех значениях x (в том числе комплексных, а также обращающих знаменатель дроби в нуль). Подставив x=1, получаем $6=6\beta$, и $\beta=1$. Подставив

Окончание примера

Подставив
$$x=i$$
 (комплексное число), получим $2i^4-10i^3+7i^2+4i+3=(\delta i+\lambda)(i-1)^2(i+2)$ и $-2+14i=(-2i)(i+2)(\delta i+\lambda)$, откуда $\lambda+\delta i=\frac{-1+7i}{1-2i}=\frac{(-1+7i)(1+2i)}{(1-2i)(1+2i)}=\frac{-1-14+7i-2i}{5}=-3+i$ и $\lambda=-3,\ \delta=1.$ Наконец, подставив $x=0$, получим $3=-2\alpha+2\beta+\gamma+2\lambda$, т.е. $2\alpha=2+3-6-3$ и найдем $\alpha=-2$. Итак, $\frac{2x^4-10x^3+7x^2+4x+3}{x^5-2x^3+2x^2-3x+2}=-\frac{2}{x-1}+\frac{1}{(x-1)^2}+\frac{3}{x+2}+\frac{x-3}{x^2+1}$.