Глава I. Введение § 5. Алгебраические операции

А. Я. Овсянников

Уральский федеральный университет
Институт естественных наук и математики
Департамент математики, механики и компьютерных наук
Основы алгебры для направлений
Механика и математическое моделирование и
Прикладная математика
(1 семестр)

Понятие алгебраической операции и первые примеры

Пусть X — непустое множество.

Определение

Бинарной алгебраической операцией на множестве X называется отображение из декартова квадрата $X \times X$ в X.

Отображение $f: X \times X \longrightarrow X$ является алгебраической операцией. Вместо z=f(x,y) принято писать $z=x\,f\,y$, а вместо f используются символы \circ , * и т.п.

Примеры алгебраических операций.

- 1. Операция сложения на множестве чисел $(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R})$.
- 2. Операция умножения на множестве чисел ($\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$).
- 3. Операция сложения векторов на множестве всех геометрических векторов.

Дальнейшие примеры

- 4. Операция умножения на множестве всех отображений из множества X в множество X.
- 5. Операция умножения на множестве всех бинарных отношений на множестве X.
- 6. Операция сложения по модулю n на множестве целых чисел $\{0,1,\ldots,n-1\}\colon x+_ny=z$, где z остаток от деления на n числа x+y.
- 7. Операция умножения по модулю n на множестве целых чисел $\{0,1,\dots,n-1\}\colon x\cdot_n y=z$, где z остаток от деления на n числа $x\cdot y$.
- 8. Операция на множестве $\{a,b,c,d\}$, заданная таблицей Кэли

•	a	b	c	d
a	a	b	c	d
b	b	c	d	a
c	c	d	a	b
d	d	a	b	c

Здесь первый аргумент берется в левом столбце, а второй - в первой строке, и на пересечении строки и столбца указан результат. Например, $b \bullet c = d$.

Основные свойства операций

Пусть \circ — бинарная алгебраическая операция на множестве X.

Определения

- lacktriangle Операция \circ называется коммутативной, если $\forall x,y\in X \ x\circ y=y\circ x.$
- ② Операция \circ называется ассоциативной, если $\forall x,y,z\in X \ (x\circ y)\circ z=x\circ (y\circ z).$
- ullet Элемент $e\in X$ называется нейтральным относительно операции \circ , если $\forall x\in X \ x\circ e=e\circ x=x.$
- ① Пусть e нейтральный элемент относительно операции \circ . Элемент $y \in X$ называется симметричным к элементу $x \in X$, если $x \circ y = y \circ x = e$.

Проверка свойств бинарных операций на конечных множествах, заданных таблицами Кэли

Пусть на конечном множестве $X=\{x_1,\dots,x_n\}$ бинарная операция \circ задана с помощью таблицы Кэли. Проверка коммутативности не представляет труда: таблица Кэли должна быть симметрична относительно ее "главной диагонали".

Чтобы проверить, будет ли эта операция ассоциативной, для каждого элемента x множества X строятся таблицы Кэли двух вспомогательных операций: $y*_xz=(y\circ x)\circ z$ и $y*_xz=y\circ (x\circ z)$. Если таблицы Кэли этих операций совпадают при любом x из X, то операция \circ будет ассоциативной.

Для построения таблицы Кэли операции $*_x$ нужно записать по порядку строки из исходной таблицы Кэли, соответствующие элементам $x_1 \circ x, \ldots, x_n \circ x$. Для построения таблицы Кэли операции $*_x$ нужно записать по порядку столбцы из исходной таблицы Кэли, соответствующие элементам $x \circ x_1, \ldots, x \circ x_n$. Для проверки ассоциативности достаточно построить таблицы Кэли операций $*_x$ и проверить, является ли каждая из них таблицей Кэли для соответствующей операции $*_x$.

Нейтральный элемент обнаруживается без труда: строка в его продолжении совпадает с заглавной строкой таблицы, а столбец - с самым левым столбцом. Легко также определить, есть ли у данного элемента симметричный к нему элемент.

Пример

Проверим, что операция 10 на сл.3 ассоциативна. Для этого построим таблицы Кэли для операций $*_x$ и \star_x для $x \in \{a,b,c,d\}$.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
$*_d$	a	b	c	d	\star_d	$(d \bullet a)a$	$(d \bullet b)b$	$(d \bullet c)c$	$(d \bullet d)d$		
$(a \bullet d)a$	d	a	b	c	a	d	a	b	c		
$(b \bullet d)b$	a	b	c	d	b	a	b	c	d		
$(c \bullet d)c$	b	c	d	a	c	b	c	\overline{d}	\overline{a}		
$(d \bullet d)d$	c	d	a	b	d	c	d	a	b		

$*_a$	a	b	c	d	$*_b$	a	b	c	d	$*_c$	a	b	c	d
a	a	b	c	d	a	b	c	d	a	a	c	d	a	b
b	b	c	d	a	b	c	d	a	b	b	d	a	b	c
c	c	d	a	b	c	d	a	b	c	c	a	b	c	d
d	d	a	b	c	d	a	b	c	d	d	b	c	d	a
				-	-				$\overline{}$	\Box				
\star_a	a	b	c	d	**	a	b	c	d	\star_c	a	b	c	d
$\begin{array}{ c c c c }\hline \star_a & & & \\ \hline a & & & & \\ \hline \end{array}$	a a	<i>b</i>	c	d	* _b	a b	b	c	d	\star_c	a c	d	c	d
				=		<u> </u>		,	=			,		\vdash
a	a	b	c	d	a	b	c	d	a	a	c	d	a	b

Мы видим, что во всех случаях таблицы Кэли операций $*_x$ и \star_x совпадают. Следовательно, операция \bullet ассоциативна.

Примеры

Операции 1-3 со слайда 2 и 6-8 со слайда 3 являются коммутативными.

Все операции 1-8 являются ассоциативными.

Операция сложения на множестве $\mathbb N$ не имеет нейтрального элемента, на остальных множествах чисел нейтральный элемент — 0.

Для умножения на всех множествах чисел нейтральный элемент — 1.

Для сложения векторов нейтральный элемент $\vec{0}$,

Для умножения отображений и бинарных отношений на множестве X нейтральный элемент — отношение равенства $\Delta_X=\{(x,x)|x\in X\}.$ \Downarrow Для $\alpha\subseteq X\times X$ имеем $\alpha\circ \Delta_X=\{(x,y)|\exists z\in X:(x,z)\in \alpha,(z,y)\in \Delta_X\}.$ Следовательно, z=y по определению отношения равенства Δ_X и $\alpha\circ \Delta_X=\alpha.$ Аналогично проверяется, что $\Delta_X\circ \alpha=\alpha.$ Таким образом, отношение равенства Δ_X является нейтральным элементом для операции умножения бинарных отношений на множестве X.

Так как отображения являются бинарными отношениями, для операции умножения отображений нейтральным элементом будет \triangle_X , рассматриваемое как отображение, т.е. тождественное отображение ε множества X на себя: $\varepsilon(x)=x$ для любого $x\in X$. \uparrow

Для операции 8 нейтральным элементом будет a.

Примеры-2

Для операции сложения на множествах $\mathbb{Z},\mathbb{Q},\mathbb{R}$ каждый элемент обладает симметричным.

Для операции умножения на множестве $\mathbb N$ симметричным обладает только 1, на множестве $\mathbb Z$ — только -1,1, на множествах $\mathbb Q$, $\mathbb R$ — каждое ненулевое число.

Каждый вектор обладает симметричным относительно операции сложения векторов.

Биекции множества X на X и только они имеют симметричные элементы относительно операций умножения отображений и бинарных отношений.

 \Downarrow Пусть $\alpha, \beta \subseteq X \times X$ и $\alpha \circ \beta = \beta \circ \alpha = \triangle_X$. Тогда $D(\alpha) = X$ и $E(\alpha) = X$, т.е. α – всюду определенное сюрьективное соответствие. Если $x\alpha y$ и $x\alpha z$, то $y\beta x$ и $z\beta x$, иначе $x(\alpha \circ \beta)u$ при $x \neq u$. Отсюда $z(\beta \circ \alpha)y$ и y = z. Таким образом, α – функциональное соответствие. Аналогично проверяется, что α инъективно. Итак, α – биекция. \Uparrow

Для операции 8 элементы a и c являются симметричными к самим себе, d является симметричным к b.

Простейшие утверждения об операциях

Предложение

Если операция обладает нейтральным элементом, то он единствен. Если ассоциативная операция обладает нейтральным элементом, то симметричный элемент определяется однозначно в случае, когда он существует.

↓ Пусть e_1,e_2 — два нейтральных элемента относительно операции \circ . Тогда $e_1=e_1\circ e_2=e_2$ по определению нейтрального элемента. Пусть ассоциативная операция \circ обладает нейтральным элементом e и y_1,y_2 — два симметричных элемента к элементу x. Тогда $x\circ y_1=y_1\circ x=e$ и $x\circ y_2=y_2\circ x=e$. Имеем $y_1=e\circ y_1=(y_2\circ x)\circ y_1=y_2\circ (x\circ y_1)=y_2\circ e=y_2$, т.е. $y_1=y_2$, что и требуется доказать. ↑

Если операция \circ на множестве A не ассоциативная, то необходимо ставить скобки при записи выражений: $x\circ (y\circ z)$ может быть не равно $(x\circ y)\circ z$. Расставлять скобки в произведениях, содержащих более 3-х элементов, можно многими способами. Например, в произведениях 4-х элементов скобки можно расставить следующими способами: $x_1\circ (x_2\circ (x_3\circ x_4)),\ x_1\circ ((x_2\circ x_3)\circ x_4),\ (x_1\circ (x_2\circ x_3))\circ x_4,\ ((x_1\circ x_2)\circ x_3)\circ x_4,\ (x_1\circ x_2)\circ (x_3\circ x_4).$

Свойство ассоциативных операций

Теорема

Если операция \circ на множестве X ассоциативная, то для любых $x_1,x_2,\ldots,x_n\in X$ значение выражения $x_1\circ x_2\circ\ldots\circ x_n$ не зависит от способа расстановки скобок.

 $\label{eq:power}$ \labelee \labelee

Шаг индукции. Предположим, что для всех $3 \leq k < n$ утверждение уже доказано. Рассмотрим произведение $(x_1 \circ x_2 \ldots \circ x_m) \circ (x_{m+1} \circ \ldots \circ x_n)$. Если m=1, то требуемое сразу получается из предположения индукции, примененного к второй скобке. Пусть m>1. По предположению индукции выражение в первой скобке равно $x_1 \circ (x_2 \circ (x_3 \circ \ldots \circ x_m))$.

Применяя свойство ассоциативности, получаем

$$(x_1 \circ x_2 \circ \ldots \circ x_m) \circ (x_{m+1} \circ \ldots \circ x_n) = (x_1 \circ (x_2 \circ (x_3 \circ \ldots \circ x_m))) \circ (x_{m+1} \circ \ldots \circ x_n) = x_1 \circ ((x_2 \circ (x_3 \circ \ldots x_m)) \circ (x_{m+1} \circ \ldots \circ x_n))$$
, откуда в силу предположения индукции следует требуемое утверждение. $\uparrow \uparrow$

С учетом теоремы в случае ассоциативной операции выражения вида $x_1 \circ x_2 \circ \ldots \circ x_n$ принято записывать без скобок.

Аддитивный и мультипликативный способы представления алгебраической операции

1. Аддитивный способ.

Если операция на множестве коммутативна и ассоциативна, то ее часто обозначают знаком + и называют *сложением*. При этом нейтральный элемент, если он существует, обозначается 0 и называется *нулем*, а (единственный) симметричный элемент к элементу a обозначается через -a и называется *противоположным* к a элементом.

2. Мультипликативный способ. Если операция на множестве ассоциативна, то ее часто обозначают знаком \cdot и называют *умножением*. При этом нейтральный элемент, если он существует, обозначается 1 и называется единицей, а (единственный) симметричный элемент к элементу a, если он существует, обозначается через a^{-1} и называется *обратным* к a элементом. Сам элемент a, для которого существует обратный элемент, называется *обратимым элементом*.