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Neutral elements

An element x of a latti
e L is 
alled neutral if

∀y , z ∈ L : the sublatti
e of all generated by x , y and z is distributive

or, equivalently, if

∀y , z ∈ L : (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x) = (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x).

If a is neutral in L then L is a subdire
t produ
t of (a] and [a),

L embeds in (a]× [a) by the rule

x 7−→ (x ∧ a, x ∨ a) for any x ∈ L.
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Modular elements

An element x of a latti
e L is 
alled modular if

∀y , z : y ≤ z → (x ∨ y) ∧ z = (x ∧ z) ∨ y .

s

s

s

s

s

x y

z

This 
on�guration is impossible
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Can
ellable elements

An element x of a latti
e L is 
alled 
an
ellable if

∀y , z : x ∧ y = x ∧ z & x ∨ y = x ∨ z → y = z .

Every neutral element is 
an
ellable.

Every 
an
ellable element is modular.
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Modular elements in the latti
e SEM

Let SEM be the latti
e of all semigroup varieties.

Proposition 1 (Jezek and M
Kenzie, 1993; reproved in simpler way by

Shaprynski��, 2012)

If V is a modular element of the latti
e SEM then either V is the variety of all

semigroups or V ⊆ SL ∨ N where SL is the variety of semilatti
es, while N is a

nilvariety.

Proposition 2 (∼, 2007)

A 
ommutative semigroup variety V is a modular element of the latti
e SEM if

and only if V ⊆ SL ∨N where N satis�es the identities x2y = 0 and xy = yx .

Boris Vernikov Can
ellable elements of latti
es of semigroup and epigroup varieties



Modular elements in the latti
e SEM

Let SEM be the latti
e of all semigroup varieties.

Proposition 1 (Jezek and M
Kenzie, 1993; reproved in simpler way by

Shaprynski��, 2012)

If V is a modular element of the latti
e SEM then either V is the variety of all

semigroups or V ⊆ SL ∨ N where SL is the variety of semilatti
es, while N is a

nilvariety.

Proposition 2 (∼, 2007)

A 
ommutative semigroup variety V is a modular element of the latti
e SEM if

and only if V ⊆ SL ∨N where N satis�es the identities x2y = 0 and xy = yx .

Boris Vernikov Can
ellable elements of latti
es of semigroup and epigroup varieties



Modular elements in the latti
e SEM

Let SEM be the latti
e of all semigroup varieties.

Proposition 1 (Jezek and M
Kenzie, 1993; reproved in simpler way by

Shaprynski��, 2012)

If V is a modular element of the latti
e SEM then either V is the variety of all

semigroups or V ⊆ SL ∨ N where SL is the variety of semilatti
es, while N is a

nilvariety.

Proposition 2 (∼, 2007)

A 
ommutative semigroup variety V is a modular element of the latti
e SEM if

and only if V ⊆ SL ∨N where N satis�es the identities x2y = 0 and xy = yx .

Boris Vernikov Can
ellable elements of latti
es of semigroup and epigroup varieties



Can
ellable elements in the latti
e SEM: the 
ommutative 
ase

Theorem

For a 
ommutative semigroup variety V, the following are equivalent:

a) V is a 
an
ellable element of the latti
e SEM;

b) V is a modular element of the latti
e SEM;


) V ⊆ SL ∨N where N satis�es the identities x2y = 0 and xy = yx .

(w = 0 means wx = xw = w where x does not o

ur in w)

Boris Vernikov Can
ellable elements of latti
es of semigroup and epigroup varieties



Can
ellable elements in the latti
e SEM: questions

Question 1

Does there exist a semigroup variety that is a modular but not 
an
ellable

element of the latti
e SEM?

Proposition 1 
ompletely redu
es the problem of des
ription of modular

elements in SEM to the nil-
ase.

An important 
lass of nilvarieties: a variety is 
alled 0-redu
ed if it is given by

identities of the form w = 0.

Proposition 3(∼ and Volkov, 1988; independently, Jezek and M
Kenzie, 1993)

A 0-redu
ed semigroup variety is a modular element of the latti
e SEM.

Question 2

Is a 0-redu
ed semigroup variety a 
an
ellable element of the latti
e SEM?
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Epigroups

An epigroup is a semigroup S with the following property: for any x ∈ S there

is n su
h that xn

lies in some subgroup of S .

All periodi
 semigroups as well as all 
ompletely regular semigroups are

epigroups.

Epigroups may be 
onsidered as unary semigroups, that is semigroups with an

additional unary operation.
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Epigroups as unary semigroups

Let S be an epigroup, x ∈ S , Gx is the maximum subgroup of S 
ontaining x .

Let xω

be a unit element of Gx . Then xxω = xωx ∈ Gx . Put

x = (xxω)−1

in Gx .

x is 
alled pseudoinverse to x

s s s

s

s

s

x x2 xn
Gx

xω

xxω

x

. . . . . .

pseudoinversion
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Periodi
 
ase

Every periodi
 semigroup variety 
an be 
onsidered as a variety of epigroups.

If an epigroup variety V 
onsists of periodi
 semigroups then the operation of

pseudoinversion may be de�ned by multipli
ation. Namely, if V satis�es the

identity xm = xm+n

then x = x (m+1)n−1

. Thus a variety of periodi
 epigroups


an be 
onsidered as epigroup variety.

Periodi
 varieties of epigroups may be identi�ed with periodi
 varieties of

semigroups.
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Can
ellable elements in the latti
e EPI

Let EPI be the latti
e of all epigroup varieties.

Theorem

For a 
ommutative epigroup variety V, the following are equivalent:

a) V is a 
an
ellable element of the latti
e EPI;

b) V is a modular element of the latti
e EPI;


) V ⊆ SL ∨N where N satis�es the identities x2y = 0 and xy = yx .

The equivalen
e of b) and 
) was proved earlier by ∼, Skokov and Shaprynskii

(2016).

Corollary

For a periodi
 
ommutative epigroup variety V, the following are equivalent:

a) V is a 
an
ellable element of the latti
e EPI;

b) V is a 
an
ellable element of the latti
e SEM.
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