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Neutral elements

An element x of a lattie L is alled neutral if

∀y , z ∈ L : the sublattie of all generated by x , y and z is distributive

or, equivalently, if

∀y , z ∈ L : (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x) = (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x).

If a is neutral in L then L is a subdiret produt of (a] and [a),

L embeds in (a]× [a) by the rule

x 7−→ (x ∧ a, x ∨ a) for any x ∈ L.
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Modular elements

An element x of a lattie L is alled modular if

∀y , z : y ≤ z → (x ∨ y) ∧ z = (x ∧ z) ∨ y .
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This on�guration is impossible
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Canellable elements

An element x of a lattie L is alled anellable if

∀y , z : x ∧ y = x ∧ z & x ∨ y = x ∨ z → y = z .

Every neutral element is anellable.

Every anellable element is modular.
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Modular elements in the lattie SEM

Let SEM be the lattie of all semigroup varieties.

Proposition 1 (Jezek and MKenzie, 1993; reproved in simpler way by

Shaprynski��, 2012)

If V is a modular element of the lattie SEM then either V is the variety of all

semigroups or V ⊆ SL ∨ N where SL is the variety of semilatties, while N is a

nilvariety.

Proposition 2 (∼, 2007)

A ommutative semigroup variety V is a modular element of the lattie SEM if

and only if V ⊆ SL ∨N where N satis�es the identities x2y = 0 and xy = yx .
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Canellable elements in the lattie SEM: the ommutative ase

Theorem

For a ommutative semigroup variety V, the following are equivalent:

a) V is a anellable element of the lattie SEM;

b) V is a modular element of the lattie SEM;

) V ⊆ SL ∨N where N satis�es the identities x2y = 0 and xy = yx .

(w = 0 means wx = xw = w where x does not our in w)
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Canellable elements in the lattie SEM: questions

Question 1

Does there exist a semigroup variety that is a modular but not anellable

element of the lattie SEM?

Proposition 1 ompletely redues the problem of desription of modular

elements in SEM to the nil-ase.

An important lass of nilvarieties: a variety is alled 0-redued if it is given by

identities of the form w = 0.

Proposition 3(∼ and Volkov, 1988; independently, Jezek and MKenzie, 1993)

A 0-redued semigroup variety is a modular element of the lattie SEM.

Question 2

Is a 0-redued semigroup variety a anellable element of the lattie SEM?
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Epigroups

An epigroup is a semigroup S with the following property: for any x ∈ S there

is n suh that xn

lies in some subgroup of S .

All periodi semigroups as well as all ompletely regular semigroups are

epigroups.

Epigroups may be onsidered as unary semigroups, that is semigroups with an

additional unary operation.
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Epigroups as unary semigroups

Let S be an epigroup, x ∈ S , Gx is the maximum subgroup of S ontaining x .

Let xω

be a unit element of Gx . Then xxω = xωx ∈ Gx . Put

x = (xxω)−1

in Gx .

x is alled pseudoinverse to x

s s s

s

s

s

x x2 xn
Gx

xω

xxω

x

. . . . . .

pseudoinversion
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Periodi ase

Every periodi semigroup variety an be onsidered as a variety of epigroups.

If an epigroup variety V onsists of periodi semigroups then the operation of

pseudoinversion may be de�ned by multipliation. Namely, if V satis�es the

identity xm = xm+n

then x = x (m+1)n−1

. Thus a variety of periodi epigroups

an be onsidered as epigroup variety.

Periodi varieties of epigroups may be identi�ed with periodi varieties of

semigroups.
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Canellable elements in the lattie EPI

Let EPI be the lattie of all epigroup varieties.

Theorem

For a ommutative epigroup variety V, the following are equivalent:

a) V is a anellable element of the lattie EPI;

b) V is a modular element of the lattie EPI;

) V ⊆ SL ∨N where N satis�es the identities x2y = 0 and xy = yx .

The equivalene of b) and ) was proved earlier by ∼, Skokov and Shaprynskii

(2016).

Corollary

For a periodi ommutative epigroup variety V, the following are equivalent:

a) V is a anellable element of the lattie EPI;

b) V is a anellable element of the lattie SEM.
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