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ON MODULAR AND CANCELLABLE ELEMENTS
OF THE LATTICE OF SEMIGROUP VARIETIES

D.V. SKOKOV, B.M. VERNIKOV

Abstract. We continue a study of modular and cancellable elements in
the lattice SEM of all semigroup varieties. In 2007, the second author
completely determined all commutative semigroup varieties that are
modular elements in SEM. In 2018 the authors jointly with S.V.Gusev
proved that, within the class of commutative varieties, the properties
to be modular and cancellable elements in SEM are equivalent. The
objective of this article is to verify that, within some slightly wider class of
semigroup varieties, this equivalence is not the case. To achieve this goal,
we completely classify semigroup varieties satisfying a permutational
identity of length 3 that are modular elements in SEM. Further, we
specify a variety with these properties that is not a cancellable element
in SEM.

Keywords: semigroup, variety, lattice of varieties, permutational identi-
ty, modular element of a lattice, cancellable element of a lattice.

1. Introduction and summary

There are a number of articles devoted to an examination of special elements in
the lattice SEM of all semigroup varieties (see surveys [8, Section 14] and [10]).
Here we continue these considerations and examine special elements of two types,
namely, modular and cancellable elements. Recall that an element x of a lattice
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⟨L;∨,∧⟩ is called

modular if (∀y, z ∈ L)
(
y ≤ z −→ (x ∨ y) ∧ z = (x ∧ z) ∨ y

)
,

cancellable if (∀y, z ∈ L) (x ∨ y = x ∨ z & x ∧ y = x ∧ z −→ y = z).

It is evident that every cancellable element of a lattice is modular. A valuable
information about modular and cancellable elements in abstract lattices can be
found in [5], for instance.

Several results about modular elements of the lattice SEM were provided in the
papers [2, 7, 9]. In particular, commutative semigroup varieties that are modular
elements in SEM are completely determined in [9, Theorem 3.1]. Further, it is
verified in [1] that the properties of being modular and cancellable elements of
SEM are equivalent in the class of commutative semigroup varieties. The objective
of this article is to prove that this equivalence is not the case in slightly wider class,
namely in the class of semigroup varieties satisfying a permutational identity of
length 3.

A semigroup variety is called a nil-variety if it consists of nilsemigroups. Semi-
group words unlike letters are written in bold. Two sides of identities we connect
by the symbol ≈, while the symbol = stands for the equality relation on the free
semigroup. As usual, we write the pair of identities xu ≈ ux ≈ u where the letter
x does not occur in the word u in the short form u ≈ 0 and refer to the expression
u ≈ 0 as to a single identity. A permutational identity is an identity of the form

(1) x1x2 · · ·xn ≈ x1πx2π · · ·xnπ

where π is a non-trivial permutation on the set {1, 2, . . . , n}. The number n is called
a length of the identity (1). We denote by T the trivial semigroup variety and by
SL the variety of all semilattices.

The main result of this note is the following

Theorem 1.1. A semigroup variety V satisfying a permutational identity of length
3 is a modular element in the lattice SEM if and only if V = M ∨N where M
is one of the varieties T or SL, while the variety N satisfies one of the following
identity systems:

xyz ≈ zyx, x2y ≈ 0;(2)

xyz ≈ yzx, x2y ≈ 0;(3)

xyz ≈ yxz, xyzt ≈ xzty, xy2 ≈ 0;(4)

xyz ≈ xzy, xyzt ≈ yzxt, x2y ≈ 0.(5)

We denote by Sn the full permutation group on the set {1, 2, . . . , n}. The semi-
group variety given by an identity system Σ is denoted by varΣ. In [1, Question 3.2],
the question is asked whether there is a semigroup variety that is a modular but not
cancellable element of the lattice SEM. The following result gives the affirmative
answer to this question.

Proposition 1.2. Let ρ be a non-trivial permutation from S3. The variety

var{xyzt ≈ xyx ≈ x2 ≈ 0, x1x2x3 ≈ x1ρx2ρx3ρ}
is a modular but not cancellable element of the lattice SEM.

The article consists of three sections. Section 2 contains auxiliary results. In
Section 3 we verify Theorem 1.1 and Proposition 1.2.
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2. Preliminaries

We denote by F the free semigroup over a countably infinite alphabet. If u ∈ F
then con(u) denotes the set of all letters occurring in the word u. The following
claim is well known and easily verified.

Lemma 2.1. An identity u ≈ v holds in the variety SL if and only if con(u) =
con(v). �

An element x of a lattice ⟨L;∨,∧⟩ is called neutral if, for any y, z ∈ L, the
sublattice of L generated by x, y and z is distributive. It is well known that the
variety SL is a neutral element of the lattice SEM [12, Proposition 4.1] and an
atom of this lattice (see the survey [8], for instance). This fact together with [6,
Corollary 2.1] immediately imply the following

Lemma 2.2. For a semigroup variety V, the following are equivalent:
(i) the variety V is a modular element of the lattice SEM;
(ii) the variety SL ∨V is a modular element of the lattice SEM;
(iii) the variety SL ∨V is a modular element of the coideal [SL) of the lattice

SEM. �
The following claim gives a strong necessary condition for a semigroup variety

to be a modular element in the lattice SEM.

Proposition 2.3. If V is a modular element of the lattice SEM then either V
coincides with the variety of all semigroups or V = M ∨N where M is one of the
varieties T or SL, while N is a nil-variety. �

This proposition was proved (in slightly weaker form and in some other
terminology) in [2, Proposition 1.6]. It was formulated in the form given here in [9,
Proposition 2.1]. A direct and transparent proof of Proposition 2.3 not depending
on a technique from [2] is provided in [7].

As we have already mentioned, commutative varieties that are modular elements
in SEM are completely classified in [9, Theorem 3.1]. We need the following
consequence of this result that was verified in [11], in fact.

Proposition 2.4. If a semigroup variety satisfies the identities x2y ≈ 0 and xy ≈
yx then it is a modular element in SEM. �

We need also the following claim that is a part of [9, Theorem 4.5].

Lemma 2.5. Let V be a nil-variety of semigroups satisfying an identity of the
form x1x2x3 ≈ x1πx2πx3π where π is a non-trivial permutation from S3. If V is a
modular element of the lattice SEM then V satisfies also:

(i) all permutational identities of length 4;
(ii) the identity xy2 ≈ 0 whenever π = (12);
(iii) the identity x2y ≈ 0 whenever π is one of the permutations (13), (23) or

(123). �
For a natural number n and a semigroup variety V, we denote by Permn(V)

the set of all permutations π ∈ Sn such that V satisfies the identity (1). Clearly,
Permn(V) is a subgroup in Sn. If 1 ≤ i ≤ n then we denote by Stabn(i) the set of
all permutations π ∈ Sn with iπ = i. Obviously, Stabn(i) also is a subgroup in Sn.
Moreover, it is well known that Stabn(i) is a maximal proper subgroup in Sn. We
need the following partial cases of results of the article [3].
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Lemma 2.6. Let V be a semigroup variety.
1) If V satisfies a non-trivial identity of the form x1x2x3 ≈ x1πx2πx3π and

n ≥ 4 then
(i) Permn(V) ⊇ Stabn(n) whenever π = (12);
(ii) Permn(V) ⊇ Stabn(1) whenever π = (23);
(iii) Permn(V) = Sn otherwise.

2) If V satisfies the identity xyzt ≈ xzty and n ≥ 5 then Permn(V) ⊇
Stabn(1). �

If a ∈ F then we denote by ℓ(a) the length of the word a.

Lemma 2.7. If a nil-variety of semigroups N satisfies a non-trivial identity of the
form x1x2 · · ·xn ≈ w then either this identity is permutational or N satisfies also
the identity x1x2 · · ·xn ≈ 0.

Proof. Suppose that con(w) ̸= {x1, x2, . . . , xn}. Then there is a letter xi that occurs
in exactly one of the words x1x2 · · ·xn and w. One can substitute 0 for xi in the
identity x1x2 · · ·xn ≈ w. We obtain that x1x2 · · ·xn ≈ 0 holds in N. Thus, we
can assume that con(w) = {x1, x2, . . . , xn}. In particular, ℓ(w) ≥ n. It readily
follows from the proof of [4, Lemma 1] that if ℓ(w) > n then N satisfies the
identity x1x2 · · ·xn ≈ 0. Finally, if ℓ(w) = n then the identity x1x2 · · ·xn ≈ w is
permutational. �

If a,b ∈ F and b may be obtained from a by renaming of letters then we say
that the words a and b are similar. For brevity, we will denote the identity (1) by
pn[π]. If a is a word and π is a permutation on the set con(a) then we denote by
π[a] the word that is obtained from a by the substitution x 7→ π(x) for every letter
x ∈ con(a). A word w is called linear if every letter occurs in w at most once.

Lemma 2.8. Let V1 and V2 be semigroup varieties and n be a natural number.
Then:

(i) Permn(V1 ∨V2) = Permn(V1) ∧ Permn(V2);
(ii) if V1 and V2 are nil-varieties then

Permn(V1 ∧V2) = Permn(V1) ∨ Permn(V2).

Proof. (i) Let π ∈ Permn(V1∨V2). Then the variety V1∨V2 satisfies the identity
pn[π]. Hence this identity holds in both the varieties V1 and V2. Therefore,
π ∈ Permn(V1) and π ∈ Permn(V2), whence π ∈ Permn(V1) ∧ Permn(V2).
Thus, Permn(V1 ∨ V2) ⊆ Permn(V1) ∧ Permn(V2). Suppose now that π ∈
Permn(V1) ∧ Permn(V2). Then the identity pn[π] holds in both the varieties
V1 and V2. Therefore, it holds in V1 ∨ V2. Thus, π ∈ Permn(V1 ∨ V2) and
Permn(V1) ∧ Permn(V2) ⊆ Permn(V1 ∨V2). This implies the required equality.

(ii) Let π ∈ Permn(V1)∨Permn(V2). Then there is a sequence of permutations
π1, π2, . . . , πm such that π = π1π2 · · ·πm and, for each i = 1, 2, . . . ,m, the permut-
ation πi lies in one of the groups Permn(V1) or Permn(V2). Put u0 = x1x2 · · ·xn.
For each i = 1, 2, . . . ,m, we define by induction the word ui by the equality ui =
πi[ui−1]. It is clear that um = π[u0] and the sequence of words u0, u1, . . . , um is
a deduction of the identity pn[π] from identities of the varieties V1 and V2. Then
π ∈ Permn(V1 ∧V2), whence Permn(V1) ∨ Permn(V2) ⊆ Permn(V1 ∧V2).

It remains to verify that Permn(V1 ∧ V2) ⊆ Permn(V1) ∨ Permn(V2). Let
π ∈ Permn(V1 ∧ V2). Then the identity pn[π] holds in the variety V1 ∧ V2. Let
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u0, u1, . . . , um be a deduction of this identity from identities of the varieties
V1 and V2. In other words, u0 = x1x2 · · ·xn, um = x1πx2π · · ·xnπ and, for each
i = 0, 1, . . . ,m − 1, the identity ui ≈ ui+1 holds in either V1 or V2. We will
assume that u0, u1, . . . , um is the shortest sequence of words with the mentioned
properties. Suppose that there is an index i such that either ui is non-linear or
con(ui) ̸= {x1, x2, . . . , xn}. Let i be the least index with such a property. Clearly,
0 < i < m. The word ui−1 is similar to x1x2 · · ·xn. The identity ui−1 ≈ ui holds
in one of the varieties V1 or V2, say, in V1. This identity is non-permutational.
Lemma 2.7 implies then that V1 satisfies the identity x1x2 · · ·xn ≈ 0 and therefore,
the identity pn[π]. But then the sequence of words u0, u1, . . . , ui−1, um is a
deduction of the identity pn[π] from identities of the varieties V1 and V2 shorter
than the deduction u0, u1, . . . , um.

Therefore, the words u0, u1, . . . , um are linear and con(ui) = {x1, x2, . . . , xn}
for all i = 0, 1, . . . ,m. Hence there are permutations π1, π2, . . . , πm ∈ Sn such that
ui = πi[ui−1] for all i = 1, 2, . . . ,m and each of the permutations π1, π2, . . . , πm

lies in either Permn(V1) or Permn(V2). Clearly, π = π1π2 · · ·πm, whence π ∈
Permn(V1) ∨ Permn(V2). �

To verify Proposition 1.2, we need the information about the structure of the
subgroup lattice of the group S3. It is generally known and easy to check that this
lattice has the form shown in Fig. 1. Here T is the trivial group and gr{π} denotes
the subgroup of S3 generated by the permutation π.

s s
s

s
s s���������

HHHHHHHHH











J
J
J
JJ










���������

J
J
J
JJ

HHHHHHHHHgr{(12)} gr{(13)} gr{(23)} gr{(123)}

S3

T

Рис. 1. The subgroup lattice of the group S3

3. The proof of the main results

Proof of Theorem 1.1. Necessity immediately follows from Proposition 2.3 and
Lemma 2.5.

Sufficiency. Let V = M ∨N where M is one of the varieties T or SL, while the
variety N satisfies one of the identity systems (2)–(5). We need to verify that the
variety V is a modular element in the lattice SEM. In view of Lemma 2.2, we may
assume that M = SL, so V = SL ∨N. The same lemma shows that it suffices to
prove that V is a modular element of the coideal [SL) of the lattice SEM. In other
words, we have to check that

(V ∨Y) ∧ Z = (V ∧ Z) ∨Y
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for arbitrary varieties Y and Z with SL ⊆ Y ⊆ Z. Moreover, it suffices to verify
that

(V ∨Y) ∧ Z ⊆ (V ∧ Z) ∨Y

because the opposite inclusion is evident. Thus, we need to prove that if a non-trivial
identity u ≈ v holds in (V ∧ Z) ∨Y then it holds in (V ∨Y) ∧ Z too.

So, let SL ⊆ Y ⊆ Z and u ≈ v be a non-trivial identity that holds in the variety
(V ∧ Z) ∨Y. Then u ≈ v holds in Y and there is a deduction of this identity from
identities of the varieties V and Z, that is, a sequence of words

(6) w0,w1, . . . ,wm

such that w0 = u, wm = v and, for each i = 0, 1, . . . ,m−1, the identity wi ≈ wi+1

holds in one of the varieties V or Z. We will assume that (6) is the shortest deduction
of u ≈ v from identities of V and Z. In particular, this means that the words
w0,w1, . . . ,wm are pairwise distinct, there is no i ∈ {0, 1, . . . ,m − 2} such that
wi ≈ wi+1 ≈ wi+2 hold in one of the varieties V or Z, and there is no i ∈
{0, 1, . . . ,m − 1} such that wi ≈ wi+1 holds in both of these two varieties. Since
each of the varieties V and Z contains SL, Lemma 2.1 implies that

(7) con(w0) = con(w1) = · · · = con(wm).

This fact and Lemma 2.1 imply that if, for some i ∈ {0, 1, . . . ,m− 1}, the identity
wi ≈ wi+1 holds in N then it holds in V too. All these observations will be used
below without references.

The case m = 1 is evident. Indeed, if m = 1 then the identity u ≈ v holds in one
of the varieties V or Z. This identity holds also in Y, whence it holds in one of the
varieties V ∨Y or Z, and moreover in (V ∨Y) ∧ Z.

Suppose that m = 2. By symmetry, we may assume that u ≈ w1 holds in V and
w1 ≈ v holds in Z. Then w1 ≈ v ≈ u hold in Y. We see that the identities u ≈ w1

and w1 ≈ v hold in V ∨Y and Z respectively, whence u ≈ v holds in (V ∨Y) ∧ Z.
At the rest part of the proof we suppose that m ≥ 3.
First of all, we consider one very special but important partial case.

Lemma 3.1. If m = 3, the identities w0 ≈ w1 and w2 ≈ w3 hold in the variety
Z, and the identity w1 ≈ w2 holds in the variety V then the identity u ≈ v holds
in the variety (V ∨Y) ∧ Z.

Proof. Recall that the identity u ≈ v holds in Y, u = w0 and v = w3. Since
Y ⊆ Z, we have that w1 ≈ w0 ≈ w3 ≈ w2 hold in Y. Therefore, the identity
w1 ≈ w2 holds in the variety V ∨Y. It remains to take into account that the
identities w0 ≈ w1 and w2 ≈ w3 hold in Z. �

Put

Z = {w ∈ F | the identity w ≈ 0 holds in the variety N},
L = {w ∈ F | the word w is linear and w /∈ Z},
S = {w ∈ F | w /∈ Z ∪ L}.

Lemma 2.5 readily implies that if S ̸= ∅ then any word from S is similar to:
• one of the words x2 or xyx whenever V satisfies (2);
• the word x2 whenever V satisfies (3);
• one of the words x2 or x2y whenever V satisfies (4);
• one of the words x2 or xy2 whenever V satisfies (5).
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Let Sk be the set of all words from S depending on k letters. We have the following

Lemma 3.2. S = S1 ∪ S2; if u ∈ S1 then u is similar to x2; if u,v ∈ S2 then u
and v are similar. �

It is evident that each of the words w0,w1, . . . ,wm lies in exactly one of the sets
Z, L or S. It is clear also that if w′,w′′ ∈ Z then w′ ≈ w′′ holds in N; if, besides
that, con(w′) = con(w′′) then w′ ≈ w′′ holds in V. In particular, if wi,wj ∈ Z for
some i, j ∈ {0, 1, . . . ,m} then wi ≈ wj holds in V. All these observations will be
used below without references.

One can provide some properties of the sequence (6).

Lemma 3.3. If wi,wj ∈ Z for some 0 ≤ i < j ≤ m then j = i+ 1. In particular,
the sequence (6) contains at most two words from the set Z.

Proof. The identity wi ≈ wj holds in the variety V. If j > i+1 then the sequence
of words

w0,w1, . . . ,wi,wj , . . . ,wm

is a deduction of the identity u ≈ v from identities of the varieties V and Z shorter
than the sequence (6). �

Lemma 3.4. If wi ∈ S1 for some i ∈ {0, 1, . . . ,m} then:
(i) either i = 0 or i = m;
(ii) if i = 0 [respectively i = m] then the identity w0 ≈ w1 [respectively wm−1 ≈

wm] holds in the variety Z.

Proof. In view of Lemma 3.2, we may assume without loss of generality that wi =
x2. Suppose that 0 < i < m. Then wi ≈ wj holds in V for some j ∈ {i− 1, i+ 1}.
In particular, wi ≈ wj in N. Since con(wj) = con(wi) = {x} and wj ̸= wi, we
have that wj = xk for some k ̸= 2. It is evident that xk ≈ x2 implies x2 ≈ 0 in
any nil-variety. Therefore, wi ≈ 0 holds in N contradicting the claim wi ∈ S. The
claim (i) is proved. Analogous arguments show that if i = 0 [respectively i = m]
then the identity w0 ≈ w1 [respectively wm−1 ≈ wm] fails in V and therefore,
holds in Z. The claim (ii) is proved as well. �

Lemma 3.5. If the sequence (6) does not contain a word from the set S2 and
wi ∈ L for some i ∈ {1, . . . ,m− 1} then either wi−1 ∈ L or wi+1 ∈ L.

Proof. Arguing by contradiction, suppose that wi−1,wi+1 ∈ Z∪S. If wi−1 ∈ S then
wi−1 ∈ S1 and Lemma 3.4 applies with the conclusion that the identity wi−1 ≈ wi

holds in Z. Let now wi−1 ∈ Z. Then the variety N satisfies the identity wi−1 ≈ 0.
On the other hand, the identity wi ≈ 0 fails in N because wi ∈ L. Therefore, the
identity wi−1 ≈ wi fails in V, whence it holds in Z. We see that wi−1 ≈ wi holds
in Z in any case. Analogous arguments show that wi ≈ wi+1 holds in Z. Thus,
wi−1 ≈ wi ≈ wi+1 hold in Z that is impossible. �

Lemma 3.6. If the sequence (6) does not contain a word from the set S2 and
wi,wi+1 ∈ L for some i ∈ {0, 1, . . . ,m− 1} then the sequence (6) does not contain
words from the set Z.

Proof. Suppose that i + 1 < m and wi+2 ∈ Z. Then the variety N satisfies the
identity wi+2 ≈ 0 but does not satisfy the identity wi+1 ≈ 0. Hence the identity
wi+1 ≈ wi+2 is false in N, and moreover in V. Therefore, wi+1 ≈ wi+2 holds in
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Z, whence wi ≈ wi+1 holds in V. Clearly, wi = σ[wi+1] for some permutation σ
on the set con(wi+1). Then wi = σ(wi+1) ≈ σ(wi+2) holds in Z. Since wi+2 ≈ 0
holds in N, we have that σ[wi+2] ≈ 0 holds in N too. Thus σ[wi+2] ≈ wi+2 holds
in N and therefore, in V. Recall that m ≥ 3. Hence either i > 0 or i + 2 < m. If
i > 0 then wi−1 ≈ wi ≈ σ[wi+2] hold in Z and the sequence of words

w0,w1, . . . ,wi−1, σ[wi+2],wi+2, . . . ,wm

is a deduction of the identity u ≈ v from identities of the varieties V and Z shorter
than the sequence (6). Further, if i+2 < m then σ[wi+2] ≈ wi+2 ≈ wi+3 hold in V
and we also have a deduction of the identity u ≈ v from identities of the varieties
V and Z shorter than the sequence (6), namely the sequence of words

w0,w1, . . . ,wi, σ[wi+2],wi+3, . . . ,wm.

Both these cases are impossible. We prove that if i + 1 < m then wi+2 /∈ Z. By
symmetry, if i > 0 then wi−1 /∈ Z.

Let now wj ,wj+1, . . . ,wj+k (where 0 ≤ j < j + k ≤ m) be the maximal
subsequence of the sequence (6) consisting of words from the set L. In other words,
wj ,wj+1, . . . ,wj+k ∈ L, wj+k+1 /∈ L whenever j+k < m, and wj−1 /∈ L whenever
j > 0. Suppose that j + k < m. As we have seen in the previous paragraph, this
implies that wj+k+1 /∈ Z, whence wj+k+1 ∈ S. Now Lemma 3.4(i) applies, and we
conclude that j + k + 1 = m. Analogously, if j > 0 then j = 1 and w0 ∈ S. We see
that words from the set Z are absent in the sequence (6). �

Further considerations are divided into two cases.
Case 1: the sequence (6) does not contain a word from the set S2. Suppose at first

that the sequence (6) does not contain adjacent words from the set L. Lemmas 3.4(i)
and 3.5 imply that w1, . . . ,wm−1 ∈ Z in this case, whence w1 ≈ · · · ≈ wm−1 in V.
Therefore, m − 1 = 2, that is, m = 3. Since the identity w1 ≈ w2 holds in V, the
identities w0 ≈ w1 and w2 ≈ w3 hold in Z. Now Lemma 3.1 applies and we are
done.

Suppose now that the sequence (6) contains adjacent words from the set L but
does not contain three words in row from this set. By Lemma 3.6 the sequence (6)
does not contain words from the set Z. Then Lemma 3.4(i) implies that m = 3,
w0,w3 ∈ S and w1,w2 ∈ L. By Lemma 3.4(ii) the identities w0 ≈ w1 and w2 ≈ w3

hold in Z. Therefore, w1 ≈ w2 holds in V and Lemma 3.1 applies again.
Finally, suppose that the sequence (6) contains three words in row from the

set L. Let wi,wi+1,wi+2 ∈ L for some i ∈ {0, 1, . . . ,m − 2}. Put k = ℓ(wi). In
view of (7), we have ℓ(wi+1) = ℓ(wi+2) = k. One of the identities wi ≈ wi+1 or
wi+1 ≈ wi+2 holds in the variety V, whence it holds in N.

Suppose that k = 2. The variety N is commutative in this case. Then N is
a modular element of SEM by Proposition 2.4 and therefore, V has the same
property by Lemma 2.2.

Let now k ≥ 3. We may assume without loss of generality that con(wj) =
{x1, x2, . . . , xk} for all j = 0, 1, . . . ,m. According to Lemma 3.6 the sequence (6)
does not contain words from the set Z. Further, by Lemma 3.2 if w ∈ S then w is
similar to x2, whence con(w) ̸= {x1, x2, . . . , xk}. Hence (6) does not contain words
from the set S. Therefore, w0,w1, . . . ,wm ∈ L.

Suppose that k = 3. Since wi ≈ wi+1 holds in Z for some i ∈ {0, 1, . . . ,m− 1},
the variety Z satisfies a permutational identity of length 3. In other words, the
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group Perm3(Z) contains some non-trivial permutation σ. It is clear that wm =
τ [w0] for some permutation τ ∈ S3. The permutation τ is non-trivial because the
identity u ≈ v is non-trivial. If τ ∈ Perm3(Z) then the identity w0 ≈ wm (that
is, u ≈ v) holds in the variety Z and therefore, in (V ∨Y) ∧ Z. Suppose now that
τ /∈ Perm3(Z). The identity u ≈ v has the form u ≈ τ [u]. Recall that this identity
holds in the variety Y, whence τ ∈ Perm3(Y). Besides that, σ ∈ Perm3(Y) because
Y ⊆ Z. Sinse τ /∈ Perm3(Z), we have that σ and τ generate distinct non-trivial
subgroups of S3. Therefore, the subgroup of S3 generated by these two permutations
coincides with S3 (see Fig. 1), that is, Perm3(Y) = S3. In other words, Y satisfies
all permutational identities of length 3. This means that, for each i = 0, 1, . . . ,m−1,
the identity wi ≈ wi+1 holds in one of the varieties V ∨Y or Z, whence u ≈ v
holds in (V ∨Y) ∧ Z.

Finally, let k ≥ 4. The identity u ≈ v, that is, w0 ≈ wm is a permutational
identity of length k. In other words, there is a permutation ξ ∈ Sk with v = ξ[u]. If
N satisfies one of the identity systems (2) or (3) then the claim 1(iii) of Lemma 2.6
applies with the conclusion that ξ ∈ Permk(N). This means that the identity u ≈ v
holds in N and therefore, in V. In this case u ≈ v holds in V ∨Y, and moreover
in (V ∨Y)∧Z. By symmetry, it remains to consider the case when N satisfies the
identity system (4).

Suppose that k = 4. In view the claim 1(i) of Lemma 2.6, Perm4(N) ⊇ Stab4(4).
Besides that, N satisfies the identity xyzt ≈ xzty, whence the group Perm4(N)
contains the permutation (234). Since this permutation does not lie in Stab4(4) and
Stab4(4) is a maximal proper subgroup in S4, we have that Perm4(N) = S4. Further,
let k ≥ 5. Then the claims 1(i) and 2 of Lemma 2.6 imply that the group Permk(N)
contains both the groups Stabk(1) and Stabk(k), whence Permk(N) = Sk. Thus,
the last equality holds for any k ≥ 4. In particular, ξ ∈ Permk(N) in this case.
As we have already seen in the previous paragraph, this implies the requirement
conclusion.

Case 2: the sequence (6) contains a word from the set S2. All words from S2

depend on two letters. In view of (7), we may assume that con(wi) = {x, y} for
each i = 0, 1, . . . ,m. In particular, the sequence (6) does not contain words from the
set S1. Besides that, Lemma 3.2 shows that if wi,wj ∈ S2 for some 0 ≤ i < j ≤ m
then the words wi and wj are similar. Since words from S2 depend on two letters,
this implies that the sequence (6) contains at most two words from the set S2. All
these observations will be used below without references. We need two additional
lemmas.

Lemma 3.7. If the sequence (6) contains a word from the set S2, wi ∈ L for
some i ∈ {0, 1, . . . ,m} and the variety V satisfies a non-trivial identity of the form
wi ≈ w then the variety V is a modular element in SEM.

Proof. The word wi is linear and con(wi) = {x, y}. Therefore, wi ∈ {xy, yx}. We
may assume without loss of generality that wi = xy. The identity xy ≈ w holds
in the variety N. If w = yx then the variety N is a modular element in SEM
by Proposition 2.4, whence the variety V has the same property by Lemma 2.2.
Suppose now that w ̸= yx. Then ℓ(w) ̸= 2. By Lemma 2.7 xy ≈ 0 holds in N.
Then the variety V = SL ∨N is a neutral element of the lattice SEM by [12,
Proposition 4.1]. Therefore, the variety V is a modular element in SEM. �
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Lemma 3.8. If the variety V satisfies the identity wi ≈ wi+1 for some i ∈
{0, 1, . . . ,m− 1} and one of the words wi or wi+1 lies in S2 then either the variety
V is a modular element in SEM or both the words wi and wi+1 lie in S2.

Proof. We may assume without loss of generality that wi ∈ S2. If wi+1 ∈ Z then
wi ≈ wi+1 ≈ 0 in N contradicting the claim wi ∈ S. Further, if wi+1 ∈ L then
Lemma 3.7 applies with the conclusion that the variety V is a modular element in
SEM. Finally, if wi+1 /∈ Z ∪ L then wi+1 ∈ S. Since the sequence (6) does not
contain words from the set S1, we have that wi+1 ∈ S2. �

Suppose now that the sequence (6) contains only one word from the set S2.
Namely, let wi ∈ S2. Suppose that i ∈ {1, . . . ,m− 1}. Then the variety V satisfies
one of the identities wi−1 ≈ wi or wi ≈ wi+1. Since wi−1,wi+1 /∈ S2, Lemma 3.8
implies that the variety V is a modular element in SEM. It remains to consider
the case when either i = 0 or i = m. By symmetry, we may suppose that i = 0.
Then wj /∈ S for all j = 1, 2, . . . ,m. If the identity w0 ≈ w1 holds in V then we
may apply Lemma 3.8 and conclude that the variety V is a modular element in
SEM. Suppose now that the identity w0 ≈ w1 holds in Z. Then w1 ≈ w2 in V.
In view of Lemma 3.7, we may assume that w2 /∈ L. Therefore, w2 ∈ Z. Further,
w2 ≈ w3 in Z. If m = 3 then Lemma 3.1 applies with the required conclusion.
Otherwise, w3 ≈ w4 in V. Lemma 3.7 allows us to assume that w4 /∈ L, whence
w4 ∈ Z. Therefore, w2 ≈ w4 in V. This means that the sequence of words

w0,w1,w2,w4, . . . ,wm

is a deduction of the identity u ≈ v from identities of the varieties V and Z shorter
than (6).

Finally, suppose that the sequence (6) contains two words from the set S2.
Suppose at first that wi ∈ S2 for some i ∈ {1, . . . ,m − 1}. Then the variety V
satisfies the identity wi ≈ wj for some j ∈ {i − 1, i + 1}. In view of Lemma 3.8,
we may assume that wj ∈ S2 in this case. Suppose now that wi /∈ S2 whenever
i ∈ {1, . . . ,m−1}. Then w0,wm ∈ S2. If, besides that, at least one of the identities
w0 ≈ w1 or wm−1 ≈ wm holds in the variety V then Lemma 3.8 applies and we
conclude that V is a modular element in SEM. We see that either w0,wm ∈ S2

and the identities w0 ≈ w1 and wm−1 ≈ wm hold in Z or wi,wi+1 ∈ S2 for some
i ∈ {0, 1, . . . ,m− 1} and wi ≈ wi+1 holds in V.

Suppose that w0,wm ∈ S2 and the identities w0 ≈ w1 and wm−1 ≈ wm hold
in Z. Then w1,wm−1 /∈ S. The identities w1 ≈ w2 and wm−2 ≈ wm−1 hold in the
variety V. Lemma 3.7 permits to assume that w1,wm−1 /∈ L. Since w1,wm−1 /∈ S,
we have w1,wm−1 ∈ Z. Then w1 ≈ wm−1 holds in V. This means that the sequence
of words

w0,w1,wm−1,wm

is a deduction of the identity u ≈ v from identities of the varieties V and Z. If m > 3
then this deduction shorter than (6), while if m = 3 then Lemma 3.1 applies.

It remains to consider the case when wi,wi+1 ∈ S2 for some i ∈ {0, 1, . . . ,m−1}
and wi ≈ wi+1 holds in V. Suppose at first that m − 3 < i < 2. Since m ≥ 3, we
have m = 3 and i = 1. Then the identity w1 ≈ w2 holds in V, whence the identities
w0 ≈ w1 and w2 ≈ w3 hold in Z. Now Lemma 3.1 applies. So, we may assume
that either i ≥ 2 or i ≤ m − 3. By symmetry, it suffices to consider the former
case. So, let i ≥ 2. Then the identity wi−1 ≈ wi holds in Z, while the identity
wi−2 ≈ wi−1 holds in V. Clearly, wi−1 /∈ S. Besides that, Lemma 3.7 allows us to
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assume that wi−1 /∈ L. Therefore, wi−1 ∈ Z. Since wi−2 ≈ wi−1 holds in V, this
identity holds also in N. Hence wi−2 ≈ wi−1 ≈ 0 hold in N, that is wi−2 ∈ Z.
Let π be a unique non-trivial permutation on the set {x, y}. Lemma 3.2 implies
that wi+1 = π[wi]. Since the variety Z satisfies the identity wi−1 ≈ wi, it satisfies
also the identity π[wi−1] ≈ π[wi], that is π[wi−1] ≈ wi+1. Further, the variety N
satisfies the identity π[wi−1] ≈ 0 because it satisfies wi−1 ≈ 0. Thus, the identity
wi−2 ≈ π[wi−1] holds in N and therefore, in V. We see that the sequence of words

w0,w1, . . . ,wi−2, π[wi−1],wi+1, . . . ,wm

is a deduction of the identity u ≈ v from identities of the varieties V and Z shorter
than (6).

We complete the proof of Theorem 1.1. �

Proof of Proposition 1.2. Put

V = var{xyzt ≈ xyx ≈ x2 ≈ 0, x1x2x3 ≈ x1ρx2ρx3ρ}.

The variety V satisfies one of the identity systems (2)–(5). According to Theorem 1.1
V is a modular element in the lattice SEM. It remains to check that V is not a
cancellable element of this lattice. Let σ and τ be non-trivial permutations from S3
such that the groups gr{ρ}, gr{σ} and gr{τ} are pairwise distinct. Put

X = var{xyzt ≈ xyx ≈ x2 ≈ 0, x1x2x3 ≈ x1σx2σx3σ},
Y = var{xyzt ≈ xyx ≈ x2 ≈ 0, x1x2x3 ≈ x1τx2τx3τ}.

Clearly, X ̸= Y. It is evident that Perm3(V) = gr{ρ}, Perm3(X) = gr{σ} and
Perm3(Y) = gr{τ}. Lemma 2.8(ii) and Fig. 1 imply that

Perm3(V ∧X) = Perm3(V) ∨ Perm3(X) = S3.

This means that the variety V ∧X satisfies all permutational identities of length 3.
Hence V ∧X ⊆ Y and therefore, V ∧X ⊆ V ∧Y. The opposite inclusion is verified
analogously, whence V ∧X = V ∧Y.

It remains to verify that V ∨X = V ∨Y. Suppose that an identity u ≈ v holds
in the variety V ∨X. We are going to check that then this identity holds in Y. We
can assume that the identity u ≈ v is non-trivial because the required conclusion
is evident in the contrary case. If each of the words u and v either is non-linear or
has the length > 3 then u ≈ 0 ≈ v hold in Y. Let now u and v be linear words of
length ≤ 3. If con(u) ̸= con(v) then u ≈ 0 ≈ v hold in Y again because Y is a nil-
variety. Therefore, we can assume that con(u) = con(v). In particular, this means
that ℓ(u) = ℓ(v). Clearly, ℓ(u) > 1 because the identity u ≈ v is trivial otherwise.
If ℓ(u) = 2 then u ≈ v is the commutative law. But then u ≈ v is false in V, and
moreover in V ∨X. Finally, suppose that ℓ(u) = 3. Then u ≈ v is a permutational
identity of length 3. Lemma 2.8(i) and Fig. 1 imply that

Perm3(V ∨X) = Perm3(V) ∧ Perm3(X) = T.

Therefore, the identity u ≈ v is trivial. We have a contradiction. Thus, u ≈ v holds
in Y. Hence V ∨X ⊇ Y and therefore, V ∨X ⊇ V ∨Y. The opposite inclusion is
verified analogously, whence V ∨X = V ∨Y and we are done. �
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[2] J. Ježek and R.N. McKenzie, Definability in the lattice of equational theories of semigroups,
Semigroup Forum, 46 (1993), 199–245. MR1200214

[3] Gy. Pollák, On the consequences of permutation identities, Acta Sci. Math. (Szeged), 34
(1973), 323–333. MR0322084

[4] M.V. Sapir and E.V. Sukhanov, On varieties of periodic semigroups, Izvestiya VUZ.
Matematika, 4 (1981), 48–55 [Russian; Engl. translation: Soviet Math. Iz. VUZ, 25:4 (1981),
53–63]. R0624862
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