ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ВЫСШЕМУ ОБРАЗОВАНИЮ

УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. А.М. ГОРЬКОГО

Ю.М.Важенин, В.Ю.Попов

МНОЖЕСТВА, ЛОГИКА, АЛГОРИТМЫ В ЗАДАЧАХ

Учебное пособие

Екатеринбург 1997 510.51+412.1 B129

Печатается по постановле-

ОИН

редакционно-издательского со-

вета

Уральского государственно-

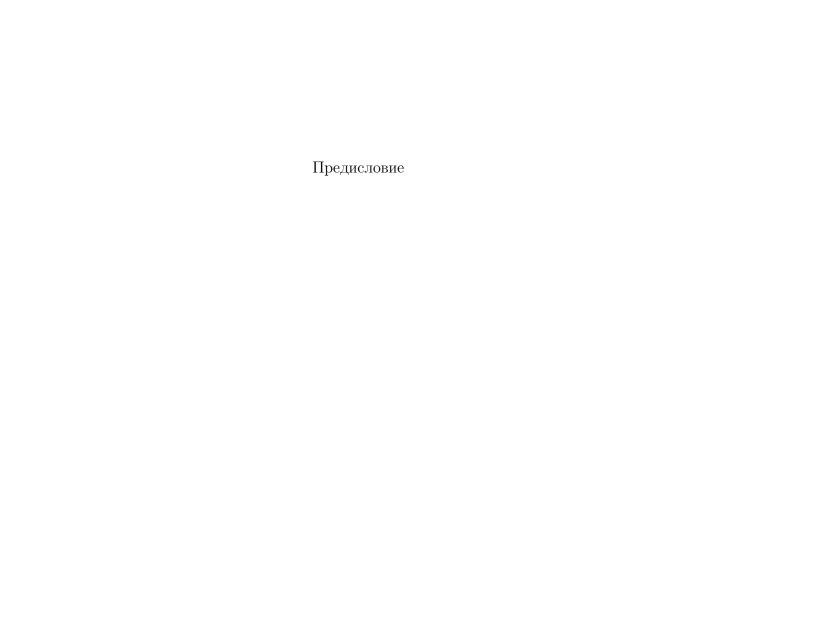
ГО

университета им. А.М.Горького

Важенин Ю.М., Попов В.Ю. Множества, логика, алго-

ритмы в задачах: Учеб. пособие. Екатеринбург: УрГУ, 1997. с.

Научный редактор



ОГЛАВЛЕНИЕ

ЧАСТЬ 1. Теория множеств

- 1. Понятие множества
- 2. Операции над множествами
- 3. Бинарные отношения
- 4. Упорядоченные множества
- 5. Мощность множества

ЧАСТЬ 2. Математическая логика

- 1. Логика высказываний
- 2. Алгебра логики
- 3. Логика предикатов

ЧАСТЬ 3. Теория алгоритмов

- 1. Вычислительные машины
- 2. Рекурсивные функции
- 3. Рекурсивные и рекурсивно перечислимые множества

СПИСОК ЛИТЕРАТУРЫ

ЧАСТЬ 1. Теория множеств

1. Понятие множества

```
N1. Верно ли, что:
    1. 1 \in \{1\}; \{1\} \in 1?
    2. \{1\} \subseteq \{\{1\}, 1\}; \{1\} \notin \{\{1\}, 1\}?
    3. \{1,2,3\} = \{2,1,3\}; \{1,2,3\} \neq \{2,1,2,3\}?
    4. \{1\} \in \{1, 2\}; \{1\} \not\subseteq \{1, 2\}?
    N2. Справедливы ли утверждения:
    1. \{1, 2, 3\} = \{1, 3\};
    2. \{1,2\} = \{2,1\};
    3. \{1,1\} = \{1\};
    4. \{1, 2, \{3\}\} = \{1, 2, 3\};
    5. \{1\} \in \{1, 2, 3\};
    6. 1 \in \{1, 2, 3\};
    7. \{1,2\} \in \{1,2,3\};
    8. \{1,2\} \subseteq \{1,2,3\}?
    N3. Доказать, что \{\{1\},\{1,2\}\}=\{\{a\},\{a,b\}\} \Leftrightarrow a=
1 \wedge b = 2.
    N4. Доказать, что \{\{a\},\{a,b\}\}=\{\{a\},\{a,b\}\}=
\{\{c\},\{c,d\}\} \Leftrightarrow a = c \land b = d для любых a,b,c,d.
    N5. Доказать, что если A_1 \subseteq A_2, A_2 \subseteq A_3 и A_3 \subseteq A_1,
A_1 = A_2 = A_3.
    N6. Существуют ли множества A, B и C со свойствами:
    1. A \in B, B \in C и A \in C;
    2. A \subseteq B и A \in B;
    3. A \subseteq B, B \in C и A \in C;
    4. A \subseteq B, B \in C и A \subseteq C;
    5. A \in B, B \in C и A \notin C;
    6. A \subseteq B, B \subseteq C и A \not\subseteq C;
    7. A \in B, B \subseteq C и A \notin C?
```

N7. Верно ли, что для любых A, B, C:

- 1. $A \in B \land B \in C \Rightarrow A \in C$;
- $2. A \in B \land B \subseteq C \Rightarrow A \in C;$
- 3. $A \neq B \land B \neq C \Rightarrow A \neq C$?

N8. Приведите пример множеств A, B, C, таких, чтобы выполнялись условия:

- 1. $A \in B, B \notin C, A \subseteq C$;
- $A \in B, A \notin C, C \subseteq B$;
- $3. B \in C, A \notin C, A \subseteq B.$

N9. Существует ли такое множество A, что $\forall xy(x \in A)$ $y \land y \in A \Rightarrow x \in A$?

N10. Верно ли, что для любых множеств $A_1, A_2, ..., A_n$

$$A_1 \subseteq A_2 \subseteq ... \subseteq A_n \subseteq A_1 \Rightarrow A_1 = A_2 = ... = A_n$$
?

N11. Существует ли такое семейство множеств $A_n, n \in$ \mathbb{N} , что $|A_n| = n$ и $x \in A_n \land y \in A_{n+1} \Rightarrow x \in y$?

N12. Каждое из следующих множеств задайте в виде некоторого интервала числовой прямой:

- 1. $\{x \in \mathbb{R} | \exists y \in \mathbb{R} \ x^2 + y^2 = 1\};$
- 2. $\{x \in \mathbb{R} | \exists y \ x = \frac{y+1}{y^2+1} \};$ 3. $\{a \in \mathbb{R} | \exists x \in \mathbb{R} \ 3x^2 + 2ax + a < 0 \};$
- 4. $\{x \in \mathbb{R} | x > 0 \land \forall n \in \mathbb{N} \ x < \frac{1}{n} \}$.

N13. Равны ли множества:

- 1. $\{2,4,5\}$ и $\{2,4,2,5\}$;
- 2. {1,2} и {{1,2}};
- 3. $\{1,2,3\}$ и $\{3,1,2,1\}$;
- 4. $\{1,2,3\}$ и $\{\{1\},\{2\},\{3\}\};$
- 5. $\{\{1,2\},3\}$ и $\{\{1\},\{2,3\}\}$?

N14. Вставьте вместо? между множествами символ \in или \subseteq так, чтобы получилось истинное высказывание:

- 1. $\{1\}$? $\{1, \{1, 2\}\}$;
- 2. {1,2}?{1,2,{1},{2}}};
- $3. \{1,2\}?\{1,2,\{1,2\}\}\};$

```
4. \emptyset?{1, 2, {1}, {\emptyset}};
5. \emptyset?{{\emptyset}};
6. \emptyset?{\emptyset}.
```

2. Операции над множествами

- **N1.** Пусть A множество всех прямоугольных треугольников на плоскости, B множество всех равносторонних, универсальное множество множество любых треугольников на плоскости. Какие треугольники содержатся в множествах: $A \cup B$, $A \cap B$, $\overline{A} \cap B$, $A \cap \overline{B}$, $\overline{A} \cup B$, $A \cup \overline{B}$?
- **N2.** Пусть A множество целых чисел, кратных 2, B множество целых чисел, кратных 3, универсальное множество множество всех целых чисел. Найти $A \cup B$, $A \cap B$, $\overline{A} \cap B$, $\overline{A} \cup B$, $\overline{A} \cup B$.
- **N3.** Пусть A и B подмножества множества $\{0,1,2,...,9\}$, $A=\{1,2,3\}$, $B=\{2,3,5,4\}$. Найдите $A\cup B$, $A\cap B$, $A\setminus B$, $B\setminus A$, \overline{A} , \overline{B} .
- **N4.** Пусть A и B подмножества множества \mathbb{N} , $A = \{x|x$ делится на $2\}$, $B = \{x|x$ делится на $3\}$. Найдите $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$, \overline{A} , \overline{B} .
- **N5.** Пусть U множество точек плоскости, на которой задана декартова система координат, $A = \{ < x, y > | 0 \le x \le 1 \}$, $B = \{ < x, y > | 0 \le y \le 1 \}$. Найдите множества $A \cup B$, $A \cap B$, $A \setminus B$, $A \setminus A$, \overline{A} , изобразите их на плоскости.

N6. Верно ли, что для любых множеств A, B, C:

- 1. $(A \cup B) \cap A = (A \cap B) \cup A = A$?
- 2. $A \setminus B = A \setminus (A \cap B), A \cup B = A \cup (B \setminus A)$?
- 3. $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$?
- $4. A \setminus (B \setminus C) = (A \setminus B) \setminus (A \setminus C), (A \setminus B) \setminus C = (A \setminus C) \setminus (B \setminus C)?$
- **N7.** Введем операцию взятия симметрической разности: A: $B \rightleftharpoons (A \backslash B) \cup (B \backslash A)$. Можно ли операции \cup, \cap, \setminus определить через операции:

```
1. \div, \cap?
```

$$2. \div, \cup?$$

3.
$$\div$$
, \?

 $\mathbf{N8}$. Можно ли \ определить через ∩ и ∪?

N9. Можно ли \cup определить через \cap и \setminus ?

 $\mathbf{N10}$. Можно ли ∩ определить через ∪ и \?

N11. Обозначим через P(A) множество всех подмножеств множества A. Найти множество P(A) всех подмножеств множества A.

```
1. A = \{1, 2, 3\};
```

2.
$$A = \{1, 2, \{3\}\};$$

3.
$$A = \{1, \{2, 3\}\};$$

4.
$$A = \{\emptyset\};$$

5.
$$A = \emptyset$$
;

6.
$$A = \{\emptyset, \{\emptyset\}\}$$
.

N12. Верно ли, что:

1.
$$P(A \cap B) = P(A) \cap P(B)$$
?

2.
$$P(A \cup B) = P(A) \cup P(B)$$
?

3. Если ответ на вопрос 2 отрицателен, то можно ли, и если можно, то как, выразить $P(A \cup B)$ через P(A) и P(B)?

N13. Верно ли, что для любых A, B, C:

1.
$$A \cap B \subseteq \overline{C} \land A \cup C \subseteq B \Rightarrow A \cap C = \emptyset;$$

$$2.\ A\subseteq \overline{B\cup C}\wedge B\subseteq \overline{A\cup C}\Rightarrow B=\emptyset?$$

N14. У<u>простить:</u>

1.
$$(\overline{A} \cup \overline{B}) \cap (\overline{A \cup B});$$

2.
$$(\underline{A} \cap B) \cap (\overline{A} \cup \overline{B})$$
;

3.
$$((\overline{A} \cup B) \cup (A \cup B)) \cap B$$
;

4.
$$((\overline{A} \cap \overline{B}) \cup (\overline{A} \cap B)) \cap A$$
;

5.
$$\overline{(\overline{A} \cap B) \cap (\overline{A} \cup \overline{B})}$$
;

6.
$$(\overline{A} \cap B) \cap (\overline{B} \cup C) \cup C \cap \overline{A})$$
;

7.
$$(\overline{A} \cap B) \cup (\overline{A} \cap C) \cup (B \cap C) \cup (\overline{A} \cup B \cup C)$$
.

N15. Верно ли, что

- 1. $A \cup (\overline{A} \cap B) = A \cup B$;
- 2. $A \cap (\overline{A} \cup B) = A \cap B$;
- $3. \ \overline{A} \cup B \cup B = A \cup B \ ;$
- 4. $\overline{A} \cup B \cup \overline{B} \cup A = A \cup \overline{B}$;
- 5. $(A \cap B) \cup (A \cap \overline{B}) = A;$
- 6. $(A \cup B) \cap (A \cup \overline{B}) = A$;
- 7. $(A \cap B) \cup (\overline{A} \cap B) \cup (A \cap \overline{B}) = \overline{A} \cup B$;
- 8. $\overline{A} \cap \overline{B} = \overline{A} \cup (A \cap B)$?

N16. Пусть $X \subseteq U, Y \subseteq U$. Выразите множество X через множества Y, U, если известно, что:

- 1. $Y \setminus X = Y, Y \cup X = U;$
- $2. Y \cap X = \emptyset, Y \cup X = U;$
- 3. $Y \setminus (Y \setminus X) = \emptyset$;
- 4. $Y \setminus X = \emptyset, Y \cup X = Y;$
- 5. $Y \setminus (Y \setminus X) = \emptyset, \overline{Y} \cap \overline{X} = \emptyset.$

N17. Пусть A, B, C - такие множества, что $B \subseteq A \subseteq C$. Найдите множество X, удовлетворяющее следующим двум условиям $A \cap X = B, A \cup X = C$.

N18. Пусть A, B, C - такие множества, что $B \subseteq A, A \cap C = \emptyset$. Найдите множество X, удовлетворяющее следующим двум условиям $A \backslash X = B, X \backslash A = C$.

N19. Решить системы уравнений относительно X:

- 1. $A \cap X = A, A \cup X = A;$
- $2. A \cap X = B, A \cup X = B;$
- 3. $A \cap X = B, A \cup X = C;$
- 4. $A \setminus X = B, A \cup X = C$ при условии $B \subseteq A \subseteq C$.

 ${\bf N20.}$ Справедливы ли следующие утверждения:

- 1. $(A \cup B) \cap C = A \cup (B \cap C);$
- $2. (A \backslash B) \cup B = A;$
- 3. $(A \cup B) \backslash B = A;$
- $4. (A \cap B) \backslash A = \emptyset;$
- 5. $(A \backslash B) \cup C = (A \cup C) \backslash (B \cup C);$
- 6. $(A \cap \overline{B}) \cup (B \cap \overline{A}) \subseteq B$;

7.
$$B = (A \cap \overline{B}) \cup (B \cap \overline{A}) \Rightarrow A = \emptyset$$
?

N21. Пусть A и B - подмножества множества U. Докажите, что условие $A \subseteq B$ равносильно каждому из следующих условий:

- 1. $A \cap B = A$;
- 2. $A \cup B = B$;
- 3. $\overline{B} \subseteq \overline{A}$;
- 4. $\overline{A} \cup B = U$;
- 5. $A \cap \overline{B} = \emptyset$;
- 6. $(B \setminus A) \cup A = B$;
- 7. $\exists X \ A \cup X = B$.

N22. Пусть A - множество решений уравнения f(x) =0, B - множество решений уравнения g(x) = 0. Выразите через A и B множество решений:

- 1. уравнений f(x)g(x) = 0, $\frac{f(x)}{g(x)} = 0$, $f^2(x) + g^2(x) = 0$;
 2. системы уравнений $\begin{cases} f(x) = 0, \\ g(x) = 0; \end{cases}$ 3. совокупности уравнений $\begin{cases} f(x) = 0, \\ g(x) = 0; \end{cases}$

N23. Верно ли, что для произвольных множеств A, B, C:

- 1. $A \setminus B = A \Leftrightarrow A \cap B = \emptyset$;
- 2. $(A \cup B) \setminus (A \cap B) = \emptyset \Leftrightarrow A = B$;
- 3. $(A \cap B) \cup C = A \cap (B \cup C) \Leftrightarrow C \subseteq A$;
- 4. $A \cup B = \emptyset \Leftrightarrow A = \emptyset \land B = \emptyset$;
- 5. $A \setminus B = A \Leftrightarrow B \setminus A = B$;
- 6. $A \cup B = A \setminus B \Leftrightarrow B = \emptyset$;
- 7. $A \cap B = A \backslash B \Leftrightarrow A = \emptyset$;
- 8. $A \cup B \subseteq C \Leftrightarrow A \subseteq C \land B \subseteq C$;
- 9. $C \subseteq A \cap B \Leftrightarrow C \subseteq A \wedge C \subseteq B$;
- 10. $A \subseteq B \subseteq C \Leftrightarrow A \cup B = B \cap C$?

N24. Докажите, что для произвольных подмножеств A, B, C универсального множества U:

```
1. A \cap B = \emptyset \Leftrightarrow A \subseteq \overline{B} \Leftrightarrow B \subseteq \overline{A};
```

1.
$$A \cup B = U \Leftrightarrow \overline{A} \subseteq B \Leftrightarrow \overline{B} \subseteq A$$
.

N25. Перечислите элементы множеств $A \times B$, $B \times A$:

- 1. $A = \{1, 2\}, B = \{3, 4, 5\};$
- 2. $A = \{1, 2\}, B = \{1, 2, 3\};$
- 3. $A = \{1\}, B = \{1, 2, 3\};$
- 4. $A = \emptyset, B = \{1, 2, 3, 4\}.$

3. Бинарные отношения.

N1. Найти всевозможные

- 1. симметричные отношения на множестве $\{1, 2, 3, 4\}$.
- 2. транзитивные отношения на множестве $\{1, 2, 3, 4\}$.
- **N2.** Может ли отношение эквивалентности быть отношением включения?
- **N3.** Какими свойствами обладают отношения "иметь в десятичной записи то же число цифр", "иметь тот же остаток при делении с остатком на 3"на множестве N? Являются ли они отношениями эквивалентности?
- **N4.** Пусть $M \rightleftharpoons \{1,2,3,4,5,6,7,8,9\}, N \rightleftharpoons \{-4,-3,-2,-1,0,1,2,3\}$. Выяснить, будет ли отношение α рефлексивным, будет ли симметричным, будет ли транзитивным, если
 - 1. $\alpha = \{(x, y) \in M^2 | x \le y\};$
 - 2. $\alpha = \{(x, y) \in M^2 | \frac{x}{y} \in \mathbb{Z} \};$
 - 3. $\alpha = \{(x, y) \in M^2 | \frac{y}{4} \in \mathbb{Z} \};$
 - 4. $\alpha = \{(x, y) \in M^2 | xy \ge 0\};$
 - 5. $\alpha = \{(x, y) \in M^2 | x < 2y \};$
 - 6. $\alpha = \{(x, y) \in M^2 | x + y = 8 \};$
 - 7. $\alpha = \{(x, y) \in M^2 | x + y \in M \};$
 - 8. $\alpha = \{(x, y) \in M^2 | xy = y^2 \};$
 - 9. $\alpha = \{(x, y) \in M^2 | |x y| < 3\};$
 - 10. $\alpha = \{(x, y) \in M^2 | |x y| \ge 2\};$

```
\begin{aligned} &11. \ \alpha = \{(x,y) \in N^2 | x < y^2 \}; \\ &12. \ \alpha = \{(x,y) \in N^2 | \frac{x}{y} \in \mathbb{Z} \}; \\ &13. \ \alpha = \{(x,y) \in N^2 | \frac{x-y}{3} \in \mathbb{Z} \}; \\ &14. \ \alpha = \{(x,y) \in N^2 | xy \geq 0 \}; \\ &15. \ \alpha = \{(x,y) \in N^2 | xy \leq 0 \}; \\ &16. \ \alpha = \{(x,y) \in N^2 | xy > 0 \}; \\ &17. \ \alpha = \{(x,y) \in N^2 | xy = y^2 \}; \\ &18. \ \alpha = \{(x,y) \in N^2 | xy = y^2 \}. \end{aligned}
```

N5. Привести примеры отношений:

- 1. рефлексивного, симметричного, нетранзитивного;
- 2. нерефлексивного, симметричного, транзитивного;
- 3. рефлексивного, несимметричного, транзитивного;
- 4. рефлексивного, несимметричного, нетранзитивного;
- 5. нерефлексивного, симметричного, нетранзитивного;
- 6. нерефлексивного, несимметричного, транзитивного.
- **N6.** Пусть M множество всех слов русского языка, N множество всех прямых в пространстве. Выяснить, будет ли отношение α рефлексивным, будет ли симметричным, будет ли транзитивным, если
- 1. $\alpha = \{(x, y) \in M^2 |$ слова x и y не содержат ни одной общей буквы $\}$;
- 2. $\alpha = \{(x,y) \in M^2 |$ слова x и y содержат хотя бы одну общую букву $\}$;
- 3. $\alpha = \{(x,y) \in M^2 |$ всякая буква, входящая в слова x, входит и в слово y $\}$;
- 4. $\alpha = \{(x,y) \in N^2 | x$ параллельна y или x совпадает с y $\};$
 - 5. $\alpha = \{(x, y) \in \mathbb{N}^2 | x$ перпендикулярна $y \};$
 - 6. $\alpha = \{(x, y) \in \mathbb{N}^2 | x$ пересекается с y $\}$.

N7. Найти $Dom\alpha, Im\alpha, \alpha^{-1}, \alpha\alpha, \alpha\alpha^{-1}, \alpha^{-1}\alpha$:

- 1. $\alpha = \{(x, y) \in \mathbb{N}^2 | y|x\};$
- 2. $\alpha = \{(x, y) \in \mathbb{N}^2 | y = x^2\};$
- 3. $\alpha = \{(x, y) \in \mathbb{R}^2 | x + y = 0\};$

- 4. $\alpha = \{(x, y) \in \mathbb{R}^2 | 2x < 2y\};$

5. $\alpha = \{(x,y) \in [0;\pi]^2 | y \le cosx\}.$ **N8.** Для каких $\alpha \subseteq A^2$ справедливо равенство $\alpha^{-1} =$ $A^2 \backslash \alpha$?

N9. Доказать, что если $\alpha \subseteq A \times B$, $\beta \subseteq B \times C$, $\gamma \subseteq C \times D$, TO:

- 1. $(\alpha^{-1})^{-1}$;
- 2. $(\alpha \beta)^{-1} = \beta^{-1} \alpha^{-1}$;
- 3. $(\alpha\beta)\gamma = \alpha(\beta\gamma)$.

N10. Верно ли, что $\alpha\beta = \beta\alpha$ для любых $\alpha, \beta \subseteq A \times A$?

N11. Верно ли, что:

- 1. произведение двух симметричных отношений симметрично тогда и только тогда, когда сомножители перестановочны?
- 2. ни одно из свойств рефлексивность, транзитивность, симметричность, антисимметричность, линейность - не влечет другое из этих свойств?
- 3. ни одна пара из трех свойств симметричность, рефлексивность, транзитивность - не влечет третье?
- **N12.** Пусть A некоторое множество, $\delta_A \rightleftharpoons \{(a,a)|a\in$ A} - диагональ на $A, \alpha \subseteq A^2$. Доказать, что следующие высказывания равносильны:
 - 1. α рефлексивно и $\delta_A \subseteq \alpha$;
 - 2. α транзитивно и $\alpha\alpha\subseteq\alpha;$
 - 3. α симметрично и $\alpha^{-1} = \alpha$;
 - 4. α антисимметрично и $\alpha \cap \alpha^{-1} \subseteq \delta_A$;
 - 5. α линейно и $\alpha \cup \alpha^{-1} = A^2$.

N13.

- 1. Когда произведение $\alpha_1\alpha_2$ двух эквивалентностей α_1, α_2 на множестве A будет тоже эквивалентностью?
- 2. Верно ли, что для эквивалентностей $\alpha_1, \alpha_2 \subseteq A^2$ отношение $\alpha_1 \cup \alpha_2$ - эквивалентность тогда и только тогда, когда $\alpha_1 \cup \alpha_2 = \alpha_1 \alpha_2 = ?$

- **N14.** Пусть α эквивалентность на $A, a^{\alpha} \rightleftharpoons \{x \in A | (x, a) \in \alpha\},$ $A/\alpha \rightleftharpoons \{a^{\alpha} | a \in A\}$. Доказать, что A/α разбиение A.
- **N15.** Пусть $R = \{A_i | i \in I\}$ разбиение множества A и $\sigma_R \rightleftharpoons \{(x,y) \in A^2 | \exists i \in I(x,y \in A_i)\}$. Доказать, что σ_R эквивалентность на A.
- **N16.** Пусть α эквивалентность на A и R некоторое его разбиение. Доказать, что в обозначениях задач 7 и 8 $\sigma_{A/\alpha}=\alpha$ и $A/\sigma_R=R$.
- **N17.** Для разбиения $R = \{\{1\}, \{2,3\}, \{4,5,6\}\}$ множества $\{x \in \mathbb{N} \mid 1 \le x \le 6\}$ построить на нем эквивалентность σ_R .
- **N18.** На множестве $A = \{-4, -3, -2, 1, 2, 3\}$ определены отношения $\alpha_1 = \{(x,y) \in A^2 | xy \geq 0\}, \alpha_2 = \{(x,y) \in A^2 | xy > 0 \land \frac{x-y}{2} \in \mathbb{Z}\}$. Будет ли α_k при $k \in \{1,2\}$ эквивалентностью? Если да, то построить соответствующее разбиение множества A.
- **N19.** Пусть $A = \{1, 2, 3, 4, 5, 6\}$ и $M = A \times A$. Доказать, что α отношение эквивалентности и построить соответствующее разбиение, если:
 - 1. $\alpha = \{((x, y), (u, v)) \in M^2 | xv = yu \}.$
 - 2. $\alpha = \{((x,y),(u,v)) \in M^2 | x+v=y+u \}.$
- **N20.** Пусть $A=\{1,2,3,4,5,6\},\ M=A\times A,\ M_1=\{3,4,5,6,7,8\}$ и $M_2=M_1\cup\{9\}$ Выяснить, будет ли отношение α рефлексивным, будет ли симметричным, будет ли транзитивным, если
 - 1. $\alpha = \{((x,y),(u,v)) \in M^2 | x \le u$ и $y \le v \};$
 - 2. $\alpha = \{(x,y) \in M_1^2 | x < 3y \};$
 - 3. $\alpha = \{(x,y) \in M_2^2 | x < 3y \}.$

Являются ли отношения 1-3 отношениями эквивалентности.

N21. Пусть $A = \{1, 2, 3, ..., 25\}, \ \alpha = \{(x, y) \in A^2 | \exists k, l \in \mathbb{N} \}$

 $x^k = y^l$ }. Доказать, что α есть отношение эквивалентности

и построить соответствующее разбиение.

- **N22.** Обозначим через B^A совожупность всех функций $\varphi:A\to B,\ \partial$ ля которых $Dom\varphi=A, Im\varphi\subseteq B.$ Верно ли, что
- 1. для любой функции $\varphi \in B^A$ и любых $X,Y \in P(A)$ выполнены равенства

$$\varphi(X \cup Y) = \varphi(X) \cup \varphi(Y),$$

$$\varphi(X \cap Y) = \varphi(X) \cap \varphi(Y),$$

$$\varphi(X \setminus Y) = \varphi(X) \setminus \varphi(Y)?$$

2. $\varphi \in B^A$ - инъекция $\Leftrightarrow \varphi(X \cap Y) = \varphi(X) \cap \varphi(Y)$?

N23. Верно ли, что

- 1. функция $\varphi \in B^A$ инъективна тогда и только тогда, когда $\varphi^{-1} \in A^{Im\varphi};$
- 2. если функции $\varphi \in B^A, \psi \in C^B$ инъективны, то $\psi \varphi$ инъекция из C^A ;
- $3.\ arphi\in A^A$ инъективна тогда и только тогда, когда $arphiarphi^{-1}=$ $arphi^{-1}arphi=\delta_A?$
- **N24.** Ядром отображения $\varphi \in B^A$ называется отношение $ker \varphi := \{(x,y) \in A^2 | \varphi(x) = \varphi(y) \}$. Доказать, что
- $1.\ ker \varphi$ эквивалентность на A и отношение $\{(x,x^{ker \varphi})\in A\times P(A)|x\in A\}$ является отображением A на $A/ker \varphi$. Оно называется ecmecmbehhhm отображением и обозначается через $nat_{ker \varphi}$.
- 2. для любой функции $\varphi \in B^A$, для которой $Im\varphi = B$, существует и при том единственная биекция $\psi : A/ker\varphi \to B$ такая, что $\varphi = \psi nat_{ker\varphi}$.
- **N25.** Для непустого множества A и $B \in P(A)$ определим характеристическую функцию $\chi_B \in \{0,1\}^A$ множества B следующим образом:

$$\chi_B \rightleftharpoons \left\{ \begin{array}{l} 0, \text{ если } x \in B, \\ 1, \text{ если } x \notin B. \end{array} \right.$$

Показать, что отображение $\varphi: P(A) \to \{0,1\}^A$, согласно которому $\varphi(B) \rightleftharpoons \chi_B$ для любого $B \in P(A)$, является биекцией.

N26. Верны ли следующие равенства: $\chi_A(x) = 0, \chi_\emptyset = 1,$

$$\chi_{A\backslash B}(x) = 1 - \chi_B(x), \chi_{B\cup C}(x) = \chi_B(x) \cdot \chi_C(x), \chi_{B\cap C}(x) = \chi_B(x) + \chi_C(x), \chi_{B\backslash C}(x) = 1 - \chi_{B\cup C}(x).$$

4. Упорядоченные множества

N1.

- 1. Какими свойствами обладают отношения делимости на множествах $\mathbb{N}, \omega \rightleftharpoons \mathbb{N} \cup \{0\}, \mathbb{Z}, \mathbb{Q}$?
- 2. Каковы свойства отношения \leq на множествах $\mathbb{N}, \omega, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$?
- **N2.** Доказать, что любое частично упорядоченное множество (ч.у.м.) изоморфно вложимо в ч.у.м. $< P(A); \subseteq >$ для некоторого множества A.
- **N3.** Построить диаграммы ч.у.м. < $P(\emptyset); \subseteq >$, < $P(\{1\}; \subseteq >$,
- $< P(\{1,2\}); \subseteq > \mathsf{u} < P(\{1,2,3\}); \subseteq >.$
 - **N4.** Построить диаграмму ч.у.м. $<\{1, 2, 3, 4, 5, 6\}; |>.$
- **N5.** Из скольких элементов сосстоит ч.у.м., в котором каждая цепь содержит не более h элементов, а каждая антицепь не более l элементов?
- **N6.** На декартовом произведении $A \times B$ ч.у.множеств $< A; \leq_1 >, < B; \leq_2 >$ определим отношение $\leq_3 : (x,y) \leq_3 (u,v) \Leftrightarrow x \leq_1 u \land y \leq_2 v$. Пара $< A \times B; \leq_3 >$ называется прямым произведением исходных ч.у.м. Каковы свойства отношения \leq_3 ?

- **N7.** Построить диаграмму ч.у.м. $A \times A$, где A двуэлементная цепь.
- **N8.** Построить диаграмму ч.у.м. $A \times B$, где A двуэлементная цепь, $B = \langle P(\{1,2\}); \subseteq \rangle$.
- **N9.** Пусть $< A; \le >, a, b \in A, a \le b$ и $[a, b] \rightleftharpoons \{x \in A | a \le x \le b\}$. Показать, что ч.у.м. $< \{[a, b] | a, b \in A\}; \subseteq >$ изоморфно вложимо в прямое произведение $< A; \ge > \times < A; \le >$.
- **N10.** Сколько существует двуэлементных неизоморфных ч.у.м.? Какие из них самодвойственны? Те же вопросы для трехэлементных ч.у.м.
- ${f N11.}$ Доказать, что каждый частичный порядок на множестве A может быть продолжен до линейного порядка на A.
- **N12.** Доказать, что в любом векторном пространстве существует базис.
- **N13.** Пусть функция $\varphi:A^2\to A$ такова, что $\varphi(x,y)=\varphi(y,x),$ $\varphi(x,\varphi(y,z))=\varphi(\varphi(x,y),z),$ $\varphi(x,x)=x.$ Определим на A отношение α , полагая $x\alpha y\Leftrightarrow \varphi(x,y)=x.$ Каковы свойства α ? Верно ли, что если α частичный порядок, то $\varphi(x,y)=\inf\{x,y\}$ в ч.у.м. $<A;\alpha>$?
 - № 14. На \mathbb{R} определим отношение

$$x\alpha y \Leftrightarrow \frac{x}{x^2+1} \le \frac{y}{y^2+1}.$$

Каковы свойства α ? Существуют ли подмножества $A \subseteq \mathbb{R}$ такие, что A; $\alpha >$ - ч.у.м.?

- **N15.** Пусть $\mathcal{D} \rightleftharpoons \{x \in \mathbb{Q} | x > 0 \land x^2 > 2\}$. Имеет ли \mathcal{D} точную нижнюю грань в ч.у.м. $< \mathbb{Q}; \le >$? Имеет ли это множество точную нижнюю грань в ч.у.м. $< \mathbb{R}; \le >$?
- **N16.** Пусть B множество всех бинарных отношений на множестве $\{1,2\}$. Какова диаграмма ч.у.м. $\langle B; \subseteq \rangle$?
- **N17.** Пусть R, S, A, T множества всех рефлексивных, симметричных, антисимметричных и транзитивных отно-

шений на данном множестве M. Будут ли полными решетками ч.у.м. $\langle R; \subseteq \rangle, \langle S; \subseteq \rangle, \langle A; \subseteq \rangle, \langle T; \subseteq \rangle$?

- **N18.** Будет ли ч.у.м. $<\{[1,2]\cap\mathbb{Q}\};\leq>$ полной решеткой?
- **N19.** Пусть \mathbb{Q} множество всех квадратных многочленов из $\mathbb{R}[x]$ с единичными старшими коэффициентами и неотрицательными дискриминантами. На \mathbb{Q} рассмотрим отношение \leq_1 , согласно которому $x^2+p_1x+q_1\leq_1x^2+p_2x+q_2\Leftrightarrow p_1-p_2\geq |\sqrt{D_1}-\sqrt{D_2}|$, где $D_k=p_k{}^2-4q_k, k=1,2$. Будет ли $<\mathbb{Q};\leq_1>$ решеткой?
- **N20.** Является ли семейство всех эквивалентностей на данном множестве полной решеткой относительно отношения включения?
- **N21.** Пусть $< A; \le >$ более чем одноэлементное линейно упорядоченное множество (л.у.м.) и $B = \cup^{\infty}_{k=1}A^k$. На B введем отношение \le_1 : $(x_1,...,x_m)\le_1(y_1,...,y_n) \Leftrightarrow (m \le n \land x_1 = y_1 \land ... \land x_m = y_m) \lor (\exists i \le min(m,n)(x_1 = y_1 \land ... \land x_{i-1} = y_{i-1} \land x_i < y_i))$. Доказать, что \le_1 линейный порядок и что любое счетное л.у.м. изоморфно вложимо в $< B; \le_1 >$. Порядок \le_1 называется лексикографическим.
- **N22.** На множестве B из предыдущей задачи определим отношение $\leq_2: (x_1,...,x_m) \leq_2 (y_1,...,y_n) \Leftrightarrow (m < n \lor (m = n \land \exists i \leq m \\ (x_1 = y_1 \land ... \land x_{i-1} = y_{i-1} \land x_i < y_i) \lor (x_1,...,x_m) = (y_1,...,y_n).$ Каковы свойства отношения \leq_2 и его связи с отношением \leq_1 из предыдущей задачи?
- **N23.** Подмножество B л.у.м. $< A; \le_1 >$ называется плотным e A, если $\forall x, y \in A \exists b \in B(x \le_1 b \le_1 y \lor y \le_1 b \le_1 x)$. Верно ли, что если A содержит плотное в A подмножество, то A изоморфно вложимо в $< \mathbb{R}; \le>$?
- **N24.** Верно ли, что ч.у.м. фундированно, т.е. удовлетворяет условию минимальности, тогда и только тогда, когда все его цепи вполне упорядоченны относительно исход-

ного порядка?

- **N25.** Верно ли, что наибольший элемент ч.у.м. является его единственным максимальным элементом? Может ли ч.у.м. иметь точно один максимальный элемент и не иметь наибольшего?
- **N26.** Отображение $\varphi: A \to B$ называется монотонным отображением ч.у.м. $< A; \le >$ в ч.у.м. $< B; \le_1 >$, если $\forall x, y \in A(x \le y \to \varphi(x) \le_1 \varphi(y))$. Всегда ли обратная биекция к монотонной биекции A на B также будет монотонной? Отдельно рассмотреть случай, когда A и B л.у.м.
- **N27.** Когда произведение $\sigma_1\sigma_2$ двух линейных порядков σ_1, σ_2 на данном множестве будет опять линейным порядком?
- **N28.** Построить линейные порядки на множествах \mathbb{N}^2 , $\cup \mathbb{N}^k$, \mathbb{C} .
- **N29.** Верно ли, что л.у.м. одинаковой мощности изоморфны между собой?
- **N30.** Для ч.у.м. $< A; \le >$ и $a \in A$ обозначим $(< a) \rightleftharpoons \{x \in A | x < a\}$. Множество (< a) называется интервалом A, отсекаемым элементом a. Верно ли, что $< \{(< a) | a \in A\}; \subseteq >$ изоморфно $< A; \le >$?

N31. Доказать, что:

- 1. для любого вполне упорядоченного множества (в.у.м.) $< A; \le >$, любой монотонной инъекции $\varphi: A \to A$ и любого $x \in A$ имеем $x \le \varphi(x);$
 - 2. в.у.м. не изоморфно части никакого своего отрезка;
- 3. различные отрезки вполне упорядоченного множества не изоморфны;
 - 4. существует не более одного изоморфизма двух в.у.м.
- 5. любые два в.у.м. либо изоморфны, либо одно изоморфно отрезку другого;
 - N32. Верны ли утверждения задачи N31 для произ-

вольных л.у.м.?

- **N33.** Каковы те л.у.м., для которых конечен каждый интервал?
- **N34.** Порядковый тип л.у.м. $< A; \le >$, т.е. класс всех л.у.м., изоморфных $< A; \le >$, будем обозначать через $\overline{< A; \le >}$. Введем следующие обозначения для порядковых типов: $\omega = \overline{< \omega; \le >}$, $\pi = \overline{< \mathbb{Z}; \le >}$, $\eta = \overline{< \mathbb{Q}; \le >}$, $\lambda = \overline{< \mathbb{R}; \le >}$. Доказать, что $\overline{A} = \omega$ тогда и только тогда, когда:
 - 1. в A есть наименьший элемент a_0 ;
- 2. для любого $a \in A$ в множестве $\{x \in A | a < x\}$ есть наименьший элемент a';
 - 3. $\forall \subseteq A(a_0 \in X \land \forall a \in X (a' \in X) \rightarrow X = A)$.
- ${f N35.}$ Верно ли, что бесконечное л.у.м. имеет порядковый тип ω тогда и только тогда, когда все его отрезки конечны или пусты?
- **N36.** Доказать, что любое счетное л.у.м. $< A; \le >$ имеет порядковый тип η тогда и только тогда, когда в A нет экстремальных элементов и A плотно упорядоченное множество, т.е. $\forall x, y \in A \exists z \in A (x < y \to x < z < y)$.
- **N37.** Верно ли, что $\alpha \leq \eta$ для любого счетного порядкового типа α ?
- **N38.** Верно ли, что $\alpha + \beta = \beta + \alpha$ для любых порядковых типов α, β ?
- **N39.** Верно ли, что $\alpha \cdot \beta = \beta \cdot \alpha$ для любых порядковых типов α, β ?
- **N40.** Какие из следующих соотношений справедливы: $1 + \omega = \omega, \omega + 1 = \omega, \omega^* + \omega \neq \pi, \omega + \omega^* = \pi, \eta + \eta = \eta, \lambda + 1 + \lambda = \lambda, \lambda + \lambda = \lambda, 1 + \lambda + 1 = \overline{\langle [1,2]; \leq \rangle}, \alpha \cdot 0 = 0, 0 \cdot \alpha = 0, \alpha \cdot 1 = \alpha, 1 \cdot \alpha = \alpha, \eta^2 \neq \eta, \omega \cdot \eta = \omega \cdot (\eta + 1)$?
 - **N41.** Построить множества порядковых типов $\omega^2, \omega^3, ...$
- **N42.** Верно ли, что $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$, $(\alpha + \beta) \cdot \gamma = \alpha \cdot \gamma + \beta \cdot \gamma$ для любых порядковых типов α, β, γ ?

N43. Доказать, что л.у.м. будет в.у.м. тогда и только тогда, когда оно не содержит подмножеств типа ω^* .

N44. Пусть O_n - класс всех ординалов, $\alpha \in O_n$ и $W_\alpha \rightleftharpoons \{\beta \in O_n | \beta < \alpha\}$. Верно ли, что $W_\alpha = \alpha$?

N45. Доказать, что:

- 1. всякое множество ординалов вполне упорядочено;
- 2. для любого множества ординалов S существует ординал, больший всех ординалов из S, и среди ординалов из $O_n \setminus S$ существует наименьший;
 - 3. не существует множества, содержащего класс O_n ;
- 4. для любого $\alpha \in O_n$ имеет место одно из трех утверждений: $\alpha = 0; W_\alpha$ имеет максиматьный элемент; α предельный ординал;
- 5. любой ординал представим в виде $\alpha + n$, где $\alpha = 0$ или является предельным ординалом, $n \in \omega$.

N46. Верно ли, что для любых $\alpha, \beta, \gamma \in O_n$:

- 1. $\alpha \leq \alpha + \gamma, \alpha \leq \gamma + \alpha$;
- 2. $\alpha \leq \beta \Leftrightarrow \alpha + \gamma \leq \beta + \gamma$;
- 3. $\alpha + \gamma < \beta + \gamma \Leftrightarrow \alpha < \beta$;
- 4. $\alpha < \beta \Leftrightarrow \alpha + \gamma < \beta + \gamma$;
- 5. $\alpha + \gamma = \beta + \gamma \Leftrightarrow \alpha = \beta$;
- 6. $\alpha \leq \beta \Leftrightarrow \alpha \cdot \gamma \leq \beta \cdot \gamma$;
- 7. $\alpha < \beta \Leftrightarrow \gamma \cdot \alpha < \gamma \cdot \beta$:
- 8. $\alpha < \beta \Leftrightarrow \alpha \cdot \gamma < \beta \cdot \gamma$;
- 9. $\alpha < \beta \Leftrightarrow \gamma \cdot \alpha < \gamma \cdot \beta \land \gamma \neq 0$;
- 10. $\alpha = \beta \Leftrightarrow \gamma \cdot \alpha = \gamma \cdot \beta \wedge \gamma \neq 0$.

N47. Существуют ли такие $\alpha, \beta, \gamma \in O_n$, что $\alpha \neq \beta \land \alpha + \gamma = \beta + \gamma$?

N48. Построить в.у.м. порядкового типа ω^{ω} .

N49. Множество A называется mранзитивным, если $\emptyset \in A \land \forall xy (x \in y \land y \in A \to x \in A)$ и если отношение $x \leq y \Leftrightarrow x = y \lor x \in y$ вполне упорядочивает A. Построить пример бесконечного транзитивного множества.

N50. Доказать, что:

- 1. для любого $\alpha \in O_n$ существует и притом единственное транзитивное множество, упорядоченное отношением \leq из предыдущей задачи по типу α ;
- 2. аксиоме выбора эквивалентна аксиома Цермело: Для любого множества A непустых попарно непересекающихся множеств существует такое множество C, что для любого $x \in A$ множество $x \cap C$ одноэлементно;
- 3. аксиоме выбора эквивалентна аксиома Тейхмюллера-Тьюки: каждое семейство множеств конечного характера содержит максимальное по включению множество. При этом семейство S множеств имеет конечный характер, если $\forall x (x \in S \to \forall y \subseteq x (\overline{\overline{y}} < \overline{\overline{\omega}} \to y \in S)).$

5. Мощность множества

- **N1.** Какие из следующих множеств конечны и какие бесконечны? Для каждого конечного множества перечислите все его элементы:
 - 1. $\{x \in \mathbb{R} | x^2 5x + 4 = 0\};$
 - 2. $\{x \in \mathbb{N} | x^2 5x + 4 > 0\};$
 - 3. $\{x \in \mathbb{N} | x/24\};$
 - 4. $\{x \in \mathbb{N} | \exists y \in \mathbb{N} \ 2x + 3y = 24\};$
 - 5. $\{x \in \mathbb{N} | \exists y \in \mathbb{Z} \ 2x + 3y = 24\}.$
- N2. Из 100 студентов 28 изучают английский язык, 30 немецкий, 42 французский, 8 английский и немецкий, 10 английский и французский, 5 немецкий и французский и 3 студента изучают все три языка. Сколько студентов не изучают ни одного языка, изучают только французский язык?
- **N3.** Из 100 студентов 24 не изучают никакого языка, 26 изучают японский, 48 китайский, 8 корейский и китайский, 8 японский и китайский, 18 только японский, 23

- японский, но не корейский. Сколько студентов изучают только корейский язык?

N4. Доказать, что:

- 1. множество счетно тогда и только тогда, когда все его элементы можно расположить в виде бесконечной последовательности без повторяющихся членов;
- 2. каждое бесконечное множество содержит счетное подмножество;
- 3. всякое бесконечное подмножество счетного множества счетно;
- 4. объединение не более чем счетного семейства счетных множеств счетно;
- 5. декартово произведение конечного числа счетных множеств счетно;
 - 6. множество всех рациональных чисел счетно;
- 7. объединение бесконечного множества A и не более чем счетного множества имеет мощность A;
- 8. объединение двух континуальных множеств континуально;
- 9. множество всех непрерывных на \mathbb{R} функций континуально;
 - 10. множество $\mathbb{R}^{\mathbb{R}}$ более чем континуально;
 - 11. $P(\mathbb{N})$ континуально;
- 12. непустое множество бесконечно тогда и только тогда, когда оно равномощно некоторому собственному подмножеству;
- 13. область значений функции со счетной областью определения не более чем счетна;
- 14. непустое множество A не более чем счетно тогда и только тогда, когда существует сюрьекция \mathbb{N} на A;
- 15. множество всех конечных последовательностей, составленных из элементов некоторого счетного множества, есть счетное множество;

- 16. множество всех конечных подмножеств счетного множества счетно;
 - 17. множество $\mathbb{Z}[x]$ счетно;
- 18. множество всех алгебраических чисел, т.е. корней многочленов из $\mathbb{Z}[x]$, счетно;
- 19. любое множество попарно непересекающихся открытых интервалов на действительной прямой не более чем счетно;
- 20. если $A\subseteq\mathbb{R}$ и $\exists \delta>0 \forall x,y\in A(x\neq y\to |x-y|\geq \delta),$ то A не более чем счетно;
- 21. множество точек разрыва монотонной функции на действительной оси не более чем счетно;
- 22. $\overline{[a,b]}=\overline{[c,d]},\overline{[a,b]}=\overline{(a,b)},\overline{[a,b]}=\overline{\overline{\mathbb{R}}}$ для любых a,b,c,d таких, что a< b,c< d;
 - 23. множества точек двух окружностей равномощны;
- 24. множество всех разрывных функций, определенных на [0,1], более чем континуально.
- **N5.** Можно ли установить взаимно однозначное соответствие между точками квадрата и плоскости? Если да, то сделать это.
- **N6.** Найти мощность множества всех счетных последовательностей действительных чисел.
- **N7.** Какова мощность множества A, если на нем можно ввести полный порядок α , для которого α^{-1} тоже будет полным порядком?
- **N8.** Какова мощность множества всех монотонных функций на действительной прямой?
- **N9.** Можно ли выбрать $a \in \mathbb{R}$ так, что $\{x + a | x \subseteq A\} \cap A = \emptyset$ для данного счетного множества $A \subseteq \mathbb{R}$?
- **N10.** Пусть S такое семейство множеств, что для каждого $X\subseteq S$ существует $Y\in S$, неравномощное никакому подмножеству множества X. Доказать, что объединение всех множеств из S неравномощно никакому подмноже-

ству из S.

- **N11.** Пусть A такое множество последовательностей натуральных чисел, что оно с каждой последовательностью $\{x_n\}$ содержит все последовательности $\{y_n\}$, для которых $\lim_{n\to\infty} \left(\frac{x_n}{y_n}\right) = 0$. Какова мощность A?
- **N12.** Доказать коммутативность и ассоциативность сложения кардинальных чисел.
- **N13.** Доказать коммутативность и ассоциативность умножения кардинальных чисел.
- **N14.** Доказать, что если ξ, η, μ кардинальные числа, то $\xi^{\eta+\mu}=\xi^{\eta}\cdot\xi^{\mu}, \xi\cdot\eta^{\mu}=\xi^{\mu}\cdot\eta^{\mu}, \xi^{\eta^{\mu}}=\xi^{\eta\cdot\mu}.$
- **N15.** Доказать, что для любого непустого множества A имеет место равенство $2^{\overline{\overline{A}}} = \overline{\overline{2^{\overline{A}}}}.$
- **N16.** Верно ли, что для любых множеств A_1,A_2 существуют такие множества $B_1,B_2,$ что $\overline{\overline{A_k}}=\overline{\overline{B_k}},k=1,2$ и $B_1\cap B_2=\emptyset.$
- ${\bf N17.}$ Доказать, что кардинальные числа линейно упорядочены отношением \leq .
- N18. Доказать, что для произвольных мощностей \mathfrak{m} и \mathfrak{n} выполняется одно и только одно из условий $\mathfrak{m}=\mathfrak{n},\,\mathfrak{m}<\mathfrak{n},\,\mathfrak{m}>\mathfrak{n}.$
- **N19.** Доказать, что произведение двух кардинальных чисел всегда существует.
- **N20.** Доказать для произвольных кардинальных чисел $\mathfrak{m}, \, \mathfrak{n}, \, \mathfrak{p}$:
 - 1. $\mathfrak{m} \cdot \mathfrak{n} = \mathfrak{n} \cdot \mathfrak{m}$;
 - 2. $(\mathfrak{m} \cdot \mathfrak{n}) \cdot \mathfrak{p} = \mathfrak{m} \cdot (\mathfrak{n} \cdot \mathfrak{p});$
 - 3. $\mathfrak{m} \cdot \mathfrak{n} + \mathfrak{p} = \mathfrak{m} \cdot \mathfrak{n} + \mathfrak{m} \cdot \mathfrak{p}$;
 - $4. \ \mathfrak{m} \cdot 1 = \mathfrak{m};$
 - 5. $\mathfrak{m} \cdot 0 = 0$;
- 6. $\mathfrak{m} \cdot \mathfrak{n} = \mathfrak{n}$, если \mathfrak{m} конечное, а \mathfrak{n} бесконечное кардинальное число;

- 7. $\mathfrak{m}^{\mathfrak{n}+\mathfrak{p}}=\mathfrak{m}^{\mathfrak{n}}\cdot\mathfrak{m}^{\mathfrak{p}};$
- 8. $\mathfrak{m} \cdot \mathfrak{n}^{\mathfrak{p}} = \mathfrak{m}^{\mathfrak{p}} \cdot \mathfrak{n}^{\mathfrak{p}};$ 9. $(\mathfrak{m}^{\mathfrak{n}})^{\mathfrak{p}} = \mathfrak{m}^{\mathfrak{n} \cdot \mathfrak{p}};$
- 10. если $\mathfrak{m} \leq \mathfrak{n}$ и $\mathfrak{n} \leq \mathfrak{p}$, то $\mathfrak{m} \leq \mathfrak{p}$;
- 11. если $\mathfrak{m} \leq \mathfrak{n}$, то $\mathfrak{m} + \mathfrak{p} \leq \mathfrak{n} + \mathfrak{p}$;
- 12. если $\mathfrak{m} \leq \mathfrak{n}$, то $\mathfrak{m} \cdot \mathfrak{p} \leq \mathfrak{n} \cdot \mathfrak{p}$;
- 13. если $\mathfrak{m} \leq \mathfrak{n}$, то $\mathfrak{m}^{\mathfrak{p}} \leq \mathfrak{n}^{\mathfrak{p}}$; 14. если $\mathfrak{m} \leq \mathfrak{n}$, то $\mathfrak{p}^{\mathfrak{m}} \leq \mathfrak{p}^{\mathfrak{n}}$;
- 15. если $\mathfrak{m}, \mathfrak{n} > 1$, то $\mathfrak{m} + \mathfrak{n} \leq \mathfrak{m} \cdot \mathfrak{n}$;
- 16. если $\mathfrak{n}+\mathfrak{m}=\mathfrak{n}$ и $\mathfrak{p}\geq\mathfrak{n}$, то $\mathfrak{p}+\mathfrak{m}=\mathfrak{p}$.

ЧАСТЬ 2. Математическая логика

1. Логика высказываний

- **N1.** Какие из следующих предложений являются высказываниями?
- 1. Студент математико-механического факультета университета.
 - 2. Треугольник ABC подобен треугольнику $A_1B_1C_1$.
 - 3. Луна спутник Марса.
 - 4. $2 + \sqrt{3} \sqrt{5}$.
 - 5. Кислород газ.
 - 6. Каша вкусное блюдо.
 - 7. Математика интересный предмет.
 - 8. Картины Пикассо слишком абстрактны.
 - 9. Железо тяжелее свинца.
 - 10. Да здравствуют музы!
- 11. Треугольник называется равносторонним, если все его стороны равны.
- 12. Если в треугольнике все углы равны, то он равносторонний.
 - 13. Сегодня плохая погода.
- 14. В романе А.С.Пушкина "Евгений Онегин" 136245 букв.
 - 15. Река Ангара впадает в озеро Байкал.
 - 16. Иди туда, не знаю куда.
 - 17. Пролетарии всех стран соединяйтесь!

Для образца проведем требуемый анализ следующего предложения: "Автолюбитель счастлив, если он покупает машину, или выживает после автокатастрофы, или окончательно продает свой автомобиль". Введем следующие обозначения:

- p "автолюбитель счастлив",
- q "он покупает машину",
- r "он выживает после автокатастрофы",
- s "он окончательно продает свой автомобиль".

Теперь наше сложное предложение запишется так: $(q \lor r \lor s) \to p$.

- 1. "Заяц"платит штраф за безбилетный проезд лишь в том случае, когда его поймал контролер и этот кантролер настойчив, а "заяц"не забыл дома кошелек.
- 2. Если последовательность монотонна и ограниченна сверху, то она имеет предел.
- 3. Если хочешь быть спокоен, не принимай горя и неприятностей на свой счет, но всегда относи их на казенный.

К.Прутков

- 4. Для того, чтобы x было нечетным, достаточно, чтобы x было простым.
- 5. Бросая в воду камешки, смотри на круги, ими образуемые; иначе такое бросание будет пустою забавою.

К.Прутков

- 6. Необходимым условием обратимости матрицы является ее невырожденность.
- 7. Обидно, если в пору цветения садов не сочиняют стихи и не наполняют чарки вином.

Цзацзауань; Ли Шан-

Инь

8. Необходимым и достаточным условием дифференцируемости функции является ее непрерывность.

- **N3.** Сформулируйте отрицания следующих высказываний; укажите значения истинности данных высказываний и их отрицаний:
 - 1. Волга впадает в Каспийское море.
 - 2. Число 28 не делится на число 7.
 - 3. Все простые числа нечетны.
 - 4.6 > 3.
 - $5.4 \le 5.$
- **N4.** Установите, какие из высказываний в следующих парах являются отрицаниями друг друга и какие нет (объясните почему):
 - 1. 2 < 0, 2 > 0.
 - $2.6 < 9, 6 \ge 9.$
- 3. "Треугольник ABC прямоугольный", "Треугольник ABC тупоугольный".
- 4. "Натуральное число n четно", "Натуральное число n нечетно".
 - 5. "Функция f нечетна", "Функция f четна".
- 6. "Все простые числа нечетны", "Все простые числа четны".
- 7. "Все простые числа нечетны", "Существует простое четное число".
- 8. "Человеку известны все виды животных, обитающих на Земле", "На Земле существует вид животных, не известный человеку".
- 9. "Существуют иррациональные числа", "Все числа рациональные".
- **N5.** Следующие высказывания запишите без знака отрицания, считая \leq отношением порядка на \mathbb{R} и на \mathbb{C} :
 - 1. $\neg (a < b)$;
 - 2. $\neg (a < b)$:
 - $3. \neq (a \geq b);$
 - 4. $\neg (a > b)$.

- **N6.** Определите значения истинности следующих высказываний:
 - 1. Париж расположен на Днестре и 2 + 3 = 5.
 - 2. 7 простое число и 9 простое число.
 - 3. 7 простое число или 9 простое число.
 - 4. Число 2 четное или это число простое.
 - $5. \ 2 < 3$ или 2 > 3.
 - 6. $2 \cdot 2 = 4$ или павлины живут в Антарктиде.
 - 7. $2 \cdot 2 = 4$, и $2 \cdot 2 < 5$, и $2 \cdot 2 > 4$.
 - 8. Если 12 делится на 6, то 12 делится на 3.
 - 9. Если 11 делится на 6, то 11 делится на 3.
 - 10. Если 15 делится на 6, то 15 делится на 3.
 - 11. Если 15 делится на 3, то 15 делится на 6.
- 12. Если Саратов расположен на Неве, то белые медведи обитают в Африке.
- 13. 12 делится на 6 тогда и только тогда, когда 12 делится на 3.
- $14.\ 11$ делится на 6 тогда и только тогда, когда 11 делится на 3.
- 15. 15 делится на 6 тогда и только тогда, когда 15 делится на 3.
- $16.\ 15$ делится на 5 тогда и только тогда, когда 15 делится на 4.
- 17. Тело с массой m обладает потенциальной энергией mgh тогда и только тогда, когда оно находится на высоте h над поверхностью Земли.
- **N7.** Определите значения истинности высказываний A, B, C, D, E, если:
 - 1. $A \wedge (2 \cdot 2 = 4)$ истинное высказывание.
 - 2. $B \land (2 \cdot 2 = 4)$ ложное высказывание.
 - 3. $C \lor (2 \cdot 2 = 5)$ истинное высказывание.
 - 4. $D \lor (2 \cdot 2 = 5)$ ложное высказывание.
 - 5. $D \land (2 \cdot 2 = 5)$ ложное высказывание.

- 6. "Если 4 четное число, то A. истинное высказывание.
- 7. "Если B, то 4 нечетное число. истинное высказывание.
 - 8. "Если 4 четное число, то C. ложное высказывание.
- 9. "Если D, то 4 нечетное число. ложное высказывание.
- **N8.** Будут ли следующие выражения формулами логики высказываний:
 - 1. $(((p \land q) \lor r) \neg s);$
 - 2. $(p \land q) \rightarrow r$;
 - 3. $((p \rightarrow q) \land \neg r)$;
 - 4. $((p \land (r \land q) \lor \neg p) \rightarrow s);$
 - 5. $(p \wedge q)r \neg s$;
 - 6. $(((\neg p) \rightarrow q) \rightarrow \neg (p \lor q)))$?
- **N9.** Расставив скобки, образовать формулы логики высказываний:
 - 1. $p \rightarrow \neg q \lor r \land s$,
 - 2. $p \rightarrow q \rightarrow r \rightarrow p \rightarrow q \rightarrow p \rightarrow r$.
- **N10.** Подсчитать число расстановок скобок, в результате которых получаются формулы:
 - 1. $p \rightarrow q \land \neg p \lor s \rightarrow r$,
 - 2. $p \land \neg p \lor \neg q \lor r \land s$.

N11. Выписать все подформулы формулы:

- 1. $(((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (\neg p \lor r));$
- 2. $((p \rightarrow q) \rightarrow ((p \rightarrow \neg q) \rightarrow \neg q))$.

N12. Построить таблицы истинности для формул

- 1. $((p \land \neg q) \to \neg p);$
- 2. $((\neg p \land (q \to p)) \to p);$
- 3. $((p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)));$
- $4.\ ((p \to q) \lor (p \to (p \land q)));$
- 5. $(\neg(p \to \neg(p \land q)) \to (p \lor r));$
- 6. $((p \land (q \rightarrow p)) \rightarrow \neg q);$
- 7. $(((p \land \neg q) \to q) \to (p \to q));$

```
8. ((p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)));
```

9.
$$((p \land (q \lor \neg p)) \land ((\neg q \to p) \lor q));$$

10.
$$((((p \rightarrow q) \rightarrow r) \rightarrow s) \lor (((s \rightarrow r) \rightarrow q) \rightarrow p));$$

11.
$$((((s \rightarrow r) \rightarrow q) \rightarrow s) \land (p \lor \neg r));$$

12.
$$((p \rightarrow q) \rightarrow (p \rightarrow (r \lor \neg q)))$$
.

N13. Существуют ли такие значения p, q, r, s, при которых ложны формулы

1.
$$((p \land \neg q) \to ((p \to q) \land (q \to p))),$$

2.
$$(((p \lor q) \land r) \to (p \lor (q \land s)))$$
?

N14. Сформулируйте и запишите в виде конъюнкции или дизъюнкции условие истинности каждого из следующих предложений, считая, что $a, b \in \mathbb{R}$ или $a, b \in \mathbb{C}$:

1.
$$a \cdot b \neq 0$$
.

2.
$$a \cdot b = 0$$
.

$$3. \ a^2 + b^2 = 0.$$

$$4. \frac{a}{b} = 0.$$

5.
$$|a| = 3$$
.

6.
$$|a| < 3$$
.

7.
$$|a| > 3$$
.

8.
$$\sqrt{a} = b$$
.

9.
$$a^2 + b^2 \neq 0$$
.

10.
$$\frac{a}{b} \neq 0$$
.

10.
$$\frac{a}{b} \neq 0$$
.
11. $x^2 + ax + b = 0$.

$$12. \sin \frac{b}{a} = b.$$

N15. Для каждого из помещенных ниже высказываний определите, достаточно ли приведенных сведений, чтобы установить его истинностное значение. Если достаточно, то укажите это значение. Если недостаточно, то покажите, что возможны и одно, и другое истинностные значения:

1.
$$(p \rightarrow q) \rightarrow r, C = \text{M};$$

2.
$$p \wedge (q \rightarrow r), (q \rightarrow r) = \Pi;$$

3.
$$p \lor (q \rightarrow r), q = \Pi;$$

4.
$$\neg (p \lor q) \leftrightarrow (\neg p \land \neg q), p = M;$$

```
5. (p \rightarrow q) \rightarrow (\neg p \rightarrow \neg q), q = \text{H};
6. (p \land q) \rightarrow (p \lor r), p = \text{Л}.
```

 ${f N16.}$ Существует ли такая формула p, что следующие формулы будут тождественно истинны

```
1. (((p \land q) \rightarrow \neg r) \rightarrow ((r \rightarrow \neg q) \rightarrow p))),
2. (((q \rightarrow (\neg r \land s)) \rightarrow p) \rightarrow (p \land ((s \rightarrow r) \land q)))?
```

N17. Для всякой ли выполнимой (т.е. не тождественно ложной) формулы, в запись которой входит символ p, можно так подобрать некоторую формулу, что после подстановки ее вместо p мы получим тождественно истинную формулу?

N18. Доказать тождественную истинность формул:

```
1. (p \rightarrow (q \rightarrow p));
2. ((p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)));
3. ((\neg p \rightarrow \neg q) \rightarrow (q \rightarrow p));
4. (\neg \neg p \rightarrow p);
5. (\neg p \rightarrow (p \rightarrow q));
6. ((p \rightarrow q) \lor (q \rightarrow p));
7. ((p \rightarrow q) \lor (p \rightarrow \neg q));
8. (p \rightarrow (q \rightarrow (p \land q)));
9. ((p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r)));
10. (p \to (q \to p));
11. (p \vee \neg p);
12. ((p \rightarrow q) \rightarrow ((p \rightarrow (q \rightarrow r)) \rightarrow (p \rightarrow r)));
13. ((p \land q) \rightarrow p);
14. (p \rightarrow (p \lor q));
15. ((p \rightarrow r) \rightarrow ((q \rightarrow r) \rightarrow ((p \lor q) \rightarrow r)));
16. ((p \rightarrow q) \rightarrow ((p \rightarrow \neg q) \rightarrow \neg p));
17. (p \rightarrow \neg \neg p);
18. ((\neg q \rightarrow \neg p) \rightarrow ((\neg q \rightarrow p) \rightarrow q));
19. ((p \lor p) \to p);
20. ((q \rightarrow r) \rightarrow ((p \lor q) \rightarrow (p \lor r)));
21. (((p \rightarrow q) \rightarrow p) \rightarrow p).
```

- **N19.** Можно ли построить формулу от трех переменных, которая истинна в том и только в том случае, когда ровно две переменные принимают значение Л?
- **N20.** Существует ли такая формула от трех переменных, которая принимает такое же значение, как и большинство переменных?
- N21. Доказать, что формула, не содержащая других связок, кроме \leftrightarrow , тождественно истинна тогда и только тогда, когда каждая переменная входит в нее четное число раз.
- **N22.** Доказать, что формула, не содержащая других связок, кроме \leftrightarrow и \neg , тождественно истинна тогда и только тогда, когда каждая переменная и знак отрицания входит в нее четное число раз.
- **N23.** Пусть $(p \leftrightarrow q) = \text{И}$. Что можно сказать об истинностном значении формул $(\neg p \leftrightarrow q) =, (p \leftrightarrow \neg q) = ?$
- **N24.** Пусть $(p \to q) = \mathbb{N}$. Что можно сказать об истинностном значении формулы $((\neg p \land q) \leftrightarrow (p \lor q))$?
- **N25.** Верно ли, что тождественная истинность формул $(p \lor q), (p \to q), (q \to s)$ влечет тождественную истинность формулы $(r \lor s)$?
- **N26.** Достаточны ли условия $p = \mathbb{N}$, $q = \mathbb{N}$ для установления истинностного значения формулы r, если:
 - 1. $p = x_3, r = ((x_1 \to x_2) \to x_3);$
 - 2. $p = x_1 \lor x_2, r = (\neg(x_1 \lor x_2) \leftrightarrow (\neg x_1 \land \neg x_2));$
 - 3. $p = x_1, q = x_3, r = ((x_1 \land x_2) \rightarrow (x_1 \lor x_3))$?
- **N27.** Пусть $(p \lor q) = \mathsf{H}, \ (p \to q) = \mathsf{H}, \ (q \to s) = \mathsf{H}.$ Верно ли, что $(r \lor s) = \mathsf{H}?$
- **N28.** Введем новую связку $umpux \coprod e \phi \phi e pa: (p|q) \rightleftharpoons (\neg p \lor \neg q)$. Справедливы ли следующие утверждения:
 - 1. $(p|p) \models \neg p$,
 - $2. (p|p)|(q|q) \models p \lor q?$
 - **N29.** Можно ли выразить связки \wedge и \rightarrow через штрих

Шеффера?

- **N30.** Можно ли отрицание выразить через \land , \lor , \rightarrow ?
- **N31.** Всякая ли формула равносильна формуле, содержащей лишь связки \neg и \lor ?
 - **N32.** Выразимы ли связки \wedge и \vee через связки \neg и \rightarrow ?
 - **N33.** Выразимы ли связки \rightarrow и \lor через связки \neg и \land ?
- **N34.** Введем новую связку $(p \circ q) = \mathbb{N} \Leftrightarrow p = q = \mathbb{N}$. По-казать, что любая формула равносильна формуле с единственной связкой \circ .
- **N35.** Пусть p и q не содержат импликации и p^* , q^* получены из p и q взаимной заменой связок \wedge , \vee .
 - 1. Доказать закон двойственности: $p \models q \Leftrightarrow p^* \models q^*$.
 - 2. Доказать, что $\models p \rightarrow q \Leftrightarrow \models q^* \rightarrow p^*$.
 - 3. Доказать, что $\models p \Leftrightarrow \models \neg p^*$.
 - **N36.** Доказать, что $p \models q \Leftrightarrow p \models q$ и $q \models p$.
- **N37.** Доказать, что $p_1,...,p_n|=q\Leftrightarrow |=(p_1\to (...(p_n\to q)...))$ и что $p_1,...,p_n|=q\Leftrightarrow |=(p_1\wedge...\wedge p_n\to q).$
- **N38.** По высказыванию $p \to q$ построим следующие три высказывания: $(q \to p)$, $(\neg p \to \neg q)$, $(\neg q \to \neg p)$. Первое из них называется обратным к исходному, второе противоположеным, а третье противоположеным к обратному. Показать, что
- 1. обратное к истинному высказыванию не всегда истинно;
- 2. противоположное истинному высказыванию не всегда истинно;
- 3. противоположное к обратному для истинного высказывания всегда истинно;
- 4. высказывание, противоположное обратному, совпадает с высказыванием, обратным к противоположному;
- 5. если высказывание и противоположное ему истинны, то и обратное также истинно;

- 6. если высказывание и обратное к нему истинны, то и противоположное также истинно.
- **N39.** Для каждого из следующих утварждений сформулировать обратное, противоположное и противоположное обратному; указать верные утверждения:
- 1. Если в четырехугольник можно вписать окружность, то этот четырехугольник представляет собой ромб;
- 2. Если параллелограмм являяется прямоугольником, то вокруг него можно описать окружность;
- 3. Если последовательность имеет предельную точку, то она ограниченна.
- **N40.** В следующих предложениях заменить многоточия оборотами "необходимо и достаточно", "необходимо, но не достаточно", "достаточно, но не необходимо"так, чтобы получились верные утверждения:
- 1. Для того, чтобы выиграть в лотерее, ... иметь хотя бы один лотерейный билет.
- 2. Для того, чтобы хотя бы одно из чисел a,b было равно нулю, ..., чтобы $a^2+b^2=0$.
- 3. Для того, чтобы функция $y = ax^2 + bx + c$ при всех целых x принимала целые значения, ..., чтобы 2a, a + b, c были целыми числами.
- **N41.** Следователь допрашивает трех свидетелей Клода, Жака и Дика. Каждый из них обвинял кого-нибудь во лжи. Клод утверждал, что Жак лжет, Жак обвинял во лжи Дика, а Дик уговаривал следователя не верить ни Клоду, ни Жаку. Следовательь, не задав ни одного вопроса, понял, кто из свидетелей говорил правду. Как это можно сделать и кто говорил правду?
- **N42.** Из шести кладоискателей-одиночек двое нашли клады. Опрашивая свидетелей, налоговый инспектор на вопрос: "Кто нашел клад?"получил следующие пять ответов: нашли клад 1-й и 3-й, 2-й и 6-й, 1-й и 6-й, 2-й и 5-й,

- 1-й и 4-й. Стало известно, что в четырех из пяти ответов правильно указан один из счастливцев, а в одном ответе оба счастливца указаны неверно. Кто нашел клад?
- **N43.** Жители некоторого государства делятся на рыцарей, которые всегда говорят правду, и лжецов, которые всегда лгут. Как-то в комнате собралось 10 жителей этого государства, и каждый из них сказал, обращаясь к остальным: "Все вы лжецы". Сколько среди этих людей было рыцарей и сколько лжецов?
- **N44.** В стране Плюралии некоторые жители всегда говорят правду, а остальные всегда лгут. Как-то собрались четыре жителя этой страны, и между ними произошел такой разговор:

1-й: По крайней мере один из нас - лжец. 2-й: По крайней мере двое из нас - лжецы. 3-й: По крайней мере трое из нас - лжецы. 4-й: Среди нас нет лжецов.

Кто из говоривших лжец, а кто всегда говорит правду? **N45.** Жители некоторого государства делятся на рыцарей, которые всегда говорят правду, и лжецов, которые всегда лгут. Однажды 15 жителей государства встали в круг, и каждый из них заявил, что один из его соседей рыцарь, а другой - лжец. Сколько рыцарей и сколько лжецов могло быть среди этих 15 человек?

N46. Упростить схемы:

N47. Три молодые пары пришли на дискотеку. Одна девушка была в красном костюме, вторая - в зеленом, третья - в синем. Их партнеры также были в красном, зеленом и синем. Оказавшись во время танцев рядом с девушкой в зеленом, юноша в красном обратился к ней. "Не правда ли забавно получается: ни у кого из нас цвет костюма не совпадает с цветом костюма партнера."Можете ли вы с уверенностью сказать, в костюме какого цвета был юноша, танцевавший в паре с девушкой в красном костюме?

- **N48.** Пол, Джон и Джордж музыканты. Один из них гитарист, другой ударник, третий пианист (разумеется, мы отнюдь не утверждаем, что Пол непременно играет на гитаре, Джон на ударных и Джордж на фортепьяно: Пол вполне может быть, например, пианистом, Джордж ударником и т.д.).
- а). На запись грампластинки ударник хотел пригласить гитариста, но того не оказалось в городе: он отбыл на гастроли вместе с пианистом.
 - б). Пианисту платят больше, чем ударнику.
 - в). Полу платят меньше, чем Джону.
 - г). Джордж никогда не слышал о Джоне.

На каком инструменте играет каждый из трех музыкантов?

- **N49.** В комнате общежития женского колледжа собрались однажды все четыре обитательницы. Каждая из них занималась своим делом. Одна студентка занялась маникором, другая расчесывала волосы, третья прихорашивалась перед зеркалом, а четвертая читала.
 - а). Маша не занималась маникюром и не читала.
- б). Муза не прихорашивалась перед зеркалом и не занималась маникюром.
- в). Если Маша не прихорашивалась перед зеркалом, то Нина не занималась маникюром.
 - г). Надя не занималась маникюром и не читала.
 - д). Нина не читала и не прихорашивалась.

Что делала каждая девушка?

2. Алгебра логики

N1. Мальчик решил в воскресенье закончить чтение книги, сходить в музей или в кино, а если будет хорошая

погода - пойти на реку выкупаться. В каком случае можно сказать, что решение мальчика не выполнено? (В ответе отрицания должны содержаться лишь в простых высказываниях).

N2. Доказать полноту следующих систем функций:

- 1. $x \wedge y$, $\neg x$.
- $2. x \lor y, \neg x.$
- 3. $\neg(x \lor y), \neg(x \land y)$.
- $4. x \rightarrow y, \neg x.$
- **N3.** Всякая совокупность функций алгебры логики, замкнутая относительно суперпозиции (т.е. такая, что суперпозиция функций из данной совокупности снова принадлежит этой совокупности), называется *замкнутым классом*. Какие из указанных ниже систем функций являются замкнутыми классами:
 - 1. функции от одной переменной;
 - 2. функции от двух переменных;
 - 3. все функции алгебры логики;
 - 4. линейные функции;
 - 5. самодвойственные функции;
 - 6. монотонные функции;
 - 7. монотонно убывающие функции;
 - 8. функции, сохраняющие нуль;
 - 9. функции, сохраняющие единицу;
 - 10. функции, сохраняющие нуль и единицу;
- 11. функции, сохраняющие нуль, но не сохраняющие единицу.

N4.

- 1. Доказать, что пересечение замкнутых классов замкнутый класс.
- 2. Доказать, что совокупность функций, двойственных функциям из замкнутого класса, образует замкнутый класс.

- **N5.** Является ли объединение замкнутых классов замкнутым классом?
- **N6.** Замкнутые классы, отличные от пустого класса и от совокупности всех функций алгебры логики, называются *собственными замкнутыми классами*. Доказать, что дополнение собственного замкнутого класса (совокупность функций, в него не входящих) не может быть замкнутым классом.
- **N7.** Минимальная полная система функций (т.е. такая полная система функций, удаление из которой любой функции делает систему неполной) называется базисом.
- 1. Привести пример полной системы, являющейся базисом.
- 2. Являются ли базисами системы функций, приведенные в задаче ${\bf N2}.$
- **N8.** Доказать, что для полноты системы функций необходимо и достаточно, чтобы для всякого замкнутого класса, не совпадающего с множеством всех функций, в данной системе нашлась функция, не принадлежащая этому классу.
- **N9.** Доказать, что базис не может содержать более пяти функций.
- **N10.** Доказать, что базис не может содержать более четырех функций.
- **N11.** Доказать, что из всякого базиса можно отождествлением аргументов у входящих в него функций получить базис, в котором все функции зависят не более чем от трех переменных; дальнейшее уменьшение числа переменных, вообще говоря, невозможно.
- **N12.** Если при любом отождествлении переменных у всякой функции базиса мы получаем неполную систему, то базис называется минимальным. Доказать, что имеется лишь конечное число различных минимальных базисов.

- N13. Функция алгебры логики, представляющая собой базис из одного элемента, называется обобщенной функцией Шеффера. Сколько имеется обобщенных функций Шеффера от n переменных?
- **N14.** Найти все минимальные базисы из одной функции.
- **N15.** Найти все минимальные базисы из четырех функций.
- **N16.** Будем говорить, что функция f получена из системы Φ при помощи расширенной суперпозиции, если она получается из Φ при помощи операций суперпозиции и подстановки констант. Как связаны замкнутые классы относительно обычной и расширенной суперпозиций?
- **N17.** В каждом из нижеследующих случаев найти необходимые и достаточные условия на систему функций Ф алгебры логики, при выполнении которых расширенными суперпозициями функций из системы Ф могут быть представлены:
 - 1. все линейные функции;
 - 2. все монотонные функции;
 - 3. функция $(x \wedge y) \vee (y \wedge z) \vee (x \wedge z)$;
 - 4. функция $\neg x$;
 - 5. всякая линейная функция или функция $x \wedge y$;
 - 6. $x \wedge y$ или $\neg x$;
 - 7. $x \wedge y$ и $\neg x$;
 - 8. $x \wedge y$ или $x \vee y$ или $\neg x$.
- **N18.** Суперпозиция системы функций Φ называется глобальной, если она может быть получена из элементов Φ путем последовательного применения операций переименования переменных (и, в частности, их отождествления) и подстановки каких-то функций $\varphi_1,...,\varphi_n \in \Phi$ вместо всех аргументов некоторой функции $f(x_1,...,x_n) \in \Phi$. Ограничение состоит в том, что не разрешается подстановка вме-

сто части аргументов функции. Однако, если в системе Φ имеется функция x, то любую суперпозицию можно считать глобальной (так как тогда аргумент y можно оставить неизменным, подставляя вместо него $\varphi(y) = y$). Привести пример системы функций, полной в обычном смысле, но не полной относительно глобальной суперпозиции.

- **N19.** Найти условия полноты системы функций относительно глобальной суперпозиции.
- **N20.** Назовем подстановку функций $\varphi_1, ..., \varphi_n$ вместо нескольких аргументов функции f сокращающей, если полученная в результате функция будет фиктивно зависеть от всех аргументов функций $\varphi_1, ..., \varphi_n$. Расширим понятие глобальной суперпозиции, допуская наряду с подстановкой во все аргументы сокращающую подстановку. Выяснить условия полноты относительно этого класса суперпозиций.

3. Логика предикатов

N1. Какие вхождения переменных являются свободными, а какие связанными в следующих формулах:

```
1. \forall x (P(x, y) \to \forall y Q(y));
2. (\forall x P(x, y) \to \forall y Q(x, y));
```

3.
$$\forall x P(x,y) \rightarrow \forall y Q(x,y);$$

4.
$$\forall xy(P(x,y) \to Q(x,y));$$

5.
$$\forall xy P(x,y) \to Q(x,y);$$

6.
$$(\neg \exists y Q(y,y) \land R(f(x,y)))$$
?

$$\mathbf{N2.}$$
 Пусть $\underline{M}=<\mathbb{N};S,P>,$ где

$$S(x, y, z) = \mathbb{N} \Leftrightarrow x + y = z, P(x, y, z) = \mathbb{N} \Leftrightarrow x \cdot y = z.$$

Записать формулу с одной свободной переменной x, истинную в \underline{M} тогда и только тогда, когда:

- 1. x = 0;
- 2. x = 1;
- 3. x = 2;
- 4. x четно;
- 5. x нечетно;
- 6. x простое число.
- **N3.** Записать формулу с двумя свободными переменными x и y, истинную в \underline{M} из задачи **N2** тогда и только тогда, когда:
 - 1. x = y;
 - 2. $x \le y$;
 - 3. x < y;
 - $4. \ x$ делит y.
- **N4.** Записать формулу с тремя свободными переменными x, y и z, истинную в \underline{M} из задачи **N2** тогда и только тогда, когда:
 - 1. z наименьшее общее кратное x и y;
 - 2. z наибольший общий делитель x и y.
- **N5.** Записать предложение, выражающее в модели \underline{M} из задачи **N2**:
 - 1. коммутативность сложения;
 - 2. ассоциативность сложения;
 - 3. коммутативность умножения;
 - 4. ассоциативность умножения;
- 5. дистрибутивность сложения относительно умножения;
 - 6. бесконечность множества простых чисел;
 - 7. то, что всякое число есть сумма четырех квадратов;
- 8. существование наименьшего общего кратного и наибольшего общего делителя для чисел отличных от нуля;
 - 9. несуществование единицы;
 - 10. существование единицы;
 - 11. конечность множества простых чисел;

- 12. то, что всякое число можно представить в виде суммы двух квадратов;
- 13. то, что для всякого числа существует строго меньшее число;
 - 14. существование наибольшего натурального числа;
 - 15. существование наименьшего натурального числа;
 - 16. существование пифагоровых троек;
 - 17. существование четного простого числа;
- 18. то, что всякое четное число, большее 2, есть сумма двух простых;
- 19. то, что уравнение $3x^2 + 2x + 1 = 0$ имеет в точности два различных корня;
 - 20. то, что система уравнений

$$\begin{cases} 3x - y = 0 \\ x + y = 2 \end{cases}$$

не имеет решения,

- 21. гипотезу Гольдбаха-Зйлера: всякое четное число, большее 2, есть сумма двух простых чисел. Истинность или ложность этой гипотезы до сих пор не доказана.
- ${f N6.}$ Пусть M множество точек, прямых и плоскостей трехмерного евклидова пространства со следующими предикатами:

 $T(x) = \mathbb{N} \Leftrightarrow x$ - точка,

 $L(x) = \mathbf{H} \Leftrightarrow x$ - прямая,

 $P(x) = \mathbf{M} \Leftrightarrow x$ - плоскость,

 $S(x) = \mathbf{H} \Leftrightarrow x$ лежит на y.

Записать следующие формулы:

- 1. через каждые две точки можно провести прямую; если эти точки различны, то такая прямая единственна;
- 2. через каждые три точки, не лежащие на одной прямой, можно провести единственную плоскость;
 - 3. определение параллельных прямых;

- 4. определение параллельных плоскостей.
- N7. В модели из задачи N6 записать:
- 1. аксиому Евклида о параллельных прямых;
- 2. аксиому Лобачевского о параллельных прямых;
- **N8.** Рассмотрим модели с одним двуместным предикатом R(x,y). Записать, что данный предикат:
 - 1. рефлексивен;
 - 2. симметричен;
 - 3. транзитивен;
 - 4. R(x, y) отношение эквивалентности.
 - **N9.** Записать в сигнатуре $<\leq,=>$ аксиомы:
- 1. упорядоченного множества с наибольшим и наименьшим элементами;
 - 2. дискретно упорядоченного множества;
 - 3. решетки;
 - 4. дистрибутивной решетки;
 - 5. дедекиндовой решетки;
- 6. дистрибутивной решетки с относительными дополнениями;
 - 7. булевой алгебры;
 - 8. атомной булевой алгебры;
 - **N10.** Записать в подходящей сигнатуре аксиомы:
 - 1. квазигруппы;
 - 2. лупы;
 - 3. полугруппы;
 - 4. коммутативной полугруппы;
 - 5. коммутативной полугруппы с сокращением;
 - 6. группы;
 - 7. абелевой группы;
 - 8. упорядоченной абелевой группы;
 - 9. полной группы;
 - 10. кольца;
 - 11. ассоциативного кольца;

- 12. коммутативного кольца;
- 13. кольца Ли;
- 14. области целостности;
- 15. тела;
- 16. поля;
- 17. алгебраически замкнутого поля;
- 18. вещественно замкнутого поля.
- **N11.** Используя квантор всеобщности, квантор существования и логические связки, записать следующие высказывания:
 - 1. $\lim_{n \to \infty} x_n = a$.
 - $2. \lim_{n \to \infty} x_n \neq a.$
 - 3. Последовательность $\{x_n\}$ не имеет предела.
- 4. В некотором поезде в каждом вагоне есть свободное место.
 - 5. Все рыбы, кроме акул, добры к детям.
- 6. Ты можешь обманывать кое-кого все время, ты можешь обманывать всех некоторое время, но ты не можешь обманывать всех все время.
- 7. Всякий, кто находится в здравом уме, может понять любую теорему Коши. Ни один из потомков Понтия Пилата не понимает все теоремы Коши. Сумасшедшие не допускаются к голосованию. Следовательно, никто из потомков Понтия Пилата не допускается к голосованию.
- 8. Всякий парикмахер в Старгороде бреет всех тех и только тех, кто не бреется сам. Следовательно, в Старгороде нет ни одного парикмахера.
- **N12.** Будет ли формулой логики предикатов следующее выражение:

$$\forall \varepsilon (\varepsilon > 0 \to \exists \delta (\delta > 0 \wedge (\forall x (x \neq a \wedge |x - a| < \delta \to |f(x) - A| < \varepsilon))))?$$

Указать в нем свободные и связанные переменные, кон-

станты, предикаты. Связав свободные переменные, превратить это выражение в математическое утверждение.

N13. Рассмотрим формулу

$$\forall x \exists y \forall z (R(x,y) \land (R(x,z) \land R(z,y) \rightarrow R(z,x) \lor R(y,z)) \land R(y,x)).$$

Зафиксируем интерпретацию: предметная область - это P(M), где $M \neq \emptyset$, $R(x,y) = W \Leftrightarrow x \subseteq y$. При каких интерпретациях свободной переменной эта формула истинна?

- **N14.** Доказать, что формула ψ сигнатуры σ выполнима в алгебраической системе $\underline{M} = < M; \sigma >$ тогда и только тогда, когда ψ выполнима в любом обогащении $M' = < M; \sigma' >$.
- **N15.** Доказать, что для любого предложения ψ сигнатуры σ , относящегося к алгебраической системе $\underline{M} = < M; \sigma >$, имеем $\underline{M} \models \psi$ или $\underline{M} \models \neg \psi$.

N16. Доказать, что:

- $1.~\psi$ выполнима тогда и только тогда, когда $\neg \psi$ не тождественно истинна.
- 2. ψ тождественно истинна тогда и только тогда, когда $\neg \psi$ не выполнима.
- **N17.** Доказать, что бескванторная формула тождественно истинна тогда и только тогда, когда она может быть получена подстановкой из некоторой тождественно истинной формулы исчисления высказываний.

N18. Доказать, что

- 1. если замкнутая ∀-формула истинна в алгебраической системе, то она истинна в любой ее подсистеме.
- 2. если замкнутая Э-формула истинна в алгебраической системе, то она истинна в любом ее расширении.
- 3. привести пример формулы ψ и алгебраической системы \underline{M} таких, что $\underline{M} \models \psi$ и ψ ложна в некоторой подсистеме и некотором расширении системы \underline{M} .
 - **N19.** Выполнимы ли следующие формулы:

- 1. $\exists x P(x)$;
- $2. \forall x P(x);$
- 3. $\exists x \forall y (Q(x,x) \land \neg Q(x,y));$
- 4. $\exists x \exists y (Q(x,x) \land \neg Q(x,y));$
- 5. $\exists x \forall y (Q(x,y) \rightarrow \forall z R(x,y,z));$
- 6. $(P(x) \rightarrow \forall y P(y))$?

N20. Являются ли тождественно истинными следующие формулы:

- 1. $(\exists x P(x) \rightarrow \forall x P(x))$;
- 2. $\neg(\exists x P(x) \rightarrow \forall x P(x));$
- 3. $\exists x \forall y (Q(x,y) \rightarrow \forall y \exists x Q(x,y));$
- 4. $\forall x \exists y (Q(x,y) \to \exists xy \forall Q(x,y))$?

N21. Доказать, что формула

$$(\forall x \exists y P(x, y) \land \forall x \forall y P(x, y) \rightarrow \neg P(y, x)) \land$$

$$\forall x \forall y \forall z (P(x,y) \rightarrow P(y,z) \rightarrow P(x,z))))$$

выполнима в некоторой бесконечной модели и ложна во всех конечных.

N22. Записать формулу с одноместными предикатами, выполнимую лишь в моделях, содержащих не менее пяти элементов.

N23. Доказать, что предложение

$$\exists x \forall y (x \alpha y \to (\neg y \alpha x \to (x \alpha x \Leftrightarrow y \alpha y)))$$

истинно в любой не более чем трехэлементной модели.

N24. Докажите, что следующие множества предложений выполнимы:

- 1. $\exists x P(x), \exists x \neg P(x);$
- 2. $\exists x (P(x) \land Q(x)), \exists x (P(x) \land \neg Q(x));$
- 3. $\exists x \exists y (x \neq y \land P(x, y));$
- 4. $\forall x \forall y (x \neq y \rightarrow f(x) \neq f(y)), \exists x (f(x) = x);$

- 5. $\forall x \forall y (x \neq y \rightarrow f(x) \neq f(y)), \forall x (f(x) \neq x);$
- 6. $\forall x \forall y (x \neq y \rightarrow f(x) \neq f(y)), \exists y \forall x (f(x) \neq y);$
- 7. P строгий порядок, $\forall x \exists y P(x, y)$;
- 8. коммутативна и ассоциативна;
- 9. · коммутативна и не ассоциативна;
- 10. не коммутативна и ассоциативна.
- **N25.** Выясните, какие из множеств предыдущей задачи имеют конечные модели, а какие нет.
- **N26.** Докажите, что множества предложений из задачи **N24** не являются категоричными.
- **N27.** Докажите, что следующие множества предложений противоречивы:
- 1. $\forall x \forall y (x \neq y \rightarrow f(x) \neq f(y)), \exists y \forall x (f(x) \neq y), \forall x \forall y (x = y);$
 - 2. P рефлексивно, P иррефлексивно;
- 3. P строгий порядок, $\forall x \exists y P(x,y), \forall x \forall y \forall z (x=y \lor x=z \lor y=z);$
- 4. $\exists y \forall x P(x,y) \rightarrow \forall x \exists y \neg P(x,y), \exists y \forall x P(x,y), \forall x \forall y (x = y);$
 - 5. P иррефлексивно, $\forall x \exists y P(x, y), \forall x \forall y (x = y);$
 - 6. $\forall x P(x, x), \neg \forall x \exists y P(x, y);$
- 7. P иррефлексивно, P транзитивно, $\forall x \exists y P(x,y), \neg \exists x \exists y \exists z (x \neq y \land x \neq z \land y \neq z);$
- 8. $\forall x \forall y (f(x) = f(y) \rightarrow x = y), \exists x \exists y (x \neq y \land f(x) = f(y));$
- 9. P иррефлексивно, P транзитивно, $\forall x \exists y P(x,y)$, $\forall x \forall y (x=y)$;
 - 10. $\exists y \forall x (y \neq f(x)), \forall y \exists x (y \neq f(x) \land x \neq f(x)).$
- **N28.** Пусть A^+ свободная полугруппа над алфавитом A, рассматриваемая как алгебра сигнатуры $<\cdot>$. Формульно ли A в A^+ ?
- **N29.** Формульно ли в A^+ отношение "u подслово слова v"?

- **N30.** Формульно ли в A^+ множество $A^n \rightleftharpoons \{u \in A^+ | u = a_1...a_n; a_1, ..., a_n \in A\}$ всех слов длины n?
- **N31.** Рассмотреть вопросы задач **N28-N30** для свободного моноида A^* , рассматриваемого как алгебра сигнатуры $<\cdot,1>$.
- **N32.** Пусть $\mathcal{T}(X)$ симметрический моноид над множеством X; его сигнатура $<\cdot,1>$. Доказать формульность в $\mathcal{T}(X)$ множества всех константных преобразований, т.е. множества

$$C(X) \rightleftharpoons \{\varphi_x | x \in X \land \forall y \in X(\varphi_x(y) = x)\}.$$

- **N33.** Рангом преобразования $\varphi \in \mathcal{T}(X)$ называется мощность образа $Im\varphi = \varphi(X)$. Формульно ли множество всех преобразований из $\mathcal{T}(X)$ данного конечного ранга r?
- **N34.** Пусть $\mathcal{B}(X)$ симметрическая группа над множеством X; ее сигнатура $<\cdot,^{-1},1>$. Доказать формульность в $\mathcal{B}(X)$ множества всех транспозиций, т.е. таких преобразований $\varphi \in \mathcal{B}(X)$, что

$$\exists x_1, x_2 \in X (x_1 \neq x_2 \land \varphi(x_1) = x_2 \land \varphi(x_2) = x_1 \land$$
$$\forall y (y \neq x_1 \land y \neq x_2 \rightarrow \varphi(y) = y)).$$

- **N35.** Можно ли формулой сигнатуры $<\cdot,1>$ охарактеризовать $\mathcal{B}(X)$ в $\mathcal{T}(X)$?
- **N36.** Пусть $\mathbb{R}^{2\times 2}$ кольцо всех матриц 2-го порядка над полем \mathbb{R} ; сигнатура $<+,-,0,\cdot,1>$. Будет ли формульно в $\mathbb{R}^{2\times 2}$ множество
 - 1. всех скалярных матриц;
 - 2. всех матричных единиц;
 - 3. всех матриц с нулевым определителем;
 - 4. всех симметрических матриц;
 - 5. всех кососимметрических матриц;

- 6. всех диагональных матриц;
- 7. всех матриц, имеющих базис из собственных векторов?
- **N37.** Можно ли различить пары л.у.м. предложением сигнатуры $<\le>$:
 - $1. < \omega; \leq >, < \mathbb{N}; \leq >;$
 - $2. < \omega; \leq >, < \mathbb{Q}; \leq >;$
 - $3. < \omega; \leq >, < \mathbb{R}; \leq >;$
 - $4. < \mathbb{Q}; \leq >, < \mathbb{R}; \leq >;$
 - $5. < \mathbb{R}; \leq >, < \mathbb{C}; \leq >;$
 - $6. < \mathbb{N}; | >, < P(\mathbb{N}); \subseteq >;$
 - $7. < P(\mathbb{N}); \subseteq >, < P(\mathbb{R}); \subseteq >?$
- **N38.** Доказать, что если $\overline{X} \neq \aleph_0$, то существует предложение α сигнатуры $<\cdot>$ такое, что $\mathcal{T}(\mathbb{N}) \models \alpha$ и $\mathcal{T}(X) \not\models \alpha$.
- **N39.** Доказать, что если $\overline{\overline{X}} \neq \aleph_0$, то существует предложение α сигнатуры $<\cdot,^{-1},1>$ такое, что $\mathcal{B}(\mathbb{N})\models\alpha$ и $\mathcal{B}(X)\not\models\alpha$.
- **N40.** Будет ли формульным свойство элемента группы иметь данный порядок?
 - N41. Построить предложение φ такое, что
 - 1. $\mathcal{T}(X) \models \varphi \Leftrightarrow |X| \geq \aleph_0$;
 - 2. $\mathcal{T}(X) \models \varphi \Leftrightarrow |X| = \aleph_0;$
 - 3. $\mathcal{B}(X) \models \varphi \Leftrightarrow |X| \geq \aleph_0$;
 - 4. $\mathcal{B}(X) \models \varphi \Leftrightarrow |X| = \aleph_0$.
- **N42.** Доказать, что свойство "быть циклом длины 3"формульно в симметрической группе.
- **N43.** Доказать формульность отношений $X \cap Y = Z$, $X \cup Y = Z$, $X = \emptyset$, X = A, $X = A \setminus Y$ в модели < P(A); \subseteq .
- **N44.** Доказать формульность бесконечной циклической подполугруппы в решетке подполугрупп данной полугруппы.

- **N45.** Записать предложения, выражающие в кольце целых чисел:
 - 1. бесконечность множества простых чисел;
 - 2. несовместность системы $\begin{cases} 3x y = 0 \\ x + y = 2. \end{cases}$
- ${f N46.}$ Доказать, что универсальное предложение с n переменными модельной сигнатуры тождественно истинно тогда и только тогда, когда оно истинно в любой n-элементной модели.
- N47. Доказать, что экзистенциальное предложение с n переменными модельной сигнатуры тождественно истинно тогда и только тогда, когда оно истинно в любой одноэлементной модели.
- **N48.** Доказать, что предложение $\forall x_1...x_m \exists y_1...y_n \psi$, где ψ бескванторная формула модельной сигнатуры, тождественно истинно тогда и только тогда, когда оно истинно в любой m-элементной модели.
- **N49.** Пусть φ, ψ универсальное и экзистенциальное предложения сигнатуры $\sigma, \underline{A} = < A; \sigma >$. Доказать, что если $\underline{A} \models \varphi$, то $\underline{B} \models \varphi$ для любой подсистемы $\underline{B} \leq \underline{A}$, и если $\underline{A} \models \psi$, то $\underline{C} \models \psi$ для любой надсистемы $\underline{C} \geq \underline{A}$.
- **N50.** Существуют ли системы $\underline{A}, \underline{B}, \underline{C}$ сигнатуры σ и σ -предложение φ такие, что $\underline{A} \leq \underline{B} \leq \underline{C}, \underline{A} \not\models \varphi, \underline{B} \models \varphi, \underline{C} \not\models \varphi$?

ЧАСТЬ 3. Теория алгоритмов

1. Вычислительные машины

N1. Какую функцию f(x) вычисляет машина T со следующей программой команд:

$$q_10 \rightarrow q_20R,$$

$$q_11 \rightarrow q_01S,$$

$$q_20 \rightarrow q_01S,$$

$$q_21 \rightarrow q_21R?$$

- **N2.** Пусть машина T имеет следующую программу: $q_10S \to q_00S$. Какие функции $f_1(x), f_2(x_1, x_2), ..., f_n(x_1, ..., x_n), ...$ вычисляет эта машина?
- **N3.** Будем говорить, что машина T правильно вычисляет функцию $f(x_1,...,x_n)$, если выполнены условия:
- 1. если $\langle x_1,...,x_n \rangle \in Dom f$, то машина T перерабатывает $q_101^{x_1}0...1^{x_n}0$ в $q_001^{f(x_1,...,x_n)}00...0$, при этом не используя преобразования: если слово A пусто, то машинное слово Aq_ia_jB перерабатывается в $q_ka_0a_lB$;
- 2. если $< x_1, ..., x_n > \notin Dom f$, то машина T, начиная работу со слова $q_1 01^{x_1} 0... 1^{x_n} 0$, работает бесконечно.

Построить машину Тьюринга, которая правильно вычисляет функцию f(x) = x + 1.

- **N4.** Будем говорить, что машина T вычисляет функцию $f(x_1,...,x_n)$, если выполнены условия:
- 1. если $\langle x_1,...,x_n \rangle \in Dom f$, то машина T останавливается, т.е. перерабатывает слово $q_101^{x_1}0...1^{x_n}0$ в некоторое слово Aq_0B , и при этом слово Aq_0B содержит $f(x_1,...,x_n)$ вхождений символа 1;

2. если $< x_1, ..., x_n > \notin Dom f$, то машина T, начиная работу со слова $q_1 0 1^{x_1} 0 ... 1^{x_n} 0$, работает бесконечно.

Функция f называется *вычислимой*, если существует машина, которая вычисляет функцию f.

Следующие функции назовем простейшими:

$$s^1(x) = x+1,$$

$$0^1(x) = 0,$$

$$I^n_{\ m}(x_1,...,x_n) = x_m \quad (\text{при } 1 \leq m \leq n).$$

Будем говорить, что функция

$$h(x_1,...,x_n) = g(f_1(x_1,...,x_n),...,f_m(x_1,...,x_n))$$

получается с помощью *оператора суперпозиции* из функций $g, f_1, ..., f_m$. Скажем, что функция

$$h(x_1, ..., x_n) = g(t_1, ..., t_m)$$

получается с помощью оператора подстановки из функций $g, f_1, ..., f_k$, если $t_i = f_j(x_{j_1}, ..., x_{j_s})$, где x_{j_i} есть переменная из числа $x_1, ..., x_n$, или t_i есть одна из переменных $x_1, ..., x_n$. Скажем, что функция $f(x_1, ..., x_n, y)$ получается из функций $g(x_1, ..., x_n)$ и $h(x_1, ..., x_n, y, z)$ с помощью оператора примитивной рекурсии, если она может быть задана схемой примитивной рекурсии:

$$\begin{cases} f(x_1, ..., x_n, 0) = g(x_1, ..., x_n), \\ f(x_1, ..., x_n, y + 1) = h(x_1, ..., x_n, y, f(x_1, ..., x_n, y)). \end{cases}$$

Будем говорить, что функция $f(x_1,...,x_n)$ получается из функции $g(x_1,...,x_n,y)$ с помощью *оператора минимизации*, если выполнено условие: $f(x_1,...,x_n)$ определено и равно y тогда и только тогда, когда $g(x_1,...,x_n,0),...,g(x_1,...,x_n,y-1)$ определены и не равны 0, а $g(x_1,...,x_n,y)=0$. Функция $f(x_1,...,x_n)$ называется *частично рекурсивной*,

если она может быть получена из простейших функций с помощью конечного числа применений операторов суперпозиции, примитивной рекурсии и минимизации.

Доказать, что любая вычислимая функция частично рекурсивна.

- **N5.** Доказать, что функция вычислима тогда и только тогда, когда существует машина Тьюринга с внешним алфавитом $\{0,1\}$, вычисляющая эту функцию.
- **N6.** Пусть G некоторое семейство n-местных частичных функций. Функцию f назовем универсальной функцией для G, если

$$G = \{f(0, x_1, ..., x_n), f(1, x_1, ..., x_n)...\}.$$

Доказать, что существует двуместная частично рекурсивная функция U(t,x), универсальная для семейства всех одноместных частично рекурсивных функций.

- **N7.** Доказать, что существует (n+1)-местная частично рекурсивная функция $U^{n+1}(t,x_1,...,x_n)$, универсальная для семейства всех n-местных частично рекурсивных функций.
 - **N8.** Известно, что на ленте записано слово 11...1; $n \ge 1$.

Постройте машину Тьюринга, которая отыскивала бы левую единицу этого слова (т.е. приходила бы в состояние, при котором обозревалась бы ячейка с самой левой единицей данного слова, и в этом положении остановилась), если в начальный момент головка машины обозревает одну из ячеек с буквой данного слова.

- **N9.** Сконструируйте машину Тьюринга, которая каждое слово в алфавите $A_1 = \{1\}$ перерабатывает в пустое слово.
- **N10.** Сконструируйте машину Тьюринга, которая каждое слово длиной n в алфавите $A_1 = \{1\}$ перерабатывает в слово длиной n+1 в том же алфавите A_1 .

- **N11.** Дана конечная совокупность единиц, вписанных в ячейки, взятые подряд без пропусков. Постройте машину Тьюринга, которая записывала бы в десятичной системе число этих единиц, т.е. пересчитывала бы набор единиц.
- **N12.** Постройте машину Тьюринга, осуществляющую перевод слова $00\underbrace{11...1}_x0$ в слово $0\underbrace{11...1}_x00$. Причем в начальной конфигурации машина должна находиться в состоянии q_1 и обозревать первую ячейку, эту же ячейку она должна обозревать и в момент остановки.
- **N13.** Постройте машину Тьюринга, перерабатывающую слово $0\underbrace{11...1}_x0$ в это же слово $0\underbrace{11...1}_x0$ из стандартного начального положения, причем в момент остановки должна обозреваться крайняя левая ячейка.
- **N14.** Постройте машину Тьюринга, которая перерабатывает слово $0\underbrace{11...1}_x 0\underbrace{11...1}_y 0$ в слово $0\underbrace{11...1}_y 0\underbrace{11...1}_x 0$, причем в начальном и конечном положении обозревается ячейка, содержащая 0, между двумя наборами единиц.
- **N15.** Постройте машину Тьюринга, которая перерабатывает слово $0\underbrace{11...1}_x0$ в слово $0\underbrace{11...1}_x0\underbrace{11...1}_x0$, причем в начальном и конечном положении обозревается крайняя левая ячейка.
- **N16.** Постройте машину Тьюринга, которая перерабатывает слово $0\underbrace{11...1}_x 0\underbrace{11...1}_y 0\underbrace{11...1}_z 0$ в слово $0\underbrace{11...1}_x 0\underbrace{11...1}_y 0$, причем в начальном положении обозревается ячейка с 0

между наборами из y и z единиц, а в конечном положении обозревается ячейка с 0 между наборами из z и x единиц.

- **N17.** Сконструируйте машину Тьюринга, обладающую следующим свойством:
 - 1. машина не применима ни к какому непустому слову,

т.е. применение машины к любому непустому слову приводит к тому, что машина никогда не останавливается;

- 2. машина применима к произвольному непустому слову, т.е. любое непустое слово перерабатывается машиной в некоторое слово (в результате машина останавливается, т.е. приходит в состояние q_0);
- 3. машина применима только к словам вида $\underbrace{11...1}_{3n}, n \geq 1$;
- 1; 4. машина применима только к словам вида $\underbrace{11...1}_n a0\underbrace{11...1}_m$, $n \geq 1, m \geq 1$.

N18. Докажите, что следующие функции вычислимы по Тьюрингу, построив соответствующие машины Тьюринга:

1.
$$f_3(x) = \begin{cases} 1, \text{ если } x \text{ делится на } 3, \\ 1, \text{ если } x \text{ не делится на } 3; \end{cases}$$
2. $f_p(x) = \begin{cases} 1, \text{ если } x \text{ делится на } p, \\ 1, \text{ если } x \text{ не делится на } p. \end{cases}$
N19. Докажите, что если функции $f(z_1, z_2, z_3), g_1(x, y), f_1(x, y)$

N19. Докажите, что если функции $f(z_1, z_2, z_3)$, $g_1(x, y)$, $g_2(x, y)$, $g_3(x, y)$ вычислимы по Тьюрингу, то и сложная функция

$$h(x,y) = f(g_1(x,y), g_2(x,y), g_3(x,y))$$

вычислима по Тьюрингу.

N20. По программе машины Тьюринга найдите формульное выражение функции f(x), вычисляемой этой машиной:

	q_1	q_2	q_3
0	$q_2 1L$	q_31R	q_00S
1	$q_1 1R$	$q_2 1L$	$q_0 1S$

N21. По программе машины Тьюринга найдите формульное выражение функции f(x,y), вычисляемой этой машиной:

	q_1	q_2	q_3	q_4	q_5	q_6
0	q_20R	q_10L	q_40L	q_40L	q_60R	$q_0 0S$
1	$q_1 1R$	q_30R	q_30R	q_51L	q_51L	$q_0 1S$

N22. Выяснить, применима ли машина Тьюринга T, задаваемая программой P к слову W. Если применима, то найти результат применения машины T к слову W. Предполагается, что в начальный момент головка машины обозревает самую левую единицу на ленте:

$$\begin{cases} q_10 \to q_20R \\ q_11 \to q_11R \\ q_20 \to q_30R \\ q_21 \to q_11L \\ q_30 \to q_00S \\ q_31 \to q_21R \\ \end{cases}$$
a). $w = 1110011$, b). $w = 1110111$, c). $w = 1001011$.
$$\begin{cases} q_10 \to q_21R \\ q_11 \to q_30R \\ q_20 \to q_31R \\ q_21 \to q_21S \\ q_31 \to q_11R \\ \end{cases}$$
a). $w = 111101$, b). $w = 111011$, c). $w = 111111$.
$$\begin{cases} q_10 \to q_1R \\ q_11 \to q_20R \\ \end{cases}$$
3. $P : \begin{cases} q_10 \to q_1R \\ q_21 \to q_21S \\ q_31 \to q_11R \\ \end{cases}$

$$q_20 \to q_1R \\ q_21 \to q_20R \\ \end{cases}$$
3. $P : \begin{cases} q_10 \to q_1R \\ q_21 \to q_31L \\ q_31 \to q_11L \\ \end{cases}$
a). $P : \begin{cases} q_10 \to q_1R \\ q_21 \to q_31L \\ q_31 \to q_11L \\ \end{cases}$
a). $P : \begin{cases} q_10 \to q_1R \\ q_21 \to q_31L \\ \end{cases}$
a). $P : \begin{cases} q_10 \to q_1R \\ q_21 \to q_31L \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ q_21 \to q_31L \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10 \to q_1R \\ \end{cases}$
b). $P : \begin{cases} q_10$

N23. Построить машину Тьюринга, обладающую следующим свойством:

- 1. машина не применима ни к какому слову, и зона работы на каждом слове - бесконечная, т.е. в процессе работы машины появляются машинные слова сколь угодно большой длины;
 - 2. машина не применима ни к какому слову в алфавите

- {0,1}, и зона работы на любом слове ограничена одним и тем же числом ячеек, не зависящим от выбранного слова;
- 3. машина применима к словам вида 11...1 0 11...1, где $n \geq 1$, и не применима к словам $\underbrace{11...1}_{n} 0 \underbrace{11...1}_{m}^{n}$, где $n \geq 1$, $m \ge 1$ и $n \ne m$.

N24. По заданной машине Тьюринга T и начальной конфигурации К найти заключительную конфигурацию, если она существует:

		q_1	q_2				
1. T:	0	$q_0 1$	q_10R				
	1	q_20R	$q_2 1L$				
a). $K = 11q_111101$, b). R							
1				Ξ			

1).

a).
$$K = 11q_111101$$
, b). $K = 1q_11111$.
2. $T: \begin{bmatrix} q_1 & q_2 & q_3 \\ 0 & q_00 & q_01L & q_11L \\ 1 & q_21R & q_30R & q_10R \end{bmatrix}$
a). $K = 1q_111111$, b). $K = q_111101$, c

b). $K = q_1 11101$, c). $K = 10q_1 1111$.

N25. Построить машину Тьюринга, переводящую конфигурацию K_1 в конфигурацию K_0 .

1.
$$K_1 = q_1 \underbrace{11...1}_{,K_0}, K_0 = q_0 \underbrace{11...1}_{,U_1} \underbrace{011...1}_{,U_1} (n \ge 1);$$

1.
$$K_1 = q_1 \underbrace{11...1}_{n}, K_0 = q_0 \underbrace{11...1}_{n} \underbrace{0 \underbrace{11...1}_{n}}_{n} (n \ge 1);$$

2. $K_1 = q_1 \underbrace{00...0}_{n} \underbrace{11...1}_{n}, K_0 = q_0 \underbrace{0101...01}_{n} (n \ge 1);$

3.
$$K_1 = \underbrace{11...1}_{n} q_1 0, K_0 = q_0 \underbrace{11...1}_{n} (n \ge 1);$$

3.
$$K_1 = \underbrace{11...1}_{n} q_1 0, K_0 = q_0 \underbrace{11...1}_{2n} (n \stackrel{n}{\geq} 1);$$

4. $K_1 = \underbrace{11...1}_{n} q_1 0 \underbrace{11...1}_{m}, K_0 = \underbrace{11...1}_{2m} q_0 0 \underbrace{11...1}_{n} (m \geq 1, n \geq 1);$

N26. Показать, что для всякой машины Тьюринга Tсуществует счетное количество эквивалентных ей машин $T_1, T_2, ..., T_m, ...,$ отличающихся друг от друга своими программами.

N27. Какие одноместные функции вычисляются всеми

такими машинами Тьюринга, программы которых содержат лишь по одной команде?

- **N28.** Пусть M счетное множество каких-то вычислимых функций и T(M) такое минимально возможное множество машин Тьюринга, что для всякой функции f из M существует машина в множестве T(M), вычисляющая функцию f.
- 1. Показать, что если для некоторого $n \ge 1$ в множестве M существует бесконечное подмножество, состоящее из n-местных функций, то в T(M) найдется машина со сколь угодно большим числом состояний (т.е. для всякого $l_0 \ge 1$ можно указать в T(M) машину с числом состояний, большим l_0).
- 2. Каково необходимое и достаточное условие конечности множества T(M)?
- **N29.** По словесному описанию машин $T_1, T_2, ..., T_9$ построить их программы.
- T_1 машина, начав работу с последней единицы массива из единиц, "сдвигает"его на одну ячейку влево (не изменяя "остального содержимого"ленты); головка останавливается на первой единице "перенесенного"массива;
- T_2 при заданном $l \ge 1$ головка машины, начав работу с произвольной ячейки, содержащей единицу, движется вправо до тех пор, пока не пройдет массив из l+1 нулей; головка останавливается в первой ячейке за этим массивом, напечатав в ней 1;
- T_3 при заданном $l \ge 1$ головка машины, начав работу с какой-то ячейки и двигаясь вправо, ставит подряд l единиц и останавливается на последней из них;
- T_4 машина начинает работу с самой левой ячейки с 1, при заданном $l \ge 1$ "отыскивается" первый слева массив из l+1 нулей и головка останавливается на последнем из этих нулей;

 T_5 - начав работу с самой левой ячейки с 1, машина отыскивает единицу, примыкающую с левой стороны к первому слева массиву из трех нулей, "окаймленному" единицами; головка останавливается на найденной единице ("содержимое исходного куска ленты" не меняется);

 T_6 - в исходной ячейке печатается 0 и головка, сдвинувшись на одну ячейку влево, останавливается ("содержимое исходного куска ленты"не меняется);

 T_7 - головка сдвигается на две ячейки вправо от "начальной" ячейки, и машина останавливается в состоянии q_9 , если новая ячейка содержит символ 0, и в состоянии q_10 , если в "новой" ячейке - 1 (содержимое ленты остается прежним);

 T_8 - головка передвигается на одну ячейку влево (после чего машина останавливается; на ленте никаких изменений не происходит);

 T_9 - головка, начав двигаться вправо от какой-то "начальной" ячейки, "находит" первую (при таком перемещении) единицу и, сделав еще один шаг, останавливается на ячейке, расположенной справа от "найденной" единицы (содержимое ленты не меняется).

N30. Стандартная машина Тьюринга с внешним алфавитом $\{0,1\}$ называется нестирающей, если она способна выполнять лишь предписания вида

$$q_{\alpha}0 \rightarrow q_{\beta}0S$$
,
 $q_{\alpha}0 \rightarrow q_{\beta}0L$,
 $q_{\alpha}0 \rightarrow q_{\beta}0R$,
 $q_{\alpha}0 \rightarrow q_{\beta}1S$,
 $q_{\alpha}0 \rightarrow q_{\beta}1L$,

$$q_{\alpha}0 \rightarrow q_{\beta}1R,$$

 $q_{\alpha}1 \rightarrow q_{\beta}1S,$
 $q_{\alpha}1 \rightarrow q_{\beta}1L,$
 $q_{\alpha}1 \rightarrow q_{\beta}1R,$

т.е. если она может вписать 1 в ячейку с 0, но не может удалить символ 1, если он уже вписан в ячейку. Показать, что при подходящем кодировании чисел любая частично рекурсивная функция вычислима на подходящей нестирающей машине. В частности, существуют универсальные нестирающие машины.

- **N31.** Показать, что машина Тьюринга, имеющая лишь одно внутреннее состояние, отличное от заключительного, не может быть универсальной.
- **N32.** Показать, что существует универсальная машина Тьюринга, имеющая лишь одно внутреннее состояние, отличное от заключительного.

2. Рекурсивные функции

- **N1.** Функция $f(x_1, ..., x_n)$ называется примитивно рекурсивной, если она может быть получена из простейших функций с помощью конечного числа применений операторов суперпозиции и примитивной рекурсии. (см. **N4** из пункта 1). Доказать, что следующие функции примитивно рекурсивны:
 - 1. f(x) = x + n;
 - 2. f(x) = n;
 - 3. f(x,y) = x + y;
 - 4. $f(x, y) = x \cdot y$;
 - 5. $f(x,y) = x^y$ (здесь $0^0 = 1$);
 - 6. f(x) = x! (здесь 0! = 1);

- 7. $\left\lceil \frac{x}{y} \right\rceil$ частное от деления x на y (здесь $\left\lceil \frac{x}{0} \right\rceil = x$);
- 8. rest(x,y) остаток от деления x на y (здесь rest(x,0)=x);
 - 9. $\tau(x)$ число делителей числа x, где $\tau(0) = 0$;
 - 10. $\sigma(x)$ сумма делителей числа x, где $\sigma(0) = 0$;
- $11.\ lh(x)$ число простых делителей числа x, где lh(0)=0;
 - 12. $\pi(x)$ число простых чисел, не превосходящих x;
- 13. k(x,y) наименьшее общее кратное чисел x и y, где k(x,0)=k(0,y)=0;
- 14. d(x,y) наибольший общий делитель чисел x и y, где d(0,0)=0;
- 15. p(x) x-е простое число (p(0) = 2, p(1) = 3, p(2) = 5, ...);
- 16. long(x) номер наибольшего простого делителя числа x;
- 17. ex(x,y) показатель степени x-го простого числа p(x) в каноническом разложении на простые множители числа y, где ex(x,0)=0;
 - 18. $[\sqrt{x}];$
 - 19. $[x\sqrt{2}];$
 - 20. $[e \cdot x];$
 - 21. $[e^x]$;
 - 22. $[\sqrt[9]{x}]$, где $[\sqrt[9]{x}] = x$.
- **N2.** Пусть $c(x,y)=\frac{(x+y)^2+3x+y}{2}$ канторовская нумерующая функция. Для каждого $n\geq 1$ определим функции

$$c^1(x_1) = x_1,$$

$$c^{n+1}(x_1, x_2, x_3, ..., x_{n+1}) = c^n(c(x_1, x_2), x_3, ..., x_{n+1}).$$

Пусть $c_{ni}(1 \le i \le n)$ таковы, что $c^n(c_{n1}(x),...,c_{nn}(x)) = x$.

1. Доказать, что функция c(x,y) осуществляет взаимно однозначное соответствие между \mathbb{N}^2 и \mathbb{N} (нумерует пары натуральных чисел).

2. Пусть l(x) и r(x) таковы, что

$$c(l(x), r(x)) = x.$$

Доказать, что l(x) и r(x) примитивно рекурсивны и l(c(x,y)) = x, r(c(x,y)) = y.

3. Доказать тождества

$$c_{ni}(c^n(x_1,...,x_n)) = x_i$$
 для $1 \le i \le n$.

- 4. Доказать, что функции c^n и c_{ni} примитивно рекурсивны.
- 5. Доказать, что функции $c^n(x_1,...,x_n)$ осуществляет взаимно однозначное соответствие между \mathbb{N}^n и \mathbb{N} (нумерует кортежи натуральных чисел длины n).
- **N3.** Каким образом из одноместных частично рекурсивных функций и функций $c^n(x_1,...,x_n)$ получить все частично рекурсивные функции?
 - **N4.** Рассмотрим следующую функцию Геделя:

$$\beta(x, y, z) = rest(x, 1 + y(z+1)).$$

Доказать, что, какова бы ни была конечная последовательность натуральных чисел $a_0, ..., a_n$, система уравнений

$$\begin{cases} \beta(x, y, 0) = a_0, \\ \dots \\ \beta(x, y, n) = a_n \end{cases}$$

имеет по мельшей мере одно решение x, y.

N5. Доказать, что функция, перечисляющая по порядку числа Фибоначчи:

$$\begin{cases} f(0) = 0, f(1) = 1, \\ f(n+2) = f(n) + f(n+1), \end{cases}$$

примитивно рекурсивна.

N6. Пусть функции f и q определены следующим образом:

$$\begin{cases} f(0) = a, g(0) = b, \\ f(x+1) = h_1(x, f(x), g(x)), \\ g(x+1) = h_2(x, f(x), g(x)). \end{cases}$$

Доказать, что если функции h_1 и h_2 примитивно рекурсивны, то функции f и g примитивно рекурсивны.

- N7. Доказать, что следующие функции частично рекурсивны:
- 1. нигде не определенная функция, т.е. функция с пустой областью определения
 - 2. f(x,y) $\begin{cases} = x y, \text{ если } x \geq y, \\ \text{ не определена в остальных случаях;} \end{cases}$ 3. f(x,y) $\begin{cases} = \frac{x}{y}, \text{ если } y \text{ делит } x, \\ \text{ не определена в остальных случаях;} \end{cases}$ 4. f(x,y) $\begin{cases} = z, \text{ если } z^y = x, \\ \text{ не определена в остальных случаях;} \end{cases}$
 - 5. функция, определенная в конечном числе точек.
- N8. Доказать, что не существует примитивно рекурсивной функции, универсальной для семейства всех *n*местных примитивно рекурсивных функций.
- **N9.** Функция называется общерекурсивной, если она частично рекурсивна и всюду определена. Доказать, что не существует частично рекурсивной функции, универсальной для семейства всех n-местных общерекурсивных функций.
 - **N10.** Рассмотрим следующие функции Аккермана:

$$B(0,y) = 2 + y;$$

$$B(x+1,0) = \begin{cases} 0, \text{ если } x = 0, \\ 1, \text{ если } x > 0; \end{cases}$$

$$B(x+1,y+1) = B(x,B(x+1,y));$$

$$A(x) = B(x, x).$$

Назовем всюду определенную функцию $f(x_1,...,x_n)$ *В-мажорируемой*, если существует натуральное число m такое, что

$$f(x_1, ..., x_n) < B(m, max(x_1, ..., x_n) + 3).$$

Доказать, что:

- 1. B(x,y) и A(x) общерекурсивны;
- 2. $B(n+2, x+1) \ge 2^{x+1}$;
- 3. $B(n+1, x+2) \ge B(n+1, x+1);$
- 4. $B(n+2, x+3) \ge B(n+1, x+4);$
- 5. функция, полученная с помощью суперпозиции из В-мажорируемых функций, В-мажорируема;
 - 6. функция A не является примитивно рекурсивной.

N11. Показать, что если функции $g_1(x), g_2(x), g_3(x), g_4(x)$ примитивно рекурсивны, то функция

$$f(x,y) = \begin{cases} g_2(x), \text{ если } g_1(y) \le a, \\ g_3(x), \text{ если } a < g_1(y) \le b, \\ g_3(x), \text{ если } g_1(x) > b, \end{cases}$$

где $0 \le a \le b$, также примитивно рекурсивна.

N12. Пусть $g_1(y), g_2(x), g_3(x,y)$ - примитивно рекурсивные функции. Доказать, что тогда примитивно рекурсивна и функция f(x,y), определяемая следующей схемой:

$$\begin{cases}
f(0,y) = g_1(y), \\
f(x+1,0) = g_2(x), \\
f(x+1,y+1) = g_3(x,y)
\end{cases}$$

(здесь $x \ge 0$ и $y \ge 0$).

N13. Пусть функции $g(x_1,...,x_{n-1},x_n), h_1(x_1,...,x_{n-1},x_n), h_2(x_1,...,x_{n-1},x_n), n \ge 1$, примитивно рекурсивны. Доказать, что тогда примитивно рекурсивны и следующие функции:

$$1. \ f(x_1,...,x_{n-1},x_n) = \sum_{\substack{i=0 \\ x_n}}^{x_n} g(x_1,...,x_{n-1},i);$$

$$2. \ f(x_1,...,x_{n-1},x_n) = \prod_{\substack{i=0 \\ x_n}}^{x_n} g(x_1,...,x_{n-1},i);$$

$$3. \ f(x_1,...,x_{n-1},x_n) = \begin{cases} \sum_{\substack{i=0 \\ i=y \\ 0 \text{ при } y>z;}}^{y(x_1,...,x_{n-1},i) \text{ при } y \leq z, \end{cases}$$

$$4. \ f(x_1,...,x_{n-1},x_n) = \begin{cases} \sum_{\substack{i=y \\ 1 \text{ при } y>z;}}^{y(x_1,...,x_{n-1},i) \text{ при } y \leq z, \end{cases}$$

$$5. \ f(x_1,...,x_{n-1},x_n) = \sum_{\substack{i=0 \\ i=n}}^{x_n} g(x_1,...,x_{n-1},x_n) g(x_1,...,x_{n-1},i)$$
едесь считается, что если верхний предел суммирования

(здесь считается, что если верхний предел суммирования меньше нижнего, то сумма равна 0);

6.
$$f(x_1, ..., x_{n-1}, x_n) = \prod_{i=h_1(x_1, ..., x_{n-1}, x_n)}^{h_2(x_1, ..., x_{n-1}, x_n)} g(x_1, ..., x_{n-1}, i)$$

(здесь считается, что если верхний предел у произведения меньше нижнего, то произведение полагается равным 1).

- **N14.** Пусть функция f(x) общерекурсивна, но не примитивно рекурсивна. Всегда ли справедливы следующие соотношения:
 - 1. f(2x) не является примитивно рекурсивной;
 - 2. f(x+y) примитивно рекурсивна.
- **N15.** Пусть функции $f_1(x)$ и $f_2(x)$ общерекурсивны, но не примитивно рекурсивны. Могут ли быть верными следующие утверждения:
- 1. $f_1(f_2(x))$ примитивно рекурсивна, но $f_2(f_1(x))$ не является примитивно рекурсивной;
- 2. $f_1(x^2)$ примитивно рекурсивна, но $[\sqrt{f_1(x^2)}]$ не является примитивно рекурсивной;
- 3. $f_1(x) + f_2(x)$ примитивно рекурсивна, но $f_1(x) + 2f_2(x)$ не является примитивно рекурсивной.

- **N16.** Известно, что f(x) общерекурсивная функция и что f(2x+1)=f(x) и f(2x)=f(x+1) при всех $x\geq 0$. Верно ли, что f(x) примитивно рекурсивна?
- **N17.** Доказать, что функция, универсальная для одноместных примитивно рекурсивных функций
 - 1. принимает все значения;
 - 2. принимает каждое значение бесконечное число раз.
- **N18.** Привести пример частичной числовой функции, принимающей ровно одно значение и не являющейся частично рекурсивной.
- **N19.** Пусть $u(x_0, x_1, ..., x_n)$ частично рекурсивная функция, универсальная для некоторого непустого подмножества M множества всех общерекурсивных функций, такого что множество $\{g|g$ общерекурсивная функция и $g \notin M\}$ бесконечно. Построить счетное множество общерекурсивных функций, не принадлежащих M.
- **N20.** Показать, что если функция f(x) частично рекурсивна, то и всякая функция, отличающаяся от f(x) на конечном множестве значений аргумента, являатся частично рекурсивной.
- **N21.** Пусть U(x,y) функция, универсальная для множества всех одноместных частично рекурсивных функций. Доказать, что функция f(x) = U(x,x) + 1 не имеет рекурсивных доопределений (иными словами, всякая всюду определенная функция, совпадающая с f(x) везде, где f(x) определена, а в остальном произвольная, не является частично рекурсивной).

3. Рекурсивные и рекурсивно перечислимые множества

N1. Предикат называется *примитивно рекурсивным*, если его характеристическая функция примитивно рекур-

сивна. Доказать, что следующие предикаты примитивно рекурсивны:

```
1. x = y;
```

2.
$$x + y = z$$
;

$$3. x \cdot y = z;$$

- 4. x делит y;
- 5. x четно;
- 6. x и y взаимно просты;

7.
$$\exists nx = 1^2 + 2^2 + \dots + n^2$$
;

8.
$$\exists nx = 1 + 2 + \dots + n$$
.

N2. Доказать, что если предикаты $P(x_1,...,x_n)$ и $Q(x_1,...,x_n)$ рекурсивны (примитивно рекурсивны), то следующие предикаты также рекурсивны (примитивно рекурсивны):

- 1. $P(x_1,...,x_n) \wedge Q(x_1,...,x_n)$;
- 2. $P(x_1,...,x_n) \vee Q(x_1,...,x_n)$;
- 3. $P(x_1,...,x_n) \to Q(x_1,...,x_n);$
- 4. $\neg P(x_1, ..., x_n)$;
- 5. $P(x_1, x_1, x_3, ..., x_n)$;
- 6. $P(f(x_1,...,x_m),x_{m+1},...,x_{m+n-1}),$ если $f(x_1,...,x_m)$ общерекурсивная (примитивно рекурсивная) функция.
- **N3.** Доказать, что если предикат $R(x_1, ..., x_n, y)$ рекурсивен (примитивно рекурсивен), то предикаты $\exists y \ y \le z \land R(x_1, ..., x_n, y)$ и $\forall y \ y \le z \rightarrow R(x_1, ..., x_n, y)$ также рекурсивны (примитивно рекурсивны).
- **N4.** Доказать, что если предикат $R(x_1,...,x_n,y,z)$ примитивно рекурсивен, то $M=\{< x_1,...,x_n> |\exists y\exists z R(x_1,...,x_n,y,z)\}$ рекурсивно перечислимое множество.
- **N5.** Доказать, что существует множество, не являющееся рекурсивно перечислимым.
- **N6.** Доказать, что любое конечное множество натуральных чисел примитивно рекурсивно.

- **N7.** Показать, что множество n-ок рекурсивно (примитивно рекурсивно) тогда и только тогда, когда его характеристическая функция общерекурсивна (примитивно рекурсивна).
- **N8.** Доказать, что если f общерекурсивная (примитивно рекурсивная) функция и a фиксированное число, то множество решений уравнения $f(x_1, ..., x_n) = a$ рекурсивно (примитивно рекурсивно).
- **N9.** Пусть функция f частично рекурсивна, но не общерекурсивна. Доказать, что область определения функции f^{-1} примитивно рекурсивна.
- **N10.** Доказать, что если множества A и B рекурсивны (примитивно рекурсивны), то множества $A \cap B$, $A \cup B$, $\mathbb{N} \setminus A$ также рекурсивны (примитивно рекурсивны).
- **N11.** Доказать, что если множества A и B рекурсивно перечислимы, то множества $A \cap B$, $A \cup B$ рекурсивно перечислимы.
- **N12.** Доказать, что всякое примитивно рекурсивное множество рекурсивно перечислимо.
- **N13.** Пусть множества A и B отличаются конечным числом элементов. Доказать, что:
 - 1. если A рекурсивно, то B рекурсивно;
- 2. если A рекурсивно перечислимо, то B рекурсивно перечислимо.
- **N14.** Доказать, что если A и его дополнение $\mathbb{N}\backslash A$ рекурсивно перечислимы, то A рекурсивно ($Teopema\ \Piocma.$)
- **N15.** Пусть $M \subseteq \mathbb{N}^n$. Положим $c^n(M) = \{c^n(x_1, ..., x_n) | < x_1, ..., x_n > \in M\}$, где c^n определена в задаче **N2** параграфа 2. Доказать, что:
- 1. M примитивно рекурсивно тогда и только тогда, когда $c^n(M)$ примитивно рекурсивно;
- 2. M рекурсивно тогда и только тогда, когда $c^n(M)$ рекурсивно;

- 3. M рекурсивно перечислимо тогда и только тогда, когда $c^n(M)$ рекурсивно перечислимо.
- **N16.** Пусть $M\subseteq\mathbb{N}$ непустое множество. Доказать, что множество M рекурсивно перечислимо тогда и только тогда, когда существует примитивно рекурсивная функция $\alpha(x)$ такая, что $M=\{\alpha(x)|x\in\mathbb{N}\}.$
- **N17.** Пусть M непустое множество n-ок. Доказать, что множество M рекурсивно перечислимо тогда и только тогда, когда существуют одноместные примитивно рекурсивные функции $\alpha_1, ..., \alpha_n$ такие, что $M = \{ < \alpha_1(x), ..., \alpha_n(x) > | x \in \mathbb{N} \}.$
- **N18.** Пусть общерекурсивная функция f(x) удовлетворяет условию: $f(x) \ge x$ для всех $x \in \mathbb{N}$. Доказать, что область значений Imf функции f рекурсивна.
- ${f N19.}$ Доказать, что бесконечное множество A рекурсивно тогда и только тогда, когда A есть множество значений строго возрастающей общерекурсивной функции.
- ${f N20.}$ Доказать, что непустое множество A рекурсивно тогда и только тогда, когда A есть множество значений монотонно (не обязательно строго) возрастающей общерекурсивной функции.
- **N21.** Доказать, что каждое бесконечное рекурсивно перечислимое множество содержит бесконечное рекурсивное подмножество.
- **N22.** Доказать, что полный прообраз рекурсивного множества относительно общерекурсивной функции рекурсивен.
- **N23.** Пусть A рекурсивное множество, f общерекурсивная функция с $Imf = \mathbb{N}, f(A) \cap f(\mathbb{N} \backslash A) = \emptyset$. Доказать, что f(A) рекурсивно.
- **N24.** Пусть A, B рекурсивно перечислимые множества, а C рекурсивное множество такие, что $A \cap B = \emptyset, A \subseteq C \subseteq A \cup B$. Доказать, что A рекурсивно.

- **N25.** Пусть A, B рекурсивно перечислимые множества. Доказать, что существуют рекурсивно перечислимые множества $A_1 \subseteq A, B_1 \subseteq B$ такие, что $A_1 \cap B_1 = \emptyset, A_1 \cup B_1 = A \cup B$.
- **N26.** Доказать, что область определения частично рекурсивной функции есть рекурсивно перечислимое множество.
- **N27.** Доказать, что множество значений частично рекурсивной функции рекурсивно перечислимо.
- **N28.** Доказать, что любое рекурсивное множество рекурсивно перечислимо.
- **N29.** Доказать, что множество n-ок рекурсивно перечислимо тогда и только тогда, когда его частичная характеристическая функция частично рекурсивна.

N30. Доказать, что:

- 1. образ рекурсивно перечислимого множества относительно частично рекурсивной функции рекурсивно перечислим;
- 2. полный прообраз рекурсивно перечислимого множества относительно частично рекурсивной функции рекурсивно перечислим.
 - N31. Доказать, что множество A решений уравнения

$$f(x_1, ..., x_n) = a$$

рекурсивно перечислимо, если f - частично рекурсивная n-местная функция.

- **N32.** Доказать, что если f^{n+1} частично рекурсивная функция, то множество $M = \{ \langle x_1, ..., x_n \rangle | \exists y \ f(x_1, ..., x_n, y) = 0 \}$ рекурсивно перечислимо.
- **N33.** Пусть $M_1, ..., M_k$ попарно непересекающиеся рекурсивно перечислимые множества n-ок, $f_1, ..., f_k$ частично рекурсивные n-местные функции. Доказать, что функция $g(x_1, ..., x_n)$, определенная следующим образом:

- **N34.** Доказать, что если область определения частично рекурсивной функции f^n есть рекурсивное множество, то f^n имеет рекурсивное доопределение.
- **N35.** Доказать, что если V(n,x) есть частично рекурсивная функция, универсальная для класса всех одноместных частично рекурсивных функций, то множество $M = \{x|V(x,x)=0\}$ рекурсивно перечислимо, но не рекурсивно.
- **N36.** Найти частично рекурсивную функцию f(x), не имеющую общерекурсивного доопределения.
- **N37.** Доказать, что если V(n,x) есть частично рекурсивная функция, универсальная для класса всех одноместных примитивно рекурсивных функций, то множество $G = \{n|V(n,x)$ общерекурсивная функция $\}$ не является рекурсивно перечислимым.

3. Алгоритмические проблемы

N1. Доказать, что если теория $\exists \land \mathbb{Z}$ сигнатуры $<+,\cdot,0,1>$ неразрешима, то неразрешимы и теории

- 1. $\exists \mathbb{Z}$ сигнатуры $<+,\cdot,0,1>;$
- 2. $\forall \neg \mathbb{Z}$ сигнатуры $<+,\cdot,0,1>$;
- 3. $\forall \exists \mathbb{Z}$ сигнатуры < +, · >;
- 4. $\exists \forall \mathbb{Z}$ сигнатуры $<+,\cdot>$;
- 5. $\exists \neg \land \mathbb{Z}$ сигнатуры $<+,\cdot>$;
- 6. $\forall \neg \lor \mathbb{Z}$ сигнатуры < +, ⋅ >;

 ${\bf N2.}$ Пусть $F_\infty\mathfrak A$ - свободное ассоциативное кольцо счетного ранга. Доказать, что если теория $\exists F_\infty\mathfrak A$ сигнатуры

- $<+,\cdot,0,a_1,a_2,...,a_n,...|\{a_1,a_2,...,a_n,...\}-$ множество свободных образующих кольца $F_\infty\mathfrak{A}>$ неразрешима, то неразрешимы и теории
 - 1. $\forall \exists F_{\infty} \mathfrak{A}$ сигнатуры $<+,\cdot>$;
 - 2. $\exists \forall \neg F_{\infty} \mathfrak{A}$ сигнатуры $<+,\cdot>$.
- **N3.** Пусть $F_k\mathfrak{A}$ свободное ассоциативное кольцо ранга k. Показать, что при $m \neq n$ $F_m\mathfrak{A}$ и $F_n\mathfrak{A}$ не являются элементарно эквивалентными в сигнатуре $<+,\cdot>$.
- **N4.** Пусть $\mathfrak A$ многообразие всех ассоциативных колец. Показать, что теория $\exists \neg \land \lor \mathfrak A$ сигнатуры $<+,\cdot>$ разрешима.
- **N5.** Доказать разрешимость теории $\exists \forall \neg \land \mathfrak{A}$ сигнатуры $<+,\cdot>$.
- **N6.** Интерпретацией машины Тьюринга показать существование двупорожденной полугруппы с неразрешимой проблемой равенства слов.
- **N7.** Доказать неразрешимость проблемы равенства слов в многообразии всех альтернативных колец.
- **N8.** Пусть системы \underline{A} и \underline{B} таковы, что $\underline{A} < \underline{B}$. Что можно сказать про элементарные теории $\mathcal{E}\underline{A}$ и $\mathcal{E}\underline{B}$?
- **N9.** Доказать, что универсальные теории класса всех полугрупп и класса всех симметрических полугрупп совпадают. Верно ли это для групп?
- **N10.** Верно ли, что любая бесконечная алгебраическая система не более чем счетной сигнатуры имеет элементарно эквивалентную счетную подмодель?
 - N11. Будут ли элементарно эквивалентны
- 1. полугруппы $S_1 = \langle a, b | aba = b \rangle, S_2 = \langle a, b | aba = a \rangle$ в сигнатуре $\langle \cdot \rangle$;
- 2. моноиды $M_1 = \langle a, b | aba = b \rangle, M_2 = \langle a, b | aba = a \rangle$ в сигнатуре $\langle \cdot, 1 \rangle$?
- N12. Будут ли элементарно эквивалентны два конечномерных векторных пространства разных размерностей

над полем P в сигнатуре $<*,\xi>$, где * - операция умножения на скаляр, ξ - одноместный предикат, истинный лишь на элементах из P?

- **N13.** Очевидно, что если для классов \mathcal{K}_1 , \mathcal{K}_2 одной сигнатуры выполнено строгое включение $\mathcal{K}_1 \subset \mathcal{K}_2$, то $\mathcal{E}\mathcal{K}_1 \supseteq \mathcal{E}\mathcal{K}_2$. Привести примеры, показывающие, что последнее включение может быть строгим, а может быть и равенством.
- **N14.** Будут ли элементарно эквивалентны группы $< \mathbb{Q}; +>, <\mathbb{Z}; +>?$
- **N15.** Будет ли класс конечных моделей теории расчлененного предиката относительно элементарно определим в моноиде $\{a,b\}^*$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Г.П.Гаврилов, А.А.Сапоженко. Сборник задач по дискретной математике. М. "Наука". 1977.
 - 2. М.Гарднер. Есть идея! М. "Мир". 1982.
- 3. С.Г.Гиндикин. Алгебра логики в задачах. М. "Наука". 1972.
- 4. Задачи по теории множеств и математической логике/ Составитель Ю.М.Важенин. Екатеринбург: Изд-во Урал.ун-та, 1993.
- 5. В.И.Игошин. Задачник-практикум по математической логике. М. "Просвещение". 1986.
- 6. Избранные задачи по математике. Выпуск 21. Методические разработки для учащихся ВЗМШ. Москва. 1991.
- 7. Избранные задачи по математике. Выпуск 22. Методические разработки для учащихся ВЗМШ. Москва. 1992.
- 8. Л.Я.Куликов, А.И.Москаленко, А.А.Фомин. Сборник задач по алгебре и теории чисел. М. "Просвещение". 1993.
- 9. И.А.Лавров, Л.Л.Максимова. Задачи по теории множеств, математической логике и теории алгоритмов. М. "Наука". 1984.
- 10. А.И.Мальцев. Алгоритмы и рекурсивные функции. М. "Наука". 1965.
- 11. Методическая разработка по курсу "Высшая математика" (для студентов 1 и 2 курсов философского факультета заочного отделения)/ Составители: Баранский В.А., Замятин А.П. Свердловск. 1976.
- 12. Методическая разработка практических занятий по числовым системам для студентов математического факультета пединститута/ Составитель В.Л.Селиванов. Новосибирск. 1990.
- 13. К.И.Нешков, А.М.Пышкало, В.Н. Рудницкая. Множества, отношения, числа, величины. Пособие для учите-

лей. М. "Просвещение". 1978.

14. Л.Б.Шнеперман. Сборник задач по алгебре и теории чисел. Минск. "Вышэйшая школа". 1982.