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Abstract. We survey a great number of results obtained during four
decades of investigations on lattices of semigroup varieties and formulate
several open problems.
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0. Introduction

0.1. Introductory remarks. The theory of semigroup varieties has been
intensively studied for more than four and half decades, and a huge and very
diverse material has been accumulated here. A systematic overview of this
material was due already long ago. This has led the first author to the idea
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to write a series of surveys concerning the area. The first of them [94] is
devoted to equational aspects of the theory of semigroup varieties1. The
subject of the second article [93] was related to consideration of structural
properties of semigroups in varieties such as local finiteness and residual
finiteness, decompositions into bands and embeddings. The present article
is the third in the planned series2. Unfortunately, the preparation of this
article was significantly delayed, but the delay has created an opportunity
to present here also achievements of the two last decades.

More than 200 papers devoted (completely or partially) to lattices of semi-
group varieties have been published so far. In choosing material to be re-
viewed in the article we have been somewhat restricted by space limitation.
The choice has been directed by our intention to present the main develop-
ments in the area under review and to outline the frontier between advance
achieved so far and problems that still remain open. We reproduce some
most essential facts about lattices of semigroup varieties from the earlier sur-
veys [15] and [4] but an overwhelming majority of the content of the present
article is based upon results obtained during last 30 years, that is, after the
second of these surveys had appeared. The list of references includes only
sources cited in the text, and as a rule we do not mention publications whose
results were superseded by later papers.

In investigations on the theory of varieties, much attention has been paid
to unary semigroups, that is, semigroups with an additional unary operation.
Two most important types of unary semigroups are inverse semigroups with
the operation of taking inverse element and completely regular semigroups
with the operation of taking inverse element in a maximal subgroup. The
class of all inverse semigroups and the class of all completely regular semi-
groups considered as algebras of type (2,1) form varieties that both include
the variety of all groups as a subvariety. Varieties of inverse semigroups oc-
cupy a significant place in the monograph [68] where, in particular, issues
related to their lattice are comprehensively treated. The monograph [73]
pays much attention to varieties of completely regular semigroups, also from
the viewpoint of varietal lattices. We notice that several pieces of informa-
tion concerning varieties of inverse and completely regular semigroups were
inserted in the texts of the surveys [94] and [93] that were mainly devoted to
semigroup varieties in the plain semigroup setting. In the last years, one has
begun to consider yet another type of unary semigroups, namely epigroups.
Recall that an epigroup is a semigroup S such that some power of each el-
ement of S lies in some subgroup of S. An epigroup may be turned into

1We notice that the comprehensive introduction to [94] contains fairly detailed historical
comments and gives a general picture of investigations on semigroup varieties up to the
mid 1980s.

2It is appropriate to note here that yet another group of topics, namely algorithmic
problems (not only for semigroup varieties but also for varieties of groups, associative or
Lie algebras and, to a certain extent, for varieties of arbitrary universal algebras), has
become the subject of the fundamental survey [35] written by students of the first author.
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a unary semigroup in a natural way (see Subsection 2.1); unary completely
regular semigroups turn out to be a particular type of epigroups. The idea
to treat epigroups as unary semigroups was promoted in [90]. This approach
allows one to pose various questions about epigroups also within the frame-
work of the theory of varieties. In [90], the first author has presented some
initial facts about epigroup varieties and formulated a number of questions
concerning possible further developments in this direction; an essential part
of this information has been reproduced in the survey [91], where also some
advancements achieved during last few years have been reviewed. In this sur-
vey we touch upon a part of this information related to lattices of varieties.
The survey includes also some important information about lattices of com-
pletely regular semigroup varieties that was left beyond the monograph [73]
and a few facts about lattices of inverse semigroup varieties.

The table of contents clearly outlines the structure of the article. In
general, one can say that the material under review deals mainly with the
following three aspects: examining properties of the lattice of all semigroup
varieties or of some of its important sublattices; characterizing varieties with
given properties of their subvariety lattices; describing varieties that are,
in a sense, special elements of the lattice of all semigroup varieties. When
the goal of describing a lattice under consideration is set, in some cases it
turns out to be possible to obtain a description in terms of explicit lattice-
theoretical constructions and even to draw the corresponding diagram (such
situations will appear in Sections 1 and 4); in some other cases a description is
formulated in terms of a reduction to certain related lattices of some algebraic
structures that appear to be “more transparent” and more convenient for
further considerations (such situations will appear in Sections 5–7 and 12).

We notice that some principal results in the area under review (for in-
stance, ones giving a complete classification of varieties with certain prop-
erties) have very long formulations. In such cases, in order to save space,
we restrict ourself to presenting the essence of the corresponding result and
refer the interested reader to the original source for details.
0.2. Terminology and notation. We suppose that the reader is ac-

quainted with standard general-algebraic information used in the article as
well as with textbook notions of the theory of semigroups, the theory of lat-
tices and the theory of varieties of universal algebras. As the main reference
sources, one can mention the monographs [13], [22], [55], and especially the
handbooks [17] and [98]. Basically, we follow the terminology adopted in
these3. We continue to follow the agreement adopted in [94] and [93] that an

3In this connection, one can note that in many publications (apparently, starting with
the book [28]) and in particular in the previous surveys [94] and [93], completely regular
semigroups, that is unions of groups, were called Clifford semigroups. At the same time,
in a number of papers the term “Clifford semigroup” has begun to be used (less luckily, in
our opinion) for a particular type of completely regular semigroups, namely semilattices of
groups (see terminology commentaries on this occasion in Subsection 2.1 of the survey [91]
or more detailed ones in Subsection I.2 of the monograph [92]). Here we have switched
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adjective indicating a property shared by all semigroups of a given variety
is applied to the variety itself; the expressions like “commutative variety”,
“periodic variety”, “nilvariety”, etc. are understood in this sense. In this con-
nection, it is worth noticing that the terms “completely regular variety of
semigroups” and “variety of completely regular semigroups” have different
meanings: the former stands for a variety in the plain semigroup setting
consisting of completely regular semigroups, the latter means that we speak
about unary semigroups.

Let us recall definitions of some types of semigroup varieties and identities.
A variety is called proper if it differs from the variety of all semigroups. An
identity u = v is called balanced if every letter occurs in the words u and v the
same number of times. The length of each of the parts of a balanced identity
is called the length of this identity. An identity of the form x1x2 · · ·xn =
x1πx2π · · ·xnπ where π is a non-trivial permutation on the set {1, 2, . . . , n} is
called a permutation identity. A permutational variety is a variety satisfying
some permutation identity. A pair of identities wx = xw = w where the
letter x does not occur in the word w is usually written as the symbolic
identity w = 0. (This notation is justified because a semigroup with such
identities has a zero element and all values of the word w in this semigroup
are equal to zero.) An identity of the form w = 0 as well as a variety given
by identities of such a form are called 0-reduced. A semigroup variety V is
called a variety of finite degree if all nilsemigroups in V are nilpotent; V is
called a variety of degree n if nilpotency degrees of nilsemigroups in V are
bounded by the number n and n is the least number with this property4.
A semigroup variety is called finitely generated if it is generated by a finite
semigroup.

Let us recall now definitions of some types of lattices and their elements.
One says that an element x of a partially ordered set 〈S;≤〉 covers an element
y ∈ S if y < x and there exists no element z ∈ S with y < z < x. A
lattice 〈L;∨,∧〉 is called [weakly ] upper semimodular if, for all x, y ∈ L,
x ∨ y covers y whenever x covers x ∧ y [respectively, x and y cover x ∧ y].
[Weakly ] lower semimodular lattices are defined dually. A lattice is called
upper semidistributive if it satisfies the quasiidentity x∨y = x∨z −→ x∨y =
x ∨ (y ∧ z). Lower semidistributive lattices are defined dually. An element
x of a lattice L is called neutral if, for any y, z ∈ L the elements x, y and
z generate a distributive sublattice in L. An element x of a lattice L is

to the term “completely regular semigroup” taking into account that it has become more
common.

4Note that in several papers, in particular, in the survey [93], varieties with such prop-
erties were called varieties of finite index and varieties of index n respectively. However this
contradicts to the generally accepted use of the term “index” in a completely different sense
in considerations of epigroups and in particular periodic semigroups (see Subsection 2.1).
On the other hand, the term “degree of a variety” in the aforementioned sense is com-
pletely coordinated with the notion of the nilpotency degree of a semigroup. Altogether,
these arguments explain our decision to choose the term “degree”.
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said to be modular if (x ∨ y) ∧ z = (x ∧ z) ∨ y for all y, z ∈ L with y ≤ z,
and upper-modular if (z ∧ x) ∨ y = (z ∨ y) ∧ x for all y, z ∈ L with y ≤ x.
Lower-modular elements are defined dually to upper-modular ones.

Let us recall also that a sublattice of a lattice is called an ideal [coideal ]
if this sublattice contains lower [upper] bounds of each of its elements. By
[a) we will denote the principal coideal of a given lattice L generated by an
element a ∈ L; by the definition, [a) = {x ∈ L | x ≥ a}.

The semigroup variety given by an identity system Σ is denoted by var Σ.
Let us list several concrete semigroup varieties that will appear in the sequel
many times: the variety of all semigroups SEM, the variety of all commu-
tative semigroups COM = var {xy = yx}, the variety of all abelian groups
whose exponent divides n An = var {xny = y, xy = yx}, the variety of
all semilattices SL = var {x2 = x, xy = yx}, the variety of all left zero
semigroups LZ = var {xy = x}, the variety of all right zero semigroups
RZ = var {xy = y}, the variety of all null semigroups ZM = var {xy = 0},
the trivial variety T .

We denote by L(K) the lattice of all varieties contained in the class of alge-
braic systems K. The lattice L(SEM) will be denoted by SEM throughout.

CHAPTER I. The first layer of information

1. The lattice of all semigroup varieties

The lattice SEM possesses all textbook properties of the subvariety lat-
tices of varieties of universal algebras: it is complete, atomic and coalgebraic,
and its cocompact elements are precisely finitely based varieties. In 1955
Kalicki and Scott [34] described the atoms of the lattice SEM: these are
precisely the varieties Ap for all prime p, LZ, RZ, SL, ZM. The varieties
SL and ZM have yet another remarkable property: they are neutral ele-
ments of the lattice SEM (see Theorem 14.2). Results of [2] show that if
semigroup varieties X and Y do not contain an atom A of the lattice SEM,
then also X ∨ Y + A. This implies that the lattice SEM is 0-distributive,
that is, satisfies the following implication: x∧z = y∧z = 0 −→ (x∨y)∧z = 0.
There are no coatoms in the lattice SEM (see Theorem 3.4), moreover, it is
not difficult to verify that each of its nontrivial coideals is uncountable.

If V is a semigroup variety, then we denote by
←−V the variety consisting

of semigroups dual (that is, antiisomorphic) to semigroups from V. It is
evident that the mapping δ of the lattice SEM into itself given by the rule
δ(V) =

←−V for every variety V is an automorphism of the lattice SEM. The
following question is still open.

Question 1.1. Are there non-trivial automorphisms of the lattice SEM dif-
ferent from δ?

We notice that there exist infinitely many non-trivial injective endomor-
phisms of the lattice SEM. Namely, let V = var {ui = vi | i ∈ I}, let m and
n be positive integers and x1, . . . , xm, y1, . . . , yn letters that do not occur in
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the words ui and vi. Put

Vm,n = var {x1 · · ·xmuiy1 · · · yn = x1 · · ·xmviy1 · · · yn | i ∈ I}.
It is verified by Kopamu [41] that the variety Vm,n does not depend on the
choice of an identity basis of the variety V and the mapping V 7−→ Vm,n is
an injective endomorphism of the lattice SEM. We will meet these endomor-
phisms again in Subsection 10.1. We call them the Kopamu endomorphisms.

The structure of the lattice SEM as a whole is extremely complex. It is
sufficient to mention that it contains an interval antiisomorphic to the par-
tition lattice of a countably infinite set [10,29]. In view of known properties
of partition lattices, this implies that the subvariety lattice of an arbitrary
variety of universal algebras of at most countably infinite type is embeddable
in SEM, that SEM does not satisfy any non-trivial quasiidentity, and that
SEM is uncountable. One of a few “positive” properties of this lattice is the
covering property (see Theorem 3.1).

Main sublattices of the lattice SEM and their mutual location are shown
in Fig. 1. First of all, SEM is divided into two large sublattices with essen-
tially different properties: the coideal OC of all overcommutative varieties
(that is, varieties containing COM) and the ideal Per of all periodic vari-
eties.

Overcommutative
varieties

Periodic varieties

Completely regular
varieties

Varieties

of periodic groups

Combinatorial varieties

Ni
lva
rie
tie
sVarieties of

idempotent
semigroups

Figure 1. “The map” of the lattice of all semigroup varieties

The lattice OC admits a relatively easy and concise description in terms
of congruences of unary algebras of some special type (see Subsection 5.1).
Thus the most complex part of the lattice SEM is the lattice Per.

There are two large ideals with very different properties in the lattice Per:
the ideal CR of all periodic completely regular varieties and the ideal Comb



LATTICES OF SEMIGROUP VARIETIES 7

of all combinatorial varieties (that is varieties all of whose groups are sin-
gleton). Their intersection is the lattice I of all idempotent semigroups that
was completely described independently by A.P.Birjukov [8], Fennemore [16]
and Gerhard [18]. Another proof of this result was published by Gerhard
and Petrich [20]. The lattice I is countably infinite and distributive. It is
shown in Fig. 2.

HHHHH

©©©©©HHHHH

©©©©©©©©©©HHHHHHHHHH

©©©©©©©©©©HHHHHHHHHH

©©

©©©©©©©©©©HHHHH

HH

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

LZ RZSL

T
Figure 2. The lattice of varieties of idempotent semigroups

Speaking about the lattice CR, one should mention that it may be con-
sidered as a sublattice of the lattice of varieties of unary completely regular
semigroups (see Section 6). The latter lattice was the subject of intensive
studies in the 1980s and its structure is quite well investigated by now. In
Section 6, we present key results concerning this lattice.

Essentially less information is known about the structure of the lattice
Comb. The aforementioned results of [10, 29] deal in fact with this lattice,
whence we can claim that the lattice Comb is as complex as the whole
lattice SEM. We may say the same about the ideal Nil of the lattice Comb
consisting of all nilvarieties since the results of [29] deal with this ideal. On
the other hand, the lattice Nil, as well as the lattice OC, admits some
characterization in terms of congruences of unary algebras of some special
type (see Section 7).

All the aforementioned types of semigroup varieties admit a characteriza-
tion in the language of atoms of the lattice SEM (see Table 1).

2. Varieties of epigroups

2.1. General remarks. For an element a of a given epigroup, we denote
by ea the unit element of the maximal subgroup G that contains some power
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A semigroup variety is if and only if it
an overcommutative variety contains Ap for all prime p

a periodic variety does not contain Ap for some prime p

a completely regular variety does not contain ZM
a group variety does not contain LZ,RZ,SL,ZM

a combinatorial variety does not contain Ap for all prime p

a variety of idempotent does not contain ZM and Ap for all prime p

semigroups
a nilvariety does not contain LZ,RZ,SL and Ap

for all prime p

Table 1. A characterization of some types of varieties

of a. It is known that aea = eaa and aea ∈ G. We denote by a the element
inverse to aea in G. The element a is called the pseudo-inverse of a, and the
mapping a 7−→ a turns an epigroup to a unary semigroup. An epigroup has
index n if the nth power of every its element lies in some of its subgroups
and n is the least number with this property. We denote by E the class of all
epigroups and by En the class of all epigroups of index ≤ n. We see that E1

is just the class of all completely regular semigroups. Note that in the realm
of completely regular semigroups it is usual to denote the pseudo-inverse
element for an element a by a−1.

Every periodic semigroup is an epigroup and every periodic semigroup
variety may be considered as a variety of epigroups with the operation of
pseudo-inversion in the signature. Indeed, each periodic variety satisfies
an identity of the form xn = xn+d, and the operation of pseudo-invertion
is definable in the semigroup signature in this case: it is easy to see that
x = xnd−1. Therefore, the lattice Per is naturally embedded into L(E);
speaking slightly informally, we will assume that Per is a sublattice of the
lattice L(E). Thus results about periodic semigroup varieties, as well as re-
sults about varieties of completely regular semigroups may be interpreted
as results about epigroup varieties too. So, when we examine epigroup va-
rieties per se, it is natural to assume that we consider questions not within
the classes of periodic or completely regular semigroups.

Results about epigroup varieties that are known so far mainly concern with
equational and structural aspects (see corresponding results in [90] and [91]).
As to considerations of the varietal lattices, here only the first steps are made
and we hope that the main successes here will be obtained in the future. For
each n, the class En is a variety; it is defined by the identities

(xy)z = x(yz), xx = xx, xx2 = x, xn+1x = xn.

The class E is not a variety, so L(E) is a lattice without the greatest element.
The chain E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · · in the lattice L(E) may be considered
(non-formally speaking) as a “spine” of this lattice because for every epigroup
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variety V there is a number n with V ⊆ En. It is easy to see that the lattice
L(E) has the same atoms as SEM, and for any n the principal coideal [En) of
the lattice L(E) has a unique atom: the join of En and the variety generated
by the cyclic nilpotent semigroup with n+1 elements; this atom is contained
in every variety of [En) different from En. Two results (and one open problem)
concerning the covering property for the lattice L(E) and the lattices L(En)
are presented in Subsection 3.1.

Considerations about further possible study of epigroup varieties have
been presented in [90] (in Subsection 4◦ from Section 1); most of these con-
siderations have been repeated in the survey [91] (Subsection 2.3), a part of
them concerns lattices of varieties. We do not repeat here these consider-
ations and refer the interested reader to the above sources. We formulate
only two of the questions mentioned in [90] and [91]; the first of them is
formulated there as a conjecture.

Question 2.1. Are there coatoms in the lattice L(En) for arbitrary n?

Question 2.2. a) What are properties of the intervals [En, En+1] in the lat-
tice L(E) (for instance, what are the ordinals of maximal chains and the
cardinalities of maximal antichains in these intervals)? b) What are interac-
tions between these intervals? In particular, are the lattices [Em, Em+1] and
[En, En+1] non-isomorphic whenever m 6= n, and is the lattice [Em, Em+1]
embeddable into [En, En+1] whenever m ≤ n?

With respect to Question 2.2a, we note that it may be easily verified that
the interval [E1, E2] contains a chain isomorphic to the chain of real numbers
with the usual order.
2.2. Complete congruences on lattices L(En). One of standard

methods of analyzing varietal lattices is a study of their complete congru-
ences. Each such congruence partitions the corresponding lattice into in-
tervals whose structure may be more transparent than the structure of the
whole lattice, and the greatest and the least elements of these intervals of-
ten have interesting properties and may serve as “basis points” for further
investigations. As a model example, we mention here the complete congru-
ence on the lattice Inv of all varieties of inverse semigroups introduced by
E. I.Kleiman [38]; the classes of this congruence consist of all inverse semi-
group varieties with the fixed join with the variety of all groups. It is shown
by Reilly [83] that each class of this congruence is modular while the lat-
tice Inv itself is non-modular. This approach was successfully applied in
the 1980s to the lattice of varieties of completely regular semigroups, and
later to lattices of different classes of finite or regular semigroups related to
varieties (pseudovarieties, e-varieties).

It has been shown in the interesting paper by Pastijn [64] that a natural
generality for many constructions applied earlier in the finite and regular
cases can be reached in the lattice L(En). In particular, the following rela-
tions τ and γ considered earlier for lattices of e-varieties in [7] and for lattices
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of varieties of completely regular semigroups in [71, 72, 76], turn out to be
complete congruences on L(En): V τ W if and only if the varieties V and W
contain the same fundamental epigroups (an epigroup is called fundamental
if the restriction of any of its non-trivial congruences to the set of all idempo-
tents is non-trivial); V γW if and only if the varieties V and W contain the
same idempotent generated semigroups. The complete congruence ι = τ ∨ γ
on L(En) also is considered in [64]. It is proved there that V ιW if and only if
the varieties V andW contain the same fundamental epigroups and the same
idempotent generated semigroups, and that ι coincides with the kernel of a
complete homomorphism of the lattice L(En) onto the lattice of all varieties
of so-called idempotent algebras of epigroups from En.

The general theory of complete congruences on lattices of varieties has
been developed by Pastijn and Trotter [65] who have also constructed some
further complete congruences on L(En).

3. The cover relation

Studying the cover relation in varietal lattices had attracted considerable
attention on the early stage of development of the theory of varieties. It
appears that this attention was due to anticipations that the structure of
lattices of varieties may be revealed by moving “upward”: from the trivial
variety to its covers, that is atoms, from the atoms to their covers, etc.
Although this hope with respect to “big” varietal lattices such as SEM has
turned out to be somewhat naive, investigations of the cover relation in SEM
and related varietal lattices have brought a number of interesting results.
3.1. The covering property. General properties of coalgebraic lattices

imply that every proper subvariety in SEM defined by a finite number of
identities has a cover. But there are subvarieties of SEM that can not
be defined by a finite number of identities. The question of whether or not
every proper subvariety of SEM has a cover was posed in the survey [15]; the
affirmative answer follows from a more general result by A.N.Trahtman [99].
To formulate and discuss this result we need the following definition. We say
that a lattice has the covering property if every its element different from
the greatest element has a cover.

Theorem 3.1 (A.N.Trahtman [99]). The subvariety lattice of an over-
commutative semigroup variety has the covering property.

A simple proof of Theorem 3.1 is given in [128], see also [136].
Recall that a lattice is called strongly atomic if every its non-singleton

interval contains an atom. Theorem 3.1 implies

Corollary 3.1. The lattice OC is strongly atomic.

It was natural to ask whether or not the subvariety lattice of every semi-
group variety has the covering property. A.N.Trahtman [100] has answered
this question in the negative; Trahtman’s counter-example is the variety
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var {xy4x = xy5x}. Later Pollák [78] has shown that the covering property
fails also in the subvariety lattice of the Burnside variety Bm,n = var {xm =
xm+n} with any m > 1. For the sake of completeness, we note that the
subvariety lattice of the variety B1,1, that is the variety of all idempotent
semigroups has the covering property (see Fig. 2), while the question of
whether or not the lattice L(B1,n) with n > 1 has this property is still open.
M.V. Sapir [87] has shown that the property we discuss may fail even in the
subvariety lattice of a finitely generated variety.

Quite a mixed picture arises when the covering property is studied for
lattices of varieties of semigroups equipped by various additional operations.
It turns out that this property fails in the lattice of monoid varieties [78] and
in the lattice of varieties of inverse semigroups [39]. Covers in the lattice of
epigroup varieties have been investigated in [136] where the following results
have been obtained.

Theorem 3.2 (M.V.Volkov [136]). The lattice L(E) has the covering prop-
erty, while the lattices L(En) with n > 1 do not have it.

The following question was posed by the first author 30 years ago and still
remains open.

Question 3.1 ([97], Problem 2.62b). Does the lattice L(E1) of all varieties
of completely regular semigroups possess the covering property?

Note that every periodic variety of completely regular semigroups has a
cover in L(E1). But it is easy to see that this does not imply an affirmative
answer to the question of whether or not the covering property holds in the
lattice L(B1,n).
3.2. The number of covers. Since every proper semigroup variety

has a cover, the question about the number of covers arises naturally. The
problem of description of semigroup varieties with a finite [countably infinite,
uncountable] set of covers was noted in the survey [4]. For overcommutative
varieties, it was solved long ago by the following result.

Theorem 3.3 (A.Ya.Aı̌zenštat [1]). A proper overcommutative semigroup
variety has a finite [countably infinite] set of covers whenever it has a finite
[infinite] identity basis.

In the periodic case, the question about the number of covers turns out to
be much more complex. Since every periodic variety contains only a finite
number of atoms, one may conjecture that every periodic variety would have
infinitely many covers. However it turns out (and this is one of interesting
manifestations of non-modularity of the lattice SEM) that there exist peri-
odic varieties with a finite number of covers. One may verify using the results
of the article [129] that this property holds for an arbitrary non 0-reduced
nilvariety that is not contained in the variety var{x2y = xyx = yx2 = 0}.
It was noted in the survey [4] that a finite number of covers occurs also
for an arbitrary semigroup variety given by one identity u = v such that
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the words u and v depend on the same letters and either lengths of these
words are equal or v does not coincide with a word of the kind aξ(u)b where
a and b are (may be empty) words and ξ is an endomorphism of the free
semigroup. Some cases where the number of covers of a periodic variety is
infinite are indicated in [9]. The first example of a variety with uncountably
many covers in SEM has been found by A.N.Trahtman [99]. Recent results
by P.A.Kozhevnikov [44,45] imply that even the atoms Ap with sufficiently
large prime p have uncountably many covers (see Theorem 10.2).
3.3. Other results. As known, if a variety X has an independent basis

within some variety V that strongly contains X then X has a cover in the
lattice L(V). A.N.Trahtman has formulated the question of whether or not
every independently based semigroup variety X has a cover in the subvariety
lattice of any variety that strongly contains X ( [97], Problem 2.55a). A
negative answer to this question has been obtained by V.Yu.Popov [80].

Let 〈S;≤〉 be a partially ordered set and x, y ∈ S. Generalizing the
notion of covering of one element by another one, we say that the distance
between x and y is finite if either x = y or x < y and there exist elements
z0, z1, . . . , zn ∈ S such that z0 = x, zn = y and for each i = 0, 1, . . . , n − 1
zi+1 covers zi or y < x and the condition dual to the previous one holds.
Otherwise we say that the distance between x and y is infinite. Further, we
say that the distance between x and y equals ω if the distance between x
and y is infinite and either x < y and for every z ∈ S with x ≤ z < y the
distance between x and z is finite or the dual condition holds. The following
is true.

Theorem 3.4 (M.V.Volkov [127]). If V is a proper semigroup variety, then
there exists a semigroup varietyW such that V ⊆ W and the distance between
V and W equals ω.

4. Subvariety lattices of certain varieties

There are many papers in which the subvariety lattice of some concrete
semigroup variety is described. We do not aim to list all these papers and
survey here only such that appear to deserve attention by some reason.

As we have already noted in Section 1, the lattice I of all varieties of
idempotent semigroups has been described in [8, 16, 18] (see Fig. 2). Later
the following description of the lattice of all varieties of semigroups with
idempotent square, that is the subvariety lattice of the variety var {xy =
(xy)2}, has been obtained.

Theorem 4.1 (Gerhard [19]). The lattice L(var {xy = (xy)2}) is a subdirect
product of the lattice I and the lattice shown in Fig. 3.

In particular, the lattice L(var {xy = (xy)2}) is distributive.
The description of the lattice of all varieties of semigroups whose square is

a rectangular semigroup, that is satisfies the identity xyx = x, was obtained
earlier by I. I.Mel’nik [58]. This lattice is shown in Fig. 4, where LZM and
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RZM denote the varieties var {xyz = xy} and var {xyz = yz} respectively.
This result served as a starting-point for several papers whose authors con-
sidered weaker restrictions to a variety than those in [58]. So, Petrich in [67]
has described the lattice of all varieties of semigroups whose square is an
orthodox normal band of groups of exponent dividing a fixed number n. It
has turned out that this lattice is the direct product of the lattice shown in
Fig. 4, the lattice of all varieties of periodic groups of exponent dividing n,
and the 2-element chain. The lattice of varieties of semigroups whose cube is
a rectangular semigroup has been studied in [40,60]. A complete description
of this lattice has not been obtained but a wide sublattice has been deter-
mined in [40] and the subvariety lattice of the variety var {xyz = xywyz}
has been described in [60].
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Figure 3 Figure 4. The lattice of varieties of semigroups
whose square is a rectangular semigroup

The article by Petrich [69] contains a description of the subvariety lattice
of the variety D1

p generated by the semigroup D1
p where Dp is the Rees

matrix semigroup over the cyclic group of prime order p with the sandwich
matrix ( e e

e a ) where a is a non-identity element of the group while e is its
identity element. It turns out that this lattice is distributive and consists
of 32 elements; its diagram is shown in [69].

The variety D1
p is interesting by the following reason. When one studies finitely

based semigroup varieties, it is important to find examples of limit (that is, minimal
non finitely based) varieties. Only a few explicit examples of such varieties are
known so far (see [79, 87, 126] and [94, 139]), and there are no completely regular
varieties among them. But completely regular limit varieties exist (this follows from
the existence of completely regular non finitely based varieties and Zorn’s Lemma).
The question of whether or not the variety D1

p is finitely based was formulated in the
survey [94] (Question 8.1) and is still open. Results of [69] imply that all proper
subvarieties of D1

p are finitely based. Thus if the answer to the question will be
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negative then the variety D1
p will become the first explicit example of a completely

regular limit semigroup variety.
The first attempt to find a boundary between modularity and non-mod-

ularity, as well as between distributivity and non-distributivity, in lattices of
nilvarieties was made by I. I.Mel’nik [59]. In particular, the lattice of varieties
of 5-nilpotent commutative varieties was completely determined there. The
diagram of this lattice is shown in [59], it contains 32 elements.

CHAPTER II. The main sublattices
of the lattice of semigroup varieties

As we have already noted in Section 1, the lattice SEM is partitioned
into the sublattices OC and Per. The lattice OC is considered in Section 5.
It is quite difficult to study the lattice Per as a whole because some parts
of this lattice have extremely different properties. First of all, this concerns
the lattices CR and Nil. The first of them is modular, while the second one
does not satisfy any non-trivial lattice identity. Interactions between these
two lattices also are quite complex. So, even in the case when the variety V
has the form K ∨N where K ∈ CR and N ∈ Nil, the structure of the lattice
L(V), as a rule, is not determined by the structure of the lattices L(K) and
L(N ). We note that the rare situations when L(K ∨N ) ∼= L(K) × L(N )
have been completely determined (see Proposition 13.1).

Nevertheless, some information about the whole lattice Per can be ob-
tained (see Subsection 2.2). The structure of the lattices CR and Nil is
considered in Sections 6 and 7 respectively. Sections 8 and 9 deal with two
further wide sublattices of the lattice SEM. The first of them consists of
commutative varieties, while the second one consists of varieties that are
contained in periodic varieties generated by 0-simple semigroups; the latter
varieties are called Rees–Sushkevich varieties.

5. Overcommutative varieties

5.1. The structure of the lattice OC. Here and in Section 7, we
need the notion of a G-set. Recall that a unary algebra with the carrier
A and the set of operations G is called a G-set if G is equipped with a
structure of a group and, for any g, h ∈ G and a ∈ A the equalities g

(
h(a)

)
=

(gh)(a) and e(a) = a hold where e is the identity element of the group G.
Some preliminary information about G-sets and in particular about their
congruences may be found, for instance, in the monograph [57].

It is proved in [135] that the lattice OC is decomposable into a subdirect
product of certain intervals and each of these intervals is antiisomorphic to
the congruence lattice of a certain G-set. To give the exact formulation of
this result, we need some notation.

We will consider semigroup words over a countably infinite alphabet {x1,
x2, . . . , xn, . . . }. For any n put Xn = {x1, x2, . . . , xn}. If u is a word, then
`(u) denotes its length, `i(u) is a number of occurrences of the letter xi in
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u and c(u) stands for the set of all letters occurring in u. By Sn we denote
the symmetric group on the set {1, 2, . . . , n}. If c(u) = Xn and π ∈ Sn, then
we denote by uπ the word obtained from u by changing of xi to xiπ for all
i = 1, 2, . . . , n. Let m and n be integers with 2 ≤ m ≤ n. A partition of
a number n into m parts is a sequence of positive integers (λ1, λ2, . . . , λm)

such that λ1 ≥ λ2 ≥ · · · ≥ λm and
m∑

i=1
λi = n. We denote by Λn,m the

set of all partitions of the number n into m parts and by Λ the union of
sets Λn,m for all natural numbers m and n with 2 ≤ m ≤ n. Let u be a
word such that c(u) = Xm and `i(u) ≥ `i+1(u) for all i = 1, 2, . . . , m − 1.
The partition

(
`1(u), `2(u), . . . , `m(u)

)
of the number `(u) into m parts is

denoted by part(u).
Now let us fix integers m and n with 2 ≤ m ≤ n and a partition λ =

(λ1, λ2, . . . , λm) ∈ Λn,m. We denote by Wλ the set of all words u such
that `(u) = n, c(u) = Xm, `i(u) ≥ `i+1(u) for all i = 1, 2, . . . , m − 1
and part(u) = λ, and by Sλ the set of all permutations σ ∈ Sm such that
λi = λiσ for all i = 1, 2, . . . , m. It is clear that Sλ is a subgroup in Sm.
For a permutation σ ∈ Sλ, let us define the unary operation σ∗ on the set
Wλ by the rule: σ∗(u) = uσ for any u ∈ Wλ. It is clear that the set Wλ

with the collection of operations {σ∗ | σ ∈ Sλ} is an Sλ-set. We denote
by Sn the variety defined by all balanced identities of length ≥ n and by
Sn,m the subvariety of the variety Sn+1 defined within Sn+1 by all balanced
identities of length n depending on ≤ m letters. Put also Sn,1 = Sn+1. By
Sλ we denote the subvariety of the variety Sn,m−1 defined within Sn,m−1

by all balanced identities of the form u = v with u ∈ Wλ. The interval
[Sλ, Sn,m−1] of the lattice OC is denoted by Iλ.

Theorem 5.1 (M.V.Volkov [135]). The lattice OC is a subdirect product
of intervals of the kind Iλ where λ runs over Λ, while an interval Iλ is
antiisomorphic to the congruence lattice of the Sλ-set Wλ.

This theorem shows that, for further studies of the lattice OC, it is useful to
understand the structure of congruence lattices of G-sets. As we have already noted
at the beginning of the section, some information about this is contained in [57] (see
Lemma 4.20 there). In more detail these lattices have been investigated in [104].
This paper contains also a characterization of G-sets with a number of (lattice or
multiplicative) properties of their congruences, while special elements of several
types in congruence lattices of G-sets have been considered in [106,107].

Theorem 5.1 readily implies

Corollary 5.1 ([135]). The lattice OC is residually small.

Also, it is shown in [135] that, for an arbitrary overcommutative variety
V, the interval [COM, V] of the lattice L(V) is similar to the lattice OC,
that is, it is decomposable into a subdirect product of certain intervals and
each of these intervals is antiisomorphic to the congruence lattice of a certain
G-set.
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5.2. Identities and related conditions. The description of intervals
of the form [COM, V] mentioned at the end of the previous subsection,
permits to classify overcommutative varieties V such that these intervals are
modular or distributive (see [105]). In fact, an essentially stronger result has
been obtained in course of this classification. To formulate this result, let
us denote by Mk the lattice consisting of zero, identity and k atoms, and by
Mk,n the lattice shown in Fig. 5 (here k, n ≥ 3). We say that two lattices
are quasiequationally equivalent if they satisfy the same quasiidentities.
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Proposition 5.1. Let V be an overcommutative semigroup variety different
from COM. If the interval [COM, V] is modular then it is quasiequationally
equivalent to one of the following lattices: 1) the two-element chain; 2) M3;
3) M4; 4) M4,3.

Since the lattice M4,3 is arguesian, this proposition means, in particu-
lar, that the arguesian law is equivalent to the modular one in lattices of
overcommutative varieties. For each of the four cases mentioned in Propo-
sition 5.1, corresponding overcommutative varieties have been completely
determined in [105].

For intervals of the kind [COM, V], modularity, upper semimodularity and
weak upper semimodularity are equivalent, while lower semimodularity and
weak lower semimodularity are equivalent to each other but not equivalent
to modularity. These results and a classification of varieties V such that the
interval [COM, V] is lower semimodular also have been obtained in [105].

The lattice M3 is subdirectly indecomposable, whence there is the largest
quasivariety of lattices that does not contain M3. We denote this quasivariety
by M3. The following is true.

Theorem 5.2 (B.M.Vernikov [108]). For an overcommutative semigroup
variety V, the following are equivalent : (a) [COM, V] ∈ M3; (b) the interval
[COM, V] is upper semidistributive; (c) the interval [COM, V] is lower semi-
distributive; (d) the interval [COM, V] is distributive.

Together with the mentioned results of [105], this theorem gives a complete
description of overcommutative varieties V such that the interval [COM, V]
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is (upper or lower) semidistributive or belongs to an arbitrary quasivariety
of lattices that does not contain the lattice M3.
5.3. Special elements. An element x of a lattice L is called distributive

if x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for all y, z ∈ L. A codistributive element
is defined dually. Every neutral element is distributive and codistributive
but the converse implications are false in abstract lattices. Nevertheless, the
following is true.

Theorem 5.3 (B.M.Vernikov [107]). For an overcommutative semigroup
variety V, the following are equivalent : (a) V is a distributive element of
the lattice OC; (b) V is a codistributive element of OC; (c) V is a neutral
element of OC; (d) V is one of the varieties SEM, Sn, Sn,m or Sλ, where
m and n are arbitrary integers with 2 ≤ m ≤ n, while λ ∈ Λ.

The following problem seems to be interesting.

Problem 5.1. Classify varieties that are a) modular elements, b) upper-
modular elements, c) lower-modular elements of the lattice OC.

6. Completely regular varieties

Here we denote the lattice L(E1) of all varieties of (unary) completely
regular semigroups byUCR, thus resembling the notationCR for the lattice
of all completely regular varieties of (plain) semigroups. According to the
observation in the second paragraph of Subsection 2.1, the lattice CR, being
a sublattice in Per, may be considered as a sublattice of the lattice UCR.
Therefore all properties of the latter lattice inherited by sublattices persist
in the lattice CR. Practically all information about the lattice CR that
is known so far arises as “projection” on SEM of results about the lattice
UCR. By this reason, throughout this section we will speak about the latter
lattice.

The lattice UCR is partitioned into the union of the coideal [SL) and the
idealUCS that consists of all varieties of completely simple semigroups. Nu-
merous results about the lattice UCR and certain its sublattices (in partic-
ular, about the lattice UCS) have been systematized in the monograph [73].
Here we present some fundamental achievements that were left beyond [73].
First of all, these are the results about the structure of the lattice UCR
obtained in a cycle of papers by Polák [74–76].

The variety SL is a neutral element of the lattice UCR, whence this lat-
tice is a subdirect product of the coideal [SL) and the 2-element chain. It
is the coideal [SL) that has been studied in [74–76]. To formulate the cor-
responding results, we need some notation. We denote by U the free unary
semigroup over a countably infinite alphabet with the unary operation −1.
Elements of U are called unary words. As for the plain free semigroup, we
denote by c(u) the set of all letters occurring in the unary word u ∈ U .
Following Clifford [12], for a unary word u ∈ U with |c(u)| > 1 we denote
by 0(u) [respectively 1(u)] the unary word obtained from the longest initial
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[terminal] segment of the word u containing |c(u)| − 1 letters by omitting
all opening brackets such that the segment does not contain the correspond-
ing closing ones [respectively all expressions of the form )−1 such that the
segment not contain the corresponding opening brackets]. For example, if
u = x((yx)−1z)−1x, then 0(u) = x(yx)−1 and 1(u) = xzx.

To an arbitrary fully invariant congruence ∼ on U , we assign the relation
∼ on U defined recurrently by the following rule: u ∼ v if and only if
u ∼ v, c(u) = c(v), and besides that 0(u) ∼ 0(v) and 1(u) ∼ 1(v) whenever
|c(u)| > 1. It is verified in [74] that the relation ∼ is also a fully invariant
congruence. If V is a variety of unary semigroups corresponding to the fully
invariant congruence ∼, then we denote by V the variety corresponding to
∼. One can define the relation ρ on the lattice UCR by the following rule:
V ρW if and only if V = W. It is proved in [74] that this relation is a
complete congruence on UCR.

Let L be a lattice with zero. We denote by V ⊕ L the lattice that is the
ordinal sum of the three-element ordered set shown in Fig. 6 and the lattice
L. Further, let us denote by Λ the ordered set shown in Fig. 7. The main
result by Polák ([75], Theorem 3.6) states that the coideal [SL) of the lattice
UCR is embeddable into the lattice of all isotone mappings from Λ into the
lattice V ⊕UCR/ρ; the image of the coideal [SL) under this embedding has
been explicitly described in [75]. Thus studying the lattice UCR is reduced
to studying the lattice UCR/ρ. In particular, the construction by Polák
implies that [SL) is a subdirect product of countably many copies of the
lattice V ⊕UCR/ρ.
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Recall that a completely regular semigroup is called orthodox if all its
idempotents form a subsemigroup. The construction from [75] turns out
to be especially transparent if restricted to the lattice UOCR of all or-
thodox varieties of completely regular semigroups. In this case the lattice
UOCR/ρ turns out to be isomorphic to the lattice of all varieties of groups,
and Polák [75] has obtained a presentation of UOCR as a precisely described
sublattice of the direct product of countably many copies of the lattice of
varieties of groups. We note that an analogous presentation for the lattice
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of all orthodox varieties in the context of periodic varieties was found earlier
by V.V.Rasin [82].

The description of the lattice I of all varieties of idempotent semigroups
mentioned in Section 1 is in fact a limit partial case of results of [75]. The
lattice I/ρ is singleton and this gives a presentation of I as a certain lattice
of isotone mappings from Λ into the four-element lattice V ⊕ 1.

Another fundamental achievement in the study of the lattice UCR is

Theorem 6.1 (Pastijn [62, 63], Petrich and Reilly [70]). The lattice UCR
is modular, and moreover arguesian.

In [62] this fact has been obtained as an application of the results by
Polák [74–76] characterized above. The proofs in [63, 70] are based on an
investigation of interactions between identities in varietal lattices and mul-
tiplicative properties of fully invariant congruences on free semigroups – we
touch upon this subject in Subsection 11.4.

7. Nilvarieties

It is shown in [121,122] that (as in the overcommutative case) subvariety
lattices of nilvarieties may be characterized in terms of congruences of G-
sets. The corresponding result has more complex formulation than the one
for overcommutative varieties. We consider here a partial (but key) case in
which lattices of nilvarieties have a relatively simple structure. The situation
in the general case will be characterized at the end of the section.

We say that a semigroup variety is homogeneous if an identity u = v where
u and v are words of different length implies in this variety the identity u = 0.
A variety is called hereditarily homogeneous if every its subvariety is homo-
geneous. Every hereditarily homogeneous variety is a nilvariety. They are
subvariety lattices of hereditarily homogeneous varieties that will be charac-
terized below.

We need some addition notation; the notation introduced in Subsection 5.1
will be used without special references. We denote by F the free semigroup
over an alphabet {x1, x2, . . . , xn, . . . }. Let V be a nilvariety of semigroups
and m and n positive integers with m ≤ n. We denote by Fn,m(V) the set
of words u ∈ F such that `(u) = n, c(u) = Xm and V does not satisfy the
identity u = 0. Let ν be the fully invariant congruence on the semigroup F
corresponding to the variety V. The restriction of ν to Fn,m(V) is denoted
by νn,m. Clearly, νn,m is an equivalence relation. For each νn,m-class, let us
take an arbitrary element in this class. The set of all these words will be
denoted by Wn,m(V). Put W 0

n,m(V) = Wn,m(V) ∪ {0} where 0 is the zero
of the V-free semigroup of countable rank. If u ∈ Wn,m(V) and σ ∈ Sm

then uσ ∈ Fn,m(V), whence there exists a unique word (uσ)∗ ∈ Wn,m(V)
such that V satisfies the identity uσ = (uσ)∗. Now we define the unary
operation σ∗ on the set W 0

n,m(V) by the rule: σ∗(0) = 0 and σ∗(u) = (uσ)∗

for every u ∈ Wn,m(V). It is verified in [121] that the set W 0
n,m(V) with the
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collection of operations {σ∗ | σ ∈ Sm} is an Sm-set, whenever the variety
V is hereditarily homogeneous. Further, let Vn denote the subvariety of the
variety V defined within V by the identity x1x2 · · ·xn = 0 and let Vn,m denote
the subvariety of the variety Vn+1 defined within Vn+1 by all identities of the
form u = 0 where `(u) = n and |c(u)| = m. Put also Vn,0 = Vn+1. Let
In,m(V) stand for the interval [Vn,m, Vn,m−1] of the lattice L(V).

Theorem 7.1 (B.M.Vernikov and M.V.Volkov [122]). If V is a hereditarily
homogeneous semigroup variety then the lattice L(V) is a subdirect product
of all intervals of the kind In,m(V) where m and n are positive integers with
m ≤ n, and an interval In,m(V) is antiisomorphic to the congruence lattice
of the Sm-set W 0

n,m(V).

Theorem 7.1 reduces studying subvariety lattices of hereditarily homogeneous
varieties to considering congruence lattices of G-sets. As in the overcommutative
case, results of [104] help to apply this theorem.

If a nilvariety V is not hereditarily homogeneous then, as it is shown
in [122], the lattice L(V) is embedded into the dual of a subdirect product of
congruence lattices of certain G-sets (this embedding is explicitly constructed
in [122] ). These G-sets differ from G-sets of the kind W 0

n,m(V) but are similar
to them: their elements also are some words and the zero and the role of G
is also played the group Sm.

8. Commutative varieties

Let us denote by Com the lattice of all commutative semigroup varieties.
We notice that all elements of this lattice except the greatest one are periodic
varieties and these elements form a sublattice of the lattice Per. A certain
characterization of the lattice Com has been suggested by Kisielewicz [36]5.
It is impossible to reproduce this characterization in all detail and we re-
strict ourself to its brief description. Every commutative variety is encoded
in [36] (see also [27]) by a quadruple (J,m, r, π) where J is a coideal in the
quasi-ordered set of all finite sequences of non-negative integers, m is a non-
negative integer, r is a positive integer, and π is an equivalence relation on
the set of all finite sequences of non-negative integers that do not occur in
J . Here J and π should satisfy several restrictions (some of these restric-
tions follow from other ones and therefore may be omitted as it was verified
later in [23]). The variety corresponding to the quadruple (J,m, r, π) is de-
noted by C(J,m, r, π). It has been characterized in [36] when the inclusion
C(J1,m1, r1, π1) ⊆ C(J2,m2, r2, π2) holds and which quadruples of the men-
tioned kind encode the join or the meet of the varieties C(J1,m1, r1, π1) and
C(J2,m2, r2, π2).

5This paper, as well as papers [23–27, 37], deals with the dual lattice of equational
theories of commutative semigroups rather than the lattice Com itself. Presenting results
of these papers, we will “translate” them from the language of equational theories into the
varietal language.
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Already in the first stage of investigations of the lattice of semigroup
varieties, Schwabauer in [89] found a wide distributive sublattice of the lattice
Com; it consists of all subvarieties of the variety COM that are defined
within COM by identities of the form u = uv. It was shown by Nelson [61]
that this sublattice is the largest modular sublattice in Com. Results of
the article [36] show that the sublattice found by Schwabauer form some
“skeleton” of the lattice Com. We will meet varieties from this sublattice
again in Section 15. Following [36], we call them Schwabauer varieties.

Techniques developed in [36] serve as a base for [23–26, 37]. In [23], join-
and meet-undecomposable elements of the latticeCom have been studied. In
particular, it has been shown that the only element of this lattice that is both
join- and meet-undecomposable is the variety COM. An investigation of or-
der properties of the latticeCom related to the notion of a well-quasi-ordered
set and certain its modifications was started in [5] and continued in [24].
In [26] the cover relation in the lattice Com has been studied and it has been
shown how the quadruples (J1,m1, r1, π1) and (J2, m2, r2, π2) are related in
the case when one of the varieties C(J1,m1, r1, π1) and C(J2,m2, r2, π2) covers
the other one. The contents of papers [25,37] will be discussed in Section 15.

9. Rees–Sushkevich varieties

The definition of Rees–Sushkevich varieties is given in the introduction
to this chapter. Let RSn denote the variety generated by all completely
0-simple semigroups satisfying the identity x2 = xn+2; clearly, RSn ⊆ E2.
An arbitrary Rees–Sushkevich variety is contained in RSn for some n. Let
us denote the lattice L(RSn) by RSn. During last few years, some progress
in studying lattices of the kind RSn has been achieved, see [46–49, 51–54,
84–86, 141]. A general approach to studying these lattices is based on a
consideration of their complete congruences in flavor of the methodology
discussed in Subsection 2.2. One of such congruences (whose consideration
turns out to be most effective) is defined by the following: V θW if and only
if the varieties V and W contain the same completely simple semigroups
and the same completely 0-simple semigroups with zero divisors. In [54],
the congruence θ is considered on the lattice RS1 of all combinatorial Rees–
Sushkevich varieties. In this work, it has been proved that θ partitions
RS1 into 9 intervals and the extreme elements of these intervals have been
described; these extreme elements form a 31-element distributive sublattice
that serves as a “skeleton” of the lattice RS1. Some of θ-classes have been
completely described, see [48]. It turns out that the least θ-class is the most
complex one; its structure has been revealed in [49]. Using these results, Lee
has proved that the lattice RS1 is countable [52].
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CHAPTER III. Varieties with some types
of subvariety lattices

A considerable number of articles have been devoted to semigroup vari-
eties with different types of subvariety lattices. Two types of restrictions to
the subvariety lattices have attracted most attention: finiteness conditions
(that is, conditions that hold in every finite lattice) and identities (and re-
lated conditions). Considering conditions of the second type naturally leads
to interest for varieties whose subvariety lattices contain “big” sublattices
which clearly satisfy no non-trivial identity. Conditions of the three types
are considered in the three first sections of this chapter. In the last section,
we consider three more types of restrictions to the subvariety lattices: sym-
metry conditions (that is, conditions related to the notion of lattice dualism),
complement conditions and some conditions related to them, decomposabil-
ity into direct product.

10. Finiteness conditions

10.1. Small varieties. To start with finiteness conditions, it is natural to
consider the strongest of them, namely the property of being a finite lattice.
Varieties with finite subvariety lattice are called small. The problem of
describing small varieties was posed in the survey [15] and attracted attention
of many authors. Nevertheless this problem seems still to be very far from
a complete solution.

A simple but important necessary condition for a subvariety lattice to be
finite is contained in the following

Proposition 10.1 (A.Ya.Aı̌zenštat [3]). Every small semigroup variety is
a variety of finite degree.

The statement converse to Proposition 10.1 is false in general. The sim-
plest counter-example is the variety of all idempotent semigroups whose de-
gree equals 1 while the subvariety lattice is infinite, see Fig. 2. Nevertheless,
the following is true.

Theorem 10.1 (S.A.Malyshev [56]). A permutational semigroup variety is
small if and only if it is a variety of finite degree.

M.V. Sapir and E.V. Sukhanov have developed in [88] the structure theory
of varieties of finite degree and, basing on this theory, they have shown that
a classification of small varieties reduces to solutions of the following three
subproblems: 1) to describe small completely regular varieties; 2) to find out
under which conditions the Kopamu endomorphisms (see Section 1) preserve
the property of being a small variety; 3) to find out under which conditions
a variety whose semigroups are ideal extensions of semigroups from a small
variety by semigroups from a nilvariety remains small.

We note that the subproblem 1) coincides with the corresponding problem
for varieties of completely regular semigroups formulated by the first author
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of the survey in [97] (Problem 2.59c). We note also that this subproblem
contains as a particular case the problem of classification of small varieties
of periodic groups. In view of the following result, the latter problem seems
to be extremely difficult.

Theorem 10.2 (P.A.Kozhevnikov [44, 45]). There exist uncountably many
periodic group varieties with the three-element subvariety lattice.

The same result was announced earlier by S.V. Ivanov but his announce
has not been confirmed by a complete proof later. We note also that examples
constructed in [44,45] to prove Theorem 10.2 have shown that a small variety
is not necessarily locally finite.

In view of Theorem 10.2, the maximum that we may hope for in sub-
problem 1) is to classify small completely regular varieties modulo groups.
However, essential difficulties appear also here. For example, recently Ka-
d’ourek [33] has found a completely simple semigroup variety whose subva-
riety lattice has the cardinality of the continuum and which contains only 5
group subvarieties. This means that a reduction of subproblem 1) to the
case of group varieties is possible only under some additional restrictions.
One of some restrictions appears in the following theorem.

Theorem 10.3 (V.V.Rasin [82]). An orthodox semigroup variety V is small
if (and, evidently, only if ) its largest group subvariety is small and V does
not contain var {x2 = x}.

Subproblem 2) also seems to be quite non-trivial because it is known that
the Kopamu endomorphisms in general do not preserve the property of be-
ing a small variety even for completely regular varieties. The corresponding
example can be easily extracted from a construction given by M.V. Sapir
in [87]. We note that the same construction provides examples that demon-
strate extreme “fragility” of the class of small varieties: the join of two small
varieties and a cover of a small variety may be not small varieties.

As to subproblem 3), there is no essential progress here so far; in partic-
ular, the following question still remains open.

Question 10.1. Is a semigroup variety small whenever its semigroups are
ideal extensions of semigroups from some small completely regular variety V
by semigroups from some nilpotent variety N ?

It may be verified that the answer is affirmative whenever either V consists
of groups or V is an orthodox variety while N = ZM.
10.2. Ascending and descending chain conditions. For brevity, we

say that a variety V satisfies an ascending [descending ] chain condition if
this condition is satisfied by the lattice L(V).

First of all, we note that the two conditions are independent even for
finitely generated varieties. An example of a finitely generated variety with
ascending chain condition but without descending chain condition was given
in the survey [15]: this is the variety var {x2 = x3, xy = yx} (it is generated
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by the three-element semigroup C1 where C is the two-element null semi-
group). An (essentially more difficult) example of a finitely generated variety
with descending chain condition but without ascending chain condition was
constructed by M.V. Sapir [87]. The latter example demonstrates also that
the class of varieties with descending chain condition is not closed under
taking of joins and covers. The corresponding questions for the ascending
chain condition still remain open.

Question 10.2. a) Does the join of two varieties with ascending chain con-
dition satisfy this condition? b) Does a cover of a variety with ascending
chain condition satisfy this condition?

It is possible to show that both parts of Question 10.2 are answered in the
affirmative for several important classes of semigroup varieties, for example,
for completely regular varieties, nilvarieties, permutational varieties. We
note also that the affirmative answer to the first part of Question 10.2 would
imply the affirmative answer to its second part.

The following question has been formulated in the survey [4] and remains
open for 30 years.

Question 10.3. Does there exist a semigroup variety whose subvariety lattice
is infinite but satisfies both the ascending chain condition and the descending
chain condition?

It is easy to see that a variety V satisfies the descending chain condition
if and only if every subvariety of V is given within V by a finite number of
identities. In particular, the descending chain condition is satisfied by every
hereditarily finitely based variety, that is, a variety all of whose subvarieties
are finitely based, and by every limit variety.

Hereditarily finitely based and limit varieties are intensely studied in the course
of investigations on the finite basis problem; we refer the interested reader for
detailed information about corresponding results to Chapter III of the survey [94]
and to the recent surveys [137,139].

10.3. The finiteness of width. A lattice L is said to have finite
width [width n] if all antichains in this lattice are finite [and contain ≤ n
elements and n is the least number with such a property]. We say that V is
a variety of finite width if the width of the lattice L(V) is finite. Results by
M.V. Sapir and E.V. Sukhanov [88] readily imply that any semigroup variety
of finite width is either periodic and permutational or a variety of finite
degree. M.V. Sapir has observed that every periodic permutational variety
has finite width (unpublished). Thus the problem of classifying of varieties
of finite width reduces to the case of varieties of finite degree. We note
that, among varieties with the latter property, there are varieties of infinite
width and, moreover, varieties whose subvariety lattice contains uncountable
antichains. So, by Theorem 10.2 there exist uncountable antichains in the
lattice of varieties of groups of a sufficiently large prime exponent, while
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results by Kad’ourek [32] imply that there exist such antichains in the lattice
of combinatorial varieties of degree 2.

11. Identities and related conditions

11.1. Modularity. The problem of describing semigroup varieties with
modular subvariety lattice was posed in the survey [15]. It was solved by
the third author of this article at the beginning of the 1990s. A full and
correct formulation of this result first appeared in the dissertation [134] and
was published in [109]. It is impossible to reproduce this formulation here
because it is quite lengthy (in particular, it includes the list of 146 maximal
nilvarieties with modular subvariety lattice). So, we formulate explicitly only
the following necessary condition for modularity of subvariety lattice.

Theorem 11.1 (M.V.Volkov [129]). If a semigroup variety V has modular
subvariety lattice, then one of the following holds: (1) V is a variety of degree
≤ 2; (2) V ⊆ An ∨ C ∨ N for some n, where C = var {x2 = x3, xy = yx},
while the variety N satisfies the identities x2y = xyx = yx2 = 0 and a
permutation identity of length 4; (3) V ⊆ SL ∨N , where N is a nilvariety
satisfying a permutation identity of length 4.

Thus the further analysis of varieties with modular subvariety lattice re-
duces to consideration of three cases mentioned in Theorem 11.1. As is
known [21], a semigroup variety has degree ≤ 2 if and only if it satisfies one
of the identities xy = (xy)n+1, xy = xn+1y and xy = xyn+1 for some pos-
itive integer n. If a variety V satisfies the first of these identities, then the
square of any semigroup in V is a completely regular semigroup. Varieties
with such a property are called varieties of semigroups with completely reg-
ular square. Every variety of semigroups with completely regular square has
modular subvariety lattice (M.V.Volkov and T.A.Ershova [142]). Varieties
with modular subvariety lattice satisfying one of the identities xy = xn+1y
and xy = xyn+1 have been described in [132], while varieties with the same
property satisfying condition (2) of Theorem 11.1 have been characterized
in [131]. Case (3) reduces to studying nilvarieties with modular subvariety
lattice. The origin version of the proof a complete description of such va-
rieties is given in the dissertation [134] only. An essentially simpler version
of the proof was given in the cycle of paper [109, 124, 138] as a part of the
proof of certain stronger results that will be mentioned in Subsections 11.3
and 11.5.

Theorem 11.1 shows that varieties in question are periodic. It seems to
be possible to generalize this result to the case of epigroup varieties. The
corresponding problem already have been noted by the first author in [90]
as well as in [91] (Problem 3.21).

Problem 11.1. Describe varieties of epigroups with modular subvariety lat-
tice.
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It is known (see [91], Corollary 3.19) that every epigroup variety with
modular subvariety lattice consists of semilattices of archimedian semigroups.
11.2. Distributivity. The following problem was posed by the first

author more than 30 years ago and it is not solved in the general case so far.

Problem 11.2 ([97], Problem 2.60a). Describe varieties of semigroups with
distributive subvariety lattice.

The most progress in this direction has been obtained in [129, 131–133].
In [129], it has been verified that a statement analogous to Theorem 11.1
holds true for varieties with distributive subvariety lattice, in [131], va-
rieties with distributive subvariety lattice satisfying the condition (2) of
Theorem 11.1 have been described, while in [132] an analogous result has
been obtained for varieties satisfying one of the identities xy = xn+1y and
xy = xyn+1 (in this case a description is given “modulo groups”). Finally,
nilvarieties with distributive subvariety lattice have been completely deter-
mined in [133]; a simpler and shorter proof of this result is contained in [123].
Thus to complete a description of varieties with distributive subvariety lat-
tice, it remains to classify varieties of semigroups with completely regular
square having the discussed property. This problem includes as a particular
case the following problem that was posed by the first author simultaneously
with Problem 11.2.

Problem 11.3 ([97], Problem 2.60b). Describe varieties of completely reg-
ular semigroups with distributive subvariety lattice.

It is natural to speak about a description “modulo groups” here. The most
progress in this direction so far is due to V.V.Rasin [82]: an orthodox variety
has distributive subvariety lattice if and only if the subvariety lattice of its
largest group subvariety is distributive. The third author and T.A.Ershova
have proved that an analogous result holds true for every variety of semi-
groups with completely regular square such that in any semigroup of the
variety the set of all idempotents forms a subsemigroup (unpublished). This
strengthens not only the mentioned result by V.V.Rasin but also the result
by Gerhard [19] about distributivity of the subvariety lattice of the variety
of all semigroups with idempotent square (see Theorem 4.1).

As to a description of periodic group varieties with distributive subvariety
lattice, we note that this problem had attracted considerable attention in
the past but there have been no significant progress here since the middle
of the 1970s. Moreover, the aforementioned fact that there exists an un-
countable set of group varieties with three-element subvariety lattice (see
Theorem 10.2) causes certain pessimism here. Apparently, some progress in
classifying of periodic group varieties with distributive subvariety lattice can
be achieved only when some essentially new ideas would appear.

At the conclusion of this subsection, we mention the article [130] where
commutative semigroup varieties with distributive subvariety lattice are com-
pletely classified.
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11.3. Arguesity and semimodularity. According to Theorem 6.1,
the lattice CR is arguesian. This assertion was strengthened in [142] where
the arguesity of the subvariety lattice of an arbitrary variety of semigroups
with completely regular square was verified. Both these facts have been
generalized by the following statement.

Theorem 11.2 (B.M.Vernikov and M.V.Volkov [109, 124, 138]). For a
semigroup variety V, the following are equivalent : (a) the lattice L(V) is
arguesian; (b) the lattice L(V) is modular ; (c) the lattice L(V) is upper
semimodular ; (d) the lattice L(V) is weakly upper semimodular.

In view of results mentioned in Subsection 11.1, this theorem leads to a
complete description of semigroup varieties with arguesian or [weakly] upper
semimodular subvariety lattice.

Semigroup varieties whose subvariety lattice is [weakly] lower semimodular
have also been completely determined in [109,124,138]. It turns out that, in
lattices of semigroup varieties, lower semimodularity and weak lower semi-
modularity are equivalent to each other but not equivalent to modularity.
The gap between the corresponding classes of varieties is very small: as is
shown in [109,124,138], there are uncountably many minimal semigroup va-
rieties with non-modular subvariety lattice but only one of them has lower
semimodular subvariety lattice.

We note that there are many analogues between results of this subsection
and results of Subsection 5.2. But this analogy is not complete. So, it is
verified in [124] that these exists a non-trivial lattice identity that holds in all
weakly lower semimodular lattices of subvarieties of semigroup varieties, but
results of the work [105] allows one to readily find an example of an overcom-
mutative variety V such that the interval [COM, V] is lower semimodular
but does not satisfy any non-trivial lattice quasiidentity.
11.4. Interactions with multiplicative properties of fully invari-

ant congruences. Multiplicative properties of congruences are properties
formulated in terms of the product of congruences as binary relations. When
studying varieties, it is reasonable to focus on fully invariant congruences on
free algebras because these congruences correspond to varieties. The sim-
plest and “mostly popular” multiplicative property is permutability. We
call a semigroup variety V [almost ] fi-permutable if any two fully invariant
congruences [contained in the least semilattice congruence] on every V-free
semigroup permute.

Since the variety SL is an atom and a neutral element in SEM, well-known
properties of equivalence lattices imply that every almost fi-permutable
semigroup variety has a modular and, moreover, arguesian subvariety lat-
tice. This fact serves as a base for one of approaches to studying semigroup
varieties with modular subvariety lattice. A striking confirmation of a fruit-
fulness of this approach is the articles [63, 70]. It has been proved there
that every variety of completely regular semigroups is almost fi-permutable,
whence the lattice of all such varieties is arguesian.
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A complete description of fi-permutable and almost fi-permutable vari-
eties is obtained in [120] and [123] respectively. These results show that there
are some very unexpected relationships between the conditions we discuss
and identities in varietal lattices. A typical example of such relationships is
provided by the following

Proposition 11.1. If a semigroup variety V is [almost ] fi-permutable and
is not completely simple [completely regular ] then the lattice L(V) is distribu-
tive.

The part of this result concerning fi-permutable varieties has been ob-
tained in [120], while the part concerning almost fi-permutable varieties has
been proved in [123]. Results of such a kind dealing with other multiplicative
restrictions to fully invariant congruences have been obtained in [110–112].
11.5. Quasiidentities. Combinatorial semigroup varieties whose sub-

variety lattice belongs to a fixed quasivariety of modular lattices have been
described in [113]. The following fact has been proved there (the lattices
that appear in the formulation of this fact are introduced in Subsection 5.2).

Proposition 11.2 (B.M.Vernikov [113]). Let V be a non-trivial combina-
torial semigroup variety. If the lattice L(V) is modular, then it is quasiequa-
tionally equivalent to one of the following lattices: 1) the two-element chain;
2) M3; 3) M4; 4) M3,3; 5) M4 ×M3,3; 6) M4,3.

In case 1) the lattice L(V) is distributive; a description of combinato-
rial varieties with distributive subvariety lattice readily follows from results
of [124,133]. A classification of combinatorial varieties corresponding to each
of the cases 2)–5) of Proposition 11.2 is given in [113]. Finally, combinato-
rial varieties whose subvariety lattice is quasiequationally equivalent to the
lattice M4,3 have been determined in [109,124,138].

The modularity of the lattice CR immediately implies that (upper or
lower) semidistributivity is equivalent to distributivity for subvariety lattices
of completely regular varieties. But no a priori consideration allows one to
state that this equivalence would take place for lattices of nilvarieties too.
Nevertheless, the following analogue of Theorem 5.2 holds.

Theorem 11.3 (B.M.Vernikov [108]). For a nilvariety V, the following are
equivalent : (a) L(V) ∈ M3; (b) the lattice L(V) is upper semidistributive;
(c) the lattice L(V) is lower semidistributive; (d) the lattice L(V) is distribu-
tive.

In view of the results of [133] mentioned in Subsection 11.2, this theorem
gives a complete description of nilvarieties of semigroups whose subvariety
lattice is (upper or lower) semidistributive or belongs to any other quasi-
variety of lattices that does not contain the lattice M3. We note that for
arbitrary (and moreover for combinatorial) semigroup varieties none of the
conditions (a)–(c) of Theorem 11.3 is equivalent to the condition (d).
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11.6. “Narrowness” conditions. A limit strengthening of the distribu-
tive law is the property of being a chain. A chain variety is a variety whose
subvariety lattice is a chain. Non-group chain semigroup varieties have been
classified in [95], while results of the article [6] readily imply a description of
locally finite chain group varieties. The problem of a classification of chain
group varieties beyond the locally finite case seems to be extremely difficult
in view of Theorem 10.2. Chains are lattices of width 1. Non-nilpotent and
non-group semigroup varieties whose subvariety lattice is of width 2 have
been determined in [96], while nilpotent varieties whose subvariety lattice
has just one pair of non-comparable elements (the “extreme” particular case
of lattices of width 2) have been classified in [102].

12. Lattice universality

A semigroup variety V is called lattice universal if the lattice L(V) contains
an interval dual to the partition lattice on a countably infinite set. We note
that in this case the lattice L(W) for an arbitrary variety of algebras W
of at most countable similarity type is embeddable into L(V), and this fact
explains our terminology. The first example of a lattice universal semigroup
variety was given by Burris and Nelson [10]: this is the variety var {x2 =
x3}. Later Ježek [29] showed that the smaller variety var {x2 = 0} also is
lattice universal. The third author and M.V. Sapir have described lattice
universal varieties in rather a large class of varieties. The formulation of this
(unpublished) result involves the Zimin words [144] defined by the following
recurrent way: Z1 = x1, Zn+1 = Znxn+1Zn.

Theorem 12.1 (M.V.Volkov and M.V. Sapir). Suppose that a semigroup
variety V is defined by identities depending on at most n variables and all
periodic groups in V are locally finite. Then V is lattice universal if and only
if it does not satisfy any non-trivial identity of the form Zn+1 = w.

One can consider a weaker version of lattice universality: the variety V
is said to be finitely universal if the lattice L(V) contains the dual copy of
the partition lattice of an arbitrary finite set (and therefore, according to
a known result by Pudlak and Tu̇ma [81], it contains an isomorphic copy
of an arbitrary finite lattice). It is known [11] that the variety COM is
finitely universal; moreover, I. O.Korjakov [43] has proved that the dual of
the partition lattice of any finite set is embeddable even in the lattice of all
commutative nilpotent semigroup varieties. It is easy to see that the variety
COM is a minimal finitely universal variety. Another known example of a
minimal finitely universal variety is the variety H = var {x2 = xyx = 0},
see [121]. Results of [88] imply that if a semigroup variety contains neither
COM nor H then it is either periodic and permutational or a variety of
finite degree. This fact and results about varieties of finite width discussed
in Subsection 10.3 imply that if a finitely universal variety does not contain
COM and H then it must be a variety of finite degree. But the following
question is open so far.
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Question 12.1. Does there exist a finitely universal semigroup variety of
finite degree?

Since the varietyH plays an important role in problems we consider, the question
about a structure of the lattice L(H) is quite interesting. Every proper subvariety of
the variety H is given within H by some family of permutation identities (according
to a result by Pollák [77], we may assume that this family is finite) and/or an
identity of nilpotency of some degree. This description of the set of all subvarieties
of the variety H (without indicating of a lattice order on this set) is given in
the paper [49], for instance. The more interesting fact is that, in spite of very
complex local structure of the lattice L(H), this lattice admits quite a simple global
description in terms of subgroup lattices of symmetric groups. In order to formulate
this description, we denote by Ln the subgroup lattice of the group Sn with the
new greatest element adjoined. It can be easily deduced from Theorem 7.1 that the
lattice L(H) is dual to a subdirect product of the lattices Ln where n runs over all
positive integers; results of [77] allows one to explicitly describe the image of L(H)
under its dual embedding into

∏
n∈N

Ln.

There exist finite semigroups generating finitely universal varieties. For
instance, the 5-element Brandt semigroup has this property (it generates
the variety containing H). The question arises what is the minimal num-
ber n with the property that there is an n-element semigroup generating
a finitely universal variety. An answer to this question has been found by
Lee [50] who has proved that n = 4 and has listed all 4-element semigroups
generating a finitely universal variety. It turns out that there are only four
such semigroups up to isomorphism and antiisomorphism. Subvarieties of
varieties generated by each of these four semigroups have been classified
in [48,49,143].

13. Other restrictions

13.1. Symmetry conditions. A semigroup variety V is called selfdual
if its subvariety lattice is dual to itself, and is called admitting dualism if
there is a semigroup variety V∗ such that the lattices L(V) and L(V∗) are
dual to each other. A variety is called hereditarily selfdual [hereditarily ad-
mitting dualism] if all its subvarieties are selfdual [admit dualism]. In [103],
hereditarily selfdual varieties have been described, it has been verified that
a semigroup variety admitting dualism is periodic, and essential information
about hereditarily admitting dualism varieties has been obtained. In partic-
ular, it has been verified there that the subvariety lattice of any such variety
is lower semimodular. This statement and Theorem 11.2 easily imply the
following essentially stronger fact: the subvariety lattice of any hereditarily
admitting dualism semigroup variety is distributive.
13.2. Complementability and related conditions. Recall that a

lattice L with 0 and 1 is called a lattice with upper semicomplements if, for
any x ∈ L \ {0}, there is y ∈ L \ {1} with x ∨ y = 1.
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Theorem 13.1. For a semigroup variety V, the following are equivalent :
(a) L(V) is a lattice with upper semicomplements; (b) L(V) is a comple-
mented lattice; (c) L(V) is a finite Boolean algebra; (d) V is the join of a
finite number of atoms of the lattice SEM.

The equivalence of the assertions (b)–(d) was proved in [118], while the
assertions (a) and (b) are equivalent for arbitrary varieties of universal alge-
bras [14]. Since the description of atoms of the lattice SEM is known (see
Section 1), Theorem 13.1 gives a complete description of semigroup varieties
whose subvariety lattice is upper semicomplemented, complemented or satis-
fies all standard stronger versions of complementability (such as the relative
complementness, the uniqueness of complements etc.).

Results of [14, 118] imply an analogue of Theorem 13.1 for varieties of
inverse or completely regular semigroups.

The lower semicomplementness condition dual to upper semicomplementness
one is not interesting from the viewpoint of varietal lattices since simplest lattice-
theoretical considerations show that a complete atomic lattice is lower semicomple-
mented if and only if its largest element is the join of all its atoms.

13.3. Decomposability into the direct product. Semigroup vari-
eties whose subvariety lattice is decomposable into a direct product have
been studied in [101]. A necessary condition has been found, varieties with
the mentioned property in several classes of semigroups varieties have been
determined and the following result has been proved there.

Proposition 13.1 (B.M.Vernikov [101]). If K is a completely regular semi-
group variety and N is a nilvariety, then L(K ∨N ) ∼= L(K) × L(N ) if and
only if either K ⊆ SL or N ⊆ ZM or the variety K is commutative and
N ⊆ var{x2y = xyx = yx2 = 0}.

Unfortunately, this result is not known enough, and this occasionally leads
to incorrect statements in some papers. For example, it has been claimed
in [42] that, for any n and k, the lattice of all varieties consisting of ideal
extensions of rectangular bands of groups fromAk by n-nilpotent semigroups
is the direct product of the lattice L(Ak) and the lattice of all varieties
consisting of ideal extensions of rectangular semigroups by n-nilpotent semi-
groups. But Proposition 13.1 shows that this is incorrect whenever k > 1
and n > 3.

CHAPTER IV. Special elements
of the lattice of semigroup varieties

14. Modular and related elements

Informally speaking, results from Subsection 11.1 indicate the zones of
“global modularity” in the lattice SEM. In order to investigate the phenom-
enon of modularity in SEM, the next natural step is to consider varieties
that guarantee, so to speak, local modularity in their neighborhood. Here
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we have in mind studying modular elements of the lattice SEM and other
types of its elements whose definitions are based on the modular law in some
way.

Along with modular, upper-modular and lower-modular elements (whose
definitions are given in Subsection 0.2), it seems to be natural to consider
elements that have all these three properties simultaneously. We call such
elements strongly modular. A semigroup variety is called modular [upper-
modular, lower-modular, strongly modular, neutral ] if it is a modular [upper-
modular, lower-modular, strongly modular, neutral] element of the lattice
SEM.

An essential step in investigation of modular varieties is the following

Theorem 14.1. If a variety V is modular, then either V = SEM or V =
M∨N where M⊆ SL and N is a nilvariety.

This statement (in a slightly weaker version and in another terminology)
is contained in the paper [31] by Ježek and McKenzie6. The more precise
formulation given above is taken from [114].

Theorem 14.1 completely reduces studying modular varieties to the nil-
case. In this case there are one necessary and one sufficient condition, and a
gap between these conditions seems to be not very large. We call an identity
u = v substitutive if the words u and v depend on the same letters and v
may be obtained from u by renaming of letters. The following proposition
is true.

Proposition 14.1. 1) Every modular nilvariety may be defined by 0-reduced
and substitutive identities only. 2) Every 0-reduced semigroup variety is
modular.

The first assertion of this proposition has been proved in [114], the sec-
ond one has been observed in [119] and (in other terminology) in [31]. We
note that proofs of both statements of Proposition 14.1 use some ideas from
Ježek’s paper [30].

To achieve further progress in studying modular varieties, one has to con-
sider nilvarieties satisfying substitutive identities. The simplest particular
case of substitutive identities is permutation identities. Thus the following
problem arises naturally.

Problem 14.1. Describe permutational modular semigroup varieties.

Some first steps in solving of this problem have been made in [114]. In
particular, commutative modular varieties have been described there.

Let us turn to upper-modular and lower-modular varieties. We note that
necessary conditions for these two types of varieties have been given in [117]

6This paper has dealt with the lattice of equational theories of semigroups rather than
the lattice SEM. We note that the modular elements of the former lattice precisely cor-
respond to the modular semigroup varieties because the definition of a modular element
of a lattice is selfdual.



LATTICES OF SEMIGROUP VARIETIES 33

and [115] respectively. In particular, it turns out that a proper variety with
any of these properties is periodic. A description of upper-modular and
lower-modular varieties in the nil-case has been obtained in [125] and [115]
respectively, while in the commutative case the same has been achieved
in [117] and [115] respectively. The paper [116] contains a classification
of lower-modular varieties in which some power of every semigroup is com-
pletely regular and of lower-modular varieties of degree ≤ 2; in the latter
case the properties of being a lower-modular element and of being a neutral
element turn out to be equivalent. We note that the proofs in [116] have
made an essential use of techniques developed by M.V. Sapir in [87].

To advance further in studying upper-modular and lower-modular vari-
eties, it is necessary, first of all, to answer the following questions.

Question 14.1. Does there exist a non-upper-modular variety of semigroups
with completely regular square?

Question 14.2. Does there exist a) a proper non-combinatorial lower-
modular semigroup variety and b) a lower-modular but non-modular semi-
group variety?

In the connection with Question 14.2b, it is worth noting that all five
other potentially possible implications between the properties to be modular,
upper-modular and lower-modular varieties are false: there exist modular but
not upper-modular, modular but not lower-modular, upper-modular but not
modular, upper-modular but not lower-modular, and lower-modular but not
upper-modular varieties.

Let us turn now to strongly modular and neutral varieties. We note that
any neutral element of an arbitrary lattice is strongly modular, but the
converse statement is false in general. Nevertheless, the following is true.

Theorem 14.2. For a semigroup variety V, the following are equivalent :
(a) V is both upper-modular and lower-modular ; (b) V is strongly modular ;
(c) V is neutral ; (d) V coincides with one of the varieties T , SL, ZM,
SL ∨ ZM or SEM.

The equivalence of assertions (b)–(d) has been proved in [140], while the
equivalence of assertions (a) and (d) has been verified in [116].

It remains to note that varieties that are both modular and upper-modular
have been determined in [125], while varieties that are both modular and
lower-modular have been classified in [140].

15. Definable sets of varieties

A subset A of a lattice 〈L;∨,∧〉 is called definable in L if there exists a
first order formula Φ(x) with one free variable x in the language of lattice
operations ∨ and ∧ which defines A in L. This means that, for an element
a ∈ L, the sentence Φ(a) is true if and only if a ∈ A. If A consists of a single
element, we speak about definability of this element. It is evident that, for
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a semigroup variety V, if the sentence Φ(V) is true then the sentence Φ(
←−V )

also is. A variety V is called semidefinable if the set {V,
←−V } is definable in

the lattice SEM.
A number of deep results about varieties and sets of varieties definable in

SEM have been obtained in the paper [31] by Ježek and McKenzie. It has
been conjectured there that every finitely based semigroup variety is semide-
finable. It is easy to see that the affirmative answer to Question 1.1 would
imply that this conjecture fails. The main results of [31] are summarized
in the following theorem. In particular, this theorem confirms the above
conjecture for locally finite varieties.

Theorem 15.1 (Ježek and McKenzie [31]). 1) The sets of all finitely based,
all locally finite, all finitely generated and all 0-reduced semigroup varieties
are definable in the lattice SEM. 2) Every finitely based locally finite and
every finitely generated semigroup variety is semidefinable.

For each set of varieties from assertion 1) of this theorem, the paper [31]
contains no explicit first order formula defining this set. Quite a simple
formula defining the set of all 0-reduced varieties has been written down
in [140]. An even simpler formula is exhibited in [115].

If V is a commutative variety then V is finitely based [66] and V =
←−V .

If, besides that, V 6= COM then V is locally finite. It is easy to verify that
the variety COM is definable in the lattice SEM. Therefore assertion 2) of
Theorem 15.1 implies the following

Corollary 15.1. Every commutative semigroup variety is definable in the
lattice SEM.

On the other hand, there exist commutative varieties that are not defin-
able in the lattice Com. It follows from the existence of non-trivial auto-
morphisms of this lattice. First examples of such automorphisms have been
given in [37]. In the recent paper [25], a description of the automorphism
group of the lattice Com is obtained; it turns out that this group is uncount-
ably infinite and satisfies the identity x2 = 1 (whence it is abelian).

Definability of several varieties and sets of varieties of commutative semi-
groups in the lattice Com has been proved in [37]. In particular, the follow-
ing is true.

Theorem 15.2 (Kisielewicz [37]). The set of all varieties generated by
abelian groups, every variety generated by an abelian group, the set of all
Schwabauer varieties and every Schwabauer variety are definable in the lat-
tice Com.

The study of commutative varieties definable in the lattice Com has been
completed in [25] where a characterization of all such varieties has been
found.



LATTICES OF SEMIGROUP VARIETIES 35

References∗
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[29] J. Ježek, “Intervals in lattices of varieties”, Algebra Universalis, 6, 147–158 (1976).
[Sections 1 and 12]
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