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Abstract. A semigroup variety is called modular [upper-modular, lower-
modular, neutral ] if it is a modular [respectively upper-modular, lower-
modular, neutral] element of the lattice of all semigroup varieties. We
classify all lower-modular varieties in the class of varieties of semigroups
with a completely regular power, in the class of varieties of index ≤ 2,
and in the class of varieties satisfying an identity of the form x1x2 · · ·xn =
x1πx2π · · ·xnπ where π is a permutation on the set {1, 2, . . . , n} with 1π 6= 1
and nπ 6= n. It turns out that every lower-modular variety is modular in all
these three classes. Moreover, for varieties of index ≤ 2, the properties of
being lower-modular, modular and neutral are equivalent. We completely
determine also all semigroup varieties that are both upper-modular and
lower-modular. It turns out that all such varieties are neutral.

Introduction

The class of all semigroup varieties forms a lattice under the following nat-
urally defined operations: for varieties X and Y, their join X ∨ Y is the va-
riety generated by the set-theoretical union of X and Y (as classes of semi-
groups), while their meet X ∧ Y coincides with the set-theoretical intersection
of X and Y. Special elements of different types in lattices of varieties of semi-
groups or universal algebras have been examined in several articles (see, for
instance, [4, 5, 9–14, 16]). Here we continue these investigations. Recall the
definitions of special elements considered in this article.

An element x of a lattice 〈L;∨,∧〉 is called modular if

∀ y, z ∈ L : y ≤ z −→ (x ∨ y) ∧ z = (x ∧ z) ∨ y,

and lower-modular if

∀ y, z ∈ L : x ≤ y −→ (z ∨ x) ∧ y = (z ∧ y) ∨ x.

Upper-modular elements are defined dually to lower-modular ones. An element
x of a lattice L is called neutral if

∀y, z ∈ L : (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x) = (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x).
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As is well known, x is neutral if and only if, for all y, z ∈ L, the sublattice of L
generated by x, y and z is distributive (see [3, Theorem III.2.4], for instance).

For convenience, we call a semigroup variety modular [lower-modular, upper-
modular, neutral ] if it is a modular [lower-modular, upper-modular, neutral]
element of the lattice SEM of all semigroup varieties. A number of results
about varieties of these four types have been obtained in [5, 10–14, 16]. In
particular, lower-modular varieties have been examined in [11]. This article is
a direct continuation of [11].

In [11], we have found a necessary condition for a semigroup variety to
be lower-modular (see [11, Theorem 1] or Proposition 1.3 below), completely
determined all commutative lower-modular varieties (see [11, Theorem 2] or
Corollary 4.2 below) and described lower-modular nil-varieties (see [11, Corol-
lary 2.7]). Recall some definitions. A semigroup variety is called completely reg-
ular if it consists of completely regular semigroups (that is, unions of groups).
A semigroup variety is called combinatorial if all its groups are singleton. A
semigroup variety is said to be proper if it differs from the variety SEM of
all semigroups. The following open problems and questions were formulated
in [11].

Problem 1 ( [11, Problem 3.1]). Describe the completely regular semigroup
varieties that are lower-modular elements of the lattice SEM.

Problem 2 ([11, Problem 3.3]). Describe the semigroup varieties that are both
upper-modular and lower-modular elements of the lattice SEM.

Question 1 ([11, Question 3.2]). Let V be a proper semigroup variety and a
lower-modular element of the lattice SEM. Is the variety V combinatorial?

Question 2 ([11, Question 3.7]). Does there exist a semigroup variety that is
a lower-modular but not modular element of the lattice SEM?

Note that an interest to Problem 2 is strengthened by the fact that semigroup
varieties that are both modular and upper-modular have been completely de-
termined in [14, Theorem 1], while varieties that are both modular and lower-
modular have been described in [16, Theorem 3.1].

In this article we solve Problems 1 and 2 in the general case and answer Ques-
tions 1 and 2 in three special cases. The article contains three main results.
To characterize these results, we need some new definitions. A semigroup vari-
ety V is called a variety of semigroups with a completely regular power (CRP-
variety, for brevity) if there exists a positive integer n such that, for every
member S of V, the semigroup Sn is completely regular. It is evident that
every completely regular variety is a CRP-variety. The first main result of the
article (Theorem 2.4) gives a description of lower-modular CRP-varieties. A
semigroup variety is said to be a variety of finite index [of index n] if all its
nilsemigroups are nilpotent of index ≤ n for some n [and n is a least number
with such a property]. As is well known, the varieties of index 1 are precisely
the completely regular varieties. The second main result of the article (The-
orem 3.3) gives a description of lower-modular varieties of index ≤ 2. As we
have already mentioned, commutative lower-modular varieties are completely
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determined in [11, Theorem 2]. A natural generalization of the commutative
law is a permutation identity, that is, an identity of the form

(1) x1x2 · · ·xn = x1πx2π · · ·xnπ

where π is a non-trivial permutation on the set {1, 2, . . . , n}. The third main
result of the article (Theorem 4.1) gives a description of lower-modular varieties
satisfying an identity of the form (1) with 1π 6= 1 and nπ 6= n.

Each of Theorems 2.4 and 3.3 immediately implies a solution of Problem 1
(see Corollary 3.4). Theorem 3.3, together with a result of [11], implies a
solution of Problem 2 (see Corollary 3.5). In particular, it turns out that a
semigroup variety is both upper-modular and lower-modular if and only if it is
neutral. Besides that, Theorems 2.4, 3.3 and 4.1 imply an affirmative answer
to Question 1 and a negative answer to Question 2 in the classes of varieties
considered in these theorems1. For one of these classes, we have a result that
is essentially stronger than the statement following from a negative answer to
Question 2. Namely, Theorem 3.3 shows that, for varieties of index ≤ 2, the
properties of being lower-modular, modular and neutral are equivalent.

Note that Theorem 2.4 plays the key role in the article. In fact, two other
theorems are proved by a reduction to Theorem 2.4. It turns out that, within
the classes of varieties considered in Theorems 3.3 and 4.1, every lower-modular
variety is a CRP-variety.

CRP-varieties and varieties of index ≤ 2 are varieties of finite index. The
success in determining the lower-modular varieties within these two classes of
varieties inspires the following

Problem 3. Describe the semigroup varieties of finite index that are lower-
modular elements of the lattice SEM.

A semigroup variety is called permutational if it satisfies a permutation iden-
tity. The following problem seems to be natural in view of Theorem 4.1.

Problem 4. Describe the permutational semigroup varieties that are lower-
modular elements of the lattice SEM.

Note that a solution of Problem 3 would imply a solution of Problem 4 (see
Corollary 1.4 below).

The article is structured as follows. It consists of 4 sections. Section 1
contains some preliminary information. In Sections 2, 3 and 4, we prove Theo-
rems 2.4, 3.3 and 4.1, respectively.

1. Preliminaries

We denote by T the trivial semigroup variety, by SL the variety of all semi-
lattices and by ZM the variety of all semigroups with zero multiplication. The
following lemma is well known (see [1], for instance).

Lemma 1.1. The varieties SL and ZM are atoms of the lattice SEM. ¤

1Note that Question 2 is also answered in the negative for nil-varieties [11, Corollary 2.8].
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We will denote by F the free semigroup over a countably infinite set. Clearly,
if w is a semigroup word then a semigroup S satisfies the identity system
wu = uw = w, where u runs over F , if and only if S contains a zero element 0
and all values of the word w in S equal 0. We adopt the usual convention of
writing w = 0 as a short form of such a system and referring to the expression
w = 0 as to a single identity. A semigroup variety is called a nil-variety if
it satisfies an identity of the form xn = 0 for some positive integer n. The
following proposition readily follows from [5, Proposition 1.6] (a deduction of
Proposition 1.2 from the mentioned result of [5] is given explicitly in [10, Propo-
sition 2.1]).

Proposition 1.2. If a proper semigroup variety V is modular then V = M∨N
where M is one of the varieties T or SL, while N is a nil-variety. ¤

Note that Proposition 1.2 has been essentially sharpened in [10, Theorem 2.5].
Recall that a semigroup variety is called periodic if every member of it is

periodic. It is well known and easy to see that an arbitrary periodic variety V
contains a greatest nil-subvariety. We denote this subvariety by Nil(V). The
identities of the form w = 0 we call 0-reduced. A semigroup variety is called
0-reduced if it can be defined by 0-reduced identities only. (In the literature
such varieties were sometimes referred to as Rees, see [16], for instance.)

Proposition 1.3 ([11, Theorem 1]). If a proper semigroup variety V is a lower-
modular element of the lattice SEM then V is periodic and the variety Nil(V) is
0-reduced. ¤

A semigroup variety is called nilpotent [of index m] if it satisfies an identity
of the form x1x2 · · ·xm = 0 for some positive integer m [and m is a least number
with such a property]. For a permutation identity (1), the number n is called
a length of the identity. It is evident that if a 0-reduced variety N satisfies a
permutation identity of length n then N is nilpotent of index ≤ n. Therefore
Proposition 1.3 implies the following

Corollary 1.4. If a semigroup variety V is a lower-modular element of the
lattice SEM and V satisfies a permutation identity of length n then V is a
variety of index ≤ n. ¤

Proposition 1.5 ( [16, Proposition 2.4]). A semigroup variety is a neutral
element of the lattice SEM if and only if it is one of the varieties T , SL, ZM,
SL ∨ ZM or SEM. ¤

We need some additional notation. The symbol ≡ stands for the equality
relation on the semigroup F . If w is a word and x is a letter then we denote by
`(w) the length of w, by `x(w) the number of occurrences of x in w, by c(w) the
set of all letters occurring in w, and by t(w) the last letter of w. We denote by
LZ [respectively RZ] the variety of all left [right] zero semigroups. As usual,
we denote by varΣ the semigroup variety given by the identity system Σ. Put

C = var{x2 = x3, xy = yx},
P = var{xy = x2y, x2y2 = y2x2}.
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It is well known and may be easily verified that the variety C is generated
by the semigroup {0, c, 1} where {0, c} is the 2-element semigroup with zero
multiplication and 1 is the unit element. It is well known also that the variety
P is generated by the semigroup {e, a, 0} where e2 = e, ea = a and all other
products are equal to 0. By

←−P we denote the semigroup variety dual to P. The
claims (i) and (ii) of the following lemma are well known and may be easily
verified, the claim (iii) was proved in [2, Lemma 7].

Lemma 1.6. The identity u = v holds in the variety :
(i) RZ if and only if t(u) ≡ t(v);
(ii) C if and only if c(u) = c(v) and, for every letter x ∈ c(u), either

`x(u), `x(v) > 1 or `x(u) = `x(v) = 1;
(iii) P if and only if c(u) = c(v) and either `t(u)(u), `t(v)(v) > 1 or `t(u)(u) =

`t(v)(v) = 1 and t(u) ≡ t(v). ¤
Recall that a semigroup variety is called a variety with central idempotents if

it satisfies the quasiidentity e2 = e −→ ex = xe. It is verified in [15, Lemma 2]
that if a semigroup variety V contains none of the varieties P,

←−P , LZ and RZ
then V is a variety with central idempotents. Further, it follows from the proof
of [15, Proposition 1] that a periodic semigroup variety with central idempotents
is the join of a variety generated by some monoid and a nil-variety. Thus we
have the following

Lemma 1.7. If a periodic semigroup variety V contains none of the varieties
P,
←−P , LZ and RZ then V = M∨N where the variety M is generated by some

monoid and N = Nil(V). ¤
The following claim was announced by A. P.Birjukov in 1981 (see [7, Sec-

tion 8], for instance). But its proof is published first in [12, Proposition 2.11],
as far as we know.

Lemma 1.8. Let n be a positive integer. A semigroup variety is a variety of
index ≤ n if and only if it satisfies an identity of the form

x1 · · ·xn = x1 · · ·xi−1(xi · · ·xj)r+1xj+1 · · ·xn

for some positive integer r and some i, j with 1 ≤ i ≤ j ≤ n. ¤
If V is a CRP-variety then a minimal number n such that, for every S ∈

V, the semigroup Sn is completely regular will be denoted by crp(V). For a
semigroup variety V, we write ind(V) = n if V is a variety of (finite) index n,
and ind(V) = ∞ if V is not a variety of finite index.

Lemma 1.9. Let n be a positive integer. For a semigroup variety V, the fol-
lowing are equivalent :

a) V is a variety of semigroups with a completely regular power and
crp(V) ≤ n;

b) V satisfies an identity of the form

(2) x1x2 · · ·xn = (x1x2 · · ·xn)r+1

for some positive integer r;
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c) ind(V) ≤ n and V contains none of the varieties P and
←−P .

Proof. As is well known, a semigroup variety is completely regular if and only
if it satisfies an identity of the form x = xr+1 for some positive integer r. This
immediately implies the equivalence of the claims a) and b).

b) =⇒ c). If V satisfies an identity of the form (2) then V contains none
of the varieties P and

←−P by Lemma 1.6(iii) and its dual, and ind(V) ≤ n by
Lemma 1.8.

The implication c) =⇒ b) was proved in [8, Theorem 2]. ¤

2. Varieties of semigroups with a completely regular power

To prove the main result of this section (Theorem 2.4), we need the technique
developed by Sapir in [6]. We introduce the basic notation from that paper. Let
G be a periodic group variety and {vi = 1 | i ∈ I} a basis of identities of G (as a
variety of groups) where vi are semigroup words. Let r = exp(G) where exp(G)
stands for the exponent of the variety G. For a letter x, put x0 = xr(r+1). Let

S(G) = var{xyz = xyr+1z, x0y0 = y0x0, x2 = xr+2, xv2
i y = xviy | i ∈ I}.

As it is shown in [6], the variety S(G) does not depend on the particular choice
of the basis {vi = 1 | i ∈ I}. Furthermore, let F (G) be the free group of
countably infinite rank in G. A subset X of F (G) is called verbal if it is closed
under all endomorphisms of F (G). Clearly, a verbal subset X of F (G) is a set
of all values in F (G) of some set W of words; in this case we write X = G(W ).
If X is a verbal subset in F (G) and X = G(W ) then we put

S(G, X) = S(G) ∧ var
{
xwx = (xwx)r+1 | w ∈ W

}
.

If X = {1} where 1 is the unit element of F (G) then we will write S(G, 1) rather
than S

(G, {1}). It is convenient to consider the empty set as a verbal subset in
F (G) and put S(G,∅) = S(G).

As usual, if X is a variety then L(X ) stands for the subvariety lattice of X .
A distinguished role in the sequel play the following

Lemma 2.1 (the part a) of the main theorem in [6]). Let G be a variety of
periodic groups. The interval

[
S(T , 1), S(G)

]
of the lattice L

(
S(G)

)
consists

of all varieties of the form S(H, X) where H ⊆ G and X is a (possibly empty)
verbal subset of F (G). Here, for varieties S(H, X) and S(H′, X ′) from the
interval

[
S(T , 1), S(G)

]
, the inclusion S(H′, X ′) ⊆ S(H, X) holds if and only if

H′ ⊆ H and there exists a set of words W such that X = H(W ) and H′(W ) ⊆
X ′. ¤

It is well known and easy to see that an arbitrary periodic variety V contains
a greatest group subvariety. We denote this subvariety by Gr(V).

Lemma 2.2. If a variety of semigroups with a completely regular power V is a
lower-modular element of the lattice SEM then V is a combinatorial variety.

Proof. Put G = Gr(V), Y = V∨S(G, 1) and Z = S(T ). Lemma 2.1 implies that
the lattice L

(
S(G)

)
contains a sublattice shown in Fig. 1.
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(
S(G)

)

Using the equality S(G) = S(T ) ∨ G (see Fig. 1) and the inclusion G ⊆ V, we
have

Y = S(G, 1) ∨ V ⊆ S(G) ∨ V = S(T ) ∨ G ∨ V = S(T ) ∨ V = Z ∨ V.

Therefore (Z ∨ V) ∧ Y = Y. Since the variety V is lower-modular and V ⊆ Y,
we have (Z ∧ Y) ∨ V = (Z ∨ V) ∧ Y, whence

(3) (Z ∧ Y) ∨ V = Y.

Furthermore, S(T , 1) = S(T ) ∧ S(G, 1) (see Fig. 1), and therefore

S(T , 1) = S(T ) ∧ S(G, 1) ⊆ S(T ) ∧ (V ∨ S(G, 1)
)

= Z ∧ Y ⊆ Z = S(T ),

that is, S(T , 1) ⊆ Z ∧ Y ⊆ S(T ). It is evident that the group F (T ) contains
only two verbal subsets, namely ∅ and {1}. Therefore Lemma 2.1 implies that
the interval

[
S(T , 1), S(T )

]
of the lattice L

(
S(T )

)
consists of the varieties

S(T , 1) and S(T ) only. Thus either Z ∧ Y = S(T , 1) or Z ∧ Y = S(T ). Let us
consider these two cases separately.

Case 1: Z ∧ Y = S(T , 1). Note that S(T , 1) ∨ G = S
(G, F (G)

)
(see Fig. 1).

Using the equality (3) and the inclusion G ⊆ V, we have

S
(G, F (G)

) ∨ V = S(T , 1) ∨ G ∨ V = S(T , 1) ∨ V
= (Z ∧ Y) ∨ V = Y = S(G, 1) ∨ V,

that is,

(4) S
(G, F (G)

) ∨ V = S(G, 1) ∨ V.

By Lemma 1.9, the variety V satisfies the identity (2) for some positive integers
n and r. Let r be a minimal number with such a property. Substituting 1 for
x2, . . . , xn in (2), we obtain that every group in V satisfies the identity x = xr+1.
Therefore exp(G) divides r. Moreover, the choice of r implies that exp(G) = r.
Let w be an arbitrary word. The definition of the variety S

(G, F (G)
)

shows
that it satisfies the identity

(5) xwx = (xwx)r+1.
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Let k be a positive integer with

k ≥ n− 2
`(w)

and k = mr + 1 for some m.

Then the variety S
(G, F (G)

)
satisfies the identity

(6) xwkx = (xwkx)r+1.

Since V satisfies the identity (2) and `(xwkx) ≥ n, the identity (6) holds in the
variety S

(G, F (G)
) ∨ V. The equality (4) implies that (6) holds in S(G, 1) ∨ V,

and therefore in S(G, 1). By the definition of the variety S(G), it satisfies the
identity xyz = xyr+1z. This identity implies

xwx = xwr+1x ≡ x · w · wrx = x · wr+1 · wrx ≡ xw2r+1x ≡ x · w · w2rx

= x · wr+1 · w2rx ≡ xw3r+1x = · · · = xwmr+1x ≡ xwkx.

We see that the identity

(7) xwx = xwkx

holds in the variety S(G), and therefore in S(G, 1). Combining (6) and (7), we
have that the identity (5) holds in S(G, 1). Thus the variety S(G, 1) satisfies
the identity (5) for every word w. The variety S

(G, F (G)
)

is given within S(G)
by the set of all identities of the form (5) where w runs over F . Since all these
identities hold in S(G, 1), the inclusion S(G, 1) ⊆ S

(G, F (G)
)

is the case. The
opposite inclusion is evident, whence S(G, 1) = S

(G, F (G)
)
. By Lemma 2.1,

this means that F (G) = {1}. In other words, G = T , and we are done.
Case 2: Z ∧ Y = S(T ). As we have already noted above, S(G) = S(T ) ∨ G

(see Fig. 1). Taking into account the equality (3) and the inclusion G ⊆ V, we
have

S(G, 1) ∨ V = Y = (Z ∧ Y) ∨ V = S(T ) ∨ V = S(T ) ∨ G ∨ V = S(G) ∨ V.

We see that

(8) S(G, 1) ∨ V = S(G) ∨ V.

Let w be an arbitrary word such that the variety G satisfies (as a variety of
groups) the identity w = 1, and k a positive integer with

k ≥ n− 2
`(w)

and k = 2m for some m.

The variety G satisfies the identity wk = 1. The definition of the variety S(G, 1)
shows that it satisfies the identity (6). Since V satisfies the identity (2) and
`(xwkx) ≥ n, the identity (6) holds in the variety S(G, 1)∨V. The equality (8)
implies that (6) holds in S(G) ∨ V, and therefore in S(G). We always may
include the identity w = 1 in the identity basis of G. By the definition of the
variety S(G), it satisfies the identity xwx = xw2x, and therefore the identities

xwx = xw2x = xw4x ≡ x(w · w2 · w)x = x(w · w4 · w)x ≡ xw6x

≡ x(w2 · w2 · w2)x = x(w2 · w4 · w2)x ≡ xw8x = · · · = xw2mx ≡ xwkx.

We see that S(G) satisfies the identity (7). Combining (6) and (7), we have
that the identity (5) holds in S(G). Thus if G satisfies the identity w = 1 then
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S(G) satisfies the identity (5). Therefore S(G) ⊆ S(G, 1) but this inclusion
contradicts Lemma 2.1.

Lemma is proved. ¤
Lemma 2.3. If a semigroup variety V is a lower-modular element of the lattice
SEM and V satisfies an identity of the form

x1 · · ·xn = x1 · · ·xi−1(xi · · ·xn)r+1

for some positive integers n and r and some i with 1 ≤ i ≤ n then V does not
contain the variety RZ.

Proof. Arguing by contradiction, suppose that RZ ⊆ V. Put

V∗ = var
{
x1 · · ·xn+1 = x1 · · ·xi−1(xi · · ·xn)r+1xn+1

}
.

Clearly, V ⊆ V∗. Let us consider the variety C ∧ V∗. Put

Cm = var{x2 = x1x2 · · ·xm = 0, xy = yx},
Cω = var{x2 = 0, xy = yx}

(in particular, C1 = T and C2 = ZM). It is well known that the lattice L(C) has
the form shown in Fig. 2 (see [1], for instance). By Lemma 1.8, ind(V∗) ≤ n+1.
Fig. 2 shows that if X ⊆ C and ind(X ) ≤ m for some positive integer m then
X ⊆ SL ∨ Cm. Therefore C ∧ V∗ ⊆ SL ∨ Cn+1. Since the variety V is lower-
modular and V ⊆ V∗, we have

(C ∨ V) ∧ V∗ = (C ∧ V∗) ∨ V ⊆ SL ∨ Cn+1 ∨ V.

The variety SL ∨ Cn+1 ∨ V satisfies the identity

x1 · · ·xn+1 = x1 · · ·xi(xi+1 · · ·xn+1)r+1,

whence this identity holds in the variety (C ∨ V) ∧ V∗. Then there exists a
sequence of words u0, u1, . . . , um such that

u0 ≡ x1 · · ·xn+1, um ≡ x1 · · ·xi(xi+1 · · ·xn+1)r+1

and, for every j = 0, 1, . . . , m − 1, the identity uj = uj+1 holds in one of
the varieties C ∨ V or V∗. Both these varieties contain the variety RZ. Now
Lemma 1.6(i) implies that t(uj) ≡ xn+1 for all j = 0, 1, . . . , m. Since `xn+1(u0) =
1 and `xn+1(um) > 1, there exists an index k with 0 < k ≤ m such that
`xn+1(uk−1) = 1 and `xn+1(uk) > 1. Lemma 1.6(ii) implies that the identity
uk−1 = uk fails in the variety C, and therefore in C ∨ V. Further, uk−1 = uk

is false in the variety P by Lemma 1.6(iii). Since P ⊆ V∗ (by the definition of
V∗), the variety V∗ also does not satisfy uk−1 = uk. We see that this identity
fails in both the varieties C ∨ V and V∗, contradicting the choice of the words
u0, u1, . . . , um. This completes the proof. ¤

The main result of this section is the following

Theorem 2.4. Let V be a variety of semigroups with a completely regular
power. The following are equivalent :

a) V is a lower-modular element of the lattice SEM;
b) V is a modular and lower-modular element of the lattice SEM;
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Figure 2. The lattice L(C)

c) V = M∨N where M is one of the varieties T or SL, while N is a
0-reduced and nilpotent variety of index ≤ n, where n = crp(V).

Proof. a) =⇒ c). Let n = crp(V). By Lemma 1.9, the variety V satisfies the
identity (2) for some r and contains none of the varieties P and

←−P . Furthermore,
Lemma 2.3 and its dual imply that V contains none of the varieties LZ and
RZ. It is evident that every CRP-variety is periodic. Now Lemma 1.7 applies
with the conclusion that V = M∨N where the variety M is generated by
some monoid and N = Nil(V). Lemma 1.8 and the fact that V satisfies the
identity (2) imply that the variety N is nilpotent of index ≤ n. Besides, N is
0-reduced by Proposition 1.3. Substituting 1 for x2, . . . , xn in the identity (2),
we obtain that every monoid in V satisfies the identity x = xr+1, whence it is
completely regular. But V does not contain non-trivial groups (by Lemma 2.2)
and none of the varieties LZ and RZ. This implies that every completely
regular subvariety of V is contained in SL (see [1], for instance). Therefore M
is one of the varieties T or SL (see Lemma 1.1).

c) =⇒ b). Every 0-reduced variety is both modular and lower-modular by [13,
Corollary 3]; by [16, Corollary 2.5], the join of every 0-reduced variety and SL
also is modular and lower-modular2.

The implication b) =⇒ a) is evident. ¤

3. Varieties of index ≤ 2

To prove the main result of this section (Theorem 3.3), we need two auxiliary
results. In fact, the first of them is well known. We provide its proof for the
sake of completeness.

2Note that the ‘modular half’ of both these claims has been noted also in [5, Proposition 1.1]
in some other terminology. Moreover, the assertion that a 0-reduced variety is modular readily
follows from [4, Proposition 2.2]. However, this assertion was not formulated in [4] explicitly.
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Lemma 3.1. ind(P ∨←−P ) = 3.

Proof. The variety P ∨←−P satisfies the identity xyz = xy2z, whence Lemma 1.8
implies that ind(P ∨←−P ) ≤ 3. On the other hand, Lemma 1.6(iii) and its dual
imply that the variety P ∨ ←−P does not satisfy any non-trivial identity of the
form xy = w. By Lemma 1.8, ind(P ∨←−P ) ≥ 3. ¤
Lemma 3.2. If a semigroup variety V is a lower-modular element of the lattice
SEM and V contains at least one of the varieties P or

←−P then ind(V) ≥ 3.

Proof. We may assume without any loss of generality that V ⊇ ←−P . If V ⊇ P
too then ind(V) ≥ ind(P ∨ ←−P ), whence ind(V) ≥ 3 by Lemma 3.1. Now let
V + P. Put N = var{x2 = 0} and V∗ = V ∨ N . There exists an identity u = v

which holds in V but fails in P. This identity holds in the variety
←−P because

V ⊇ ←−P . By dual to Lemma 1.6(iii), c(u) = c(v). Lemma 1.6(iii) implies
that either `t(u)(u) > 1 but `t(v)(v) = 1 or `t(u)(u) = 1 but `t(v)(v) > 1 or
`t(u)(u) = `t(v)(v) = 1 but t(u) 6≡ t(v). Let x be a letter with x /∈ c(u). Put
u′ ≡ x2u and v′ ≡ x2v. The variety V∗ satisfies the identity u′ = v′. It is clear
that either `t(u′)(u′) > 1 but `t(v′)(v′) = 1 or `t(u′)(u′) = 1 but `t(v′)(v′) > 1
or `t(u′)(u′) = `t(v′)(v′) = 1 but t(u′) 6≡ t(v′). Lemma 1.6(iii) implies that the
identity u′ = v′ fails in the variety P. Therefore V∗ + P, whence P ∧ V∗ ⊂ P.
It is well known that the lattice L(P) has the form shown in Fig. 3. We see that
P ∧ V∗ ⊆ SL ∨ ZM ⊆ ←−P ⊆ V, whence (P ∧ V∗) ∨ V = V. Since the variety V
is lower-modular and V ⊆ V∗, we have V = (P ∧ V∗) ∨ V = (P ∨ V) ∧ V∗. It is
evident that ind(V∗) ≥ ind(N ) = ∞, that is, ind(V∗) = ∞. In view of the
inclusion V ⊇ ←−P and Lemma 3.1, we have

ind(V) = ind
(
(P ∨ V) ∧ V∗) = min

{
ind(P ∨ V), ind(V∗)}

= min
{
ind(P ∨ V),∞}

= ind(P ∨ V) ≥ ind(P ∨←−P ) = 3.

The lemma is proved. ¤

@
@

@

¡
¡

¡

¡
¡

¡

@
@

@s

s

s

s

s

P

SL

T

ZM

Figure 3. The lattice L(P)

The main result of this section is the following

Theorem 3.3. For a semigroup variety V of index ≤ 2, the following are
equivalent :
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a) V is a lower-modular element of the lattice SEM;
b) V is a modular element of the lattice SEM;
c) V is a neutral element of the lattice SEM;
d) V is one of the varieties T , SL, ZM or SL ∨ ZM.

Proof. a) =⇒ d). By Lemma 3.2, V contains none of the varieties P and←−P . Now Lemma 1.9 applies with the conclusion that V is a CRP-variety. By
Theorem 2.4, V = M∨N where M is one of the varieties T or SL, while N is
a nil-variety. Since V is a variety of index ≤ 2, we have N ⊆ ZM. It remains
to refer to Lemma 1.1.

b) =⇒ d). By Proposition 1.2, V = M∨N where M is one of the varieties
T or SL, while N is a nil-variety. Now we may complete the proof of this impli-
cation by repeating the arguments from the proof of the implication a) =⇒ d).

The implication d) =⇒ c) is guaranteed by Proposition 1.5, while the impli-
cations c) =⇒ a) and c) =⇒ b) are evident. ¤

Theorem 3.3 immediately implies the following statement that gives a solu-
tion of Problem 1.

Corollary 3.4. For a completely regular semigroup variety V, the following are
equivalent :

a) V is a lower-modular element of the lattice SEM;
b) V is a modular element of the lattice SEM;
c) V is a neutral element of the lattice SEM;
d) V is one of the varieties T or SL. ¤

Note that this corollary follows also from Proposition 1.2 and Theorem 2.4.
The following statement gives a solution of Problem 2.

Corollary 3.5. For a semigroup variety V, the following are equivalent :
a) V is both an upper-modular and a lower-modular element of the lattice
SEM;

b) V is a neutral element of the lattice SEM;
c) V is one of the varieties T , SL, ZM, SL ∨ ZM or SEM.

Proof. The conditions b) and c) are equivalent by Proposition 1.5. The impli-
cation a) =⇒ c) follows from Theorem 3.3 and the following fact: if a proper
semigroup variety is both upper-modular and lower-modular then it is a va-
riety of index ≤ 2 [11, Corollary 2.4]. Finally, the implication b) =⇒ a) is
evident. ¤

It was proved in [16, Proposition 2.4] that a semigroup variety is simultane-
ously modular, upper-modular and lower-modular if and only if it is neutral.
Corollary 3.5 strengthens this result.

4. Permutational varieties

The main result of this section is the following

Theorem 4.1. Let V be a semigroup variety satisfying an identity of the
form (1) with 1π 6= 1 and nπ 6= n. The following are equivalent :
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a) V is a lower-modular element of the lattice SEM;
b) V is a modular and lower-modular element of the lattice SEM;
c) V = M∨N where M is one of the varieties T or SL, while N is a

0-reduced and nilpotent variety of index ≤ n.

Proof. a) =⇒ c). By Corollary 1.4, V is a variety of index ≤ n. Lemma 1.6(iii)
and its dual imply that V contains none of the varieties P and

←−P . Now
Lemma 1.9 applies with the conclusion that V is a CRP-variety and crp(V) ≤ n.
It remains to refer to Theorem 2.4.

The implication c) =⇒ b) may be verified by repeating the arguments from
the proof of the analogous implication in Theorem 2.4.

The implication b) =⇒ a) is evident. ¤

Theorem 4.1 readily implies the following result proved earlier in [11, Theo-
rem 2].

Corollary 4.2. For a commutative semigroup variety V, the following are
equivalent :

a) V is a lower-modular element of the lattice SEM;
b) V is a neutral element of the lattice SEM;
c) V is one of the varieties T , SL, ZM or SL ∨ ZM.

Proof. The implication a) =⇒ c) immediately follows from Theorem 4.1, the
evident fact that a commutative 0-reduced variety is contained in ZM, and
Lemma 1.1. The implication c) =⇒ b) is guaranteed by Proposition 1.5. Finally,
the implication b) =⇒ a) is evident. ¤

One more corollary of Theorem 4.1 is the following

Corollary 4.3. Let a semigroup variety V be a lower-modular element of the
lattice SEM. If V satisfies an identity of the form (1) with 1π 6= 1 and nπ 6= n
then V satisfies all permutation identities of length n. ¤

Note that a claim stronger than Corollary 4.3 holds for upper-modular vari-
eties. Namely, if an upper-modular variety satisfies an identity of the form (1)
with 1π 6= 1 and nπ 6= n then it is commutative (and all such varieties are com-
pletely determined in [12, Theorem 1.2], in fact). This follows from Lemma 1.7
and the following three claims: a) a variety satisfying an identity of the form (1)
with 1π 6= 1 and nπ 6= n contains none of the varieties P,

←−P , LZ and RZ (by
the claims (i) and (iii) of Lemma 1.6 and their duals); b) if V is a proper
upper-modular semigroup variety then V is periodic and the variety Nil(V) is
commutative [12, Theorem 1.1]; c) every monoid satisfying a permutation iden-
tity is commutative. Also, a weak analogue of Corollary 4.3 holds for modular
varieties. Namely, if a modular variety satisfies an identity of the form (1) where
n ≥ 5 and the permutation π is odd then it satisfies all permutation identities
of length n [10, Theorem 4.5(ii)].
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[5] J. Ježek and R.N.McKenzie, Definability in the lattice of equational theories of semi-

groups, Semigroup Forum, 46 (1993), 199–245.
[6] M.V. Sapir, On Cross semigroup varieties and related questions, Semigroup Forum, 42

(1991), 345–364.
[7] L.N. Shevrin and E. V. Sukhanov, Structural aspects of the theory of semigroup varieties,

Izvestiya VUZ. Matematika, 6 (1989), 3–39 un Russian; Engl. translation: Soviet Math.
Izv. VUZ, 33, No. 6 (1989), 1–34.

[8] A.V. Tishchenko, A remark on semigroup varieties of finite index, Izvestiya VUZ. Matem-
atika, 7 (1990), 79–83 in Russian; Engl. translation: Soviet Math. Izv. VUZ, 34, No. 7
(1990), 92–96.

[9] B.M. Vernikov, Special elements in the lattice of overcommutative semigroup varieties,
Mat. Zametki, 70 (2001), 670–678 in Russian; Engl. translation: Math. Notes, 70 (2001),
608–615].

[10] B.M. Vernikov, On modular elements of the lattice of semigroup varieties, Comment.
Math. Univ. Carol., 48 (2007), 595–606.

[11] B.M. Vernikov, Lower-modular elements of the lattice of semigroup varieties, Semigroup
Forum, 75 (2007), 554–566.

[12] B.M. Vernikov, Upper-modular elements of the lattice of semigroup varieties, Algebra
Universalis, accepted.

[13] B.M. Vernikov and M.V.Volkov, Lattices of nilpotent semigroup varieties, Algebraic Sys-
tems and their Varieties (ed.: L. N. Shevrin), Ural State University, Sverdlovsk, 1988,
53–65 in Russian.

[14] B.M. Vernikov and M.V.Volkov, Modular elements of the lattice of semigroup varieties. II,
Contrib. General Algebra, 17 (2006), 173–190.

[15] M.V. Volkov, Semigroup varieties with modular subvariety lattices, Izvestiya VUZ.
Matematika, 6 (1989), 51–60 in Russian; Engl. translation: Soviet Math. Izv. VUZ, 33,
No. 6 (1989), 48–58].

[16] M.V. Volkov, Modular elements of the lattice of semigroup varieties, Contrib. General
Algebra, 16 (2005), 275–288.

Department of Mathematics and Mechanics, Ural State University, Lenina 51,
620083 Ekaterinburg, Russia

E-mail address: boris.vernikov@usu.ru


