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Abstract

We call a semigroup variety modular [upper-modular, lower-modular,
neutral ] if it is a modular [respectively upper-modular, lower-modular,
neutral] element of the lattice of all semigroup varieties. It is proved that
if V is a lower-modular variety then either V coincides with the variety
of all semigroups or V is periodic and the greatest nil-subvariety of V
may be given by 0-reduced identities only. We completely determine all
commutative lower-modular varieties. In particular, it turns out that a
commutative variety is lower-modular if and only if it is neutral. A number
of corollaries of these results are obtained.
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Introduction and summary

The class of all varieties of semigroups forms a lattice under the following
naturally defined operations: for varieties X and Y, their join X ∨ Y is the
variety generated by the set-theoretical union of X and Y (as classes of semi-
groups), while their meet X ∧ Y coincides with the set-theoretical intersection
of X and Y. Special elements of different types in lattices of varieties of semi-
groups and universal algebras have been examined in several articles (see, for
instance, [4, 5, 10, 14, 16]). Here we continue these investigations. Recall the
definitions of special elements of lattices considered in this article.

An element x of a lattice 〈L;∨,∧〉 is called modular if

∀ y, z ∈ L : y ≤ z −→ (x ∨ y) ∧ z = (x ∧ z) ∨ y,

and lower-modular if

∀ y, z ∈ L : x ≤ y −→ (z ∨ x) ∧ y = (z ∧ y) ∨ x.

∗The work was supported by the Russian Foundation for Basic Research (grant No. 06-01-
00613).
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Upper-modular elements are defined dually to lower-modular ones. Follow-
ing [16], we call an element x of a lattice L strongly modular if x is simulta-
neously a modular, an upper-modular, and a lower-modular element of L. An
element x of a lattice L is called neutral if

∀y, z ∈ L : (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x) = (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x).

As is well known, x is neutral if and only if, for all y, z ∈ L, the sublattice of L
generated by x, y, and z is distributive (see, for instance, [2, Theorem III.2.4]).

We denote by SEM the variety of all semigroups. A semigroup variety
V is called proper if V 6= SEM. For convenience, we call a semigroup variety
modular [upper-modular, lower-modular, strongly modular, neutral ] if it is a
modular [upper-modular, lower-modular, strongly modular, neutral] element of
the lattice SEM of all semigroup varieties. A number of results about varieties
of these five types have been obtained in [5,11–14,16]. In this article we present
some new information about lower-modular varieties. In particular, we prove
that every proper lower-modular variety is periodic (Theorem 1) and completely
determine all lower-modular commutative varieties (Theorem 2).

To formulate the main results, we need some more definitions and notation.
A semigroup S with 0 is said to be a nilsemigroup if, for every s ∈ S, there exists
a positive integer n with sn = 0. A semigroup variety V is called a nil-variety if
each member of V is a nilsemigroup. A semigroup is called periodic if each of its
cyclic subsemigroup is finite. As is well known, every semigroup variety is either
periodic (that is, consists of periodic semigroups) or overcommutative (that is,
contains the variety of all commutative semigroups). It is easy to see that an
arbitrary periodic semigroup variety V contains a greatest nil-subvariety. We
denote this subvariety by Nil(V). Clearly, if w is a semigroup word then a
semigroup S satisfies the identity system wu = uw = w, where u runs over
the set of all words, if and only if S contains a zero element 0 and all values
of the word w in S equal 0. We adopt the usual convention of writing w = 0
as a short form of such a system and referring to the expression w = 0 as
to a single identity. Such identities are called 0-reduced. A semigroup variety
is called 0-reduced if it can be defined by 0-reduced identities only (note that
in [16] such varieties are called Rees varieties). Every 0-reduced variety is
clearly a nil-variety. It can be easily deduced from the proof of Theorem 3.1
of the article [16] that a lower-modular nil-variety is a 0-reduced variety. The
following theorem generalizes this statement.

Theorem 1. If a semigroup variety V is a lower-modular element of the lattice
SEM then either V = SEM or V is a periodic variety and Nil(V) is a 0-reduced
variety.

By Theorem 1 a proper lower-modular variety is periodic. According to
results of [5, 11], the same is true for modular varieties and for upper-modular
ones (see Lemmas 2.2 and 2.3 below). Note also that Theorem 1 together
with results of [5, 13, 14] imply two results obtained earlier in [16], namely
the description of semigroup varieties that both modular and lower-modular,
and the description of strongly modular semigroup varieties (see Corollaries 2.9
and 2.10 below).
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If Σ is a system of identities then we denote by varΣ the variety of all
semigroups satisfying Σ. Put

T = var{x = y}, SL = var{x2 = x, xy = yx}, and ZM = var{xy = 0}.
Our second main result is the following

Theorem 2. Let V be a commutative semigroup variety. The following are
equivalent:

(i) V is a lower-modular element of the lattice SEM;

(ii) V is a strongly modular element of the lattice SEM;

(iii) V is a neutral element of the lattice SEM;

(iv) V is one of the varieties T , SL, ZM, SL ∨ ZM.

Note that, according to [16, Proposition 4.1], assertions (ii) and (iii) of this
theorem are equivalent for arbitrary semigroup varieties, and varieties satisfy-
ing these conditions are exhausted by the varieties listed in assertion (iv) and
the variety SEM (see Corollary 2.10 below). Note also that commutative mod-
ular and commutative upper-modular varieties are completely described in [12]
and [11] respectively. In particular, it is verified in [12] that every commutative
modular variety is upper-modular.

The article consists of 3 sections. Section 1 contains preliminary information
about lattices and semigroup varieties. In Section 2 we prove Theorems 1 and 2
and obtain several corollaries of Theorem 1; for instance, we essentially sharpen
Theorem 1 for varieties that are both upper-modular and lower-modular (Corol-
lary 2.4), characterize lower-modular nil-varieties (Corollary 2.7), and verify
that every lower-modular nil-variety is modular (Corollary 2.8). Section 3 con-
tains several open questions.

1 Preliminaries

We start with the following lattice-theoretical

Lemma 1.1. Let L be a lattice with 0, x ∈ L, and let a be an atom and a
neutral element of L. Then x is a modular [lower-modular ] element of L if and
only if x ∨ a is a modular [lower-modular ] element of L.

Proof. The ‘modular half’ of this assertion is verified in [14, Proposition 1.3(i)].
It is proved in [16, Lemma 1.3] that if x1 and x2 are lower-modular elements
of a lattice then so is x1 ∨ x2. It remains to verify that x is a lower-modular
element of L whenever so is x ∨ a.

So, let x ∨ a be a lower-modular element of L. Since a is an atom of L,
we have that, for any z ∈ L, z � a if and only if z ∧ a = 0. Because a is
a neutral element of L, we have that if b, c ∈ L and b ∧ a = c ∧ a = 0 then
(b ∨ c) ∧ a = (b ∧ a) ∨ (c ∧ a) = 0. In other words,

∀ b, c ∈ L : b � a & c � a −→ b ∨ c � a. (1.1)
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Further, it is known that if e is a neutral element of a lattice L then

∀ f, g ∈ L : f ∧ e = g ∧ e & f ∨ e = g ∨ e −→ f = g

(see, for instance, [2, Theorem III.2.4]). Therefore

∀ b, c ∈ L : b � a & c � a & b ∨ a = c ∨ a −→ b = c. (1.2)

Let y, z ∈ L with x ≤ y. We may assume that x � a because otherwise
x ∨ a = x. Note that x ∨ a ≤ y ∨ a because x ≤ y. We have

(
(z ∨ x) ∧ y

) ∨ a =
(
(z ∨ x) ∨ a

) ∧ (y ∨ a) because a is neutral
=

(
z ∨ (x ∨ a)

) ∧ (y ∨ a)
=

(
z ∧ (y ∨ a)

) ∨ (x ∨ a) because x ∨ a ≤ y ∨ a and
x ∨ a is lower-modular

=
(
(z ∧ y) ∨ (z ∧ a)

) ∨ (x ∨ a) because a is neutral
=

(
(z ∧ y) ∨ x

) ∨ (
(z ∧ a) ∨ a

)

=
(
(z ∧ y) ∨ x

) ∨ a by the absorbtion law.

We see that (
(z ∨ x) ∧ y

) ∨ a =
(
(z ∧ y) ∨ x

) ∨ a. (1.3)

Suppose at first that y � a. This implies (z ∨ x) ∧ y � a and z ∧ y � a.
Recall that x � a. By (1.1) we conclude that (z ∧ y) ∨ x � a. Now we may
apply (1.2) and (1.3) concluding that (z ∨ x) ∧ y = (z ∧ y) ∨ x, that is x is
a lower-modular element. The case when z � a may be considered in quite a
similar way. Finally, if y ≥ a and z ≥ a then we may apply (1.3) and conclude
that

(z ∨ x) ∧ y =
(
(z ∨ x) ∧ y

) ∨ a =
(
(z ∧ y) ∨ x

) ∨ a = (z ∧ y) ∨ x.

Thus in this case x is a lower-modular element as well.

Note that the analogue of Lemma 1.1 for upper-modular elements also holds
(see [14, Proposition 1.3(ii)]).

The following lemma contains two important properties of the varieties SL
and ZM. The first property is well known (see, for instance, [1]), while the
second one is proved in [16, Proposition 2.4].

Lemma 1.2. The varieties SL and ZM are atoms and neutral elements of the
lattice SEM.

Lemmas 1.1 and 1.2 imply the following

Corollary 1.3. Let V be a semigroup variety and let A be one of the varieties
SL, ZM or SL ∨ ZM. The variety V is a modular [lower-modular ] element
of the lattice SEM if and only if the variety V ∨ A is a modular [lower-modular ]
element of SEM.
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Note that the analogue of Corollary 1.3 for upper-modular varieties also
holds (this immediately follows from Lemma 1.2 of this paper and Proposi-
tion 1.3(ii) of [14]).

It is well known that an arbitrary periodic semigroup variety V contains a
greatest group subvariety. We denote this subvariety by Gr(V). Recall that
a semigroup variety V is called combinatorial if every group in V is singleton.
The following observation will be helpful.

Lemma 1.4. Let V be an arbitrary semigroup variety and K a combinatorial
semigroup variety. Then every group from the variety V ∨ K belongs to V. If,
besides that, the variety V is periodic then Gr(V ∨ K) = Gr(V).

Proof. Let u = v be an arbitrary identity that holds in the variety V. Since
the variety K is combinatorial, it satisfies an identity of the form xn = xn+1

for some n. Then the variety V ∨ K satisfies the identity un+1vn = unvn+1.
Therefore the identity u = v holds in every group from V ∨ K. Thus each group
from V ∨ K lies in V. The first assertion of our lemma is proved. If the variety
V is periodic then we have Gr(V ∨ K) ⊆ V, and therefore Gr(V ∨ K) ⊆ Gr(V).
The opposite inclusion is evident.

2 Proofs

2.1 Theorem 1

Let V be a proper lower-modular semigroup variety. We have to verify that V
is periodic and the variety Nil(V) is a 0-reduced variety.

Suppose that V is not periodic. Then V contains the variety COM of all
commutative semigroups. It is proved by M.V. Volkov (see [11, Lemma 1.16])
that the join of all the minimal non-abelian periodic group varieties coincides
with the variety SEM. Therefore there exists a minimal non-abelian periodic
group variety G with G * V. Put V = V ∨ G. Clearly, V ⊂ V. Recall that a
semigroup S is said to be nilpotent if it satisfies the identity x1x2 · · ·xn = 0 for
some n. A semigroup variety is called nilpotent if all its members are nilpo-
tent. As is well known, every overcommutative semigroup variety is generated
by all its nilpotent members. Hence there exists a nilpotent variety N such
that N ⊆ V but N * V. Put Y = V ∨ N . Clearly, V ⊂ Y ⊆ V. Since G * V,
Lemma 1.4 implies that G * V ∨ N = Y. Therefore the variety G ∧ Y is com-
mutative, whence G ∧ Y ⊆ COM ⊆ V. Since V is lower-modular and V ⊆ Y,
we have

V = (G ∧ Y) ∨ V = (G ∨ V) ∧ Y = V ∧ Y = Y,

a contradiction with V ⊂ Y. We have proved that the variety V is periodic.
Put K = Nil(V). Suppose that K is not a 0-reduced variety. The proof of

Theorem 3.1 in [16] implies that then there is a periodic group variety H such
that Nil(H ∨K) ⊃ K. Set K′ = Nil(H ∨K) and V ′ = V ∨ K′. If X is a periodic
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variety then clearly H ∧ X = H ∧Gr(X ). We have

K′ ⊆ Nil
(
(H ∨ V) ∧ V ′) because K′ ⊆ (H ∨ V) ∧ V ′ and K′ is a

nil-variety
= Nil

(
(H ∧ V ′) ∨ V)

because V ⊆ V ′ and V is lower-modular
= Nil

((H ∧Gr(V ′)) ∨ V)
because H ∧ V ′ = H ∧Gr(V ′)

= Nil
((H ∧Gr(V)

) ∨ V)
because Gr(V ′) = Gr(V) by Lemma 1.4

= Nil
(
(H ∧ V) ∨ V)

because H ∧Gr(V) = H ∧ V
= Nil(V) = K,

a contradiction with K ⊂ Nil(H ∨K) = K′. Thus K is a 0-reduced variety. The-
orem 1 is proved.

2.2 Corollaries

Theorem 1 and results of articles [5, 11, 13] imply several corollaries. First of
all, we reproduce results of [5, 11,13] that will be used.

Lemma 2.1 ([13, Corollary 3]). An arbitrary 0-reduced variety is a modular
and a lower-modular element of the lattice SEM.

The ‘modular half’ of this lemma was rediscovered in [5, Proposition 1.1].
Note that this assertion immediately follows from [4, Proposition 2.2] (just this
argument was used in [13]) but was not mentioned in [4] explicitly.

Lemma 2.2 ( [5, Proposition 1.6]1). If a semigroup variety V is a modular
element of the lattice SEM then either V = SEM or V ⊆ SL ∨N for some
nil-variety N .

Lemma 2.3 ([11, Theorem 1]). If a semigroup variety V is an upper-modular
element of the lattice SEM then either V = SEM or V is a periodic variety and
the variety Nil(V) is commutative and satisfies the identity x2y = xy2.

A semigroup variety V is said to be a variety of index n if every nilsemigroup
in V satisfies the identity x1x2 · · ·xn = 0 and n is the least number with such
a property. Since a commutative 0-reduced variety is contained in the variety
ZM, Theorem 1 and Lemma 2.3 imply the following

Corollary 2.4. If a semigroup variety V is both an upper-modular and a lower-
modular element of the lattice SEM then either V = SEM or V is a variety of
index ≤ 2.

This corollary and Lemma 1.2 imply the following

Corollary 2.5. Let V be a nil-variety. The following are equivalent:
1One should note that the paper [5] has dealt with the lattice of equational theories of

semigroups, that is, the dual of SEM rather than the lattice SEM itself. When reproducing
results from [5], we adapt them to the terminology of the present article. Note that the
definition of a modular element of a lattice is selfdual, whence modular elements of the lattice
of equational theories precisely correspond to modular varieties.
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(i) V is both an upper-modular and a lower-modular element of the lattice
SEM;

(ii) V is a strongly modular element of the lattice SEM;

(iii) V is a neutral element of the lattice SEM;

(iv) V is one of the varieties T or ZM.

Theorem 1 and Lemma 2.1 imply the following three corollaries.

Corollary 2.6. If a periodic semigroup variety V is a lower-modular element
of the lattice SEM then so is the variety Nil(V).

Corollary 2.7. A nil-variety is a lower-modular element of the lattice SEM if
and only if it is a 0-reduced variety.

Corollary 2.8. If a nil-variety is a lower-modular element of the lattice SEM
then it is a modular element of this lattice.

The following two corollaries were proved firstly in [16].

Corollary 2.9 ([16, Theorem 3.1]). A semigroup variety V is both a modular
and a lower-modular element of the lattice SEM if and only if either V = SEM
or V is a 0-reduced variety or V = SL ∨R for some 0-reduced variety R.

Proof. The ‘if’ part immediately follows from Lemma 2.1 and Corollary 1.3. Let
us verify the ‘only if’ part. Let V be a modular and a lower-modular variety
with V 6= SEM. Since V is modular, Lemma 2.2 implies that V ⊆ SL ∨N for
some nil-variety N . Applying Lemma 1.2, we have

V = V ∧ (SL ∨ N ) = (V ∧ SL) ∨ (V ∧ N ).

Put R = V ∧ N . By Lemma 1.2 V coincides with one of the varieties R or
SL ∨R. Taking into account Corollary 1.3, we see that the variety R is lower-
modular in both the cases. Since R is a nil-variety, it remains to refer to
Corollary 2.7.

Corollary 2.10 ([16, Proposition 4.1]). For a semigroup variety V the following
are equivalent:

(i) V is a strongly modular element of the lattice SEM;

(ii) V is a neutral element of the lattice SEM;

(iii) V is one of the varieties T , SL, ZM, SL ∨ ZM or SEM.

Proof. The implication (iii) =⇒ (ii) follows from Lemma 1.2 and the well-known
fact that the join of neutral elements is neutral itself (see, for instance, [2, The-
orem III.2.9]). The implication (ii) =⇒ (i) is evident. It remains to verify the
implication (i) =⇒ (iii). Let V be a strongly modular variety with V 6= SEM.
By Corollary 2.9 either V = R or V = SL ∨R for some 0-reduced variety R.
On the other hand, Corollary 2.4 implies that V is a variety of index ≤ 2.
Therefore R is a nil-variety of index ≤ 2, whence R ⊆ ZM. By Lemma 1.2, R
is one of the varieties T or ZM. Corollary is proved.
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One more corollary of Theorem 1 is related to the notion of a definable subset
of a lattice. A subset D of a lattice L is said to be definable in L if there exists a
first order formula F(x) with one free variable such that evaluating the variable
at an element a ∈ L yields a true sentence if and only if a ∈ D; in this situation
we say also that the formula F(x) defines the set D. A deep study of definable
subsets of the lattice SEM has been carried out by Ježek and McKenzie in [5].
In particular, it was shown in [5, Theorem 1.11] that the class of all 0-reduced
varieties is definable in the lattice SEM. This fact was established via a sequence
of lemmas involving rather complicated and somewhat artificial formulas, and
in [5] there is no any explicitly written first order formula defining the class of
all 0-reduced varieties. A simple and transparent formula of such a kind was
constructed in [16, Proposition 4.5]. Now we can write some simpler formula
defining the class of all 0-reduced varieties. First of all, one can reproduce
the formula constructed in [16]. For this, we define some auxiliary formulas.
Let Mod(x) [respectively LMod(x), A(x)] be the formula defining the set of all
modular elements [lower-modular elements, atoms] of a lattice, and P(x) the
formula that says that x is not a greatest element of a lattice. We will not write
these four formulas explicitly because they are evident. Set

M(x, y, z)  y ≤ z −→ (x ∨ y) ∧ z = (x ∧ z) ∨ y;
Nil(x)  ∀y A(y) & y ≤ x −→ (∀a, b, c a, b, c � y −→ M(a, b, c)

)
.

Lemma 2.11. The formula Nil(x) defines the class of all nil-varieties in the
lattice SEM.

Proof. Let V be a non-trivial nil-variety. IfA is a minimal non-trivial semigroup
variety with A ⊆ V then A = ZM. Furthermore, if X ,Y,Z + ZM then X , Y,
and Z are completely regular varieties (that is, varieties consisting of completely
regular semigroups — unions of groups). Since the lattice of all completely
regular varieties is modular [7], the sentence Nil(V) is true. Clearly, the sentence
Nil(T ) is true as well. Finally, let W be a semigroup variety and W is not a
nil-variety. Then there exists a minimal non-trivial semigroup variety A with
A ⊆ V and A 6= ZM. The lattice of all nil-varieties is not modular. (This fact
may be easily deduced already from the pioneer article by Schwabauer [9]. In
the explicit form, it was mentioned firstly, probably, by Mel’nik in [6].) Hence
there exist three (for instace, nil-)varieties K,M,N such that K,M,N + A
and the sentence M(K,M,N ) is false. Therefore the sentence Nil(W) is false
too.

According to [16, Proposition 4.5] (see also Corollary 2.9 above) the class
of all 0-reduced varieties is definable in the lattice SEM by the formula

Mod(x) & LMod(x) & P(x) & Nil(x)

(this formula was written in [16] in other notation). Note that we may elimi-
nate the conjunct P(x) from this formula because, for a semigroup variety, the
property ‘to be proper’ is guaranteed already by the conjunct Nil(x). Moreover,
Corollary 2.7 and Lemma 2.11 imply the following
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Corollary 2.12. The class of all 0-reduced varieties is definable in the lattice
SEM by the formula LMod(x) & Nil(x).

2.3 Theorem 2

The implication (iv) =⇒ (iii) of Theorem 2 follows from Corollary 2.10. The
implications (iii) =⇒ (ii) =⇒ (i) are evident. It remains to verify the implica-
tion (i) =⇒ (iv).

We need some additional notation. If S is a semigroup then we denote by
S1 the semigroup S with a new unit element adjoined. If a variety V contains
semigroups of the form N1, where N is a nilsemigroup, then Nil1(V) denotes
the variety generated by all semigroups of such a form; otherwise Nil1 (V) = T .

Now let V be a commutative lower-modular semigroup variety. Theorem 1
implies that V is periodic. Results of [3] and the proof of Proposition 1 in [15]
imply that V = G ∨M∨N where G = Gr(V), M = Nil1(V), and N = Nil(V).
Every commutative 0-reduced variety is contained in the variety ZM. The-
orem 1 and the fact that the variety N is commutative (because V is) imply
that N ⊆ ZM. Further, it is well known that if N is a singleton semigroup
[a 2-element semigroup with zero multiplication] then the semigroup N1 gener-
ates the variety SL [respectively the variety C = var{x2 = x3, xy = yx}]. It is
evident that Nil (C) * ZM. The inclusion N ⊆ ZM implies now that M + C,
whence M⊆ SL. Lemma 1.2 implies now that N is one of the varieties T or
ZM, while M is one of the varieties T or SL. It remains to verify that G = T .
We denote by Ak (where k > 1) the variety of all abelian groups of exponent
dividing k. If G 6= T then G = Ak for some k > 1. In view of Corollary 1.3, it
suffices to prove that the variety Ak for an arbitrary positive integer k > 1 is
not lower-modular. Here we need some notation introduced in [8]. Let G be a
periodic group variety and {vi = 1 | i ∈ I} a basis of identities of G where vi

are semigroup words. Let us denote by r the exponent of the variety G. For a
letter x, put x0 = xr(r+1). Furthermore, let F (G) be the free group of countably
infinite rank in G. A subset X of F (G) is called verbal if it is closed under all
endomorphisms of F (G). Clearly, a verbal subset X of F (G) is a set of all values
in F (G) of some set V of words; in this case we write X = G(V ). Put

S(G) = var{xyz = xyr+1z, x0y0 = y0x0, x2 = xr+2, xv2
i y = xviy | i ∈ I}

and
S(G, X) = S(G) ∧ var{xvy = (xvy)r+1 | v ∈ V },

where X is a verbal subset in F (G) and X = G(V ). It is verified in [8] that
the subvariety lattice of the variety S(Ak) contains a sublattice shown in Fig. 1
(see [8, Fig. 1]2). We see that

(
S(T ) ∧ S(Ak, 1)

) ∨ Ak = S
(Ak, F (Ak)

)
,

while (
S(T ) ∨ Ak

) ∧ S(Ak, 1) = S(Ak, 1).
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Figure 1: A sublattice of the subvariety lattice of S(Ak)

Since Ak ⊆ S(Ak, 1) and S
(Ak, F (Ak)

) 6= S(Ak, 1), we are done.

3 Open questions

By Theorem 1 any proper lower-modular variety is periodic. The class of all
periodic varieties contains two wide subclasses that play a distinguished role
in the theory of semigroup varieties and have very different properties in many
aspects. We mean the class of all completely regular varieties and the class of
all nil-varieties. Lower-modular nil-varieties are characterized by Corollary 2.7.
This inspires the following

Problem 3.1. Describe completely regular semigroup varieties that are lower-
modular elements of the lattice SEM.

Note that by Lemma 2.2 there are two completely regular modular varieties
only, namely the varieties T and SL. On the other hand, according to [11,
Theorem 2] every commutative completely regular variety is upper-modular.

As we have proved in Subsection 2.3, all non-trivial abelian periodic group
varieties are not lower-modular. This permits to conjecture that a proper lower-
modular variety does not contain non-singleton groups.

Question 3.2. Let V be a proper semigroup variety and a lower-modular ele-
ment of the lattice SEM. Is the variety V combinatorial?

Note that a proper modular variety is combinatorial by Lemma 2.2, while
for upper-modular varieties this is false (see [11, Theorem 2]).

Semigroup varieties that are both modular and lower-modular were com-
pletely described in [16, Theorem 3.1] (see Corollary 2.9), while varieties that
are both modular and upper-modular were completely determined in [14, The-
orem 1]. This inspires the following

Problem 3.3. Describe semigroup varieties that are both upper-modular and
lower-modular elements of the lattice SEM.

2Formally speaking, this figure from [8] deals with the case when k is a prime number only.
But all proofs in [8] remain true for arbitrary k.
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Corollary 2.4 may be considered as a partial step in a solution of this prob-
lem. Theorem 2 and Corollary 2.5 solve Problem 3.3 within the classes of
commutative varieties and nil-varieties respectively.

It seems to be probable that the classes of all modular, upper-modular, and
lower-modular semigroup varieties are pairwise incomparable by inclusion. This
supposition is almost completely confirmed by the following three examples.

Example 3.4. If ZM ⊂ V ⊆ var{x2y = 0, xy = yx} then the variety V is
modular and upper-modular by [14, Theorem 1] but not lower-modular (this
follows from Theorem 1 of [14] and Corollary 2.4).

Example 3.5. If V is a 0-reduced variety and V * ZM then V is modular
and lower-modular by Corollary 2.9 but not upper-modular (this follows from
Corollaries 2.4 and 2.9).

Example 3.6. The varieties var{xy = x} and var{xy = y} are upper-modular
because they are minimal non-trivial semigroup varieties (see, for instance, [1])
but not modular by Lemma 2.2.

It remains to give an example of a lower-modular but not a modular variety.
But we do not know whether or not such a variety exists. The list of semigroup
varieties that are known to be lower-modular is very short: it includes the
varieties mentioned in Corollary 2.9 only, and by this corollary all these varieties
are modular as well.

Question 3.7. Does there exist a semigroup variety that is a lower-modular
element of the lattice SEM but not a modular element of this lattice?

This question is answered in negative within the classes of commutative
varieties and nil-varieties (see Theorem 2 and Corollary 2.8 respectively). Note
that a negative answer to Question 3.7 in the general case would immediately
imply a solution of Problem 3.3 (see Corollary 2.10) and an affirmative answer
to Question 3.2 (see Lemma 2.2).
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