Лекция 3

3.1 Отношения Грина и идемпотенты

Элемент e называется udemnomeнmom, если $e^2 = e$. Понятно, что, например, единица любого моноида (в частности, группы) является идемпотентом. В группе других идемпотентов, кроме единицы, быть не может, но бывают и полугруппы, целиком состоящие из идемпотентов.

Пемма 3.1. В конечной полугруппе для любого элемента найдется степень, которая является идемпотентом.

Доказательство. Пусть S — конечная полугруппа и $a \in S$. Рассмотрим последовательность a, a^2, a^3, \ldots . Поскольку полугруппа S конечна, в этой последовательности после максимум |S| шагов встретится элемент, равный одному из предшествующих. Другими словами, найдутся такие натуральные n и k, что $a^n = a^{n+k}$. Тогда ясно, что для любого $m \ge n$ и любого натурального ℓ выполняются и равенства $a^m = a^{m+k} = a^{m+2k} = \cdots = a^{m+\ell k}$. В частности, взяв в качестве m число nk, а в качестве ℓ число n, получим $a^{nk} = a^{nk+nk} = a^{2nk} = (a^{nk})^2$. Следовательно, a^{nk} — идемпотент.

Полугруппы, в которых выполняется заключение леммы 3.1, называются nepuoduчecкими. Отметим одно важное свойство периодических полугрупп:

Предложение 3.1. B периодической полугруппе $\mathscr{D} = \mathscr{J}$.

Доказательство. Включение $\mathscr{D}\subseteq\mathscr{J}$ выполняется в любой полугруппе в силу того, что \mathscr{D} – наименьшее отношение эквивалентности, содержащее отношения \mathscr{R} и \mathscr{L} .

Пусть a \mathcal{J} b. Найдутся такие $u,v,x,y\in S^1$, что uav=b и xby=a. Подставляя выражение для b из первого равенства во второе равенство, получим xuavy=a. Подставляя это равенство само в себя, получим, что для любого k выполняется равенство $(xu)^ka(vy)^k=a$. Возьмем такое k, что оба элемента $e:=(xu)^k$ и $f:=(vy)^k$ будут идемпотентами. (Понятно, что такое k найдется: если, скажем, $(xu)^\ell$ и $(vy)^n$ — идемпотенты, то в качестве k можно взять ℓn .) Итак, eaf=a. Умножая это равенство на e справа, получаем eaf=ea, откуда ea=a. Аналогично, умножая равенство eaf=a на f слева, получаем af=a.

ЛЕКЦИЯ 3.

Покажем, что $ua \mathcal{L} a$. Ясно, что $ua \in S^1a$. Обратно, $a = ea = (xu)^k a = (xu)^{k-1}x \cdot ua \in S^1ua$. Аналогично, равенство af = a влечет $a \mathcal{R} av$. Отсюда $ua \mathcal{R} uav = b$, так как отношение \mathcal{R} стабильно слева. Видим, что $a \mathcal{L} ua \mathcal{R} b$, т.е. $a \mathcal{L} \mathcal{R} b$. Мы показали, что $a \mathcal{D} b$.

Мы видим, что $\mathscr{D} = \mathscr{J}$ в весьма широких классах полугрупп: в периодических полугруппах, в коммутативных полугруппах, в группах, в моноиде всех преобразований произвольного множества (см. следствие 2.1). Может возникнуть подозрение, что $\mathscr{D} = \mathscr{J}$ всегда. Это не так, хотя указать конкретный пример полугруппы, в которой $\mathscr{D} \neq \mathscr{J}$, не так легко. Приведем один такой пример, в котором различие между \mathscr{D} и \mathscr{J} максимально возможное.

Упражнение 3.1. Проверьте, что в подполугруппе полугруппы всех действительных 2×2 -матрии, состоящей из всех матрии вида $\begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix}$, где числа a и b положительны, отношение $\mathscr D$ совпадает c отношением равенства, а отношение $\mathscr J$ – c универсальным отношением.

Предложение 3.2 (Теорема Миллера–Клиффорда). Пусть $a, b \in S$, тогда $ab \in R_a \cap L_b$ тогда и только тогда, когда пересечение $R_b \cap L_a$ содержит идемпотент.

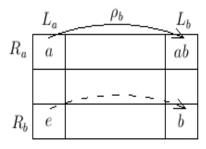


Рис. 3.1: Иллюстрация к теореме Миллера-Клиффорда

Доказательство. \Rightarrow Если $ab \in R_a \cap L_b$, то по лемме Грина $\rho_b|_{L_a}$ – биекция L_a на L_b . Пусть $e \in R_b \cap L_a$ – такой элемент, что $e\rho_b = eb = b$. Тогда $e\mathscr{R}b$, в частности, e = bu для некоторого $u \in S^1$. Имеем $e^2 = e(bu) = (eb)u = bu = e$, т.е. e – идемпотент.

 \Leftarrow Пусть e — идемпотент из $R_b \cap L_a$. Из $e\mathscr{R}b$ следует, что eb=b, а из $e\mathscr{L}a$ следует, что ae=a. Умножив соотношение $e\mathscr{R}b$ слева на a, получим $a=ae\mathscr{R}ab$. Аналогично, умножив соотношение $e\mathscr{L}a$ справа на b, получим $b=eb\mathscr{R}ab$. Следовательно $ab\in R_a\cap L_b$.

Следствие 3.1. Пусть $H-\mathcal{H}$ -класс, тогда следующие условия эквивалентны:

(1) H содержит идемпотент;

- (2) cywecmeyom $a, b \in H$, makue, umo $ab \in H$;
- (3) H rpynna.

Доказательство. Импликации $(1) \Rightarrow (2)$ и $(3) \Rightarrow (1)$ очевидны.

 $(2)\Rightarrow (3)$ Имеем $H=R_a\cap L_b=R_b\cap L_a$. По теореме Миллера–Клиффорда в H найдется идемпотент e. Применяя ту же теорему в обратную сторону, заключаем, что для любых $g,h\in H$ произведение gh принадлежит H, т.е. H – полугруппа. Для любого $h\in H$ отображение $\rho_h|_H$ – биекция H на H. Отсюда, в частности, следует, что ge=g для любого $g\in H$. В силу симметричных рассуждений eg=g для любого $g\in H$, т.е. e – единица в H. Наконец, из того, что $\rho_h|_H$ – биекция H на H, следует, что для любого $h\in H$ существует элемент h', такой, что h'h=e. Следовательно H – группа.

Заметим, что если H — группа, то H — максимальная подгруппа. Действительно, если G — какая-то подгруппа полугруппы S, то любые два элемента $g,h\in G$ делят друг друга и справа, и слева: $g=h\cdot h^{-1}g$, $h=g\cdot g^{-1}h$ и аналогично слева. Поэтому G содержится в некотором $\mathscr H$ -классе H. Поскольку H содержит идемпотент (а именно, единицу подгруппы G), по только что доказанному следствию H есть подгруппа. Итак, каждая подгруппа полугруппы содержится ровно в одной максимальной подгруппе, а именно, в $\mathscr H$ -классе единицы этой подгруппы.

Предложение 3.3. Любые две максимальные подгруппы внутри одного \mathscr{D} -класса изоморфны.

Доказательство. Пусть H_1 и H_2 – две такие подгруппы. По следствию из теоремы Миллера–Клиффорда существуют идемпотенты e и f такие, что $H_1 = H_e$ и $H_2 = H_f$. Поскольку все происходит внутри одного \mathscr{D} -класса, имеем $e \mathscr{D} f$. Таким образом, $e \mathscr{R} a \mathscr{L} f$ для некоторого $a \in S$. Из того, что $a \mathscr{L} f$, получаем, что существует элемент $a' \in S^1$, для которого f = a'a.

На H_e рассмотрим отображение, определенное правилом $x\mapsto a'xa$. Из леммы Грина и утверждения, двойственного к ней, следует, что это отображение есть биекция H_e на H_f . Осталось проверить, что это отображение является гомоморфизмом.

Заметим, что aa'a=af=a. Отсюда (aa')(aa')=(aa'a)a'=aa', т. е. aa' — идемпотент из R_a .

Для произвольных $x, y \in H_e$, поскольку (aa')y = y, получаем

$$(a'xa)(a'ya) = a'x(aa'y)a = a'xya,$$

что и показывает, что отображение $x \mapsto a'xa$ есть гомоморфизм.

Элемент $a \in S$ называется регулярным, если существует такой $x \in S$, что axa = a. Класс отношения Грина называется регулярным, если все его элементы регулярны.

Предложение 3.4. Пусть D – некоторый \mathcal{D} -класс. Следующие условия эквивалентны:

16 ЛЕКЦИЯ 3.

- (1) D регулярный \mathscr{D} -класс;
- (2) в D есть регулярный элемент;
- (3) каждый \mathcal{R} -класс внутри D содержит идемпотент;
- (4) каждый \mathscr{L} -класс внутри D содержит идемпотент;
- (5) в D есть идемпотент;
- (6) cywecmeyom makue $x, y \in D$, что $xy \in D$.

Доказательство. Эквивалентность условий (1)–(5) вытекает из следующей леммы и двойственного ей утверждения:

Лемма 3.2. Я-класс регулярен тогда и только тогда, когда он содержит идемпотент.

Доказательство. Пусть $a\,\mathscr{R}\,e$, где e — идемпотент. Тогда существует такой элемент $u\in S^1$, что e=au. Имеем следующую цепочку равенств: $a=ea=e^2a=(au)ea=a(ue)a$. Поскольку $ue\in S$, видим, что элемент a регулярен.

Обратно, если axa=a для некоторого $x\in S$, то ax — идемпотент, лежащий в R_a .

Очевидно, что $(5) \Rightarrow (6)$, а импликация $(6) \Rightarrow (5)$ следует из теоремы Миллера–Клиффорда.

Литература

- [1] Н. Бурбаки. Очерки по истории математики. М.: Мир., 1965.
- [2] Е. Вигнер. Непостижимая эффективность математики в естественных науках. Успехи физических наук. 1968. Т.94, №3. С.535–546.
- [3] Э. Хилле. Функциональный анализ и полугруппы. М.: Изд. иностранной литературы, 1951.
- [4] J. M. Howie. Semigroups, past, present and future. In: Wanida Hemakul (ed.), "Proceedings of the International Conference on Algebra and its Applications", Chulalongkorn Univ., Bangkok, Thailand, 2002, P.6–20.