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PSEUDO.SEMILATTICES AND BIORDERFD SETS - III
REGUI,AR TOCAILY TESTABLE SEMIGROUPS

K.S.S, Nanbooripad

Commmicated bv F. Pastiin

In [9 ], Theoren 2,10, we have obtained a structute theoren

for pseudo-inverse senigroups in tellns of inductive pseudo-group-

oids. An inductive pseudo-groupoid is a disjoint union of Rees

groupoids endowed with a partial order satisf,ving axiotns (I1)-(I4)
of Definition 2 . 1 of [ 9 ] . In this paper we shal1 obtain a refin-
enent of this result in the case of regular 1oca11y testable seni-
grolq)s. Our structure theoren differs fron the structure theorern

for regular locally testable senigroups given in [ 10 ] .

In Section 1, we obtain a characterization of pseudo-seru-

lattices as a residuated subset of the product of two partially
ordered sets. This result is differcnt fron the constmction of
pseudo-senilattices given by Meakin and Pasti.jn in [ 5 I , We then

use thls result to obtain the proposed refinenent. In the last
section we d.escribe the (isornrphisn) class of all rcgular loca11y

testable senigroups detemined by a given biordered set.
llhenever possible, we shal1 use the notation and the terdnol-

ogyof [2 ] andt3l. Since this paper is a continuation of [9 ],
we shal1 freely use notations and terninologies introduced there,
without further comnent.
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1. PSEUM-SEMILATTICES

Let I be a partially ordered set. A subset A of I is sald to
be residuated if the inclusion tnapping inca : A q I is residuated
t Il l, p. ff). ]f ind denotes the residual of incA, then by
Theoren 2.6 of 11 | , incl : I + A is the unique surjectlve napping

++such that 1ncA" rncA < 1I, rncA" rncA = 1A Hence if FA = incA" incA,

Then FA = Fi< 1I and so FO is a dual closure rnapping of I lnto I
(see t1l). Further imFA= A. Conversely, if F: I-I is a dual
closure napping, then A = im F is a residuated subset of I. For if
0 : I + A is the surjective rnapping deteunined by F, then d" incO =

F < 1I ard incA. d = 0lA = Fl A = l4 (since F is an idenpotent).
Hence incO is residuated with incA = O. Further if B is aay ordered
set and g : B - I is an injective, residuated napping, then by
Theoren 2.6 of [1 ], g+ : I + B is surjective and g"g+ = 1o. Hence

, -Z + +1r f =g"g, f,nen | < lt and t =g"(8"9 l"g=g.lBog=B"g=
I. Thus F is a dual closure napping so that ijn F = A = im g 1s a

residuated subset of I. It is easy to see that the surjective nap-
ping E : B+A dete nined by g is an order isoflrorphisn of B onto
A. We sumlarize the foregoing discussion as fo1lows.

LRAIA 1.1. Let I be a partially ordered set and A 9I. Then A is
a residuated subset of I if and only if there exists a dual closure
rnapping FA : I - I such that A = in FA, Wheg FA exists as above,
it is unique.

Moreover, if g : B - I is anv iniective residuated mapping

of an ordered set B into I, then B is order isomorphic to a

residuated subset of I.

The lerma shows that there exists a one-to-one correspondence
between residuated subsets of I ard dual closure nappings of I.
Since dual closure nappings are idernpotents, residuated subsets
are retracts of I in the usual senie.

l,et I and A be partially ordered sets. If P c_ I x  , we say
that e,f € P are coffrected if there exist a positive integer n and

elenents er€ P, r = O,,.,,Zn, such that eO = e, e2n = f and for
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s ='i ,.,.,n, e2r-]pl = u2r-zpl d.zsp^ = 
"2s_lp^, 

where pI :

I x A-' I anil pn : I x A+A are tlle projections.
If A is ary partially oralered set aral x € A, in the foll-cnrring

we shall denote by [ -rx lA t}Ie principal icleal of A generateal by x.
Thus if AC I, tlen t-,x ll = [-rx II n A,

ltlEORB,f 1.2. I€t I and A be partially ordered sets and E be a
residuated subset of I X A such tlat for all e € E, the nlapioings

(a) p1 : [-,e lE -' t-,epl 11 and p1 : [-,e lE - [-,ep^Ii
are order iscmorphisns. For e,f € E, define

eaf=Fu(en1,fq) (1 .1j

where FE denotes the duaL closure napping associated wit}t E,

(1 ,1) defines a binary operatiop on E such that (E,^) is a Dartial-
ly associative Dseudo-semilattice. E is locally testable i.f and on-

.lyif
(b) for all e € E, uo two distinct el€m-.nts in [-,e ]F are comec-
. ted'

' Conversely. every E e PSL is isomrDhic to qle constructed
as dbove.

Before provirg the theorer we shall pmve tl{o lsmas in which
we use t}Ie notations established above, In particular we ass-une

that E is a residuated subset of I x A satisfying conditi@ (a).

LEr,t A 1,3. For e,f e E,

eAf =f *&r<upr.
If e and f satisfy this cordition we have (f I e)p, = 1p, ,

Proof, If e 
^ 

f = f, then Fr(epg,fn1) = f anil iirrce FE( 1t x a,
we have f < (+1,ffn). thns fpl < epl.

Ccnversely, i5 fpr < ep1, then f = (fpf ,&a) < (en1,ftr),

ad since FE is order preserying and idspotent, ne have f =

FE(fpI,fPA) < FE (e!pl, fp^) = e A f. then fpn ( (e ,r OpA < fp^ srd

so (e 
^f)p^ 

- fpn, Since f € [-re ^ f lf, by (a) ne get e I f =
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Since fpl € t-,epl lI, by (a) there exists f'e [-,e lE

such that f'pr = fpr . Thus f' < (fpt,epa) ard so f' = FE(f ') <

FE(fpr,ep^) = f r. e' Hence f'pr = fpr < (f '1 
e)PI <fp,, ard we

conclude (f ^ e)pl = fPI

LEI\4'4A 1,4. !9! e,f,g € E and h = f n g. f! fP1'BP1 € [ -,ePr ] t'
then hpl < gpl

Proof. Since hpi< gprr, by (a), there exists h'€ [-'g ]E such

that h'p^ = hp^. Then h'pt < gpf < epl, ard so by Lerum 1'3 e a h'

h'. silnilarly hpt < fpt < epr and so e ^ h = h' rhrt since hp^ =

h'p^, we have

h = e,r h = FE(epI,hp ) = FE(eplh'p^) = e ^ hr = hi

tlence hp, = h'pt < gPf.

Proof of Theoren 1.2. Define the relations .r atdta1 on E as fo1-

lows : for e,f e E,

ec.lrf:epI<fpI

e-'fo"p,r<fu,r
Clearly, c,f ald ,.J are quasi-orders on E. If erf € E are arbitrary,

and h = e,r f, then h = Fu (el' fnn) < (eprfpir) ' and so hpt < ept

' - r' ' n.r19. tr g € @r(e) n c.,lJf;, thenand hpn < fp^. Hence h € d- (eJ

g (,t 
", 

to that gpl < epl. Sijnilarly P,r * fp,r' Hence g = (gpi'gp^)

< (epI,fprr). Since FE is an idelpotent order preserrring napping

wlt}I ijn FE = E, we have

s=FE(c)<FE(eP|fP^)=h
Thus gpr < hpr, BPn { hp^. Therefore g t ,t (h) n t16; = t611 ,

,h"r"-r'= .,t ,i .,r."Ia dt*, tlrat (g,r1,.r) j's a pseuclo-senilat-

tice in which the bjnary ope, ation ^ is alefined by (1 '1) '
By Lenna 1.3, (E, ) is a regular pseudo-senilattice ' Hence

to show that E is a biordered set' it suffices to prove the fo1-

lowing : for all e € E, f,g e,Jr(e),

.and
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(1) (f r.e),rs=f 
^s '(2) (f ,rg),., e=f I (9,re) = (f ^e) r' (g ^e)

(see [8 ], Theordn 2), By Lemna 1.3, we have (f I e)p, = fpl and

SO

(f r.e) r c = FE((f ^e)pI,Bpl) = FE(fpl,cpi) = f n g,
ard

f .r (g,r e) = FE(fpr,(g ,. e)p^) = Fr((f,. e)pr,(e ,. e)nn)

=(f^e),r(gz,e)
To prove that (f .r g) z. e = f,r (g ,re), 1et h = f ,rg and h' =

h,r e, g' = g r. e and k = f ^ 
g', Then kp, < fpl ard kpn < S'nn <

e%. By Leuna 1.3 and Lenna 't .O tlf < e'11 = en1 . Hence there

exists kl e [-,8 ]s such that kn1 = k.,n, . Then k1p1 < fp, and

ktpa < S,r. Therefore k1 =FuG1)<IE(fpI,Cp )=f^g=h, It

follows that kpf < hpi . Since kp^ < ep^, it follows that k <

ru(hnt,enl=h^e=h'.
Now by Lemna 1.3, h'pl = hpt, g'pt = gpt A1so, hpl < gpl

by Lenuna 1.4 . Hence there exists h€ [-,g' ]E such that hpl =

hpt = h'pr . b.rt h,h' e [-,e ]l and so h = h'. llence h' o gr' so

h'prr< g'prr, h'pl = hpt{fpr. Hence h'< Fu(fllg'nn) =f g'=
k and t}lis proves (2).

It i.s easy to see frcNn the definition and Lenna 1.3 that
frge [-,e ]E are comected if and only if there exists an E-

ch4in C such that eC = f arlil fa = g . Thus f,ge [-,e ]E are

comected if anal only if f,g e or(e) n 61 for sone 61 € E/6o, anat

so the condition (b) of'Itreoren 1.2 is equivalent to the condition
that for all 61 e E/6o ,6., n co(e) contains at nost one elenent.
lbnce bi Corollary 1 .5 of I 9 I E is locaUy testable if and only if
E satisfies (b).

Conversely, assrrre that E € PSL and Let I = E/ff, ancl ir = E/L .
Define 0 : E+IX and4: IX -'Eas follows,

eo =. (R",L") for every e e E ,
and

(Re,Lf)o = e,rf, for every (R",L6) c I x A .



It is easy to see that d is an injective ' order preserving napping

ofE into IXA. If R.= R.,r anil Lf = Lf', we have e '\f = er^ fl
(see Proposition 2'5 of t 6 l) ' 'I}Ilrs C is weU-defined' It.is also

oraler preservi.ng. Further for alL e€ E, (e0 )0 = (Re,Le)o = e^ e

= e, so that eo = lE For (Rr'Lg) € r x A, (Re,Lf)Od = (e ,\ f)0 =

(Re n t,Le ,, g). since Re ,, f { R., L" 
^ f 

< Lf it fouoh's that

00 <1I x A. fbnce 0 is resiiluated anil O is'its residual ' tbnce

by Lenrna 1:1 , F =ge is a dual closure napping of I xA and so El

= iltr F is a residuated subset of I x A. If e' = Q'r"), with e €

E, is any elenent of Er, tlren P1 : [ -,er 1g, * t -'R" 11 is an

order iso[orphisn. For' clearly o : <'r(e) '+.t -'e' ]Er is ar isorpr-

phisn anil it follows fron Tlreorsn 1.3 O) of t 9 I that tfre napprng

g -+ R, is an isorcrphi$t of the senilattice @(e) onto [ -'R" I r '

Similarly, pA : I-,et tE, *t-,LJA is also an iscmorphism' Thus

E' satisfies conalition (a). If erf € E, (e 
^ f)o = (Re 

^g,L" 
r..g)'

N.o (Re 
^f,Le ^ f) 

= F (Re,Lf) = (Re,Le) 'r (R1,L1) = e0 a s bv

(t .1;'. trus 0 is an isolcrphisn of E onto E' . This cc|lpletes the

pto<if'of Theoren 1.2 .

REIARK. If I,   anal E are as in the staten€nt of Theoreflr 1'2, thm

it is easy to see that the naPPings

Re - "pI , 
Le* ep^,

ale qrder isonorphisns of E/8' anal E/i onto subsets od! I and  
respectively. It is easy to see that they are not in general iso-

norphiens of E/q. onto I and E/f qrto A' Thrs E does not rniquely

deternine the partiatly oralered sets I and A' It caF be seen tlEt
these nappings are isomrp}isnrs if and oldy if E is a subdl'rsct

prothrct of I an<l A in,the sense that rtJre nrapprjngs pll E anil'p E

are surjective '

2. SfzuCruRE OT RTS.N.AN IOCAITY TESTABI.;E SB' IGRN'PS

A Rees groupoid G is said to be ccnbinatorial if the subgroups
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of G are taivial. It is clear tlat a Rees groupoid G =

7,o1H;f ,rr;e)f {o} is conbinatorial if arld only if the group H con-

tains exactly one elenent. This leails to a convenient Tepresen-

tation of ccmbiratorlal Rees groupoids given in the following
leruna whose proof is routine .

LB'li,lA 2.1, (a) Let I and A be sets and R a subdirect product of I
ard  . Let G(1,4;R) be the partial algebra on the set I X A with
partial binary operation defineal as follora's.

r (i,j') if (i',j) € R
fi il fi' i'\ = I\.,J/ \. ,J / lI r m.lF Fi ncd nfhFrwise .r 

=j:::::.:::--:==-

(2.1)

Then G(I,A;R) is a conbinatorial Rees grouooid. Conversely. every

conbinatorial Rees grouDoid is isolprphic to one constructed in
this way.

(b) A nappine 0 : G(i4;R) -| G(I'4r;R') 9l cornb-4!e!9lia1

Rees groupoids is a hcmonorphisn if and onlv if there exist nap-

lilg: d : I+ Ir and'y' : A+Ar such that d X 'y'lR is a napping of
RintoR'ando=0x.,

. (c) If 0t : G(I,A;R) + G(Ir,Ar;R') and gZ : G(Irr'\';Ri) -
G[I'r,^";R") are hononprphisns of ccmbinator,ial Rees grouooids, and

if 0i = 0i x gi, i = 1,2, then O.pz = 0 f 2x l)llz

Let P : I * Set be a set-valued frmctor. A frmctor P' :

& - Set is 4 subfunctor of P if f,or all ae V()&)r P'(a) is a

subset of P(a), and the inclusion inc, : P'(a) € P(a) is natural
in a, Here, as irl [ 6 I , V(&) clenotes the vertex class of {r ;

the norphisn class of )9 is denoted by Yr itseU. We sha11 write
Pr g P to near that.P' is a stubfimctor of P. It nay be noted that
pt g P if and only if for all f : a-b in E, P'(fl = P(fllPr(a).
If P,Q : .f,- - Set are ftmctors, the rmiversal properties of the
cartesian properties of sets iflplies that the assigruFnts

a+P(a) x Q(a) (ae v(&)), f -P(f) x Q(fl (f in*)
yield a fimctor P X Q : )? + Set and that P x Q is the pmduct of
P and Q in the fimcto category t )&,Set I (see also [4 ]).

Let D be a partiau.y ordered set. In the foUowing we sha11

regard lD as a snal1 category in the folloi4ing way : V(lD) is the
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sane as the set D arld norphisns of the category lD are pairs (a,b)

with b < a. We denote the norphisn with donain a and codonain b

by b < a, Note that this is dual to the convention adopted in [ 4 ]

THEOREM 2.2. Let D be a partially ordered set and P,Q : lD - Set

be firnctors such that for all a,b e D with a I b, P(a) t-) P[b) =

D = Q(a) n Q(b). Assune that A i5 a subfunctor of PX Q sucL

that

[1) a(a) is a subdirect product of P(a) and Q[a) ,o, 
"11 

3€lDr

and

(2) for i € P(a) and j € Q(b) (a,b € lD) there exists dij t tD t,t.h

that
ti) d., < a, dr. < b 4Ig (iPla,dii),jQ{b,dii)l€ ^(d 

.) 
'- 1) tJ 

- 'J ')
(ii) if d< a, d< b and (iP(a,d),jQG'd)) € A(d)' then

d < d..
1J

Let S(P,Q;a) =u lP(a) x Q(a) : a€lDJ. Define a product

in S(P,Q;a) bI
(i,j) (i',j') = iir(a,d,,,),j'Q(b,di,j)) {2 .2)

wher.e (i,j) e P(a) x Q(a) and (i',j') € P(b) x QO) . Then. with

this product, S(P,Q;A) is a regular 1oca11v testable sefi[group '

Conversely. every regular loca11y testable senriRroup is

isonorphic to one constructed .in this way.

Proof. In view of condition (1), for every a, G(al =

G(P(a),Q(a);A(al) is a combinatorial Rees groupoid and since A

is a subfunctor of Px Q, for all a'< a, G(a,a') = (Px Q)(a,ar)

= P(a,a') x Q(a,a') is a hornonorphisn of G(a) into G(a')' Thus G

is a fimctor of iD to the category of conbinatorial Rees groupoids

andE = u{G(a) : a€Dl is a pseudo-groupoid.

Now define the relation < ott E at follows ; for (i,j) e G(a)

and (i',j') e G (a') ,

(i',j') < (i,j) * a'< a and (i"jr) = ((i'j))G(a'ar)
(2.3)

It is easy to see that (2.3) defines a partial order ont such

that for all a,a'€ lD and (i'j) € G(a), G(a') contains at nost

one elenent (i',ji) such that (i',j') < (i,j). Such an elenent
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exists in G(a') if and only if a' { a,

We proceed to sho}{ that d is inductive with respect to this
partial order, If x € G(a) ard y € G(a') with y { x, then for
aLI zeLx, zG(a,a') t y and zc(a'a') < z. Since no two elernents

belonging to the sarne cofponent of 6 lnees subgroupoid of 6) are

coflFarable, it follows in particular that "e(G) and d.(G) are

strictly cory)atible. Hence d satisfies axion (I2)of Definition 2.1

of [9 ] . Axiorn (I3) follows innediately fron the fact t]at G(a,a')

is a hononorphisn of G(a) into G(a') (a' < a). If x,ye G(a),

x',y'€ G(a'), x'(x, y'(y, and xy exists, then (xy)G(a,a') =

(xG(a,a')) (yG(a,a')) = x'y'. Thus x'y' ( xy' anil axion (I1) holds.
LetF = u {P(a) : a€D} and Q = ".lQ(.) : a€D}. rhen t

and Q are partially ordered sets wlth respect to relations defined

as follows : for i € l(a), j e P(b),
i < j: a<b and i = jP(a,b) (2,4)

The relation onQ is defined similarly. It nay be noted that
G e F x Q and the partial order ont defined by (2.3) coincid.es

with the restriction of the product order on F x Q to 6. Further-
nore, if p : F x Q- F and 4 : F x Q *Q aT e projections, t}ten

for all xe G,T : [-,x ]C - I -,xp 1? and q : [-,x lC*t-,xq]O
are order isonorphi$ns.

Now define r : F x Q t E = E(O = lala; : a€lD) as fol1ows.

If i € P(a) cFand j € Q(b) 9Q, then by condition (2) (i), there

exists d:: €lD such that dj: < a, d,. { b and (iP(a,d.,.),jQ(b,d,.))
t) L) L.t J.t LJ

€ Afd-.) . We alefine' r-J -

F(i,j) = (iP(a,d,.),jQ(b,d,.))
IJ L)

Then F is well-alefined., and by condition (2) (ii), F is oriler-
preserying. By (2.3) and its dual we have

F(i,j) = (ip(a,d..:),jQ(b,d,'.)) < (i,j)
'J LJ

and so F < 1FxQ. Also if (i,j) € E, then a = b = dij ard so

F(i,j) = (i,j), ttence F is iderpotent with illl F = E. Thus F rs
a dual closure nappijlg onto E. Since [ -,e lf = [ -,e ]6 g. E for
at1 e e E, by the renark above, ! : [-,e lF + [ -,ep- ]6 and

4 : [ -,e lE + t -,eq ]Q are order isonoehims. tbnce by Theor€n 1.2,
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E is a pseudo-senilattice where the operation is defined as fo1-

lows. Let e€a(a), f €A(b)' where a,b € D' Then

e ,\ f = F(eF,fO = (e! P(a,dan a"-), fQ Q(b,d"5.15)) (2;sl
gy'r\t."''i..

Iti5a1SoeaSytotheck.*..n"o,-'",,-order,I[,1]ofE1sthe<
relation generated by the restrictions of ( and 4-(G) I t(G)l to

E. Hence G satisfies axlon (I4) of [ 9 ] , Definition 2'1, also'

Since 6 € IPG, 7"(G) is a pseudo-inverse sernigroup by Theorent

2.10 of t 9 I . By Theore'ns 2.3 aIId 2.1O of [9 ] , the partial order

on d defined by (2'3) coincides with the natural partial order on

7(G) and so, 7"(6) satisfies condition (2) of Theoren 1'4 of [ 9 I '
tlence /tG) is 1ocal1y testable.

It renains to prove that ?"(d) is the sane as S(P,Q;a) ' Since

the set S(P,Q;a) is the saine as G, it is enough if we show that

the product in -/(G-) defined by (2.6) of [ 9 ] coincides with the

product defined by (2.2). If (i,j) € G(a) g 1{6) and (k,n) e G(b)

c_ -n(d), then by (2.6) of t 9 L
(i,j)(k,rn) = ((i,j) r h)(h * (k'n))

where h = fa e, ee E(L1i,31) and f€ E(R(k,n)) ' since e J(i'i),

we have e( - j and similarlY fF = k' 'lhus

rr = F(fF,eO = F(k,i) = (kP(b,d)'iQ(a,d)),

where d = dki. The only elernent (i',j') € G(d) such that (ir,j') <

ti,jl is (i,j)Gta,d) = (i.P(a,d),jQ(a,d)) J h. Hence (i,j) * h =

(iP(a,d),jQ(a,d)). Sirnilarly h r (k,n) = (kP(b,d) 'nQO'd)) 
and so'

by (2,1) ,
((i,j) * h) (h r (k,rn)) = (iP(a,d) 

'nQO,d)l
Since the right hard side is the sane as the product (i'j)(k,tnl

defined by (2.2), ir follows that the two products coincide' This

conpletes the proof of the direct part'
Conversely, assune that S is a regular 1oca11y testable send-

group. l{e put ID = S/4. We define the relation < onD as follows':

a'<a.=fx€a,x'e a'such that xt<x (2'6)

where the latter relation < is the natural partial order on S' It
is clear that the relation defined by (2'6) is r:eflexive and tran'

siti.ve, By Theoren'l .4 (2) of [9 ] no two distinct A -related elen-

ents of S are conparable in the natural partial oTdelf ald so { rs

antislrmetrlc.
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We next construct functors P'Q arlal A. For each a e D, 1et

P(a) denote te set of all 6.-classes of S contained in the 6 -

class a, If a' < a, then by Leruna 2,2 of 17 I and Theoreff<' 4 (2)

of [9 ! for everyx€ a there exists a mique x' € a' such that

x' < x and so for every R € P(a) there exist a uique R' € P(a')

such that R' < R. Hence P(a,a') : R.+ R' is a napprng of P(a) into
P(at). Clearly P(a'a) = 1p(a) and P(a,ar)P(a"a") = P(a,a") when-

ev..r' a" ( a' < a. Thus the assignnents

a+ P(a), ar<a+P(a,ar)
is a set valued ftmctor on lD. Sinilarly, if a e lD, 1et Q(a) denote

the set of d'-classes of S contained i"n a, and if a'< a inlD,
let Q(a,a') denote the nap which sends L € Q(a) to L' € Q(a'),
where L'( L. Then

a + Q(a), a'< a* Q(a,a')
yields a set valued fmctor on lD. Next ' let

^/.\ = IrD r I ^- Fr")]r\..er-e, ' ! -\*

Then a (a) E P(a) x Q(a) . obviously A (a) is a subdi, ect proaluct

of P(a) and Q(a), Also if a'< a and ee E(a),

lihere g is the uique idenpotent in a' such that g <.r e. Thus,

P(a,a') X Q(a,a')lA(a) i.s a nap of A(a) into A(ar) Hence if we

set
a(a,a') = P(a,a') x Q(a,a')la(a)

then A: lD* Set becones a subfunctor of Px Q.

We have already seen that A satisfies condition(1) of Theoren

2.2. To prove (2) , 1et R e P(a) and l, e QG). Choose e e E(R) anil

f e E(L) and h = s,\ f. Then RO< R, hn t and (h,!J € a(dh),

where dh is the 6-c1ass of S containing h. Therefore dff, = di,

satisfies condition (2) (i)' If d< a, d<b and if (Rr,Lr) €
A(d) wherc R'< R, L'< L, then for s(xne ge E(d), R' = Rr, L' =

Lg so that geo'(e) n-'(O. tlence g c.r h and so d< dO. Ihus

q& satisfies condition (2) (ii) a1so,

Since S is conbinatorial, it is clear that the napping

g : x- (\rL*) is a bijection of s onto S(P,Q+). It is easy to

249



see that 9 is otder preserving' Further if xry e a and if xy

exists i.n the trace of S, then Lx n Ry contains an idernpotent '
say e, Hence (\,L*) =(R",L") € a(a) and so

(xv) ()'/) = (Rx,Lx) (\'Ly) = (R*,Lr) = (Rx),,L' = (xr)q

Thus { is a trace hornonorphier. Also if e e E(a), f e E(b) and

h = e ,r f, then Rh < R", h < Lf and so R"P(a,dn) = \, '
LfQ(e'dh) = Ln . Hence bY (2.5)

e! 
^w 

= (Re,Le) ^ 
(Rf,Lf) = (Rh,h) = h9 '

gence 9l E(S) is a hononorphisn of the pseudo-senilattice E(S) onto

the pseudo.senilattice E(S(P,Q;^)). Since '/ is a bijection, it ':
follows fron Theoren 2.3 of 19I that '/ ls an isornorphisrn of S

onto S(P,Q;A) .

Since the structure of regular 1oca11y testable semigroups

has been described in tenns of three fr.nctors P'Q'A € [D,Set ]

(where lD is a partially ordered set), it is of interest to finow

how these structur:al data transforflI under homoinorphisns. We have

the fol1ow1ng.

THEoRE\.i 2,3. Let s = s(P,Q;a), Sr = S(Pi,Q';A') be regular local-

1y testable senigroups. Suppose that 0: tD = S/D -lD'= S'/O

is ar order preserving nap and o : P*dP' ,r : Q+OQrare
natural transfornations such, that for all i e P(a) and j e Q(b)

(a,b c D) ,

8) d (d..) = d,^,^., ,.,u,LJ 
- \4) tJ \w)

Define O = O@',o,r) : S- Sr bY

(i,j;4= (io (a),jr (a)) , ((i,j) eP(a) x Q(a))

Then o is a hononorphisn of S into S'.

Conversely if 4 : S + S' is a]Iy hononorphisn, then there

exlst an order preserving nap g : 0 + lD' and natural transfoflna-

ti.ons o : P+oPt,r I Q- oQ' such that 0,o 4t satisfy

condition (r) above, and, O = Q{0 ia,r)
Proof, The direct part is proved by a straightforward verification'
s-rppose thatd, o and ' satisfy (*). If (i'j) e P(a) x Q(a) g S

(2.7)
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(k,n) E P(b) x Q&) q s, then
((i,j) (k,n))o = (iP(a,%) ,nQ6,dkj))e by Q.2))

= (iP(a,ilnr)o ({1),tnQG,dur)r (dor)) (br (2.7))

= (io (a)P' (0 (a) ,a (dur)) ,nr (b)Q(e {ul ,e 1q.rD
since o ald u are natural transfornati.ons

= (i'p, (0 (a) ,dk, j ,) ,n'Q' (0 (b) ,dk,n,))

by the condition (i), where we have written (i',j') = (i,j)o and

(kr,tnr) = (k,n) 6

= (1',j ') (k',rn') (by (2.2))
Hence 4 is a holpnorphisn.

To prove the converse part, 1et O : S + S' be a honornorphisn.

Since C preseryes Greenrs relations it follows that C induces a
napplng 0 : D ' D' defined by 0 (D*) = Dxd for all x€ S If
Dx < Dy , then there exists an x' € Dx with x' { y, and so xio <

yd Since x'C€ DxO it follows that d(Dx) < o(Dy). Nolr for a€lD

defiae o(a) and r(a) by the following. For all (i,j) € P(a) x Q(a),
(i,i)c = (io(a) ,i? (a))

Ii (i,j), = (i',j') and (i,rn)c = 1i",n'), where (i,j),(i,n) €

P(a) x Q(a), then (i,j)6"(i,n) and so (i',jr) = (i,j)o 0t- (i,n)q =

(i",n'). Hence i'= i". This shows that o(a) is single-valued.
Sinilarly, r(a) is single-valued. If a' { a anil if i € P(a) and

i,= iP(a,a'), then i'< i. If j € Q(a) such that (i,j) = e€
a(a), then f = (i,,j') = (iP(a,a'l,jQ(a,ar)) .r e. Ibnce fO (,e0
Thus

fc = (i'o(a!),j,'(a,))
= (io(a) ) Pt (0 (a) ,e (a') ) ,j z (a) Q' (o (a) , d (a') ) )

Ilence we get iP(a,ar)o(ar) = io(a)P'(0(a),a(a')). Tlds proves

tllat the napping a + o(a) is a natural transfornation of P to
9Pr, Siinilarly ttre napping a + .(a) ls a natural transfonEtion
of Qto 0Q'. If i€ P(a), j € QG), then we can find n and k such

that e = (i,n) € A(a) and f = (k,j) € aO). Since (e .r flo =

ec 
^ 

fg, where ec = (io(a),nr(a)) and f0 = (ko(b),jz(b)), we

have 0(i1;;) = d;.r.r i-n This prwes tlnt d, o and r satisfy
the condition (*). It follows fron the definition of o and r that



g = Q(0 1o,r). This conpletes the proof.

It follows fron theorern z'2 that functors P, Q and a nay be

used to classify regular 1oca1ly testable senigroups. For example,

if S = S(P,Q;A) is an inverse seldgroup then for every aq lD = S/b,
G(a) = 51p1"1 ,Q(a);a(a)) is a Brardt gror.rpoid and soa(a) is a

bijection of P(a) onto Q(a). Also since a gPX Q' it follows

easily that the nap a + A(a) is a natural isonorphisl of P to Q'

The convetse is c1ear. It follows therefore that, identifying P

and Q by neals of the natural isonorphisn a - A[a) ' we cal des-

cribe loca11y testable inverse sernigroups as fo11ows.

COROLI^ARY 2.4. Let D be a partiallv ordered set and f : D - !9!
be a furctor such that for all a,b € D with a l b' F(a) n F(b) = !
ard for all i € F(a), j € I(b), there exists a d.. elD such that

ldeD : d< a,d < b, iF(a,d) = jF(b,d)]= t-,di.j lu

Then s(F) = u'lriul x r(a) : a e D! ls a 1oca11v testable inverse

senigroup when we define the product ln S(I) ry
(i,j) [k,m) = (iF(a,do.),nF(b,dkj))

where (i,j) € F(a) x F(a) aad (k,n) € I(b) x F(b)'

Converselv, every locally testable inverse semigroup i:
iscmorah ic to oJIe !94!1lq9!9q_-14-

Moreover, taking o = t in Theoren 2.3, it can be seen that

an hononrorphism of the 1ocal1y testable inverse senigroup S(F)

into the 1oca11y testable inverse setfgroup S(F') can be described

in tems of aII order preserving nap 0 : D *D' and a natural

transfoflnation o ; ! + 0I' satisfying conditj'ons (*).
Again if we take D as a senilattice and P,Q : lD - Set are

two functors, and if A = P X Q, then it is easy to see that P'Q

and a satisfy the condltions (1) and (2) of Theoren 2.2. The

resulting senigroup is a nornal band. Thus we obtaj'n as a coro11ary

of the foregoing a structure theoren for nomal bands as a stTong

sernilattice of rectangular banils (see [ 3 I ) '
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3. REGUT,AR LOCALLY TESTABLE SR,IIGROTJPS AII4ITIING A

GII'EN BIORNERM SEI

We obsewe that in S(P,QA) various coruponents of the struc-
ture data are not flutuaIly independent. For example, for a partial-
1y ordered set D, the fact that fr.mctors P,Q and a can be fowtd

satisfying conditions (1) and (z) of Theoren 2.2 fiposes signif-
icant structural restrictions on D, In particular, this inplies
that every principal ideal of D is a senilattice.

However, theoren ?.2 cart be used to obtain a conplete des-

cription of the class of all regular 1ocally testable senigroups

S adnitting a given biordered set E as the bio dered set of S.

Consider the relation
o (s) = P(s) n (E(s) x E(s)) (5.1)

It is clear frorn Theoren 1.4 of [ 9 ] that 6 (SJ satisfies the fo1-
lowing conditlons :

(LrE 1)

(LrE 2l

6oc6(S) r

if e orf (e,f e E) then for all f'€ 6(5) (f), there

exists a rmique e' e 6(S)(e) such that e' .D f'.

Any equivalence relation on E satisfying the two conditions
above w111 be ca11ed a locally testable equivalence relation on E.

The set of all such relations on E lrlill be denoted by LTEq(E).

THEORE''I 3.'l . Let E be a local1y testable biordered set. Then any

equivalence relation 6 on E is the restriction to E of the Grgen's

relation 6 on a regular 1oca11y testable selrigroup S with E(S) = E

'if and only if 6 € LTEq(E).

Proof. If a loca1ly testable senigroup S which is regular exists
with E(S) = E ard o(S) = 6 then it is clear fron the iliscussion
abovethat6€LTEq(E).

Conversely 1et 6 € LTEq(E). Then it is easy to see that the

relation < defined on lD = E/6 by

6(e) < 6(fl * 3 e' e 6(e) such that e' @ f
is a partial order onlD, For each a € lD, let P(a) = lR..: ee a].



If a' < a, then by axion (LTE 2) for each e e a there exists
a rmique e'€ a' such that er a, e. So, for each i€ p(a), there
exists a i'€ P(ar) such that i'< i. Hence there exists a mique
ftmction P(a,a') : P(a) + P(ar) which sends ie P(a) to i'€ P(at)
such that ir < i, It is easy to see that

a* P(a)r a'<a* P(a,a')
is a fimctor of D to Set. Sfulilarly,

a+Q(a) = lL": ee al and a'q ar Q(a,a')
where Q(a,ar) is the uique nap sending j € Q(a) to j' e Q(a')
such that j' < j, is a frmctor of lD to Set . Also

a* a(a) =,1(n",1"1 ' ee a;
ard

a'< arA(a,a') = P(a,a') x Q(a,a,jta(a)
is a fimctor of lD to Set. Moreover, A g P X Q and for each a € lD,

A(a) is a subdirect product of P(a) and Q(a). Thus A satisfies
(1) of theoron 2.2. To proye condition (2), 1et i = Re€ p(a) and
j = Lr€ Q6)' Ifh= e 

^ 
f, then dij =6(h) <a, dij <b. Further

since \ < R", h { L' we have (ip (a,di5) ,jQ(a,dij ) ) = (Rh,Lh) €

a(dij). If d< a, d<b ant (iP(a,d) , jQO,d) ) € A(d), tlen
iP(a,d) = Rg, jQ@,d) = L, for s@e g € d. It follqs fron

Rg*R",Lg<tfthatgeror(e) n -1(f) = cr(h). H-.nce il=6(g)
< 6 (h) = drr. lbnce condition (2) of Thaxem 2.2 hol<ls. There-

fore S = S(P,Q;A) is a local1y testable senigroup I'hich is reg-
ular and such that E(S) = ulala) : aeDj. As in the proof of
Theorsn'l .2, it can be seen that the nap e* (R",L") is an iso-
norphisn of E onto E(S). Also e 6 f i.n E if and orly if
(Re,Le), (Rf,Lf) € A(6 (e)) ; that is Ee,LJ 6(s) (RflLU). Iknce

identifying E with E(S) by the isorDrphisn e * (R.,L") ue obtai.n
a regular locally testable semigroup S such that 6 (S) = 6. Ih1t
corpletes the proof,

theoren 5,1 shd^'s that there exists a one-to-one correspon-
delce between th€ set LTEq(E) anil the set of isoDlrphisn classes
of regular locally testable s€Nnigroups S witn E(S) = E. Therefore

254



arry infomation about the structure of LTEq(E) will provide an

insj.ght lnto the stnucture of the class of all regular local1y

testable senigroups adnitting E as its biordered set.

Clearly LTEq(E) is a paltially ordered set tmder inclusion

and contains a least elenent nanelyr 6^ = (Au L )t'

THEORA4 3,2. Let E be a loca1ly testable pseudo-senilattice '
(j,J tvew non-enptv subset of LTEq (E) which has an upper bomd,

has a join.
(ii) Every non-enpty subset of LTEq (E) has a neet

Proof. The neet of a non-enpty subset of LTEq(E) coincides with the

set-theoretical neet, The join of a non-enpty subset X of LTEq(E)

which has an upper bound, i.s the meet of the upper bounds of X'

that is, the join of X in the lattice of all equivalence relations
on E.

In gener:a1, LTEq(E) is not a lattice even when E is a seni-

lattice. For, conside, the senllattice E given by the following
diacran :

It can be seen that the relations
o, = I le,fl, le',,f1i, {e2,r2l ,lot}

ard

62 = I Je,r\, {el,rrl , lelr,! ,1oll
both belong to LTEq(E). &rt 61 v 6 2 d LTEq(E) .

Fina1ly, we observe that Theorem 3.1 provides ar indirect
characterization of the partially ordered sets D (of Theoren 2.2).
For, they are precisely those partially ordereil sets that arise
as quotients E/6 r^'here E is a loca11y testable pseudo-serdlattice
and 6 € LTEq(E), A direct characterization of lD would be interes-
ting,
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