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PSEUDO-SEMILATTICES AND BIORDERED SETS - III
REGULAR LOCALLY TESTABLE SEMIGROUPS
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Communicated by F. Pastijn

In[9 1, Theorem 2.10, we have obtained a structure theorem
for pseudo-inverse semigroups in terms of inductive pseudo-group-
oids. An inductive pseudo-groupoid is a disjoint umion of Rees
groupoids endowed with a partial order satisfying axioms (I1)-(I4)
of Definition 2.1 of [9 1. In this paper we shall obtain a refin-
ement of this result in the case of regular locally testable semi-
groups. Our structure theorem differs from the structure theorem
for regular locally testable semigroups given in [10 ].

In Section 1, we obtain a characterization of pseudo-semi-
lattices as a residuated subset of the product of two partially
ordered sets. This result is different from the construction of
pseudo-semilattices given by Meakin and Pastijn in [5 ]. We then
use this result to obtain the proposed refinement. In the last
section we describe the (isomorphism) class of all regular locally
testable semigroups determined by a given biordered set.

Whenever possible, we shall use the notation and the terminol-
ogy of [2] and [3 1. Since this paper is a continuation of [9 1,
we shall freely use notations and terminologies introduced there,
without further comment.
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1. PSEUDO-SEMILATTICES

Let I be a partially ordered set. A subset A of I is said to
be residuated if the inclusion mapping inc:A : Ac I is residuated
CETTS pas i SSE inc; denotes the residual of incA, then by
Theorem 2.6 of [1 ], inc; : I > A is the unique surjective mapping
such that inczaincA <1q, incAfian =1, . Hence if FA - incXOincA,
Then F, = Fﬁ < 1; and so F, is a dual closure mapping of I into I
(see [1]). Further im EA = A. Conversely, if F : 1+ I is a dual
closure mapping, then A = im F is a residuated subset of I. For if
¢ : I - A is the surjective mapping determined by F, then.¢=incA =
F<1; and in%f¢ =¢lA = FIA = 1, (since F is an idempotent).
Hence incA is residuated with inc;_= ¢ . Further if B is any ordered
set and g : B~ I is an injective, residuated mapping, then by
Theorem 2.6 of [1 ], g+ : I - B is surjective and gog+ = 1B' Hence
if F = g+u g, then F < II and F? = gf»(gog+)ug = g+L1Bog = gt»g =
F. Thus F is a dual closure mapping so that im F = A = im g is a
residuated subset of I. It is easy to see that the surjective map-
ping g : B > A determined by g is an order isomorphism of B onto
A. We summarize the foregoing discussion as follows.

LEMMA 1.1. Let I be a partially ordered set and A C I. Then A is
a residuated subset of I if and only if there exists a dual closure

mapping FA : I > I such that A = im FA' When FA exists as above,

it is unique.
Moreover, if g : B~ I is any injective residuated mapping

of an ordered set B into I, then B is order isomorphic to a

residuated subset of I.

The lemma shows that there exists a one-to-one correspondence
between residuated subsets of I and dual closure mappings of I.
Since dual closure mappings are idempotents, residuated subsets
are retracts of I in the usual sense.

Let I and A be partially ordered sets. If PC I X A, we say
that e,f € P are connected if there exist a positive integer n and
elements e.€P, r=0,...,2n, such that €y =€ € = f and for



e g e e .

5= lydeagny €55-1P1 = €25.2P1 and €3sPA = €95.1PA » where Py ¢
TeixoAS > 1 fand! Py ¢ I X A~ A are the projections.

If A is any partially ordered set and x € A, in the following
we shall denote by [ -,x ] % the principal ideal of A generated by x.
Thus if A¢ I, then[—,x]A=[—,x]InA

THEOREM 1.2. Let I and A be partially ordered sets and E be a
residuated subset of I X A such that for all e € E, the mappings
(a) PI :[_’e]E"[_,ePIII _;31_1,@, PA:[‘,e]E"['sePA]A

are order isomorphisms. For e,f € E, define
e A £ = Fy(epy,fpy) (1.1

where FE denotes the dual closure mapping associated with E.

(1.1) defines a binary operation on E such that (E,A) is a partial-
ly associative pseudo-semilattice. E is locally testable if and on-
ly if
(b) for all e € E, no two distinct elements in [ -,e ]]3 are connec-
tedy
. Conversely, every E € PSL is isomorphic to one constructed
as above.

Before proving the theorem we shall prove two lemmas in which
we use the notations established above. In particular we assume
that E is a residuated subset of I X A satisfying condition (a).

LEMMA 1.3. For e,f € E,
eAf=f4=-pr<epI .
If e and f satisfy this condition we have (f A e)py = fp; .
Proof. If e A £ = £, then FE(epI,pr) = f and since Fp<1; X A?
we have f < (epI,pr). Thus pr < €py -
Conversely, if fp; < epy, then £ = (fp;,fp,) < (ep;,fp,),
and since FE is order preserving and idempotent, we have f =
so (e Af)pA== pr. Since f € [-,en £ lE' by (a) we get e A £ =
£,




Since pr € [-,epg 1, by (a) there exists f£' € [-,e g
such that £'p; = fp; . Thus ' < (fpl,eij and so £' = F(£') <
FE(pr,epA) =f A e . Hence f'p; = fp; < (f Ae)py < fpy and we
conclude (f ~ e)py = fp; -

LEMA 1.4, Let e,f,g € E and h = £ A g. If fp;,gp; € [-,epy 11,
‘then hpI < gpy -

Proof. Since hpA< P> by (a), there exists h' € [-,g Ig such
that h'p, = hpA. Then h'p; < gp; < €Py, and so by Lemma 1.3 e A h' =
h'. Similarly hpI < pr < ep; and so e A h = h. But since hpA =

h‘pA, we have
h=eAh= FE(epI,hpA) = FE(epI,h‘pA) =ena h' =h'

Hence hpI = h'pI < gpg-

Proof of Theorem 1.2. Define the relations o and wl on E as fol-
lows : for e,f € E,

ew £ ep; < pr
and

e £ ep, <fp,
Clearly, « ' and o,-l are quasi-orders on E. If e,f € E are arbitrary,
and h=ena £f, then h=F (epI,pr) < (epI,pr), and so hpI < ep;

andhpAépr Hence h € o (e) ﬁr..; ey Ingw (e) ﬂw (£), then
g W e, so that gp; < ep;. Similarly gp, < pr Hence g = (g'pI,gpA)
< (epI,pr). Since Fg is an idempotent order preserving mapping
with im FE = E, we have :

E[g) < FE(EPI:fPA
Thus gpy < hpI, gp, < hpA Therefore g E w (h) N w (h] = w(h),
where @ = @ N ul. It follows that (E, w e J is a pseudo-semilat-
tice in which the binary operation A is defined by (1.1).
By Lemma 1.3, (E,A) is a regular pseudo-semilattice. Hence
to show that E is a biordered set, it suffices to prove the fol-
lowing : for all e € E, f,g € wr(e),
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(1) (Ere)ag=£fag ,

@ (Ergre=£r(gae)=(fre)algae)

(see [8 1, Theorem 2). By Lemma 1.3, we have (f/\e)pI=pr and
S0

(£ re) A g=Fg((f ~e)pp,ep,) = Fplfpp,ep) =48,

and

fA (gne)=Fylfpg, (g ~e)p,) = Fp((f A e)p;,(g ~e)p,)

(e teiniig inie) & .

To prove that (f A g) ~ne=f ~n (g ne), let h=f Agand h' =
h ae, g’=gz\eandk=f/\g'."IhenkpléprandkpAQg'pAé

ep, - By Lemma 1.3 and Lemma 1.4 ka < g'py = gpy - Hence there
exists k1 €l-,81g such that ka = k1pI . Then kTPI < pr and
k1pA < 8P, ¢ Therefore k1 = FE(k1) < FE(pr,gpA) =faAag=h.It
follows that ka < hpI . Since kpA < ep,» it follows that k <
FE_(hpI,epA] =h re=h'.

Now by Lemma 1.3, h'pI = hpI, E'P; = 8Py = Also, hpI < gpg
by Lemma 1.4 . Hence there exists he =5 Ig such that T}pI. =
hpy = h'p . But B,h' € [~,e ]y and soh = h'. Hence h' w g'+ So

h"pA < g'pA, h'pI = hpI < pr . Hence h' < FE(pr,g‘pA) =f g'-=
k and this proves (2).

It is easy to see from the definition and Lemma 1.3 that
fige[~,e 15 are connected if and only if there exists an E-
chain C such that e = £ andfc= g . Thus f,g € [-,e ] are

connected if and only if f,g € w(e) N &, for some §, € E/s _, and

0"

'so the condition (b) of Theorem 1.2 is equivalent to the condition

that for all 5 € E/s 081N w(e) contains at most one element.
Hence by Corollary 1.5 of [9 ] E is locally testable if and only if
E satisfies (b). .
Conversely, assume that E € PSL and let I = E/R and A = E/L .
Define g : E+» I X Aandg : I XA~ E as follows.
edir= (Re,Le) for every e€ E ,
and
(Re,Lf)¢ = e A £, for every (Re’Lf) e IXA.




It is easy to see that 6 is an injective, order preserving mapping

of E into I X A. If Re = Re"

(see Proposition 2.5 of [6]1). Thus ¢ is well-defined. It is also

and Lf = Lf,, we have e A £ = e'A f'

order preserving. Further for all e € E, (ef)g = [Re,Le)gb =eAe
= e, so that 8¢ = 1p. For [Re,Lf) e IXA, {Re,Lf)qbﬂ = (e A £f)8 =

R, . polg o g Simce R, g<R,, L < Lg it follows that

e ~f
¢0 <l; , ,- Henced is residuated and ¢ is its residual. Hence
by Lemma 1.1, F = ¢6 is a dual closure mapping of I XA and so E'

= im F is a residuated subset of I X A. If e' = (Re,Le) SWithee €
E, is any element of E', then Py ¢ [-,e' ],ﬂ1 - [--,Re ]I is an
order isomorphism. For, clearly 6 : w(e) = [-,e’ Tge is an isomor-
phism and it follows from Theorem 1.3 (b) of [9] that the mapping
g~ Rg is an isomorphism of the semilattice w(e) onto [-,Re ] T -
Similarly, Pyt [=5el lE' =l _’Le]A is also an isomorphism. Thus
E' satisfies condition (a). If e,f€ E, (e A £)0 = (Re A f’Le .r\f)'
Now [Re i f'Le N f) = F(Re,Lf) = {Re,Le) A (Rf,Lf] =ef A8 by

(1.1). Thus 6 1s an isomorphism of E onto E'. This completes the
proof of Theorem 1.2 .

REMARK. If I, A and E are as in the statement of Theorem 1.2, then
it is easy to see that the mappings
Re—> epP1 » Le~>epA 5

are order isomorphisms of E/R and E/{ onto subsets of I and A
respectively. It is easy to see that they are not in general iso-
morphisms of E/R onto I and E/L onto A. Thus E does not uniquely
determine the partially ordered sets I and A. It can be seen that
these mappings are isomorphisms if and only if E is a subdirect
product of I and A in the sense that the mappings pII E and pAI E

are surjective.
2. STRUCTURE OF REGULAR LOCALLY TESTABLE SEMIGROUPS

A Rees groupoid G is said to be combinatorial if the subgroups
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of G are trivial. It is clear that a Rees groupeid G =

MO (H;1,A;P\ {0} is combinatorial if and only if the group H con-
tains exactly one element. This leads to a convenient represen-
tation of combinatorial Rees groupoids given in the following
lemma whose proof is routine .

LEMMA 2.1. (a) Let I and A be sets and R a subdirect product of I
and A. Let G(I,A;R) be the partial aigebra on the set I X A with
partial binary operation defined as follows.
G50 ifa(i G e R
Bt rs { (2.1

undefined otherwise

Then G(I,A;R) is a combinatorial Rees groupoid. Conversely, every

combinatorial Rees groupoid is isomorphic to one constructed in
this way.

(b) A mapping ¢ : G(I,A;R) » G(I',A';R') of combinatorial
Rees groupoids is a homomorphism if and only if there exist map-

pingsd : I > I'"and ¢ : A—> A' such that ¢ X ¥IR is a mapping of
R intoR" and ¢ =6 X ¢ .

(c) If ¢, : G(I,A;R) > G(I',A";R") and ¢, : G(I',A";R") »
GCI",A";R") are homomorphisms of combinatorial Rees groupoids, and
if ¢, =0, X ¥;, 1=1,2, then¢ g, =040, X ¥,

Let P : & - Set be a set-valued functor. A functor P' :
% - Set is a subfunctor of P if for all a € V(§), P'(a) is a
subset of P(a), and the inclusion inc:a : P'(a) € P(a) is natural
in a. Here, as in[6 ], V(&) denotes the vertex class of &% ;
‘the morphism class of % is denoted by % itself. We shall write
P' € P to mean ltha.t P' is a subfunctor of P. It may be noted that
P! C P if and only if for all £ : a> b in %, P'(f) = P(f)IP'(a).
If P,Q : £ - Set are functors, the universal properties of the
cartesian properties of sets implies that the assignments

a~>P(a) x Q@) (€ V($)), £~P(f) x Q) (£ in%)
yield a functor P x Q : & — Set and that P x Q is the product of
P and Q in the functor category [ ,S5et 1 (see also [41).

Let D be a partially ordered set. In the following we shall
regard D as a small category in the following way : V(D) is the




same as the set D and morphisms of the category D are pairs (a,b)
with b < a. We denote the morphism with domain a and codomain b
by b < a. Note that this is dual to the convention adopted in[4 1] .

THEOREM 2.2. Let D be a partially ordered set and P,Q : D ~ Set
be functors such that for all a,b € D with a # b, P(a) 0 P(b) =
o = Q(a) n Q(b). Assume that A is a subfunctor of P X Q such
that
(1) A(a) is a subdirect product of P(a) and Q(a) for all a€ D,
and
(2) for i € P(a) and j € Q(b) (a,b € D) there exists dij € [D such
that
(1) dij < a, dij < b and (iP(a,dij),jQ(b,dij)) € A{dij) 5

(ii) if d< a, d < b and (iP(a,d),jQ(b,d)) € A(d), then

d< djs
Let S(P,Q;A) =V {P(a) X Q(a) : a€ D} . Define a product
in S(P,Q;4) by
(L0831 = (iP{a,di.j),j'Q{b,di1j)) (2.2
where (i,j) € P(a) X Q(a) and (i',j") € P(b) X Q(b) . Then, with

this product, S(P,Q;4) is a regular locally testable semigroup.

Conversely, every regular locally testable semigroup is

isomorphic to one constructed in this way.

Proof. In view of condition (1), for every a, G(a) =
G(P(a),Q(a);A(a)) is a combinatorial Rees groupoid and since A
is a subfunctor of P x Q, for all a' < a, G(a,a') = (PX Q) (a,a")
= P(a,a') x Q(a,a') is a homomorphism of G(a) into G(a'). Thus G
is a functor of D to the category of combinatorial Rees groupoids
and G = U {G(a) : a € D} is a pseudo-groupoid.

Now define the relation < on G as follows : for (i,j) € G(a)
and, (1,0 & Glah)

(i',j") < (,j) = a' <aand (i',j") = ((1,3))6(a,3") -

(2(:3)

It is easy to see that (2.3) defines a partial order on G such
that for all a,a' € D and (i,j) € G(a), G(a') contains at most
one element (i',j') such that (i',j') < (i,j). Such an element



exists in G(a') if and only if a' < a.

We proceed to show that G is inductive with respect to this
partial order. If x € G(a) and y € G(a') with y < x, then for
all z € L, zG(a,a") £ y and z6(a,a’) < z. Since no two elements
belonging to the same component of G (Rees subgroupoid of G) are
comparable, it follows in particular that £(G) and &(G) are
strictly compatible. Hence G satisfies axiom (I2)of Definition 2.1
of [9]. Axiom (I3) follows i:mnediateiy from the fact that G(a,a')
is a homomorphism of G(a) into G(a') (a' < a). If x,y € G(a},
x',y' € G(a"), x' <x, y' <y, and xy exists, then (xy)G(a,a') =
(xG(a,a')) (yG(a,a"')) = x'y'. Thus x'y' < xy, and axiom (I1) holds.

Let P=U{P(a) : a€D}and Q=U4{Q(a) : a€D} . Then P
and Q are partially ordered sets with respect to relations defined
as follows : fer.i € B(a), j € P(b),

i<j*=a<band i=jP(ab) . (2.4)
The relation on § is defined similarly. It may be noted that
G c P x Q and the partial order on G defined by (2.3) coincides
with the restriction of the product order on P X Q to G. Further-
more, if p: PX Q- P and § : P X Q- Q are projections, then
for all x € G, P s/ I¥x 15 > =3 Iy and' § & (<515 1% 5
are order isomorphisms.

Now define F : PX Q~ E = E(G) = JA(a) : a €D} as follows.
If i€ P(a) CP and j € Q(b) € Q, then by condition (2) (i), there

exists d;; €1 such that d;; < a, dj; < b and (iP(a,d;5),Q0,d;;))

€ A[dij) . We define

F(i,5) = (iP(a,d;5),3Q0,d;5))
Then F is well-defined, and by condition (2) (ii), F is order-
preserving. By (2.3) and its dual we have
and so F < 1?-)(6. Also if (i,j) € B, thena="b = dij and so
F(i,j) = (i,j). Hence F is idempotent with im F = E. Thus F is
a dual closure mapping onto E. Since [ -,e jlE =[-,e ]gg E for
all e € E, by the remark above, p : [-,e It [-,eP 15 and

qtl=;e ]E > [-,eq ]6 are order isomorphisms. Hénce by Theorem 1.2,
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E is a pseudo-semilattice where the operation is defined as fol-
lows. Let e € A(a), f € A(b), where a,b € D. Then
e A f = F(eP,f@) = (6 Pladgs ¢a)s £ 0045 ) - (2:9)

It is also easy to check that the quasi-order it [wl ] ef E is the
relation generated by the restrictions of < and &DB) [ £(G)] to
E. Hence G satisfies axiom (I4) of [9 1, Definition 2.1, also.

Since G € IPG, 7°(G) is a pseudo-inverse semigroup by Theorem
2.10 of [9] . By Theorems 2.3 and 2.10 of [9 ], the partial order
on G defined by (2.3) coincides with the natural partial order on
(@) and so, 7°(G) satisfies condition (2) of Theorem 1.4 of [9].
Hence 7G) is locally testable.

It remains to prove that 79G) is the same as S(P,Q;A). Since
the set S(P,Q;A) is the same as G, it is enough if we show that
the product in 77(G) defined by (2.6) of [9] coincides with the
product defined by (2.2). If (i,j) € G(a) & 7G) and (k,m) € G(b)
c 7°(G), then by (2.6) of [91,

(1,7) (k,m = ((i,3) » h) (h * (k,m))
where h = f A e, e € E(L(i,j)) and f € E(R(k,m)) o oinee e (1,7,

we have ef = j and similarly £fp = k. Thus

h = F(fp,eq = F(k,j) = (kP(b,d),jQ(a,d)),
where d = dkj' The only element (i',j') € G(d) such that (i' 1) s
(i,j) is (i,j)G(a,d) = (iP(a,d),jQ(a,d)) L h. Hence (i,j) * h =
(iP(a,d),jQ(a,d)) . Similarly h » (k,m) = (kP(b,d) ,m(b,d)) and so,
by (2.1),

((i,j) * W) (h» (k,m) = (iP(a,d),mQ(b,d)) .
Since the right hand side is the same as the product (i,j) (k,m)
defined by (2.2), it follows that the two products coincide. This
completes the proof of the direct part.

Conversely, assume that S is a regular locally testable semi-
group. We put D = S/& . We define the relation < on D as follows.:

a'<a< 3Jx€ a, x' € a' such that x' <x (2.6)
where the latter relation < is the natural partial order on S. It
is clear that the relation defined by (2.6) is reflexive and tran-
sitive. By Theorem 1.4 (2) of [9] no two distinct D -related elem-
ents of S are comparable in the natural partial order and so < is
antisymmetric.
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We next construct functors P,Q and A. For each a €D, let
P(a) denote te set of all ®-classes of S contained in the D -
class a. If a' < a, then by Lemma 2.2 of [7 ] and Theorem=1.4(2)
of [9] for every x € a there exists a unique x' € a' such that
x' < x and so for every R € P(a) there exist a unique R' € P(a')
such that R' < R. Hence P(a,a') : R~ R' is a mapping of P(a) into
P(a'). Clearly P(a,a) = 1P(a) and P(a,a')P(a',a") = P(a,a'") when-
ever a" < a' < a. Thus the assignments

a—> P(a), a'< a -~ P(a,a")
is a set valued functor on D. Similarly, if a € D, let Q(a) denote
the set of f-classes of S contained in a, and if a' < a in D,
let Q(a,a') denote the map which sends L € Q(a) to L' € Q(a'),
where L' < L. Then

a-Q(a), a'< a- Q(a,a'")
yields a set valued functor on . Next, let

Aa) = {R,,L,) : eec E(a)}

Then A (a) ¢ P(a) x Q(a). Obviously A(a) is a subdirect product
of P(a) and Q(a). Also if a' < a and e € E(a),
RP@aDLQEE) = Ryl
where g is the unique idempotent in a' such that g w e. Thus,
P(a,a') X Q(a,a')lA(a) is a map of A(a) into A(a') . Hence if we
set

A(a,a') = P(a,a') x Q(a,a")la(a) ,
then A: D - Set becomes a subfunctor of Px Q.

We have already seen that A satisfies condition(1) of Theorem
2.2. To prove (2), let Re P(a) and L e Q(b). Choose e ¢ E(R) and
fe E(L) and h=e A f. ThenR <R, I <L and (R ,1;) ea(d),

where dh is the d-class of S containing h. Therefore dRL = dh
satisfies condition (2) (i). If d< a, d<'b and if R',L') €
A (d) where R'< R, L'< L, then for some g€ E(d), R' = Rg’ Lt =

Lg so that g € ' (e) nw'l(fj. Hence gw h and so d< dpp,- Thus

dRL satisfies condition (2) (ii) also.
Since S is combinatorial, it is clear that the mapping
Wiessiat = [ISC,LX) is a bijection of S onto S(P,Q;A). It is easy to




see that ¥ is order preserving. Further if x,y € a and if xy
exists in the trace of S, then Lx n Ry contains an idempotent,
say e. Hence (Ry,Lx) ={Re,Le) € A(a) and so

) ) = R,LIRSL) = Re,Ly) = Ryyslny) = xy)v

Thus ¥ is a trace homomorphism. Also if e € E(a), f € E(b) and
h=enf, then R <R, I <L and so ReP(a,dh) =R,
LfQ[e,dh) = Lh . Hence by (2.5)

o AF = Ry,L) A Relg) = (Ry,ly) =hi .
Hence ¥| E(S) is a homomorphism of the pseudo-semilattice E(S) onto
the pseudo-semilattice E(S(P,Q;A)). Since ¥ is a bijection, it =

follows from Theorem 2.3 of [9 ] that ¢ is an isomorphism of S
onto S(P,Q;4).

Since the structure of regular locally testable semigroups
has been described in terms of three functors P,Q,A € [D,Set ]
(where D is a partially ordered set), it is of interest to know
how these structural data transform under homomorphisms. We have
the following.

THEOREM 2.3. }_?_E s = §(P,Q;4), S' = S(P',Q';A') be regular local-
ly testable semigroups. Suppose that 6: D = S/ -D' = S'/&
is an order preserving map and¢ : P->68P' ,7 : Q->6Q' are

natural transformations such. that for all i € P(a) _a;n_d j € Q(b)
(a,b €D},

B 006 T e e By -
Define ¢ = ¢(B;0,7) : S S' PX
(i,3)e= (is(@),ir (@), ((,]) €P(a) X Q@) - (2.7

Then ¢ is a homomorphism of S into S'.

Conversely if ¢ : S S' is any homomorphism, then there

exist an order preserving map  : D » D' and natural transforma-

tions ¢ : P> 68P', r : Q> 6Q" such that ¢, ¢ and r satisfy
condition (*) above, and ¢ = ¢ (0;0,7) .

Proof. The direct part is proved by a straightforward verification.
Suppose that 6, ¢ and r satisfy (). If (i,j) € P(a) X Q(a) € S
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and (k,m) € P(b) x Q(b) ¢ S, then
((1,3) (k,m))¢ (iP(a,dkj),mQCb,dkj))tP (by (2.2))
(3P(a,dy )0 (d ) A, dy )r (44 5))  (by (2.7))
(io'(a)P* (@ (2) ,0'(dy ;) ¥ xr (B)Q(6() ,0(dy 5)))
since ¢ and r are natural transformations
= (i'P‘(ﬁ(a),dk.j.),m‘Q'(ﬂ(b) »dy1pr))

by the condition (%), where we have written (s e (g denand
(k',m') = (k,m)p

1}

= (@'3")&k',m") (by (2.2))
Hence ¢ is a homomorphism.
To prove the converse part, let ¢ : S - S' be a homomorphism.
Since ¢ preserves Green's relations it follows that ¢ induces a
mapping 6 : D -+ D' defined by G(Dx) = qub fior -alll x eSSt If

Dj< < Dy , then there exists an x' € L with x' <y, and so x'¢ <

y$ . Since x'¢€ Dx it follows that B(Dx) < B(Dy) . Now for a €D

{

define a(a) and r(a) by the following. For all (i,j) € P(a) X Q(a),
(1,j)¢ = (ie(a),jz(a))

If (i,j)# = ({1',j") and (i,m)¢ = (i",m"), where (1,j),(i,m) €

P(a) x Q(a), then (i,j) & (i,m) and so (i',j") = (i,j)¢ & (i,m)¢ =

(i",m'). Hence i' = i'". This shows that o¢(a) is single-valued.

Similarly, 7(a) is single-valued. If a' < a and if i € P(a) and

i' = iP(a,a"), then i' < i. If j € Q(a) such that (i,j) = e €

A(a), then £ = (i',j') = (iP(a,a'),jQ(a,a')) we. Hence f¢ weo .

Thus
fo

(i'e(a'),j'r(a")

(io(a))P'(6(a),0(a")),jr(a)Q' (6(a),0(a"))) -

Hence we get iP(a,a')o(a') = io(a)P'(d(a),0(a')). This proves
that the mapping a = o(a) is a natural transformation of P to

[}

0P', Similarly the mapping a > r(a) is a natural transformation
of Q to 6Q'. If i € P(a), j € Q(b), then we can £ind m and k such
that e = (i,m) € A(a) and f = (k,j) € A(b). Since (e A f)¢ =

e¢ n fo, where e¢ = (io(a),mr(a)) and f¢ = (ko(b),jr(b)), we
have B(dij) = diu(a) ,jr(bj . This proves that 6, o and 7 satisfy
the condition (*). It follows from the definition of ¢ and 7 that




=¢ @ ;0,r). This completes the proof.

It follows from Theorem 2.2 that functors P, Q and A may be
used to classify regular locally testable semigroups. For example,
if S = S(P,Q;A) is an inverse semigroup then for every a €D = S/a ,
G(a) = G(P(a),Q(a);A(a)) is a Brandt groupoid and so A(a) is a
bijection of P(a) onto Q(a). Also since A ¢ P X Q, it follows
easily that the map a » A(a) is a natural isomorphism of P to Q.

[}

The converse is clear. It follows therefore that, identifying P
and Q by means of the natural isomorphism a - A(a), we can des-

cribe locally testable inverse semigroups as follows.

COROLLARY 2.4. Let D be a partially ordered set and F : D > Set
be a functor such that for all a,b €D with a # b, F(a) n E(b) =0
and for all i € F(a), j € F(b), there exists a dij € D such that

{deD:d<a,d<b, if(a,d) = jF(b,d) } = [-,dij Ip
Then S(F) = U{F(a) X F(a) : a € D} is a locally testable inverse
semigroup when we define the product in S(F) by
(i,3) (k,m) = (iF(a,dkj) ,mF(b,dkj)J
where (i,j) € F(a) X F(a) and (k,m) € F(b) X F(b).
Conversely, every locally testable inverse semigroup is

isomorphic to one constructed in this way.

Moreover, taking ¢ = r in Theorem 2.3, it can be seen that
an homomorphism of the locally testable inverse semigroup S(F)
into the locally testable inverse semigroup S(F') can be described
in terms of an order preserving map § : D -» D' and a natural
transformation ¢ : F - 6F' satisfying conditions (*).

Again if we take D as a semilattice and P,Q : D ~ Set are
two functors, and if A = P X Q, then it is easy to see that P,Q
and A satisfy the conditions (1) and (2) of Theorem 2.2. The
resulting semigroup is a normal band. Thus we obtain as a corollary
of the foregoing a structure theorem for normal bands as a strong
semilattice of rectangular bands (see [3 ]).
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3. REGULAR LOCALLY TESTABLE SEMIGROUPS ADMITTING A
GIVEN BIORDERED SET

We observe that in S(P,Q;A) various components of the struc-
ture data are not mutually independent. For example, for a partial-
1y ordered set D, the fact that functors P,Q and A can be found
satisfying conditions (1) and (2) of Theorem 2.2 imposes signif-
icant structural restrictions on D. In particular, this implies
that every principal ideal of D is a semilattice.

However, Theorem 2.2 can be used to obtain a complete des-
cription of the class of all regular locally testable semigroups
S admitting a given biordered set E as the biordered set of S.
Consider the relation

5(S) = 2(5) N (E(S) X E(5)) . (3.1
It is clear from Theorem 1.4 of [ 9] that § (S) satisfies the fol-
lowing conditions :

(LTE 1) 5,C8(S) ,
(LTE 2) if+e'w £ (e,f € E) then for'all €€ 65(5) (£, there

exists a unique e' € §(S)(e) such that e' w f'.

Any equivalence relation on E satisfying the two conditions
above will be called a locally testable equivalence relation on E.
The set of all such relations on E will be denoted by LTEq(E).

THEOREM 3.1. Let E be a locally testable biordered set. Then any

equivalence relation 6 on E is the restriction to E of the Green's

relation ghon a regular locally testable semigroup S with E(S) = E
if and only if & € LTEq(E). g
Proof. If a locally testable semigroup S which is regular exists
with E(S) = E and 6(S) = & then it is clear from the discussion
above that & € LTEq(E).

Conversely let § € LTEq(E). Ther; it is easy to see that the
relation < defined on D = E/8 by

5(e) < 6(f) = Je' € 8(e) such that &' w £
is a partial order onD. For each a € D, let P(a) = {Re ; eveda ) .




If a' < a, then by axiom (LTE 2) for each e € a there exists
a unique e' € a' such that e' w e. So, for each i € P(a), there
exists a i' € P(a') such that i' < i. Hence there exists a unique
function P(a,a') : P(a) - P(a') which sends i € P(a) to i' € P(a")
such that i' < i, It is easy to see that

a~- P(a), a' < a~ P(a,a")
is a functor of D to Set. Similarly,

a-> Qa) = {Le i e€ a} and a' < a~+ Q(a,a")
where Q(a,a') is the unique map sending j € Q(a) to j' € Q(a')
such that j' < j, is a functor of ID to Set . Also

a~>A(a) = {R,L) : e€ ay
and

a'<a-—4A(a,a') = P(a,a') X Q(a,a")lA(a)
is a functor of D to Set. Moreover, A € P X Q and for each a €D,
A(a) is a subdirect product of P(a) and Q(a). Thus A satisfies
(1) of Theorem 2.2. To prove condition (2), let i = Re € P(a) and
j = Lpe Q). If h = e A £, then dij =8(h) < a, dij < b. Further

since Rh < Re’ L < Lf, we have (iP(a,dij),jQ(a,dij)) = (R ,Lh) €

A(d;;). I d<a, d<band (iP(a,d),jQ(,d) € A(d), then

iP(a,d) = Rg, jQ(b,d) = Lg for some g € d. It follows from

R <Ry, L <L that g€ o' (e) N wh(f) = w(h). Hence d = & (g)

<é8(h) = dij . Hence condition (2) of Theorem 2.2 holds. There-

fore § = §(P,Q;4) is a locally testable semigroup which is reg-
ular and such that E(S) =ujA(a) : a€D}. As in the proof of
Theorem 1.2, it can be seen that the map e — (Re,Le) is an iso-
morphism of E onto E(S). Also e § f in E if and only if

(ResLg) s (Re,Le) € A8 (e)) ;5 that is (RgsLg) 8(S) (Rg,Lp). Hence

identifying E with E(S) by the isomorphism e — (Re,Le) we obtain
a regular locally testable semigroup S such that & (S) = &. This
completes the proof.

Theorem 3.1 shows that there exists a one-to-one correspon-

dence between the set LTEq(E) and the set of isomorphism classes
of regular locally testable semigroups S with E(S) = E. Therefore
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any information about the structure of LTEq(E) will provide an
insight into the structure of the class of all regular locally
testable semigroups admitting E as its biordered set.

Clearly LTEq(E) is a partially ordered set under inclusion
and contains a least element namely, § A = RN )t.

THEOREM 3.2. Let E be a locally testable pseudo-semilattice.
(i) Every non-empty subset of LTEq(E) which has an upper bound,

has a join.
(ii) Bvery non-empty subset of LTEq(E) has a meet .
Proof. The meet of a non-empty subset of LTEq(E) coincides with the
set-theoretical meet. The join of a non-empty subset X of LTEq(E)
which has an upper bound, is the meet of the upper bounds of X,
that is, the join of X in the lattice of all equivalence relations

on E.

In general, LTEq(E) is not a lattice even when E is a semi-
lattice. For, consider the semilattice E given by the following
diagram :

It can be seen that the relations

5y = Yde £l E 0 e B, 1015
and

32 = Jlie,ft, ie'l ’fzg: iez;f-l(ﬂ: )!0”

both belong to LTEq(E). But 81V 8, & LTEq(E) .

Finally, we observe that Theorem 3.1 provides an indirect
characterization of the partially ofdered,sets D (of Theorem 2.2).
For, they are precisely those partially ordered sets that arise
as quotients E/§ where E is a locally testable pseudo-semilattice
and § € LTEQ(E). A direct characterization of D would be interes-
ting.
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