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In [8 ] we have characterized those pseudo-semilattices
that are biordered sets. Since every biordered set is the bior-
dered set of some regular semigroup (cf. [10]), the class of
pseudo-semilattices that are biordered sets determines a class
of regular semigroups. The semigroups belonging to this class

will be called pseudo-inverse semigroups. The principal result of

this paper will be a structure theorem for pseudo-inverse semi-
groups, which is a generalization of Schein's structure theorem
for inverse semigroups. Our generalization consists in replacing
groupoids in Schein's theory by pseudo-groupoids (that is, dis-
joint unions of Rees groupoids), and semilattices by pseudo-semi-
lattices.

1. PSEUDO-INVERSE SEMIGROUPS

In this paper we shall use standard notations and terminolo-
gies of semigroup theory as presented in [1] and [2 ]. We shall
further assume that the reader is familiar with the results and
notations of [6 ] and [8 ]. In addition we shall use the following
convention. (cf. [3]) : if (@ is a category, the statement
"A € (L' means that A is an object of (¥ and the statement "¢ in
(L' means that ¢ is a morphism in (1. We shall also sometimes use
the symbol representing a category as an abbreviation for the name
of the set of objects ui that category.




If E is a regular pseudo-semilattice (see [8 ] and [12 ] for
a definition), then by Theorem 2 of [8 ], E is a biordered set if
and only if it satisfies the conditions (PA1), (PAZ) and their
duals. In this paper we shall assume that all pseudo-semilattices
considered satisfy these conditions. We shall denote by PSL the
category of all such pseudo-semilattices. It is easy to see that
PSL is a full subcategory of the category RB of all regular bi-
ordered sets.

Since every E € PSL is a biordered set, by Corollary 4.15 of
[61, E is isomorphic to the biordered set of idempotents of
some regular semigroup. Thus there is a class of regular semi-
groups whose biordered sets are pseudo-semilattices (in PSL).
Semigroups belonging to this class are called pseudo-inverse
semigroups and we denote the full subcategory of RS whose objects
are pseudo-inverse semigroups by PIS. It may be noted that some
authors use the term locally inverse semigroups for semigroups
belonging to PIS (cf. [13 ]). Several well-known classes of semi-
groups belong to PIS. For example, primitive regular semigroups
(in particular, completeley O-simple semigroups), inverse semi-
groups, generalized inverse semigroups [ 14 ], regular locally
testable semigroups [15 ] etc. , are all semigroups belonging to
PSS

We first give some equivalent characterizations of semigroups
in PIS. The equivglence of statements (c) and (d) with (b) below
is due to B. M. Schein (private communication).

THEOREM 1.1. For S € RS, the following statements are equivalent.
(a) S & PIS, v
(b) for every e € E(S), eSe is an inverse semigroup,

(c) for all e,s,t € S, e,ese,ete € E(S5) implies esete = etese,
(d) S does not contain subsemigroups isomorphic to a left-zero

[ right-zero ] semigroup of order 2 with an.identity adjoined.
Proof. Immediate from Theorem 7.6 of [6 ] .

It is easy to see that the class of pseudo-inverse semigroups

is closed for taking regular subsemigroups, homomorphic images
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and direct products (see [7 ], Theorem 3.2).
Let S be a regular semigroup, The natural partial order on S
is the relation < defined as follows [7 ] . For X,y € S
X<y<+>x3cySand x = fy for some f € mﬁzxu i (1.2)

For later use we recall two results from [7 ] . The first one
(Proposition 1.2) lists a few important properties of the natural
partial order on regular semigroups. Even though the definition
(1.2) is one-sided, one can show that the relation < is self-~
dual.

PROPOSITION 1.2 ([7 ], Proposition 1.2). The following statements

about two elements x and y of a regular semigroup S are equivalent.

(&) x <,

(b) for every f e mmmwu. there exists e € mﬁmxu such that e w f
and x = ey,

fc) fonevery £'"€ mﬁrwu‘ there exists e' € mﬁrxv such that e' w f'
and x = ye',

(d) mx < m% and xy'x = x for some [for all ] y' € i(y).

mrmwm mx A m% ammbm zx A w% mza hx A H%u.

The most important property of the natural partial order on
a semigroup in PIS is that it is compatible with the multiplic-
ation of the semigroup. In fact, this property characterizes se-
migroups in PIS. We have

THEOREM 1.3 ([7 1, Theorem 3.3). The following conditions on a
regular semigroup S are equivalent.
(a) S e PIS,

(b) if x <y then for every ﬁﬁd,%wu € r% X R_, there exists a

unigue pair ﬁxa.xNv = Hx X R such that x; <Yi» T ] R
(e) x,y,u,ve S, x <u, y <v implies xy <uv,
(d) if ye S, y' € i(y) and x <y then there exists a unique x' €

i(x) such that x' <y' .

Zalcstein [15 ] introduced the concept of locally testable
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semigroups as a simultaneous generalization of both normal bands
and nilpotent semigroups. He has shown that a regular semigroup

S is locally testable if and only if (i) S is periodic and (ii)
for all e € E(S), eSe is a semilattice ([15 ], Theorem 4). This
implies, by Theorem 1.1, that a regular locally testable semigroup
is in particular a pseudo-inverse semigroup. In the following
theorem we give a characterization of such a semigroup in terms

of its natural partial order. The result further shows that

condition (ii) above implies condition (i).

THEOREM 1.4. For a regular semigroup S, the following conditions

are equivalent.
(1) S is locally testable,

(2) S is a combinatorial semigroup such that for any two & -clas-

ses D and D' of S and x € D there exists at most one y € D'
such that y < Xx,
(3) for every e € E(S), eSe is a semilattice.
Proof. (1) = (2). By Theorem 4 of [15 ] S is combinatorial. So
assume that D and D' are two D -classes of S and x € D. If y, and

Yy belong to D' and Yy < X, then for e € me»xu by Proposition 1.2,
there exists mu., IS mﬁwfu such that mws e and 7. = mwx. g =7

Now £,,f, €D' and so L, NR. #0O . If u is the element in
[ [ m,_ mN

L 0 wm , then eue = omwcﬁm = mmcﬁ = u and so u € eSe. Since
1

.
eSe is a semilattice (by [15 ], Theorem 4), it follows that u €
E(S). Then, since mmﬁ ut f,, we conclude that £, = u = £

£

1
Therefore Y1 = ¥p-

(2) = (3). If S is a regular semigroup satisfying (2), then
for all e € E(S), the regular subsemigroup eSe must also satisfy
this condition. So, no d-classes of eSe contain -  more than one
idempotent. Since eSe is combinatorial, it follows that every
L -class of eSe consists of exactly one idempotent. Hence eSe is
a semilattice.

(3) = (1). By Theorem 4 of [15 ], it is enough if we show
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that S is periodic whenever it satisfies (3). To this end assume
that a€ S, ee m?mu and f e mﬁmwu. By Theorem 1.1, E(S) is a
pseudo-semilattice. If h = £ ~ e, then S(e,f) = }h} and by
Theorem 1.2 of [ 6 ]

ghmitahy(lia) € Ry, AT
If a' is the u..=<9.m.m of a in wm. N H_m , then eh, a'ha € (e) = eSe
and eh ® a'ha. Hence eh = a'ha so that

ah = a(eh) = (aa')ha = fha = ha .
Since ah £ h & ha holds we may now conclude that ah, h, ha and a’
belong to the same ®-class. Since hSh is a semilattice, we have
ah =h = ha = mN. Hence a> = mﬁmmu = a(ha) = mN
the proof.

. This completes

COROLLARY 1.5. Let E be a biordered set and let (L VR )t = 0.
be the transitive closure of L U R, Then E is the biordered set

of a regular locally testable semigroup if and only if for every
e € E, 8§ N w(e) contains at most one element for every & € m\ao.

Proof. First assume that S is a regular locally testable semigroup
such that E = E(S). Then mo € 2D where D denotes Green's relation
on S (see{ 61, p.103). Hence by Theorem 1.4 (2), 8, satisfies the
required conditions. .

Now conversely, assume that E satisfies the given condition
and let S = P (E), where wd (E) is the fundamental idempotent
generated regular semigroup generated by E. Let y be any E-cycle
in E, and e € smmeu . Then e and er(y) are mO;Hmeﬁwa elements in
Eho._p and so € = er(y). Hence 7(7) = msﬁm ) and so Y is T-commut-
ative., Hence S is combinatorial (by [6 ] vq?moH.ma 7.3) . Moreover,
8o is the restriction to E of Green's relation D of S, so that
the given condition implies that S satisfies condition (2) of

Theorem 1.4. Thus S is locally testable. This completes the proof.
2. STRUCTURE OF PSEUDO-INVERSE SEMIGROUPS
The partial algebra obtained by restricting the binary oper-.

ation of a completely O-simple semigroup S to S\ {0} (the non-
zero P -class of S) is called a Rees groupoid and a disjoint union
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P=uwlp :ael}
of Rees groupoids wn is called a pseudo-groupoid. Here and else-
where below, the symbol v is used to denote a disjoint union. A
mapping ¢ : P » Q of a pseudo-groupoid P into a pseudo-groupoid
Q is a homomorphism of pseudo-groupoids if it is a homomorphism
of the partial algebra P into the partial algebra Q ; that is,
¢ satisfies the condition that for all x,y € P such that the
product xy exists in P, the product (x¢)(y¢) exists in Q and
(xy)¢ = (x¢) (y¢). It is easy to see that pseudo-groupoids together
with homomorphisms defined above, form a category which we shall
denote by PG.

We observe that P =u mn € PG in which each vn is a Brandt-
groupoid is a groupoid in the usual sense, that is, a small categ-
ory in which all morphisms are isomorphisms. Also, if S is a
regular semigroup and if D is a D -class of S, then by Theorem 3.4
of [1 ], the trace D(*) of D is a Rees groupoid and so S(x) € PG,
where

S(x) =uiD(») : De §/} .

Also any homomorphism ¢ : S - T of regular semigroups naturally
induces a homomorphism ¢ : S(x) - T(*). However, it must be noted
that, not all homomorphisms of S(*) into T(*) extend to a homo-
morphism of S into T.

We may define Green's relations £, ® and £ in pseudo-
groupoids in the following way. Let 31 denote any of Green's
relations £, & or ¥. Let P =UfP :a € I}e PG, and fora € I,
let uﬂp denote the restriction of Green's relation Ji on the
completely O-simple semigroup m.m to the 3D -class mn of non-zero
elements of mm . We then set Sl

RE) =K =olX, :aclf.

It is clear that X is always an equivalence relation on P. Also,
it s T P @ cwo_m : p € 1}is in PG, then it is clear that it
preserves the relations £, ® and 30, so that ¢ induces a
homomorphism ¢ of the Rees groupoid wn into some Rees groupoid

Recall from [7 | that an equivalence relation p on a partial-
ly ordered set (X,<) is reflecting if (sep) C (p°<), that is,
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for all x,y,z € X such that x< y p z, there exists z' € X, such
that x g 2! < z. W.reflecting mo”.ngmwmsnm relation p is strictly
compatible (with<) if<np =.y, that is, Af for all X,y €K
x<yand xp Yy, we have x = y.

DEFINITION 2.1. Let P € PG and < be a partial order on P. We

say that (P,<) is an inductive pseudo-groupoid if the following

axioms hold. i

(I1) If x,y,u,v € P, x<u, y< v and if xy and uv exist in P,
then xy < uv.

(I2) The relations X and ®& are strictly compatible.

(I3) The set of idempotents E(P) of P is an (order) ideal of
(P,<)-

(I4) (E(® ,QH“EJ € PSL where w* [ & 1 is the smallest quasi-
order on E(P) containing the restrictions of <and £ [/ ]
to E(P).

DEFINITION 2.2. Let P,Q € PG be inductive with respect to partial

orders < and 4 on P and Q respectively. A homomorphism ¢ : P *Q
is said to be inductive if it is order preserving and E(2) =
#|E(P) is a pseudo-semilattice homomorphism of E(P) into E(Q).

It is clear that if ¢ : P =+ Q, ¥ : Q > R are homomorphisms,
then ¢¢ : P =R is also a homomorphism. Since J is obviously a
homomorphism, we have a category IPG in which objects are inductive
pseudo-groupoids and morphisms are homomorphisms defined above.
Our objective here is to show that the category IPG is naturally
equivalent to the category PIS of all pseudo-inverse semigroups.

We begin by constructing an embedding = : PIS = IPG (that is,
a fully faithful functor of PIS into IPG).

b
THEOREM 2.3. (i) Let S € PIS. Then n(S) = (S(*),9, where <de-
notes the natural partial order on S, is an inductive pseudo-

groupoid.

(ii) Let §,T €PIS. Then ¢:5 > T is a homomorphism of semi-

groups if and only if ¢ is a homomorphism of 7(S) into #(T).
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(iii) For Se PIS, let #(S) = (S(x),<9 (as in (i)) and for
¢ : ST in PIS, let 5(¢) be the homomorphism of #(S) into =(T)
induced by ¢ (as in (ii)). Then 7 : PIS - IPG is an embedding.
Proof. (i) Since S € PIS, it follows from Proposition 1.2 (b) and
(c) and Proposition 1.3 (b) and (c) that x (S) satisfies axioms
(I1),(I2) and (I3). To prove (I4), we first observe that E(m(S))
= E(S), & (n(S)) = &(S) and X(n(S)) = £(S). Also E(S) € PSL
and the restriction of &(S) to E(S) is «F n ﬁE.Hu,._ =R | where
of is the right quasi-order of E(S). Similarly the restriction
of < to E(S) is @w= of nol (by Proposition 1.1 of [7 1). Hence
by axiom (B21) of [6 ] it follows that «f = Rewand o is the

smallest quasi-order on E(S) containing R and w. Similarly the
1

left quasi-order w
-1

is the smallest quasi-order on E(S) contain-
ing w! N"@wY) ! = L and w. Thus 7 (S) satisfies axiom (I4).

(ii) If ¢ : S > T is a homomorphism in PIS, it is clearly
a homomorphism of S(*) into T(*) and E(¢) : E(n(S)) = E(S) - E(T)
= E(n(T)) is a homomorphism in PSL (cf. Theorem 1.1 of [6] ). By
Theorem 1.8 of [7] , ¢ preserves the partial order < and so
9 : w(S) » n(T) is a homomorphism in IPG.

Conversely assume that ¢ : 7(S) » n(T) is a homomorphism. If
X €S, mmmﬁzxu and f EH? then fx < x and mMme. Hence
(fx)¢ < x and (fx)¢ & £¢ in T. But E(¢) is a regular bimorphism
and so f¢ « e¢. Hence fox¢ ® £¢ and féxé < x9. By Proposition
1.3 (b) we conclude that (fx)¢ = (f¢) (x¢). Similarly if e' € m?xw
and £' o e, then (xf')é = (x6) (£'¢). Now if x,y € S and h =
f A e where e € mﬁrxu and f € m:wuu then by Theorem 1.2 of [ 6 ]
xy = (xh) (hy) and since h¢ = f¢ A e¢, we have (x¢)(y¢) =
((x¢) (h$)) ((he) (y#)). Since h «} e and h £, by the result
proved above, ((xh)(hy))¢= (xh)é(hy)¢ = ((x¢) (he)) ((he) (y¢)) -
Hence (Xy)¢ = (x¢)(y¢) and so ¢ : S~ T is a homomorphism.

(iii) = defined in the statement of the theorem is clearly
a functor. The fact that it is fully faithful follows from (ii).

It will follow from the principal structure theorem of this

section that = defined above is an equivalence of the two categ-
ories PIS and IPG.
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lLet P€ IPG and E(P) = E. Then by axiom (I4), E is a biorder-
ed set and as in [ 6 ] we shall denote by &, L and w, the relations
EH - o.cwuu_ ; EH A ?JL 1
axiom (B21) for biordered sets, we have

J=hew , wl=Llew ]

and o' Nw respectively. In view of

Also on any biorderéd set, the relations R and L are strictly
compatible with respect to w.
LEMMA 2.4. The relations L, R and w are restrictions of £, 6
and < to E = E(P) respectively.
Proof. We shall first show that «f = Rew'and w! =1's w'vhere R,
T

is the

L' and «'are restrictions of ®, £ and < to E. Since w

quasi-order generated by R' and w'we have Rew'c ', From axioms

(I12) and (I3) it follows that R is strictly compatible. Hence
w+R ¢ Rew'and so
(Rew)e(Rowh) = R'e (@eR)ow!
c R (Rowd)e '
= _H.mue xwu oﬁE.nEu
€ Reg' .
Since Re«'is clearly reflexive, this proves that it is a quasi-
order containing R and ' Thus &' = R« ! Similarly, W = Low',
Now R’ is an equivalence relation on E and so R = ﬁﬂe.uL c
ﬁeﬂund . Thus R’ mEH. n mEJL =R . Similarly L c [ and.«' g w.
Now if (e,f) € L, then (e,f) € [rw'= Lew and so there exists
e' €Ewithe ['e wf. Thenf [ e L e' and e' w £. Since L
is strictly compatible with respect to w, we conclude that e' = f.
Hence e [ £, thus L = L. Similarly ® =R . To prove that w =
«' consider (e,f) € w. Then (e,f) € AR AP and so there exists
e' such that e [ e' o/ £. Since L =L it follows that e L e'
and e,e' € w(f). Since E€ PSL, w(f) is a semilattice, and we con-
clude that e = e'. !

LEMMA 2.5. Let P € IPG. Then we have the following (and their
duals) .

(a) Let e,f €E(P) and e w"f. Then for all y mww there exists
a unique x €R, such that x <y.
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(b) Let x,y€ P, x< y and y' € i(y). Then there exists a unique
x'€e i(x) such that x"'< y'.

Proof. (a) Since ew’ f, efw f and so e ® ef < £ by Lemma 2.4.
Hence ef < £ A& y and so by axiom (I2) there exists an element x
such that e ® ef ® x< y. To prove that x is unique, assume that
Xy,X, € w = R_. and X <, i=1,2. Choose y' € i(y) n rm. Then

efs
as cmmcﬂm. there exists x' € Log such that x' € y'. Then the prod-

ucts x'x, exist in P and so by axiom (I1), £ = x_xm < y'y. By
axiom (I3) we get g; € E(P) for i = 1,2. Then mé%r g, and €18, €
w(y'y). Since w(y'y) is a semilattice, we have g, = g,. Thus

L g =g %X and the products x,x' exist in P. Since
xwx. < yy' = f, we conclude by axiom (I3) and (I4) that NAM. =
X,x' = ef. Therefore

Xy = wmx_ = me.f = Xp81 = Xp8, =X, .

(b) Let x, y and y' be as in the statement of the theorem
and write £ = yy' and f' = y'y. Then x< y & f and so by axioms
(I2) and (I3) there exists e € E(P) such that x & e w f. Since
y' £ £, by (a), there exists a unique x' € rm such that x' < y'.
Then the product x'x exists in P and so by axioms (I1) and (I3),
e' = x'x<y'y = £ and e' € E(P). Also, x = xe" = xx'X, X' =
e'x' = x'xx'. Hence x' € i(x).

To prove the uniqueness, assume that x'' € i(x) and x"' < y'.
Then €' = x"x £ x'x = e' and e",e' € w(f'). Since w(f') is a
. Hence x' & x''. Dually we have x'ZX
x"" and hence x' and x" are ¥ -equivalent inverses of x. Therefore

semilattice, we have e" = e
x! = x't.

Suppose that e,f € E(P), e ' £ and y € wm. Then by the
foregoing lemma, there exists a unique X € w such Eﬁﬂ oy
We shall denote this element by e * y. Ucmd.%v if e 8 f and
y € Lg, then the unique element x in rm such that x < y will be
denoted by y * e. In particular, if e w f, and y € R, then there
exists at least one inverse y' of y in rm and then y' * e €
i(fe x y). For,e x y € ww and y' » e € rw‘ and so (y' * e)(e x y)
exists in P. Further (y' x e)(e*x y) < y'y and so g =
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(y' * e)(e * y) € E(P). Then the product (ex y)(y' » e) also exists
and (e * y)(y' * e) = e. Hence (e % y) = e(e »y)

(e *y)(y'* e)(e xy) and y' xe = (y' *e)e =

(y' *e)(e * y)(y' * e). From the uniqueness part of Lemma 2.5 it
also follows that y' *e = g » y' and e * y = ¥y » g so that

(y * g)(g * y') = er For convenience of later reference we state

these results as

LEMMA 2.6. Let e,f € E(P) with e wf and let y € Ry and y' €

i(y) n L. Then e * y and y' * e are unique elements in Wm and ro
respectively such that e * y <y, y' * e <y' and y' » e € i(e » y).
Further, if g = (y' * e)(e * y), then g <Yy'y, y' *e =g x y',

exy=y*gand (y * g)(g *y')

LEMMA 2.7. Let x,y € P such that xy exists in P and let z' € i(xy).

Then there exist x' € i(x) and y' € i(y) such that z' = y'x"',

Further if e w (xy)z', then
e*xy = (exx)(gx*xy)

and

' ke= (y' *g)[x' *e)

where g = (x' * e)(e * X).

Proof. Let £ = (xy)z" and f' = z'(xy). Then £ R xy & x and f'2£
xy £ y. Let h be the idempotent in hx fv Bt LE 268y &S ithe simiverse

y
of x in Ry n Lg and y' is the inverse of y in rr n mm_ then

h e rui n w,..ﬁ and so the product y'x' exists in P. Also y'x' e

wui Dwx.uwm._)rmmbmmow_ umw._x_.gmmw@.%.x_m.wﬁxﬁmbm
so z" =y'x'.

Now let e w f and g = (X' * €)(e * x). Then by Lemma 2.6,
gwx'x=hand e * x = X * g. Hence the product (e * x) (g » ¥y)
exists in P and so by axiom (I1) (e » x)(g » y) < xy. Also
(e* X)(g* y)Re* x R e and so by Lemma 2.5, e » xy =
(e * x)(g* ¥). The equality z' * e =y'x'* e = (y' * g)(x' = €)
follows in a similar fashion.

We proceed to show that we can associate with every IPG an
inductive groupoid @Q& in such a way that the correspondence
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P @\Qu is functorial. Let
I(P) = {(xsxl) 45X € £ and XL E H0 T
As in the proof of Theorem 3.8 of [ 61 it can be shown that it
is the morphism set of a groupoid whose vertex set is E(P) = E
if we define composition in (J(P) as follows :
(xyaylixl)erf X ix =iy (251)
x,x") (y,y") = :
undefined otherwise .
Next, define the relation < on @Q& as follows :
xx)< ,y) = x<yad x'<y" . (2.2)
Clearly < is a partial order on Qﬁd . It is also obvious that
@ (P) satisfies axiom (0G2 of Definition 3.1 of [6] . Lemma 2.6
shows that it satisfies axiom (0G3) when we set

(x,x")le = (exx,x" % ) (2.3)
for any e w xx'. Note that in view of the definition of the
1 = ' =
product in QNRE we have oﬁxux_u xx' and mﬁx.x_u x'x. Here,

as in [6 ] we identify i@?d with the set of identities of
&:3. To show that (J(P) satisfies axiom (0G1), suppose that
(x,x"), r,y"), (u,u"), (v,v') belong to @ﬁmu“ (x,%") =),
(y,¥') < (v,v') and the products (x,x')(y,y') and (u,u')(v,v")
exist in @C&. Then the products xy, y'x', uv, v'u' exist in P,
and by (2.2), x<u, x'<u', y<v, y' <v'. Hence by axiom (I1),
we have Xy < uv and y'x' < v'u'. Thus by (2.2),

GOxD .y = Gory'x") < (v, v'u') = (u,ut) (v,v!) .
This proves that QMAS is an ordered groupoid. To prove that
&:3 is inductive, we define an evaluation of {(E) into @@
as follows . Since V(§4.(E)) = E, we set Viep) = 1g- For
C=Cley, &) € no;mu. we define

m_uﬁnu = mmo...msumb...mou c (2.4)
Observe that since C = nﬁmou....mnu is an E-chain in E, the

products ey e and e ---e exist in P and e _...e_ € Wmmo...m:u.

n (o} n o]
Hence mvaou is a well-defined element of @Q& . It is easy to see

that e, : @mmu = @RE is a functor.
To prove that €p is order preserving, consider nﬁmo.mt € @ﬁmu

and e we,. Then by (2.3) and (2.4), we have

mmmnﬁmo,m_uv_m = (e * €,€1:€18, R i) s
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Now if e, i s then (by Lemma 2.7 or by a direct reasoning),
e % e.eq = g8 where g = and g, = eqee; ,
where the product on the right is a basic product in E. Similarly,
we have
o e
Hence 3
ep(Cleg,e)lle = (8,8;,818,) -
Since e * nﬁmoumdu = nmmo.m_u it follows that
m@ﬁnﬁmoumauu_ el = mmvﬁm * OﬁmOvO._uu .
The case mox. e, can be treated in a dual way. Hence, in either
case we have mmﬁnﬁmo.o,_ufm = Jumm * n_”mo.mtu . Using induction,
we can easily show that
ep©ie = ep(e * C)
for all C€ §(E) and e @ ec - Hence e, is order preserving.
Since E = E(P) is a pseudo-semilattice, any V-isomorphism

of w.ﬁmu into &Qd satisfies axioms (IG1) and (IG2) of Definition
3.1 of [ 6] . We thus have the following.

PROPOSITION 2.8. Let P IPG and

g@ = {(x,x') : xe P, X' € e
Then @.a is the morphism set of an inductive groupoid (which
we also denote by @%5 whose vertex set is E(P) and in which

composition, partial order and evaluation are defined by (2.1),

(2.2) and (2.4) respectively.

PROPOSITION 2.9. Let P& IPG and S = S((J(P)). Then S is a pseudo-
inverse semigroup and the mapping 7, : P~ 7(S) defined by

R T D , (2.5)
where x'€ i(x) and (x,x') denotes the p-class of (x,x') in O(P),
is an isomorphism.

Proof. Since E(S) is isomorphic to ﬁ@ﬁdu = E(P) and since
E(P) € PSL, it follows that S is a pseudo-inverse semigroup. We

can show exactly as in the proof of Lemma 4.11 of [ 6] that Tp
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is a bijection of P into 7 (S). Also the mapping ypl E(P) :

e~ mwﬁm.mu is an isomorphism of E(P) onto E(S) (see [ 6], Lemma

A IOF )]E55
To show that Tp is a homomorphism, consider x,y such that

the product xy exists in P. Let h be the idempotent in hx n f

If x' is an inverse of x in wr, and y' an inverse of y in bv.. then

the product (x,x')(y,y') exists in (P) and y'x' € i(xy). Also
Ry, y"x) = (x")r,y 1) = XYy ') -

Further,

ﬁH_uNu ﬁun-un.u = ﬁun.xuuﬁ_unu vaw.u%uw.u = vau\.uoﬁ...%.u 3

Hence the product (x,x'")(y,y") exists in « (S). Thus Tp is a homo-

morphism. Conversely assume that u,v € 7 (S) and uv exists in n(S).
Then there exist u' € i(u) and v' € i(v) such that u'u = w' ;
this implies that the product (u,u')(v,v') exists in Qmmv. Now,
by Lemma 4.10 of [61, 7 : (J(P) - &L(S) is an isomorphism so that
there exist ﬁx,.x_u Sy E E such that » (x,x') = (u,u'),

v (y,y') = (v,v'). Hence u = (x,x') = %rp and v = (7,y') =Mpe
Since the product (x,x')(y,y') exists in Qqﬁﬁd. x'x = yy', and so
the product xy exists in P. Hence v, is an isomorphism of the
pseudo-groupoid P onto the pseudo-groupoid = (S).

It remains to show that vy, is an order isomorphism. According-
1y, assume that x,y € P and x < y. Then by Lemma 2.6, for £ € mmW%u.
there exists e € mﬁmxu such that x = e * y. Also if y' € i(y) N Le
then y' * e is an inverse of e * y in rm and y' * e < y'. Hence
(y,y')le = (e * y,y' * ). Now as in the proof of Lemma 4.10 of
[6] we see that (y,y')le = e(y,y') where e = mvmw,mu =erp - It

follows from the definition of the natural partial order that
e(,y) < G,y Hence mp = (e* Y)yp = (6% y,y' * &) = (ryy')le
= ely, Y1 S yrp » nogmwmmwflmmmssm that u,v€ n (S) and u< v.
Then by Proposition 1.2, for f € m?/L there exist e € mﬁwcu such
that e w f and u = ev. Let e,f,y € P such that eyp = e, frp = fi
and yyp = V. Since yp, is an isomorphism, it follows that y € Rc .
Then e * y € R, and e* y<y. S0 (e* Yhp€ xm. and (e * y)vp <
Yp ="V It follows from Theorem 1.3 (b) that (e * E.JU = u.

This completes the proof of Proposition 2.9 .
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We now prove the principal structure theorem of this section.
THEOREM 2.10. Let P € IPG. For x,y € P define

xy = (x* h)(h * y) (2.6)
where h=f A e, e € m?& and f € mﬁﬁwu. Then (2.6) defines a
binary operation in P with respect to which P becomes a pseudo=
inverse semigroup 7(P) such that n(P(P)) =P .
Proof. If x,y € P and if h = £ A e where ¢ € m?xu and f € _._,:wL :
then € = eyp € m?ﬁ.m.u. e mmwfuu and h = £ A € by Proposition

2.9. Also (x =* 54@ = Xyp * h = x«mﬂ and (h = Eqw = ﬂ&@w .
Hence (by Theorem 1.2 of [ 61 and Proposition 2.9)
(x* W) (* Y)yp = (x* Wyplh* Yvp
(G ph) (A Gy p))
(er p) (v p) .

i

Thus by (2.6),
Xy = @Q.@jvuo.w
and so (2.6) defines a single-valued binary operation on P and Tp

is an isomorphism of the resulting semigroup 7%(P) onto S =
mﬁ& (P)) . Hence @o@d is a pseudo-inverse semigroup. Therefore,
by Proposition 2.9, P coincides with « (7°(P)).

REMARK. It follows from Theorem 2.3 that 7° defined in Theorem
2.10 above extends to a functor 7°: IPG = PIS which is the in-
verse of n : PIS—~ IPG. If¢ : P~ P' is a homomorphism in IPG,
then by Theorem 2.3 (ii) ¢ is also a homomorphism of TP -~

P (@) since n (7°(P)) = P and « (7°(P')) = P'. If we denote by
2@ ) the homomorphism of 7°(P) to 2°(P') determined by ¢ as
above, it is clear that 7 becomes a functor. Since Pi) =¢
and ™ (7P(P)) = P it follows that 2°is the inverse of = . Thus,
in particular, 7 is an equivalence bf the categories PIS and IPG.

REMARK. We have observed that Theorem 2.10, which describes the
structure of a pseudo-inverse semigroup in terms of the trace
S(*) and the natural partial order on S, is a generalization of
Schein's structure theorem for inverse semigroups [11 ]. A simil-
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ar description of the structure of an arbitrary regular semi-
group in terms of its trace and the natural partial order is
not possible. However, a generalization of the above structure
theorem is possible in the following form. Observe that if

e,f € E(S) with e o £[e w £1, by Lenma 2.5, o (e, £) :

e* X _euﬁm.mu : X—>x* e] is a mapping of mm into m [Lg into

Lo1. The families of mappings

T T TS T R T
are called structure mappings of S. We may rephrase Theorem 2.10
using structure mappings instead of the natural partial order.
In this form the theorem admits a generalization (see [4 ] and
[51). Structure theorems for pseudo-inverse semigroups different
from the one given here can be found in [9 ] and [10 ].
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