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PSEUDO~SEMILATTICES AND BICRDERED SETS, I
K. S. S. Nambooripad
Commmicated by F. Pastijn

In this paper we characterize the pseudo~semilattices that
are biordered sets, and we show that these pseudo-semilattices
form a variety.

B. M. Schein [ 6] defines a pseudo-semilattice to be a
structure (E,wl,wT) consisting of a set E together with two quasi-
orders ml and w? on E satisfying the condition that for all e,f € E
there exists a tmique h € E such that

1) G NSD = wl)

Here w = o N ' and p(e) =5le'E E:e'pelforp = o, oF or .
If we set

@ . fare=h

then A becomes a binary operation on E. The binary algebras arising
in this way are also called pseudo-semilattices. It is shown in
[6] that an associative pseudo-semilattice is a normal band, and
that a commutative pseudo-semilattice is a semilattice. This result
shows that there exists a non-trivial class of pseudo-semilattices
that are biordered sets [4 ]. We have obtained a characterization
of all biordered sets that are pseudo-semilattices ( [4 1 Theorem
7.6). In this paper we give the converse characterization of all
those pseudo-semilattices that are biordered sets, In [6 ] Schein
shows that pseudo-semilattices form a variety of binary algebras
defined by a set of identities. In Section 2 of this paper, we
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show that these pseudo-semilattices that are biordered sets form
a subvariety of this variety. We also obtain the set of identities
that determine this variety.

1. PSEUDO-SEMILATTICES THAT ARE BIORDERED SETS

In this paper we use the notations an the terminology estab-
lished in [1 ] and [4 1. In particular, we refer the reader to
[4 1 for definitions of biordered sets and related concepts and
results. For concepts related to bands, the reader is refered to
121

I (E,wl,wr) is a pseudo-semilattice (p-semilattice), then

@) esfi—fie-e , cwl fmerf=e

defines quasiorders on E such that (E,w}, w%.) is also a p-semilat-
tice. Moreover, the binary operation A defined by (2) relative to

{E,w},w:;‘) and (E,wl,wr] coincide [6 ]. Thus we may assume with-

out loss of generality that the quasiorders ol and o of a p-
semilattice (E, ) satisfy (3). A p-semilattice satisfying this
condition is said to be regular and we shall assume, in what fol-
lows, that all p-semilattices considered are regular. :

It may be noted that the binary operation A defined in [61]
is dual to the one defined by (2). In [4 1 as well as in an
earlier draft of this paper we had used Schein's definition of A .
However, the definition adopted here (cf. (2) ) is more convenient
in comparing p-semilattices and biordered sets. We also note that
the authors in [3 1 also use this definition.

As already noted, our objective is to characterize these p-
semilattices that are biordered sets. In this connection we shall
say that a p-semilattice E is a biordered set if the restriction
of the binary operation Aof E to the relation
(C)) Dg = (4 vy u @' U b =

is the basic product of a biordered set. Likewise we shall say
that a biordered set E is a p-semilattice if the basic product of
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E can be extended to a binary operation A on E in such a way
that (E,A) is a p-semilattice. It is clear, in view of (1), that
if there exists such an extension, then it must be unique and
that A must satisfy the condition

(5) S(e,f) = fae

for all e,f € E.

We begin by recalling the characterization of biordered sets
that are p-semilattices.

Recall that a biordered set E is right regular if o C o
(see [4 1, Theorem 7.5) . This is equivalent with the fact that
E is the biordered set of a right regular band. It follows that

E is a semilattice if o = oF .

THEOREM 1. ( [4 1, Theorem 7.6). Let E be a biordered set. Then
the following statements are equivalent.

(a) E is a p-semilattice ,

(b) for all e,f € E, S(e,f) contains exactly one element,

(c) for all e € E, the biordered subset o (e) is right regular
and o (e) is left regular,

(d) for all e € E, the biordered subset «(e) is a semilattice.

and only if E satisfies the following conditions and their duals.
For all f,g € d(e),

(PAT) (gae)af=gnf
(PA2Z) (frne)a(gne)=far(gare)=[HEnrg)ace

Proof. First assume that E is a biordered set. Then by Theorem 1
(), wr(e) is right regular for all e € E. Hence the basic prod-
uct of « (e) can be extended in such a way that «f (&) becomes a
right regular band. Now for f,g € wr(e) , if fg denotes the prod-
uct in this band, fg € S(g,f). But by (5), S(g,f) = {f A g}and
so fg = £ A g. Thus (&' (e),A) is a right regular band. Identities
(PA1) and (PA2) now follow from the associativity of A on o (e).
Let us conversely assume that the p-semilattice E satisfies
(PA1) and (PA2). If the basic product in E is defined in the res-
triction of A to DE' it is clear that E satisfies axiom (B1) of
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Definition 1.1 of [41 . Axioms (B21), (B22),(B31) and (B32) are
immediate from (PA1) and (PAZ). Let e,f € E, and consider

g€ wl(e) nofe) = w(f Ae) - From (PA2) and its dual ve have

(e AlEre)) Aleang)="¢ A((fAre) Ag) =eArg

and

(gAf)A((fAe)Af) (gA(fAe))/\f gaf

Thus £ A e € S(e,f) and axiom (R) holds. Let x be any element of

S(e,f). Then x € w(f A €), and SO

x=(fre) Ax) A(f Ae)

((Eae) ax) s AEAE by (PA1)

((fre) A A X Af)) A (fae) by (PAZ)

(fre)af) a(fne) by the definition of S(e,f)
=fAe by (PA1) .
We conclude that S(e,f) = ’1 EA € t . For f,g € tJ‘(e) , we have

S(f A e,g A €) =i(g/\e) AE AL
and

S(f,g) A e = i(g Af)rel.
By (PAZ) we have (g A e) A(fre)=(gnf) re and hence axiom
(B4) holds. This completes the proof of Theorem 2.

The p-semilattices satisfying conditions (PA1) and (PA2) will
be called partially associative p-semilattices (or PAp-semilattices).
It may be noted that in [3 ] the authors use the term weak pseudo-
semilattices to indicate p-semilattices as defined here and they
call p-semilattices satisfying (PA1) and (PAZ) pseudo-semilattices.

Theorems 1 and 2 suggest that PAp-semilattices can be constructed

®
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from semilattices. For such constructions we refer the reader
to [3 1 andi b5 1

2. THE VARIETY OF PAp-SEMILATTICES

If (d) is any identity, then its (left-right) dual will be
denoted by (d)*.

The following characterization of p-semilattices as a variety
is due to Schein [61.

THEOREM 3 ( [6 1, Theorem 2). An algebra (E,A) is a p-semilattice
if and only if it satisfies the following identities and their
duals.

@ xax=x,

(®) xAay)Alx z)
(c) XA(xAy) ~z)

x "y)az 5,
(xAy)az

Let P denote the set of identities in the theorem above.
Since (a)* = (a), P contains five distinct identities. It is shown
in [6 ] that '-they are independent. We proceed to show that PAp-
semilattices can also be defined by a set of five distinct indep-
endent identities.

THEOREM 4. Let E = (E,A) be an algebra. Then E is a PAp-semilattice
if and only if it satisfies the following identities and their

duals.
(a) 2 A= e
(b) xAY) Axaz) =(xay)az ,

(c) (XA Aaxaz)) Alxau =(xay)a((xaz)axau) .

These identities are independent.

Proof. First assume that E is an algebra satisfying the given
identities and their duals. Applying (b) and (d), we obtain
d") (x » p) A dilx a2} wia) SRRy A%2) A IR L
Taking x = y in (d') we obtain, using (a) and (b), that

xXA((xAzZ)Au) = XAZ)A (XAU =(XAZ)AU .
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I
Thus E satisfies (c), and (c)” is proved dually. Hence E is a \
p-semilattice. If £f,g,h € w—r(e) , we get from (d) that [

(fag) ~ah=1f a(gah) ‘

and so o (e) is associative. In particular, E satisfies (PA1) and
(PA2) . The dual statements (PA1)™ and (PA2)* are proved similarly
and hence E is a PAp-semilattice.

If E is a PAp-semilattice, then it follows from Theorem 3 that
E satisfies (a) and (b). The identity (d) is equivalent to the
statement that for all e € E, o (e) is associative. Thus, by
Theorem 1, E satisfies (d). The fact that E satisfies {d)* follows
dually.

To see that these identities are independent, we first note
that any zero semigroup S such that lsl> 1, satisfies all identit-
ies except (a). A band B satisfies (a), (d) and (@ . If B is also
left regular but not left normal (see [2] for definitions), then
B satisfies (b) but not (b)*. Similarly a right regular band which
is not right normal satisfies all identities except (b) . Indepen-
dence of (d) or ()" from the other identities follows from the
following example of a non-associative p-semilattice [61.

EXAMPLE. Let E = {a,b,c,d}. Define ' and &’ on E by
oF(a) = ') = la} ,
W) =wl(d) = {ab} ,
w(c) =wl(@) = tabe}

and @ (@) = {a,b,d} and 0 (@) = {a,d} .
1

Then ' and « are quasi-orders and (E,wl,mr) is a p-semilattice.
This E satisfies (a), (b) and (b)" . Since & (a), &' (®), « (c)

and ol (d) form semilattices for A, it follows that E satisfies (d)" -
But (b Ad) Ab=aandb A (dab)=b. Thus wr(d) is not associat-
ive and hence E does not satisfy (d).

We now derive some alternative sets of identities for the
variety of PAp-semilattices. From [6 ] we see that every p-semi-
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lattice satisfies the following identity and its dual.
(®") x alx AY) =x Ay,
In (d'), taking x = z we obtain

(xAy) Ax) AXau) = XAy Alx au)
(xAy)Aau by (b)

Similarly, taking x = u in (d'), we obtain
xay) a(lxaz) ax)=(xAay)rz)ax

Thus PAp-semilattices satisfy the following identities and their
duals.

(el) (e Y) n ) A on 2= [ A YAz 5
(€2) (xayYAa(xAaz)Ax) = ((xAY) A2 AX
We put

PA = {(a), B), ), @, @} ,

PA, = {(@), B), B, @), @)},

PA; = {@, 61, 6V, @), @’ ,
PA, = {(@), ), B, (), @, (), (N, (), ()"} .

Also we denote the variety of algebras defined by PAi by Ki o

THEOREM 5. K1 = K2 =
variety of PAp-semilattices.

Proof. By Theorem 4, K1 is the variety of PAp-semilattices. We
have seen that (d') follows from (b) and (d). Similarly it can be
seen that (d) follows from (b) and (d'). Thus K, =K, . We have
already observed that PAp-semilattices satisfy all identities in

PA3 and PA4 . On the other hand we have

K; = K, , and each one of them denotes the

(xAay) rz=(&xAy) a((xAy) Az) by (b")
=(xAryY)ay) ~xaz) by (d")
= XAy A XAz by (b")*

Hence (b) follows from the identities in PA; . Dually (b)* also
follows from these identities and hence K; = K,. Finally suppose
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that E is an algebra satisfying the identities in PA, . Then E is
a p-semilattice by Theorem 3. Further, for f,g et (e), and if we
put x=e, y = fand z = g in (el), then we obtain

Ere)ag=fnrg
from (b)* and (e2) it follows that
(fFre)a (gare)=fa(gne)=(frg)r e

Thus E satisfies (PA1) and (PA2) and so E € K, . This completes
the proof.

We have shown that the identities in the set PA1 are mutually
independent. It is not known whether this is true for the other sets
as well. It may be noted that the set PA4 consists of identities
involving three variables only.

The author wishes to thank Professor B. M. Schein for his
helpful comments on the first draft of this paper.
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