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Preface

As with every branch of mathematics, the "algebraic theory of semigroup
theory" has also grown to such an extent that some degree of specialization is
inavitable in any reasonable work on on the subject. This book is an attempt
to write a account of the modern theory of "regular semigroups" with special
emphesis on structure theory. A justification for this choice, apart from the
research interests of the authors, is the fact that "regular semigroups" froms
one of the most important subclass of the class of "semgroups" for which a
well-knit theory is possible. Moreover a significant part of the existing theory
of semigroups deals with regular semigroups. The book is aimed at "graduate
students" and researchworkers in this or related area. The prerequisite for the
material is a good elmentary background in modern algebra including group
theory, linear algebra and category theory.

The Chapter 1 begins with a number of preliminary definitions. These are
given here for the convenience of later reference aswell as setting up notations
and conventions. Since we make extensive use of categories (small, concrete
categories) in this work, we make a brief review of the standard concepts and
results from category theory needed in this work. We also define the notion
of categories with subobjects. Similarly we introduce the relavent definitions
of grouoids and related concepts. The concept of ordered groupoids, used
extensivel elsewhere, is introducedhere. The chapter endwith an investigation
of the relations between ordered groupoids and categories with subobjects.

Chapter 2 discuss some topics from elementary theory of semigroups.
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chapter1

Preliminary Definitions

As we already have noted in Preface, prerequisite for the material in this
book is a good elmentary background in modern algebra including group
theory, linear algebra and category theory. An understanding of the contents
of Herstein [1988] or Hungerford [1974] will be adequate for algebra and that
of MacLane [1971] for category theory.

This chapter mainly consists of a number of preliminary definitions; these
are given here for the convenience of later reference as well as setting up
notations and conventions.We shall also introduce a few concepts that will be
used through out the rest of this book.

1.1 sets, relations and functions

We shall not define sets or related concepts here; instead, we shall adopt the
definitions and conventions of MacLane [1971] unless indicated otherwise.

Let X and Y be sets. A relation R of X with Y is a subset of the Cartesian
product X × Y. In this case the statement (x, y) ∈ R will also be written as xRy
. We also write:

domR = {x : (x, y) ∈ R for some y ∈ Y} (1.1a)

ImR = {y : (x, y) ∈ R for some x ∈ X}. (1.1b)

If R ⊆ X × Y and R′ ⊆ Y × Z are relations, the relation R ◦ R′ defined by

R ◦ R′ = {(x, z) ∈ X × Z : for some y ∈ Y, xRy and yR′z} (1.2)

is called the composite of the relations R and R′. Note that composite of R and
R′ are defined only when ImR and domR′ are subsets of the same set. If this
is the case, we shall say that the pair (R,R′) are composable. If the pairs (R, R′)
and (R′, R′′) of relations are composable, it is easy to see that

(R ◦ R′) ◦ R′′ = R ◦ (R′ ◦ R′′). (1.3)

1
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associative
relation!converse –
relation!single-valued
|X|: cardinal number of X
transformation!partial
function
map
transformation
function!domain
function!co-domain
function!value of –
dom f :domain of f
cod f : codomain of f
function!injective (one-to-one)
function!surjective (onto)
function!bijection
1X : identity function on X

Thus the operation of forming the composite is associative when ever the
relevant pairs of relations are composable.

Given a relation R ⊆ X × Y, we can form a relation from Y to X, called the
converse of R, as follows:

R−1 = {(y, x) : (x, y) ∈ R}. (1.4)

Further, we shall find it convenient to use the following notations: For all
X′ ⊆ X and Y′ ⊆ Y,

RY′ = R(Y′) = {x ∈ X : for some y ∈ Y′, xRy} (1.5a)

and

X′R = R−1(X′) = {y ∈ Y : for some x ∈ X′, xRy}. (1.5b)

whereR ⊆ X×Y,X′ ⊆ X andY′ ⊆ Y. Especially, when Y′ = {y}, a singleton, we
shall use these later notations to be in conformitywith the traditional notations
for functions. Thus we write

Ry = R(y) = {x ∈ X : (x, y) ∈ R} for all y ∈ ImR;

xR = R−1(x) = {y ∈ Y : (x, y) ∈ R} for all y ∈ domR.

A relation R ⊆ X ×Y is said to be single-valued if for all x ∈ X, there at most
one y ∈ Y such that (x, y) ∈ R; that is, |R(x)| ≤ 1, where for any set X, |X| denote
the cardinal number of X. If R is single-valued, for every x ∈ domR, by the
above,xR = R(x) to denote the unique element y ∈ Y with (x, y) ∈ R. When
x < domR, R(x) is not defined. A single-valued relation on X is also called a
partial transformation. R is called a function ifR is single-valued and domR = X.
Note that the relation R is a function if and only if

|R(x)| = 1 ∀ x ∈ X. (1.6)

Functions are also called maps, transformations, etc. We denote a function
f ⊆ X × Y by f : X→ Y; the set X [Y] is called the domain [co-domain] of f . For
x ∈ dom f , the unique element f (x) ∈ cod f is called the value of f at x. We shall
use the notation dom f and cod f to indicate the domain and co-domain of the
function f respectively. A function f is said to be injective (or one-to-one) if f−1

is single-valued and it is surjective (or onto) if Im f = cod f . f is a bijection if
both f and f−1 are functions. In this case, we have

f ◦ f−1 = 1dom f and f−1 ◦ f = 1cod f

where, for any set X, 1X = {(x, x) : x ∈ X}.
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relation
BX : set of relations on X

If f : X → Y and 1 : Y → Z are functions, it is easy to verify using
Equation (1.2) that f ◦ 1 is also a function with dom( f ◦ 1) = dom f and
cod( f ◦ 1) = cod 1 defined for each x ∈ dom f by:

x( f ◦ 1) = (x f )1 or ( f ◦ 1)(x) = 1( f (x))

The composite function f ◦ 1 can be indicated by the following “commutative
diagram”:

X
f

f◦1

Y

1

Z

(1.7)

By Equation (1.3), composition of functions is associative when ever the rele-
vant functions are composable.

Remark 1.1: The rule for composition used by many authors is:

(1 ◦ f )(x) = 1( f (x)) ∀ x ∈ X (1.2∗)

where f : X → Y and 1 : Y → Z. Notice that this is different from the
composition relations defined by Equation (1.2) above. In this book, we will
have occation to use both these rules for composition of functions. However,
unless otherwise made explicit otherwise, the rule for composition will be
assumed to be the one given by Equation (1.2). This will also agree with
commutative diagrams of functions (see also Section 1.2).1.1.1 Equivalen
e relations
Let X be a set. By a relation on the set X we mean a subset of X × X. We denote
the set of all relations on X by BX. Note any two relations in X are composable
and by Equation (1.3), composition of relations in X is associative. Also, if
ρ ∈ BX, then so is its converse ρ−1.

Definition 1.1. Let ρ ∈ BX. We say that

(R1) ρ is reflexive if 1X ⊆ ρ;

(R2) symmetric if ρ−1 ⊆ ρ;

(R3) transitive if ρ ◦ ρ ⊆ ρ; and

(R4) antisymmetric if ρ−1 ∩ ρ ⊆ 1X.

A relation ρ ∈ BX is reflexive if and only if (x, x) ∈ ρ for all x ∈ X and it is
symmetric if and only if

(x, y) ∈ ρ ⇒ (y, x) ∈ ρ.
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ρn:composite of n copies of ρ
equivalence relation
partition
decomposition

Hence for any ρ ∈ BX, it is clear that 1X ∪ ρ is the smallest reflexive relation
containing ρ and ρ−1 ∪ ρ is the smallest symmetric relation containing ρ. By
the definition of composite of relations, the transitivity is equivalent to the
property

(x, y), (y, z) ∈ ρ ⇒ (x, z) ∈ ρ.

If ρn denote the composite of n copies of the relation ρ, it follows by induction
from the definition of composition that for all n ≥ 1

ρn = {(x, y) : ∃ zi ∈ X, i = 0, . . . , n with

z0 = x, zn = y, (zi−1, zi) ∈ ρ, i = 1, . . . , n}.

Further, by condition (R3) of the definition above, ρ is transitive if and only if

ρn ⊆ ρ for all n ≥ 1.

If ρ ∈ BX, it easy to verify that

ρ(t) =
⋃

n∈N

ρn where ρ0 = 1X, (1.8a)

is the smallest reflexive and transitive relation on X containing ρ. If ρ is
symmetric, so is ρ(t).

A relation ρ ∈ BX is called an equivalence relation if it satisfies the properties
(Ri), i = 1, 2, 3. Given any relation ρ on X, it is easy to deduce from the
discussion above that

ρǫ = (ρ ∪ ρ−1)(t). (1.8b)

is the smallest equivalence relation on X that contain ρ.
LetX be a set. A collectionP of subsets ofX is a partition or decomposition of

X if
Y1,Y2 ∈ P, Y1 , Y2 ⇒ Y1 ∩ Y2 = ∅

⋃

Y∈P

Y = X. (1.9a)

If P is a partition, then the relation

ρP = {(x, y) ∈ X × X : ∃ Y ∈ P such that x, y ∈ Y} (1.9b)

is the unique equivalence relation such that

ρP(x) ∈ P for all x ∈ X.

Conversely, if ρ is any equivalence relation, then

X/ρ = {ρ(x) : x ∈ X} is a partition such that ρX/ρ = ρ. (1.9c)
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map!quotient –
quasi-order
quasi-order!quasi-ordered set
interval
ideal!order –
ideal

In view of this, we shall often use the terms equivalence relation and partition or
decomposition as synonyms.

Moreover, if ρ is an equivalence relation, there is a unique surjective map
ρ# : X→ X/ρwhich maps x to the unique set ρ(x) containing x; ρ# is called the
quotient map determined by the equivalence relation ρ (or the partition X/ρ).

Let f : X→ Y be a function. Then the relation defined by

π f = {(x, y) : f (x) = f (y)} (1.10a)

is an equivalence relation and there is an injective map ψ f : X/π f → Y defined
by

ψ f (π f (x)) = f (x) such that f = (π f )# ◦ ψ f (1.10b)

Hence the function f is injective if and only if π f = 1X and it is surjective if
and only if ψ f is a bijection.1.1.2 Partially ordered sets
A relation ρ on X is called a quasi-order if it is reflexive and transitive; that is, ρ
is a quasi-order if it satisfies conditions (R1) and (R2). If ρ is a quasi-order on
the set X, the pair (X, ρ) is called a quasi-ordered set.

Note that every equivalence relation is a quasi-order. On the other hand,
if ρ is any quasi-order on X, then clearly,

ρ ∩ ρ−1

is an equivalence relation. Moreover, if ρ is any relation onX, ρ(t) is the smallest
quasi-order that contain ρ. If Y ⊆ X, then

ρ|Y = ρ ∩ (Y × Y)

is a quasi-order on Y; (Y, ρ|Y) is called a quasi-ordered subset of (X, ρ). If x, y ∈ X,
then

[x, y] = (Y, ρ|Y) where Y = {z ∈ X : xρzρy} (1.11a)

is called the closed intervalwith end points x and y; other type of intervals may
be defined similarly. If Y ⊆ X has the property that

x ∈ Y ⇒ ρ−1(x) ⊆ Y (1.11b)

(see Equation (1.5b)) then (Y, ρ|Y) is called an order ideal (or simply, ideal) of
(X, ρ). In particular, when no confusion is likely regarding the quasi-order
under consideration, we write:

X(x) = (ρ−1(x), ρ|ρ−1(xq)). (1.11c)
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principal ideal
dual
filter
maximal
maximum
minimal
minimum
partial order
map!order preserving
order embedding

This is clearly an order ideal; it is called the principal order ideal (or principal
ideal) generated by x. Note that in a quasi-ordered set, principal ideals may
have more than one generator.

If ρ is a quasi-order, so is ρ−1; it is called the quasi-order on X dual to ρ. If
T is a statement about a quasi-ordered set (X, ρ), the statement T∗ obtained by
replacing every occurrence of ρ in T by the dual quasi-order ρ−1 is called the
dual of T. We will have several occasion to use this duality (process of deriving
T∗ from T) in the sequel. An ideal [principal ideal] in the dual quasi-ordered
set is called a filter [principal filter].

An element x in a quasi-ordered set X (with quasi-order ρ) is said to be
maximal if xρy with y ∈ X implies yρx; x is maximum if for every y ∈ X, yρx.
Minimal and minimum elements in a quasi-ordered set are defined dually. If
Y ⊆ X, an element y ∈ Y is maximal [minimal] in Y if y is maximal [minimal]
in the quasi-ordered set (Y, ρ|Y) (that is, the quasi-ordered subset Y of X).
Maximum and minimum element of a subset Y is defined in the obvious way.

A relation ρ ∈ BX is called a partial order if it is a quasi-order which is
antisymmetric (so that ρ satisfies (Ri), i = 1, 3, 4). If ρ is a partial order, so is
ρ−1. Note that an equivalence relation σ is a partial order if and only if σ = 1X.
In the sequel, we shall use symbols ≤, ≥, �, �, etc., to denote partial orders. As
above, if ≤ is a partial order on X, we shall say that (X,≤) is a partially ordered

set or that X is a partially ordered set (poset for short) with respect to ≤.
In a partially ordered setX themaximumelement or the largest element [the

minimum element or smallest element], if it exists, is unique and is denoted
by 1 [0]. Note that 0 is the dual of 1; that is, the element 1 in the poset (X,≤−1).
The element 1 is, often referred to as the identity of X and 0 is called the zero of
X.

Amapping f : X→ Y of partially ordered sets is said to be order preserving if
for all x, y ∈ X

x ≤ y in X ⇒ f (x) ≤ f (y) in Y. (1.12a)

f is called an order embedding if f satisfies the following:

x ≤ y in X ⇐⇒ f (x) ≤ f (y) in Y. (1.12b)

Note that every order embedding is injective.

Remark 1.2: Again for simplicity, we shall often say thatX is a partially ordered
set; unless explicitly provided otherwise, in this case, the notation for the
partial order on X under consideration will be ≤. We also denote partially
ordered subsets, ideals, intervals, etc., by their underlying sets.
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Birkhoff, G.
meet
∧Λ′:
semilattice
semilattice!complete –
join
∨Λ′:meet of Λ′:
lattice
complete lattice

1.1.3 Semilatti
es and latti
es
Here we list a few definitions and results needed later on. For more details,
the reader may refer to Birkhoff [1967].

Let Λ be a poset. If Λ′ ⊆ Λ, the greatest lover bound (or meet) of Λ′ in Λ is
the element σ such that

σ ≤ λ ∀ λ ∈ Λ′;

τ ≤ λ ∀ λ ∈ Λ′ ⇒ τ ≤ σ.
(1.13)

The properties of the partial order (specifically, the antisymmetry) implies that
the meet of a subset Λ′ of Λ, if it exists, is unique; we denote the unique
element by ∧Λ′. If Λ′ = {λα : α ∈ I}, then we write

∧Λ′ =
∧

α∈I

λα. (1.14a)

In particular, if Λ′ = {λ1, . . . , λn} for some n ∈ N, then we write

∧Λ′ = λ1 ∧ λ2 ∧ · · · ∧ λn. (1.14b)

A partially ordered set Λ is called a meet-semilattice (or lover semilattice) if
every finite subset of Λ has meet. Ameet-subsemilattice of Λ is a subset Λ′ such
that meet of every finite non-empty subset of Λ′ is again belongs to Λ′. It is
a complete meet-semilattice if every non-empty subset of Λ has meet. Note that
in a complete meet-semilattice Λ, ∧Λ must exist. It denotes the least element
in Λ so that ∧Λ = 0. A completemeet-subsemilattice is defined in the obvious
way.

The least upper bound (or join) of a subset Λ′ of Λ, is defined dually (that is,
by replacing ≤ by ≥ through out in 1.13 above). When it exists, it is unique and
we denote it by ∨Λ′. Notations dual to those given in Equations (1.14a) and
(1.14b) will also be used in this connection (with

∧

and ∧ replaced by
∨

and
∨ respectively). Similarly complete join-semilattice [join-semilattice] is a partially
ordered set in which every non-empty [finite] subset has join. These concepts
are dual to meet-semilattices and complete meet-semilattices respectively. We
can define join-subsemilattice, etc., in the obviousmanner. As above, a complete
join-semilattice Λmust have the largest element ∨Λ = 1.

A poset Λ is a lattice if every finite subset of Λ has both join and meet;
that is, Λ is both a join-semilattice and a meet-semilattice. Λ is a complete

lattice if every non-empty subset Λ′ of Λ has both join and meet. Note that in
a complete lattice Λ, 1 and 0 always exists and we have

∨Λ = 1 and ∧Λ = 0.

The following Proposition is useful in characterizing complete lattices:
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EX :
semilattice!– homomorphism
lattice!sublattice

Proposition 1.1. Every complete meet-semilattice with identity is a complete lattice.

Proof. Let Λ′ be a non-empty subset of Λ and let

M = {σ : ∀ ρ ∈ Λ′, ρ ≤ σ}.

Since 1 ∈M,M , ∅. Let σ̄ = ∧M. SinceΛ is a complete meet-semilattice andM

non-empty, σ̄ exists. If ρ ∈ Λ′, then ρ is a lover bound of M and hence, by the
definition of ∧ (see Equation (1.13)) ρ ≤ σ̄. Hence σ̄ ∈M and so σ̄ = ∨Λ′.

As an example, we have:

Corollary 1.2. Let EX be the set of all equivalence relations on the set X. Then EX
is a complete lattice with respect to inclusion.

Proof. Clearly EX is a poset with respect to the inclusion ⊆. Given any non-
empty set E of equivalence relations on X, it is easy to verify that their in-
tersection is an equivalence relation on X which is clearly ∧E. Hence EX is a
complete meet-semilattice. Also X × X is an equivalence relation on X and is
clearly the identity of EX. Hence, by the above, EX is a complete lattice.

Let Λ and Λ′ be meet-semilattices. Then f is a ∧-homomorphism (or semi-

lattice homomorphism) if f preserves meet of finite subsets of Λ; that is, for all
λ, λ′ ∈ Λ,

f (λ ∧ λ′) = f (λ) ∧ f (λ′);

it is a complete ∧-homomorphism if for all non-empty M ⊆ Λ,

f (∧M) = ∧ f (M).

By Equation (1.12a), everymeet-homomorphism is, in particular, an order pre-
servingmap and any one-to-one meet-homomorphism is an order embedding
(see Equation (1.12b)). Notice that Λ′ ⊆ Λ, then Λ′ is a subsemilattice of Λ if
and only ifΛ′ is a semilattice and the inclusion is a meet homomorphism. The
corresponding ∨-concepts such as ∨-homomorphisms, etc., are defined dually.

If Λ and Λ′ are lattices, then they are meet-semilattices as well; a ∧-homo-
morphism of the associated meet-semilattices will be called a ∧-homomorph-
ism of the lattice Λ to Λ′. ∨-homomorphisms are defined dually. One can
extend in the obviouse way these definitions to complete ∧-homomorphisms
and complete ∨-homomorphisms of lattices and complete lattices. A partially
ordered subset Λ′ of a lattice Λ is a sublattice of Λ if Λ′ is a lattice and the
inclusion Λ′ ⊆ Λ is a lattice homomorphism.
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lattice!modular –
modular law
dual!self-dual
lattice!distributive
lattice!complement
lattice!complement

If Λ and Λ′ are lattices [complete lattices] f : Λ → Λ′ is a lattice homo-
morphism or [complete lattice homomorphism] if it preserve join and meet
of finite non-empty subsets [arbitrary non-empty subsets]. Also, given any
family non-empty of [complete] lattices {Λα : α ∈ Ω}, the Cartesian product

Λ =
∏

α∈Ω

Λα

becomes a [complete] lattice when we define join and meet in Λ by

πα(∨Λ′) = ∨πα(Λ′) and πα(∧Λ′) = ∧πα(Λ′) (1.15)

for all non-empty finite subsets [arbitrary non-empty subsets] Λ′ ⊆ Λ. Here
πα : Λ→ Λα denote projections of the product to the co-ordinate lattices. Note
that when join and meet are defined in Λ as above, πα : Λ → Λα becomes a
lattice homomorphism for each α ∈ Ω.

Complemented and modular lattices: A lattice Λ is said to be modular if

λ, σ, τ ∈ Λ, λ ≤ τ ⇒ (λ ∨ σ) ∧ τ = λ ∨ (σ ∧ τ). (1.16)

The statement above is called the modular law. Note that the dual of this
statement is essentially the same and hence modular law is self-dual. The
lattice Λ is said to be distributive if for all λ, σ, τ ∈ Λ, we have

(α ∨ σ) ∧ τ = (α ∧ τ) ∨ (σ ∧ τ) (1.17a)

(α ∧ σ) ∨ τ = (α ∨ τ) ∧ (σ ∨ τ) (1.17b)

Note that a distributive lattice is modular. Every sublattice of a modular
[distributive] lattice is modular [distributive] and products of modular [dis-
tributive] lattices are modular [distributive].

Let Λ be a lattice with 0 and 1. A complement of an element λ ∈ Λ is an
element λ′ ∈ Λ satisfying the following:

λ ∨ λ′ = 1 and λ ∧ λ′ = 0. (1.18)

A lattice Λ is said to be complemented if every element in Λ has a complement.
It is clear that products of complemented lattices are complemented. How-

ever, a sublattice of a complemented lattice need not be complemented. IfΛ is
complemented and modular, every interval [λ, σ] in Λ is complemented and
modular. In fact, if α′ is a complement of α ∈ Λ, then

α∗ = (α′ ∧ σ) ∨ λ (1.19)
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lattice!complement!relative
Birkhoff, G.
MacLane, S.

can be shown to be a complement of α in [λ, σ]; α∗ is called the relative com-
plement of α in [λ, σ]. Also, it is easy to see that a complemented distributive
lattice is uniquely complemented; that is, every element in a complemented
distributive lattice has a unique complement. Complemented distributive
lattices are called Boolean algebras (see Birkhoff [1967] for more details).

Example 1.1: For any set X, BX is clearly a complete lattice with respect to inclusion.
By Corollary 1.2, EX is a complete lattice. By Equation (1.8b), the map R 7→ Rǫ is an
order preserving map of BX onto EX. It is easy to show that this map is a complete
join homomorphism which is not a lattice homomorphism. Clearly, E ⊆ BX and the
inclusion is a meet homomorphism but not a join homomorphism. Thus E is a meet
subsemilattice of BX, but not a sublattice.

Example 1.2: Let G be a group and let N = NG be the partially ordered set of normal
subgroups of G under inclusion. ThenN is a lattice with

N1 ∨N2 = N1N2 and N1 ∧N2 = N1 ∩N2

where N1N2 = {n1n2 : n1 ∈ N1, n2 ∈ N2} denote the product of N1 and N2. It is easy
toverify that N1N2 is the join of N1 and N2 in N . Let H,K,N ∈ N and H ⊆ N. Then
x ∈ HK ∩ N if and only if x = hk with h ∈ H, k ∈ K and hk = x ∈ N. This is true if and
only if h ∈ H and k = h−1x ∈ K ∩N. It follows that

HK ∩N = H(K ∩N)

which is the modular law forN . ThusN is a modular lattice.

Example 1.3: Let PV = P denote the partially ordered set of all subspaces of a vector
space V over the field k under inclusion. Then P is a lattice with

V1 ∨ V2 = V1 + V2 and V1 ∧ V2 = V1 ∩ V2

for all V1,V2 ∈ P. It is easy to see using elementary linear algebra that P is a comple-
mented modular lattice which is not a Boolean algebra.

1.2 categories

The aim of this section is to list some preliminary definitions and results
about categories; this will enable us to set up notations and conventions to be
followed in the sequel. In the first section we review some definitions from
category theory for the convenience of later use. The remainder of the chapter
is devoted to describing certain results and constructions of category theory
needed later. Most of these results are quite standard and can be found in
any standard work on categories. In our formulation of these results, we have
followed MacLane [1971] as far as possible.1.2.1 De�nitions and notations
In the following we assume that the reader is familiar with the concepts of
categories, functors and related concepts (see Hungerford [1974], MacLane
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Hungerford, W.
Nambooripad, K. S. S.
category
vertices
objects
vC:vertex class of C
morphism
C(a, b):set of morphisms from a to b
dom f :domain of f
domain
codomain
cod f :codomain of f
composition
morphism!identity –
class!morphism –
home-sets
endomorphisms
small set

[1971], etc., for details). Here our aim is limited to introducing notations and
terminology needed in the sequel.

We shall generally follow notations and terminology established in Nam-
booripad [1994] (except for some occasional modifications). However, for
completeness, we shall reproduce most of them here. For those notation and
/ or terminology not explicitly defined here, the reader should refer MacLane
[1971], Nambooripad [1979] or Nambooripad [1994].

Definition 1.2. A category C consists of the following data:

1. A class called the class of vertices or objects.

2. a class of disjoint sets C(a, b), one for each pair (a, b) ∈ vC × vC. An
element f ∈ C(a, b) is called a morphism (or an arrow) from a to b, written
f : a→ b; a = dom f is called the domain of f and b = cod f is called the
codomain of f .

3. For a, b, c ∈ vC, a map

◦ : C(a, b) × C(b, c)→ C(a, c), ( f , 1) 7→ f ◦ 1.

◦ is called the composition of morphisms in C.

4. For each a ∈ vC, a unique 1a ∈ C(a, a) called the identity morphism on a.

These must satisfy the following axioms:

(Cat 1) The composition is associative: for f ∈ C(a, b), 1 ∈ C(b, c) and h ∈
C(c, d), we have

f ◦ (1 ◦ h) = ( f ◦ 1) ◦ h).

(Cat 2) For each a ∈ vC, f ∈ C(a, b) and 1 ∈ C(c, a),

1a ◦ f = f and 1 ◦ 1a = 1.

Observe that the order of the composition given by item (3) is from left to
right and agree with the composition of function defined earlier (cf. (1.2)) as
well as the usage in Nambooripad [1994].

Let C be a category. The symbol C will also denote its morphism class
. As in MacLane [1971], the sets C(a, b) will also be called home-sets. The
home-set C(a, a) is often abbreviated as C(a). Morphisms in C(a) are called
endomorphisms of a. Since the morphism sets C(a, b) are disjoint (by item (2)
above), the correspondance a 7→ 1a is an injection of the class vC into C. It is
convenient to identify vC as a subclass of C by this injection so that we have
vC ⊆ C. With this identification, it is possible to define categories in terms of
morphisms (arrows) alone. Notice that the class vC need not be a set whereas
the morphism set C(a, b) (by (2) above) is required to be a set (small set — see
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category!small –
partial binary operartion
domain!domain of a partial binary
operartion

partial algebra
DX:domain of the partial binary
operartion on X

identity!categorical identity
identity!categorical left identity
identity!categorical left identity
e1 and f1:unique left and right
identity of 1 ∈ C

MacLane [1971],pp 21–24.) The categoryC is said to be small if the classC (that
is, the class of all morphisms in C) is a set. In view of item (2) above, this true
if and only if vC is a set.

In this work, we will use categories not only as a language but also as a
mathematical structure which is a generalization of partially ordered sets. In
the later usage the categories considered will be small. For small categories,
the arrows-only definition is more appropriate. To formulate this definition,
we need some additional concepts. A partial binary operartion on a set X is a
function from a subset D ⊆ X × X to X; the set D is called the domain of the
partial binary operartion. A partial algebra X is a set (again denoted by X) on
which a partial binary operartion is given. If no ambiguity is likely, we shall
denote the partial binary operation on X by juxtaposition and its domain by
D = DX . Note that the statement (1, h) ∈ D is equivalent to the statement that
the product 1h exists (or is defined) in X. An element u ∈ X is a categorical

identity or simply, an identity, if

u1 = 1 whenever (u, 1) ∈ D and hu = h whenever (h, u) ∈ D.

We are now ready for the arrow-only definition of small categories (see also
MacLane [1971], pp 9).

Definition 1.3. A small category C is a partial algebra satisfying the following
axioms:

(Ar 1) The composite (1h)k is defined if and only if the composite 1(hk) is
defined. When either is defined they are equal. The common value of
thess triple composites is denoted by 1hk.

(Ar 2) If the composites 1h and hk are defined, then the triple composite 1hk is
defined.

(Ar 3) For all 1 ∈ C, there exist identities u, v ∈ C such that u1 and 1v are
defined.

If 1 ∈ C an identity u ∈ C with u1 = 1 [1u = 1] is called a left identity [right
identity]. Axiom (Ar 3) shows that every 1 ∈ C has a left [right] identity. The
strong associtivity implied by axioms (Ar 1) and (Ar 2) will mean that these
are unique. For if u, u′ are left identities of 1. Then products u1 = 1 and
u′1 = u′(u1) exists in C. Hence by (Ar 1), (u′u)1 exists whcich implies that u′u
exists. Since these are identities, we have u = u′u = u′ by definition. Similarly
right identities are also unique. We use the notation e1 and f1 to denote the
unique left and the right identity of the morphism 1 ∈ C. Moreover, the
composite 1h is defined in C if and only if f1 = eh. For from the fact that the
composite 1h = (1 f1)h exists we conclude that the product 1( f1h) exists and so
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Cop:the opposite category of C
the opposite category of C
dual
principle of duality
1a:
category!trivial – on XSet:category of sets
category! – of setsGrp:category of groups
category!– of groupsAb:category of abelian groups
category! – of abelian groups
functor!covariant –
vertex map
vF:The vertex map of F

f1h exists. This gives f1 = eh. Conversely, if f1 = eh = u, form the fact that
the products 1u and uh exists, we conclude by axion (Ar 2) that (1u)h = 1h
exists in C. It follows that, taking vC as the set of identities in C, C becomes a
category as per Definition 1.2. On the other hand, if C is a category according
to Definition 1.3, then for any a ∈ vC, u = 1a is a categorical identity. For if
u1 exists, then by item (3) of the definition, 1 ∈ C(a, b) for some b ∈ vC and
by axion (Cat 2), u1 = 1. Similarly, if hu exists, h ∈ C(c, a) and hu = h. It now
follows immediately that axioms (Ar i), i = 1, 2, 3 holds so that C is a small
category according to the arrow-only definition.

Suppose that C is a category (not necessarily small). Then there exists a
category Cop defined as follows:

vCop = vC, Cop(a, b) = C(b, a) (1.20)

for all a, b ∈ vC and the composition ∗ in Cop is given by

1 ∗ h = h ◦ 1

for all 1, h ∈ Cop = C for which h ◦ 1 is defined in C. Indeed, one can readily
see from the definition above that, these data give a category Cop called the the
opposite category of C. Any statement T regarding C corresponds to a suitable
statement T∗ regardingCop obtaind by reversing arrows and composition. The
statement T∗ is called the dual of T. Clearly, if T is true for C, then T∗ is true for
Cop. This method of inforing the truth of a statement T∗ for Cop from the truth
of T for C is called the principle of duality. Also, T∗∗ = T. Note that if T holds
for arbitrary categories, it holds for Cop and so, both T and T∗ holds for C.

Observe that with any class X, we can trivially associate a category C with
vC = X and for a, b ∈ X,C(a, b) is empty if a , b andC(a) = {1a}where 1a denotes
the identity morphism on a. Since no confusion is likely, we shall denote this
trivial category on X by X itself.

Example 1.4: Some of the most frequently used examples of categories are the follow-
ing:

1. Set: the category in which vertices are sets and morphisms are maps. It is called
the category of sets.

2. Grp: the category with groups as vertices and morphisms as homomorphisms.Grp is called the category of groups.

3. Ab: the category in which vertices are abelian groups and morphisms are homo-
morphisms. The category of abelian groups is a subcategory of Grp.

The reader may verify that the above list are valid examples of categories.

Definition 1.4. A covariant functor F : C → D from a category C to a category
D consists of a vertex map vF : vC → vDwhich assigns to each a ∈ vC a vertex



14 1. preliminary definitions

morphism map
functor!contravariant –
partial algebra! – homomorphism
partial algebra! –
anti-homomorphismCat:The category of small categories

v:functor from Cat to Set
category! – of small categories

vF(a) ∈ vD and a morphism map F : C → D which assigns to each morphism
f : a→ b ∈ C, a morphism

F( f ) : vF(a)→ vF(b) ∈ D

such that

(Fn 1) F(1a) = 1vF(a) for all a ∈ vC; and

(Fn 2) F( f )F(1) = F( f1) for all morphisms f , 1 ∈ C for which the composite f1
exists.

F is a contravariant functor if vF is as above and the morphism map assigns to
each f : a→ b ∈ C, a morphism

F( f ) : vF(b)→ vF(a) ∈ D

such that they satisfy axiom (Fn 1) and the following:

(Fn* 2) F(1)F( f ) = F( f1) for all morphisms f , 1 ∈ C for which the composite f1
exists.

In the following, unless otherwise stated, a functor will mean a covariant
functor. Observe that a functor F : C → D is contravariant if and only if
F : Cop →D is a covariant functor.

If we identify vC as a subset of C by identifying vertices with the corre-
sponding identity, the condition (Fn 1) implies that

vF = F | vC

for any functor F : C → D. Therefore we may use the same notation for the
morphism map as well as the vertex map of a functor. Thus the symbol F(x)
will mean a vertex inD if x ∈ vC and amorphism inD if x is a morphism in C.
We may now define a covariant functor F : C → D as a mapping of the class
C to the class D that preserves identities and composition. A contravariant
functor is similarly a map that preserves identities but reverses composition.

A functor F : C → D is said to small if C is a small category. In this case, it
is easy to see that there is a small subcategoryD′ ofD such that F is a functor
of C to D′. Thus a small functor is a partial algebra homomomorphism that
preserve categorical identities. Similarly, a contravariant small functor is a
partial algebra anti-homomorphism which preserves identities. It is clear that
there is a category Cat in which vertices are (small) categories and morphisms
are (small) functors. Moreover the assignments

C 7→ vC and F 7→ vF (1.21)

is a functor v from Cat (the category of small categories) to the category Set.
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1C:
functor!incluysion functor
inclusion
category!– inclusion
functor!v injective
functor!v-surjective
functor!faithful
functor!injective
embedding
functor!embedding
functor!full
functor!surjective
functor!strictly full
functor!full embedding
functor!fully-faithful
isomorphism! – of categories
isomorphism!inverse of
isomorphisms

F−1:inverse of F
C(c, f ):function 1 7→ 1 f
C(c,−):covariant hom-functor
functor!covariant hom- –
C( f, c):function from C(c′′, c) to
C(c′, c)

For any category C, there always exists a functor, denoted by 1C, whose
vertexmap is the identitymapon the vertex set ofC andwhosemorphismmap
is the identity map on the morphism class of C. A categoryD is a subcategory
of a category C if the class D is a subclass of C and the composition in D
is the restriction of the composition in C to D. In this case, the inclusion
D ⊆ C preserves composition and identites and so, represents a functor of D
to C which is called the inclusion functor of D into C. Observe that for any
category C, the trivial category vC is a subcategory of C. In particular the
inclusion vC ⊆ C can be regarded as a category inclusion.

Let C and D be two categories. We shall say that a functor F : C → D
is v-injective if vF is injective and F is v-surjective if vF is surjective. F is said
to be faithful if the morphism map is injective on each hom-set of C and F

is injective or an embedding if it is faithful and v-injective. Note that this is
equivalent to requiring that F is injective as a partial algebra homomorphism.
We shall say that F is full if its morphism map is surjective on each hom-set of
F. It is surjective if it is surjective as a partial algebra homomorphism (or, its
morphism map is surjective). In this case, it is easy to see that F is v-surjective.
F is strictly full if it is full and v-surjective. If F is strictly full then it is clearly
surjective. We shall say that F is a full embedding if it is fully-faithful (that is, full
and faithful) and v-injective. An isomorphism of categories is a full embedding
in which vF is a bijection. If F is an isomorphism, the inverse F−1 exists and is
also an isomorphism of categories.

We now describe two classes of set-valued functors that will be of use later.
Let C be a category. For fixed c ∈ vC and f : c′ → c′′ in C, let C(c, f ) denote the
function from C(c, c′) to C(c, c′′) defined as follows:

C(c, f )(1) = 1 f for all 1 ∈ C(c, c′). (1.22)

Then the assignments

c′ 7→ C(c, c′) f 7→ C(c, f ) (1.23)

for all c′ ∈ vC and f : c′ → c′′ ∈ C, defines a functor C(c,−) from C to the
category Set. C(c,−) is called the covariant hom-functor determined by c.

Again, as above, for fixed c ∈ vC and f : c′ → c′′ in C, let C( f , c) denote the
function from C(c′′, c) to C(c′, c) defined as follows:

C( f , c)(1) = f1 (1.22∗)

for all 1 ∈ C(c′′, c). The assignments

c′ 7→ C(c′, c) f 7→ C( f , c) (1.23∗)
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C(−, c):contravariant hom-functor
functor!contravariant hom-functor
natural transformation
natural transformation!component
of –

η(a) :component of the natural
transformation η

natural isomorphism
naturally equivalent
F � G:F is naturally equivalent to G
functor!morphism of functors

for all c′ ∈ vC and f : c′ → c′′ ∈ C defines a contravariant functor C(−, c) : C →Set which is called the contravariant hom-functor. Notice that the definition of
contravariant hom-functor is obtained by dualising the definition of covariant
hom-functor.

Natural transformations Let F : C → D and G : C → D be two functors (with
the same domain and codomain). A natural transformation η : F

n
→ G is a map

a 7→ η(a) from the vertex class vC ofC to themorphism class ofD (which by the
convention introduced above is denoted byD itself) such that for each a ∈ vC,
component η(a) : F(a) → G(a) is a morphism in D such that the following
diagram commutes for all f : a→ b in C:

F(a)
η(a)

F( f )

G(a)

G( f )

F(b)
η(b)

G(b)

(1.24)

In the following wewill denote the component of η at a either as η(a)(as above)
or as ηa (as in MacLane [1971]). If every component of η is an isomorphism,
then η is called a natural isomorphism. FunctorsF andG fromC toD are naturally
equivalent (written F � G) if there is a natural isomorphism η : F

n
→ G. Notice

that for any functor F : C → D the map a 7→ 1F(a) is a natural isomorphism of
F to itself which is denoted by 1F.1.2.2 Fun
tor 
ategories
Suppose that F is a class of functors. If F : C → C′ and G : D → D′ are
functors in ∈ F , amorphism µ : F

n
→ G is a triple µ = (α, η, α′) where α : C → D,

α′ : C′ →D′ are functors and η : F ◦ α′
n
→ α ◦ G is a natural transformation. If

µ = (α, η, α′) : F→ G and τ = (β, ζ, β′) : G→ H

are morphisms of functors, the composite µ ◦ τ = σ is defined as follows:

σ = (α ◦ β, ξ, α′ ◦ β′). (1.25)

Here, ξ denote the map : c→ ξc where for each c ∈ vC

ξc = β
′(ηc)ζα(c). (1.26)

It is easy to see that ξ is a natural transformation ξ : F ◦ α′ ◦ β′
n
→ α ◦ β ◦ H

and thus σ : F → H is a morphism of functors. With this morphism we can
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category!functor –
D-valued functors
transformation of functors
[C,D]:category of functors
Nat(S,T):natural transformations
from S to T

component-wise product

define a categoryX in which vX = F provided that for all F,G ∈ F , the class of
morphisms from F toG is a set. The reader can verify that a sufficient condition
for this to hold is that domF and cod F of every F ∈ F is a small category. Any
subcategory of Xwill be called a functor category (or a category of functors).

We proceed to discuss some particular instances of this construction that
will be of use in the sequal. Suppose that F is a class of functors taking values
in some fixed category D. For example D may be the category Set, Grp (the
category of groups) or the category Ab of abelian groups, etc. A category of
D-valued functors is a category Ewith

vE = F (1.27a)

and for F,G ∈ F morphisms µ : F→ G are of the form

µ = (α, η, 1D). (1.27b)

A sufficient condition that this will in fact define a categoryE is thatF consists
of small functors. Obviousely, E is a subcategory of X if the later exists.
Morphisms in E are called transformations . If µ = (α, η, 1D) : F → G is a
fransformation in E, it will be convenient to write α = vµ and use the symbol
µ to denote the the natural transformation η also if there will be no ambiguity.
It follows from Equations (1.27a) and (1.27b) that composition τ = µ ◦ ν of
transformations µ : F→ G and ν : G→ H is defined by

vτ = vµ ◦ vν, and τc = µcνvµ(c) (1.27c)

for all c ∈ vC.
Suppose that C and D are categories in which C is small. Then there is a

category [C,D] whose objects are functors from C toD andwhose morphisms
are natural transformations (seeMacLane [1971]). Notice that this construction
can be obtained as a particular case of the construction of X (or E) if we take
F as the set of all functors from C to D and morhisms as transformations of
the form

µ = (1C, η, 1D). (1.27d)

If S and T are functors from C toD, we shall also use the more usual notation
Nat(S,T) to denote the set [C,D](S,T) of all morphisms (natural transforma-
tions) in [C,D] from S to T. Notice that composition in this category is defined
as the component-wise product of natural transformations: if η ∈ Nat(S,T) and
ζ ∈ Nat(T,U), then ηζ ∈ Nat(S,U) is the natural transformation defined by

(ηζ)c = ηcζc. (1.27e)

for all c ∈ vC (see MacLane [1971]). Clearly, [C,D] is a subcategory of the
category [−,D] of all smallD-valued functors.
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product category
category!product –
C ×D:
bifunctor
functor! – in n variables
bifunctor! – criterion

Bifunctors and bifunctor criterion Let C, D be categories. Recall that the
product categoryC×D is the categorywith vertex classvC×vD, morphism class
C × D and in which composition of morphisms are defined componentwise;
that is, if ( f , 1) : (c, d)→ (c′, d′) and ( f ′, 1′) : (c′, d′)→ (c′′, d′′) are morphisms in
C ×D, then the composition in the category C ×D is given by the equation

( f , 1)( f ′, 1′) = ( f f ′, 11′).

A bifunctor or a functor in two variables is a (covariant) functor B : C×D → E
(where E is another category). A bifunctor B : Cop × D → E is said to be
contravariant in the first variable and covariant in the second. In an obvious
manner, the definition above can be extended to functors in n variables which
is contravariant in r ≤ n variables, etc.

The following principle, called the bifunctor criterion is useful in checking
whether a given assignments of functors and natural transformations consti-
tute a bifunctor:

Theorem 1.3 (Bifunctor criterion). LetC,D andE be categories. For each c ∈ vC
and d ∈ vD, let

Gc : D→ E and Fd : C → E

be functors such that

Fd(c) = Gc(d) for all (c, d) ∈ vC × vD.

Then there exists a bifunctor B : C × D → E with B(c,−) = Gc for all c and
B(−, d) = Fd for all d if and only if for every pair of morphisms f : c → c′ ∈ C and
1 : d→ d′ ∈ D the following diagram commutes:

Fd(c)
Gc(1)

Fd( f )

Gc(d′)

Fd′ ( f )

Fd(c′)
Gc′ (1)

Gc′(d′)

If this holds, then B is defined by the assignments: a

B(c, d) = Fd(c) = Gc(d) (1.28a)

for all (c, d) ∈ vC × vD and

B( f , 1) = Fd( f )Gc′(1) = Gc(1)Fd′( f ). (1.28b)

for all ( f , 1) : (c, d)→ (c′, d′) ∈ C ×D.
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C(−,−):the hom-functor
hom-functor
category! – isomorphism
bifunctor! – criterion

We refer the reader to MacLane [1971], Proposition 1 on page 37 for further
information about this principle.

Given any categoryC, it is easy to check that the contra-variant and covari-
ant hom-functors

C(−, c) : Cop → Set C(c,−) : C → Set (1.29)

(cf. Equation (1.23) and Equation (1.23∗)) satisfy the bifunctor criterion above
and hence determines a unique bifunctor C(−,−) : Cop × C → Set. C(−,−) is
called the hom-functor. Notice that C(−,−) sends each (c, d) ∈ vC × vC to the
set C(c, d) and ( f , 1) ∈ C(c′, c) × C(d, d′) to the function C( f , 1) defined by

C( f , 1) : h 7→ f h1. (1.30)

Clearly the bifunctorC(−,−) is contravariant in the first variable and covariant
in the second.

An isomorphism of functor categories It is well-known that, if C,D are small
categories, and E is any category, we have the following category isomor-
phisms:

[C, [D,E]] � [C ×D,E] � [D, [C,E]] . (1.31)

(see MacLane [1971]). In fact the first isomorphism is defined by the assign-
ments:

F 7→ F(−,−); and η 7→ η−,−. (1.31∗)

Here F(−,−) is defined, for any functor F ∈ v [C, [D,E]], as follows. For each
c ∈ vC, let Gc = F(c). By hypothesis Gc : D → E is a functor. Also for each
d ∈ vD, let Fd be defined by the assignments

c 7→ F(c)(d) and f 7→ F( f )(d).

It is easy to see that Fd = F(−)(d) : C → E is a functor. If f : c → c′ ∈ C,
then F( f ) : F(c) → F(c′) is a natural transformation and hence the following
diagram commutes for each 1 : d→ d′ ∈ D:

F(c, d)
F( f )d

F(c)(1)

F(c′, d)

F(c′)(1)

F(c, d′)
F( f )d′

F(c′, d′)

(1.32)

It follows from bifunctor criterion (see Subsection 1.2.2) that the functors Fd
and Gc determines a unique bifunctor F(−,−) : C ×D → E defined as follows:

F(c, d) = F(c)(d) (1.33a)
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category!small –
category!big –
higher universe
representation
functor! – category
C∗ = [C, Set]: for each (c, d) ∈ vC × vD, and for ( f , 1) : (c, d)→ (c′, d′), let

F( f , 1) = (F( f )d)(F(c′)(1)) = (F(c)(1))(F( f )d′). (1.33b)

Then we clearly have F(c,−) = F(c) and F(−, d) = F(−)(d) for all c and d.
Similarly if η is a natural transformation in [C, [D,E]] (F,G), and if we define

ηc,d =
(

ηc
)

d (1.33c)

then it is easily seen that η−,− : F(−,−)
n
→ G(−,−) is a natural transformation of

bifunctors.
Conversely, let F(−,−) ∈ v[C×D,E] and η−,− ∈ [C×D,E]. For each c ∈ vC,

F(c,−) : D → E is a functor and for each f : c → c′ ∈ C, by the bifunctor
criterion, F( f ,−) : F(c,−)

n
→ F(c′,−) is a natural transformation. Define F̃ and η̃

as follows:
F̃(c) = F(c,−); F̃( f ) = F( f ,−);

η̃c = ηc,−
(1.34)

It can be shown that F̃ : C → [D, E ] is the unique functor such that the
bifunctor F̃(−,−) determined by F̃ as above (using Equations 1.33a and 1.33b)
coincides with F(−,−). Also it is easy to see that η̃ : F̃→ G̃ is the unique natural
transformation such that the natural transformation of bifunctors determined
by η̃ (as in Equation 1.33c) is the same as η−,−. It follows that the assignments
given by Equation (1.31∗) is a category isomorphism. Since categories C × D
and D × C are isomorphic, the second isomorphism of Equation 1.31 can be
obtained in the obvious way.

Remark 1.3: Notice that even if C andD are not small [C,D] can still be inter-
preted as a category though the hom-sets of this category is no longer small;
also Equation (1.31) remains valid where the isomorphisms are isomorphisms
of “large” categories (that is, categories whose hom-sets belongs to a higher
universe so that they are not small sets—see MacLane [1971], pp 21–24). In
any case, given any bifunctor F from C ×D to E, Equation (1.34) gives a repre-
sentation F̃ sending each object in C to a functor from D to E and morphisms
to natural transformations between such functors and this assignment is func-
torial in the sense that it preserve identities and composition. When C and
D are not small, F̃ will be a functor from a category with small hom-sets to a
category whose hom-sets may not be small sets.

Yoneda lemma For any category C, we use the notation C∗ to denote the
functor category [C, Set]. IfC andD are any two categories, by Equation (1.31),
we have the following isomorphisms:

[C,D∗] � (C ×D)∗ � [D,C∗]. (1.35)
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representationsHC, HC:contra, co-variant
representations

representation!contravariant –
representation!covariant –
natural transformation
Yoneda, N.
Yoneda lemma
naturalEC:evaluation functor
functor!evaluation –
YC:Yoneda functor
Y:Yoneda equivalence

In particular, setting D = Cop it follows from Equation (1.35) that there are
unique functors (representations)HC : Cop → C∗ and HC : C → (Cop)∗ (1.36)

that corresponds to the bifunctor C(−,−) under the isomorphisms given in
Equation 1.35 (see Equations 1.33a, 1.33b, and 1.34). It follows that HC :
Cop → C∗ is a unique contravariant representation of C by covariant set-valued
functors onC. SimilarlyHC : C → (Cop)∗ is a unique covariant representation of
C by contravariant set-valued functors on C.

Let F ∈ C∗ and u ∈ F(c) with c ∈ vC. It is easy to see that for each c′ ∈ vC

and f ∈ C(c, c′),
ζuc′( f ) = F( f )(u) (1.37)

defines amap ζuc′ : C(c, c
′)→ F(c′) such that the assignment c′ 7→ ζuc′ is a natural

transformation ζu ofC(c,−) to F. Every element ofNat(C(c,−), F) is of this form.
This leads to the followingwell-known result, due toN. Yoneda Yoneda [1954],
which we shall need in the sequel (see also MacLane [1971], pp 59–62).

Theorem 1.4 (Yoneda Lemma). Let C be a category, c ∈ vC and F ∈ vC∗. Then the
map

Yc,F : u 7→ ζu

is a bijection of F(c) ontoNat(C(c,−), F)which is natural in c and F.

The last statement thatYc,F is natural in c and Fmay be explained as follows.
Let EC be defined on objects and morphisms of the category C×C∗ as follows:EC(c, F) = F(c), EC( f , η) = F( f )ηc′ = ηcG( f ) (1.38)

where f ∈ C(c, c′) and η ∈ Nat(F,G). The equality F( f )ηc′ = ηcG( f ) follows
from the fact that η is a natural transformation. It is easy to see that EC is a
set-valued bifunctor on C × C∗ and is called the evaluation functor. Similarly,
YC defined on objects and morphisms of C × C∗ to Set by

YC(c, F) = Nat(HC(c), F), YC( f , η) = C∗(HC( f ), η) (1.39)

is a bifunctor. Here HC denotes the functor from Cop to C∗ satisfying Equa-
tion (1.36) andC∗(HCC( f ), η) is the function defined by Equation (1.30). Yoneda
lemma is equivalent to the following:

Corollary 1.5. The assignment

Y : (c, F) 7→ Yc,F

is a natural isomorphism Y : EC → YC.
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representation
Yoneda representations
embedding!contravariant Yoneda –
embedding!covariant Yoneda –
universal! – arrow
universal
universal! – element
representable
representing object

Another consequence of Yoneda lemma is that it gives some useful rep-
resentations, called Yoneda representations. In fact, the functors HC and HC are
embedding of categories; HC is called the contravariant Yoneda representation (or

embedding) and HC is called the covariant Yoneda representation (or embedding).1.2.3 Universal arrows, representable fun
tors and limits
Let F : C → D be a functor. Recall that a universal arrow from d ∈ vD to the
functor F is a pair (c, 1) where c ∈ vC and 1 ∈ D (d, F(c)) such that given any
pair (c′, 1′) with 1′ ∈ D (d, F(c′)), c′ ∈ vC, there is a unique f ∈ C(c, c′) such that
1′ = 1 ◦ F( f ) (cf. MacLane [1971], p 55). In this case, we say that the morphism
1 is universal from d to F. A universal arrow from F to d is defined dually.

The following are standard examples of universal arrows.

Example 1.5: Let U : Grp → Set be the forgetful functor from the category Grp of
groups to Set. Let F(X) be the free group on the set X [see Hungerford, 1974, page. 65]
for definitionof free groups). Let jX : X→ U(F(X)) be the natural insertionof generators
in F(X). Then the pair (F(X), jX) is a universal arrow fromX toU. Also there is a functor
F : Set → Grp sending each set X to the free group F(X) generated by it. If G is any
group, then there is a unique quotient homomorphism qG : F(U(G))→ Gwhere F(U(G))
is the free group generated by the set U(G) of G. The pair

(

F(U(G)), qG
)

is a universal
arrow from the functor to G.

The remainder of this section deals with some applications of this concept
which we shall find useful later.

Universal elements Let F ∈ C∗ and let (c, 1) be a universal arrow from a one
point set ∗ to F. Then the map 1 : ∗ → F(c) is uniquely determined by the
element x = 1(∗). In this case the pair (c, x) (or, the element x alone, if the object
c is clear from the context) is called a universal element for F. Note that x ∈ F(c)
is a universal element for F if and only if for every c′ ∈ vC and y ∈ F(c′),
there is a unique f : c → c′ such that F( f )(x) = y. It is easy to see that the
natural transformation ζx defined by Equation (1.37) is a natural isomorphism
if and only if the element x ∈ F(c) is a universal element for F. By Yoneda
lemma every natural isomorphism of F with a covariant hom-functor C(c,−)
is obtained in this manner.

Representable functors A functor F ∈ C∗ is said to be representable if F is
naturally isomorphic to some C(c,−); in this case the object c ∈ vC is called a
representing object for F. Remarks above imply that c is a representing object
for F if and only if F(c) contains a universal element for F. In particular, F is
representable if and only if F has a universal element.
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functor!constant –
∆d:constant functor with value d
cone

σ : F
n
→ d:cone from base F to vertex

d

σ : coneC
n
→ d

∆ : D→ [C,D]
cone! – to F from d

η : d
n
→ F:cone to the base F from

vertex d
universal! – cone
limit!direct –
lim
−−→

F:direct limit of F

cone!limiting –
limit
limit!inverse –
lim
←−−

F:inverse limit of F

Limits Let C and D be two categories and let d ∈ vD. In the following we
denote by ∆d the constant functor from C toDwith value d; that is, the functor
which sends every object of C to d and every morphism to 1d. By a cone we
mean a natural transformation σ belonging to either Nat[F,∆d] or Nat[∆d, F]
where F : C → D is a functor. If σ ∈ Nat[F,∆d] then it is called a cone from the

base F to the vertex d. Clearly σ : c 7→ σc is a function from vC toD such that for
any f : c→ c′ ∈ C, the following diagram commutes:

F(c)
F( f )

σc

F(c′)

σc′

d

(1.40)

We shall write σ : F
n
→ d to mean that σ is a cone from the base F to d. In

particular, if F is the inclusion functor of C in D, we shall say that σ is a cone
from the base C to d; in this case we write σ : C

n
→ d. If F = ∆d′ , another

constant functor, them any σ : F
n
→ ∆d is a constant mapping of vC toD(d′, d)

which may be represented as ∆1 where 1 = σ(c) for any c ∈ vC. Moreover, the
assignments

d 7→ ∆d and 1 7→ ∆1 (1.41)

is a functor ∆ : D→ [C,D]
Dually if σ ∈ Nat[∆d, F] then it is called a cone to the base F from the vertex

d (see MacLane [1971], pp 62–71). In this case, we write η : d
n
→ F to indicate

this natural transformation.
A cone σ : F

n
→ d is a universal cone if for each cone τ : F

n
→ d′ there is a

unique 1 : d→ d′ such that the following diagram commutes for every c ∈ vC:

F(c)
σc

τc

d

1

d′

(1.42)

A cone σ : F
n
→ d is universal if and only if the natural transformation σ : F

n
→

∆d is a universal arrow from F to the functor ∆ in the sense defined earlier
in this section. The direct limit (or inductive limit or colimit) of F is a pair (d, σ)
where d ∈ vD and σ : F

n
→ d is a universal cone (seeMacLane [1971] pp 67–68).

In this case we write
d = lim
−−→

F

and σ is called the limiting cone. Dually the limit (or inverse limit or projective

limit) of F is a pair (lim
←−−

F, τ) where lim
←−−

F ∈ vD and τ : lim
←−−

F
n
→ F is a universal

cone to F from lim
←−−

F.
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pushout square
pullback square
category!complete –
category!cocomplete –
relation!equivalence –

We end this section with some useful examples of limits.

Example 1.6 (Pushout square): A pushout square of a pair 〈 f , 1〉 of morphisms in a
category C (with common domain) is a commutative square on the left below such that
whenever a commutative square, such as the one on the right below is given, there is
a unique isomorphism t : b

∐

a c→ s such that w = ut and z = vt.

a
f

1

c

u

b v
b
∐

a c

a
f

1

c

w

b z
s

(1.43)

A push out square can be interpreted as a direct limit of a functor from the category
· ← · → · to C. Observe that it is a particular case of the fibered sum or coproduct over a,
the common domain of f and 1 (see 2.23). ([see MacLane, 1971, Page 66]).

Example 1.7 (Pullbacks): A pullback squareof a pair 〈 f , 1〉 ofmorphisms in a categoryC
(wth common codomin) is a commutative square on the left below such that whenever
a commutative square such as the one on the right below is given, there is a unique
morphism t : s→ a ×c b such that w = ut and z = vt.

a
f

c

a ×c b v

u

b

1

a
f

c

s
z

w

b

1 (1.44)

Show that a push out square can be interpreted as a limit of a functor from the category
· → · ← · to C. Moreover it is a particular case of the fibered product or product over
c = cod f = cod 1. A pullback square is the dual of a pushout square. ([see MacLane,
1971, Page 71]).

Example 1.8: It is well-known that if C is a small category then for any functor F : C →Set, both lim
−−→

F and lim
←−−

F exists, since the category Set is complete and cocomplete (see
MacLane [1971], pp 105–108). In fact, let X denote the disjoint union of sets {F(c) : c ∈
vC} and let ρ denote the smallest equivalence relation containing the relation

{(x, y) ∈ X × X : F( f )(x) = y for some f ∈ C}.

Also, let ρ♮ : X→ X/ρ denote the quotient map. Then it can be checked that

lim
−−→

F = X/ρ

and themap c 7→ ρ♮|F(c) gives the limiting cone. The inverse limit ofF canbe constructed
in a similar fashion (see MacLane [1971], Theorem1, p 106).1.2.4 Adjoints and equivalen
e of 
ategories
It is clear that given any functor F : C → D, the assignments

(c, d) 7→ (F(c), d); ( f , 1) 7→ (F( f ), 1)
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is a bifunctor F × 1D : C ×D → D×D. Hence the composite

D(F(−),−) = (F × 1D) ◦ D(−,−) : C ×D → Set
is a set-valued bifunctor which is contravariant in the first variable. Here
D(−,−) denote the hom-functor ofD. Similarly,

D(−, F(−)) = (1D × F) ◦ D(−,−) : D× C → Set
is a set-valued bifunctor which is also contravariant in the first variable.

Let η ∈ Nat[F,G] be a natural transformation where F,G : C → D. If
H : D→ X and K : A→ C are functors, it is easy to verify that the mappings

c 7→ H(ηc) and a 7→ ηK(a)

are natural transformations. We denote these by

ηH : F ◦H
n
→ G ◦H and Kη : K ◦ F

n
→ K ◦ G.

We use these notations in the statement below. See MacLane [1971]; page 81,
Theorem 2 for a proof.

Theorem 1.6. The following statements are equivalent for functors F : C → D and
G : D→ C:

(i) There exists a natural isomorphism

φ : C(−,G(−))
n
→D(F(−),−).

(ii) There exists a natural transformation η : 1C
n
→ F◦G such that for each c ∈ vC,

ηc is a universal arrow from c to G.

(iii) There exists a natural transformation σ : G◦F
n
→ 1D such that for each d ∈ vD,

σd is a universal arrow to d from F.

(iv) There exist natural transformations

η : 1C
n
→ F ◦ G and σ : G ◦ F

n
→ 1D

such that

(ηF)c ◦ (Fσ)c = 1c and (Gη)d ◦ (σG)d = 1d

for all c ∈ vC and d ∈ vD.
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adjoint
adjoint!left –
adjoint!right –
adjunction
unit
counit

< F,G, η, σ >: C
·
⇀ D:adjunction

from C toD
category! – equivalence

< F,G;η, ν >: C
·
⇋ D:A category

equivalence
adjoint!– equivalence
adjoint! – inverse
category!reflective subcategory
reflector
monomorphism
cancelable
cancelable!right –
monomorphism!split –

Moreover, given F : C → D there exists G : D → C satisfying the equivalent
conditions (i) – (iv) if and only if for each d ∈ vD there is a unique G0(d) ∈ vC and
σd : F(G0(d)) → d which is universal from F to d. Dually, given G : D → C there
exists F : C → D satisfying the equivalent conditions (i) – (iv) if and only if for each
c ∈ vC there is a unique F0(c) ∈ vD and ηc : c → G(F0(c)) which is universal to G
from c.

Given a pair of functors F : C → D and G : D → C, we shall say that
F is a left adjoint of G and G is the right adjoint of F if the pair (F,G) satisfies
the equivalent conditions of the theorem above. The natural isomorphism
φ of statement (i) above is often referred to as the adjunction between F and
G. Also the natural transformation η of (ii) (or (iv)) is called the unit and the
natural transformation σ of (iii) (or (iv)), is called the counit of the adjunction.
By the statements (i) and (iv) above, the triple < F,G, φ > or the quadruple
< F,G, η, σ > completely determine the adjunction. We shall use the notation
< F,G, η, σ >: C

·
⇀ D for an adjunction from C to D where F : C → D is a left

adjoint of G : D → C, η : 1C
n
→ F ◦ G is the unit and σ : G ◦ F

n
→ 1D is the

counit of the adjunction. Note that any two left adjoints [right adjoints] of G
are naturally equivalent (see MacLane [1971], page 83).

We say that two categories C andD are equivalent if if there exist functors
F : C → D, G : D→ C and such η : 1C →

n
→ F ◦G and ν : 1D

n
→ G ◦ F. We write

< F,G; η, ν >: C
·
⇋ D for an equivalence between catwegories C andD. In this

case both < F,G, η, ν−1 >: C
·
⇀ D and < G, F, ν, η−1 >: D

·
⇀ C are adjunctions

so that F is both left and right adjoint of G. An adjunction arising in this way
from an equivalence is called an adjoint equivalence. If < F,G; η, nu >: C

·
⇋ D is

an equivalence of categories C andD, G is called the adjoint inverse of F (and F

is the adjoint inverse of G). Note that if F : C → D is a category isomorphism
with inverseG (so that F◦G = 1C andG◦F = 1D), then < F,G, 1C, 1D >: C

·
⇀ D

is an adjoint equivalence. Therefore an inverse is, in particular, an adjoint
inverse; but the converse is not true.

Let D be a subcategory of C and let K : D → C be the inclusion functor.
If K has a left adjoint F, then D is called a reflective subcategory of C and F is
called a reflector of C onD.1.2.5 Monomorphisms and epimorphisms
Monomorphisms Recall that amorphism f in a categoryC is amonomorphism if
a

1 f = h f ⇒ 1 = h for all 1, h ∈ C; (1.45a)

that is, f is a monomorphism if it is right cancelable. A morphism f ∈ C(c, c′) is
called a split monomorphism if there exists a morphism 1 ∈ C(c′, c) with f1 = 1c
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inverse!right –
MC:subcategory of monomorphisms
f � 1:
relation!quasi-order –
f ∼ 1:equivalent monomorphisms
monomorphism!equivalent
monomorphisms

in which case 1 is called a right inverse of f . In this case, if h, k ∈ Cwith h f = k f

then

h = h( f1) = (h f )1 = (k f )1 = k.

Thus a split monomorphism is a monomorphism; but not all monomorphisms
are split.

LetMC denote the class of allmonomorphisms inC. For any c ∈ C, 1c ∈MC
and f1 ∈ MC for all f , 1 ∈ MC. These imply that MC is a subcategory of C
with vMC = vC. It is useful to note that the subcategoryMC has the following
property:

f , 1 ∈ C and f1 ∈MC ⇒ f ∈MC. (1.45b)

On MC define the relation

f � 1 ⇐⇒ f = h1 for some h ∈ C. (1.45c)

Clearly if f � 1 then f and 1 have the same codomain and by Equation (1.45b),
themorphism h such that f = h1 is also amonomorphism. Also the� is a quasi-
order (that is satisfies (R1) and (R2) of Definition 1.1; see § Subsection 1.1.2)
and so

∼=� ∩ �−1 (1.45d)

is an equivalence relation on MC. We have the following characterization of
∼:

Proposition 1.7. For f , 1 ∈MC, f ∼ 1 if and only if there there is an isomorphism h
such that the following diagram commutes:

e

c

f

h
d

1

Proof. If an isomorphism h exists making the diagram commute, then f = h1

and so f � 1. Then 1 = h−1 f and so, 1 � f . Therefore f ∼ 1. Conversely
if f ∼ 1, and if h, k ∈ C with f = h1 and 1 = k f , then 1c f = f = hk f where
c = dom f and since f is a monomorphism, we have hk = 1c. Similarly, kh = 1d
where d = dom 1. Hence h is an isomorphism making the diagram above
commute and k = h−1.

Twomonomorphisms f and 1 are said to be equivalent if f ∼ 1 (seeMacLane
[1971], p 122).
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epimorphism
cancelable!left –
epimorphism!split –
inverse!left –
EC:
epimorphism!equivalent
epimorphisms

morphism!balanced –

Epimorphisms Dually, f ∈ C(c, c′) is called an epimorphism if f satisfies the
following: a

f1 = f h⇒ 1 = h for all 1, h ∈ C; (1.45a∗)

so that f is left cancelable. f is called a split epimorphism if there is 1 ∈ C(c′, c)
such that 1 f = 1c′ . As before a split epimorphism is an epimorphism and f is
a split epimorphism if and only if its left inverse is a split monomorphism.

Definitions dual to that of MC give a subcategory EC of all epimorphisms
in C satisfying the property:

f , 1 ∈ C and f1 ∈ EC ⇒ 1 ∈ EC. (1.45b∗)

Moreover, dual of Equations 1.45c and 1.45d gives a quasi-order and an equiv-
alence relation on EC; since there is no possibility of confusion we shall use
the same notations � and ∼ to denote these relations on EC as well. Dual of
Proposition 1.7 also hold for this relation on EC. Two epimorphisms related
by ∼ are said to be equivalent.

Balanced morphisms A morphism f is a balanced if it is both a monomorph-
ism and an epimorphism. Clearly, an isomorphism is a balanced morphism;
but there exist balancedmorphisms that are not isomorphisms. The following
observation will be of use later:

Proposition 1.8. A balanced morphism which is a split monomorphism or a split
epimorphism is an isomorphism.

Proof. . Suppose that f : c → d is a balanced morphism with right inverse
1 : d→ c. Then f1 = 1c and

f (1 f ) = ( f1) f = f = f1d.

Since f is an epimorphism, we have 1 f = 1d which implies that f is an isomor-
phism with f−1 = 1. If f is a split epimorphism, we can similarly (dually) see
that f is an isomorphism.

Example 1.9: LetD ⊆ X be a proper dense subspace of a topological space X. Then the
inclusionmapping j : D ⊆ X is a balanced morphism in the category Top of topological
spaces which is clearly not an isomorphism.

1.3 small categories

Recall that a category C is small if its morphism class C (or equivalently vC)
is a set (see Subsection 1.2.1). We have noted that small categories can be
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category!concrete –considered as partial algebras and functors between small categories as par-
tial algebra homomorphisms which preserve identities. We therefore have a
category Cat inwhich objects are small categories andmorphisms are functors.
Recall from § Subsection 1.2.1 also that, for any morphism u in small category
C, we use the notations eu and fu for identities corresponding to domu and
cod u respectively.

In this section we give some definitions and results, mainly relevant for
small categories needed in the sequel. Note that some of these definitions are
valid for arbitrary categories also.1.3.1 Con
rete 
ategories and preorders
We shall say that a category C (not necessarily small) is concrete if there exists
a faithful functor U : C → Set. If C is concrete, we may assume that there is a
faithful functor V : C → Setwhich is injective on objects. For, if U : C → Set is
faithful, define V : C → Set by

V(c) = {(x, c) : x ∈ U(c)}

and for f ∈ C(c, d),x ∈ U(c), let

V( f )(x, c) = (U( f )(x), d).

ThenV is faithful Set-valued functor onCwhich is injective on vC. In this case,
the image ImV of C in Set is a subcategory of Set and V is an isomorphism
of C onto ImV. Therefore, with out loss of generality, any (small) concrete
category C can be regarded as a category of sets; that is, objects in C are
sets and morphisms are functions. However, such representation of C is not
unique.

Proposition 1.9. Let C be a small category. Then there exists a faithful functor
UC : C → Set which is injective on vC. Hence C is isomorphic to a category of sets;
in particular, C is concrete.

Proof. We construct a functor U = UC : C → Set as follows. For each c ∈ vC

define

U(c) = {1 ∈ C : cod 1 = c} (1.47)

and for f : c→ c′ ∈ C, define U( f ) : U(c)→ U(c′) by

U( f )(1) = 1 f . (1.48)
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preorder Since C is small, U(c) is a set for all c ∈ vC. Moreover, since 1c ∈ U(c),U(c) , ∅.
For f : c→ c′, U( f ) is clearly a map of U(c) to U(c′) and it is easy to verify that
U;C → Set is a functor. Now for c , c′,

U(c) ∩U(c′) = ∅

and soU is injective on objects of C. Also, ifU( f ) = U(h) for f , h ∈ C(c, c′), then
1 f = 1h for all 1 ∈ U(c) and so

f = 1c f = 1ch = h.

Thus U : C → Set is faithful. Consequently, U(C) = ImU is a subcategory ofSet and UC : C → U(C) is an isomorphism.

Remark 1.4: Proposition 1.9 has the following consequence. Let S
at denote
the category of all small subcategories of Set. Then S
at is a full subcategory
of Cat. For C ∈ vCat, let UC : C → U(C) be the isomorphism constructed in
the Proposition 1.9 above. It is easy to verify that UC is a universal arrow
from C to the inclusion functor J : S
at → Cat (see § Subsection 1.2.3). Hence
by Theorem 1.6, J has a left adjoint. Therefore S
at is a reflective subcategory
of Cat (see § Subsection 1.2.4). In fact, the construction C 7→ ImUC can be
naturally extended to a functor U : Cat→ S
at which is the reflector of Cat inS
at.
Preorders A category P is called a preorder if the hom-set P(p, q) contains at
most one morphism for all p, q ∈ vP. If P is a preorder and if P = vP, the
relation

ρ(P) = {(p, q) ∈ P × P : P(p, q) , ∅} (1.49)

is a quasiorder (reflexive and transitive relation) on the class P. In particular, a
small preorder is a quasiordered set. Conversely, if ρ is any quasiorder relation
on a class X, then ρmay be considered as the morphism set of a preorder with
vertex class X; composition in ρ is defined as follows: for all (p, q), (r, s) ∈ ρ,

(p, q)(r, s) =















(p, s) if q = r;
undefined if q , r.

(1.50)

Thus the quasiordered class (X, ρ) becomes a preorder with morphism class
ρ and vertex class X. Note that if P = (X, ρ), then the relation ρ(P) defined
by Equation (1.49) coincides with ρ. We may therefore use the same notation
to denote a preorder and the associated quasiordered class. Also, a mapping
f of the vertex class of the preorder P to the vertex class of Q determines a
unique functor of P toQ if and only if f is an order preserving mapping of the
associated quasiordered classes; as above we shall use the same notation to
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preorder!strict –
subobject
Krishnan, E.
Nambooripad, K. S. S.
subobject!choice of subobjects
category!– with subobjects
subobject!– relation

denote functors of preorders aswell as order preservingmaps of the associated
quasiordered classes.

A preorder P is said to be strict if the associated relation ρ(P) defined by
Equation (1.49) is antisymmetric; this is equivalent to the fact that quasiordered
class is a partially ordered class.1.3.2 Categories with subobje
ts
Here we introduce the important preliminary notion of subobject relations in
categories. Most of the familiar categories such as Set, Grp, Top, etc., are nat-
urally endowed with subobject relations (the relation induced by the usual
set inclusion). Moreover, morphisms in these categories satisfy a factorization
property which enables us to identify image of a morphism with a universal
subobject of its codomain. Herewe shall be concernedmostly with small cate-
gories even though most of the definitions may apply for arbitrary categories.

Subobject relations According to the usual definition, subobjects in a category,
are certain equivalence classes of monomorphisms (see MacLane [1971], page
122). While this is quite adequate in algebraic categories such as Set, Grp,V
tk, etc., the natural subobject relation in categories such as Top (category of
topological spaces), Tvs (category of topological vector spaces), etc., indicate
embeddings rather than monomorphisms. We shall therefore give a new
definition of subobject relation to take this distinction into account (see also
Krishnan [1990], Krishnan and Nambooripad [1993]).

Definition 1.5. Let C be a category. A choice of subobjects in C is a subcategory
P ⊆ C satisfying the following:

(a) P is a strict preorder with vP = vC.

(b) Every f ∈ P is a monomorphism in C.

(c) If f , 1 ∈ P and if f = h1 for some h ∈ C, then h ∈ P. par

If P is a choice of subobjects in C, the pair (C,P) is called a category with
subobjects.

In the following, to simplify the notation, we shall denote by C, D, etc.,
categories with subobjects. If P is the choice of subobjects in C, then by
axiom (a), P induces a partial order ρ(P) on vC (see Equation (1.49)) and this
partially order completely determine the preorder P. When C has subobjects,
unless explicitly stated otherwise, vC will denote the choice of subobjects in
C. Also, in this case, the partial order defined by Equation (1.49) will be
called the preorder of inclusions or subobject relation in C and will be denoted
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c ⊆ d:c is a subobject of d
subobject

dc :inclusion of c in d
monomorphism!embedding
inclusion:split –
retraction
functor!inclusion preserving –
isomorphism!– of categories with
subobjects

by ⊆; as usual the statement (c, d) ∈⊆ is written as dc : c ⊆ d (or c ⊆ d for
short) where dc denotes the unique morphism in vC from c to d. When c ⊆ d,
we say that c is a subobject of d; the morphism dc is called the inclusion of
c in d. Since we often identify vertices with identities, we shall continue to
use these notations for identities also. Thus if e and f are identities in C the
relation e ⊆ f is synonymous with dom e ⊆ dom f and the inclusion 

dom f

dom e

is written also as  fe . Any monomorphism f equivalent to an inclusion (with
respect to the equivalence relation ∼ defined by Equation (1.45d)) is called an
embedding. We say that an inclusion splits if it is split as a monomorphism
(see § Subsection 1.2.5); thus dc splits if there is a morphism ǫ : d → c such
that dcǫ = 1c; in this case ǫ is called a retraction; a retraction is clearly a split
epimorphism.

Lemma 1.10. Let C be a category with subobjects. Then

1) No two inclusions can be equivalent as monomorphisms.

2) If a split inclusion ba is an epimorphism, then a = b and ba = 1b.

3) If a retraction ǫ : b→ a is a monomorphism, then a = b and ǫ = 1b.

Proof. 1) If inclusions j = ca and j′ = c
b
are equivalent as monomorphisms,

then by Equation (1.45d), there exist p : a → b and q : b → a such that j = pj′

and j′ = qj. By axion (c), p = ba and q = a
b
. Thus a ⊆ b and b ⊆ a. Hence a = b

since the preorder of subobjects is strict. Therefore p = q = 1a and so j = j′.
2) Let j = ba be a split inclusion with jǫ = 1a. Then we have j(ǫ j) =

jǫ j = j = j1b. If j is an epimorphism, we have ǫ j = 1b and so, j : a → b is
an isomorphism. Since j = j1b, it follows that inclusions j and 1b = b

b
are

equivalent as monomorphisms and so, a = b and j = 1b by 1).
3) Assume that the retraction ǫ : b → a is a nonomorphism. If j = ba, then

(ǫ j)ǫ = ǫ1a = ǫ = 1bǫ and so ǫ j = 1b. Hence ǫ is an isomorphism and j is its
inverse. In particular, j : a→ b is an isomorphism and by 2), a = b and j = 1b.
Since ǫ is the inverse of j, we have ǫ = 1b.

Let C and D be categories with subobjects. A functor F : C → D is said
to be inclusion preserving if vF = F|vC is a functor of the preorder vC to vD;
that is, for all c, d ∈ vC with c ⊆ d, we have F(c) ⊆ F(d). F : C → D is an
isomorphism of categories with subobjects if F is a category isomorphism such that
vF : vC → vD is an isomorphism of preorders. It is clear that, in this case the
assignment

v : C 7→ vC, and F 7→ vF

is a functor of the category of small categories with subobjects to the category
of small preorders.
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category!subcategory with subobject
functor!subfunctor

Note that, if D is a subcategory of a category C with subobjects, then the
class of all inclusions of C that belongs to D is a choice of subobjects for D
and the inclusion functor D ⊆ C preserves subobject relation. However, for
d, d′ ∈ vD, it is possible that d ⊆ d′ in C, but d

′

d
< D. We shall say that D is a

subcategory with subobject if for d, d′ ∈ vD,

d ⊆ d′ in D ⇐⇒ d ⊆ d′ in C. (1.51)

This is equivalent to requiring that vD ⊆ vC is a full embedding of preorders
(that is, fully-faithful and injective on vertices).

A subobject relation on a category D may be extended to the functor
category [−,D] of all D-valued small functors (see § Subsection 1.2.2). If
F,G ∈ v[−,D], we say F is a subfunctor of G, written F ⊆ G, if

dom F = domG, F(c) ⊆ G(c) for all c ∈ vdomF and the map GF : c 7→ G(c)
F(c)

(1.52)
of vdomF to D is a natural transformation from F to G. It is easy to verify
from the definition that

P = { GF : F,G ∈ v[−,D], F ⊆ G}

is a strict preorder. Also, for each F ⊆ G, G
F
is a monomorphism in [−,D]. For

let s, t : H → F are transformations in [−,D] such that s ◦ j = t ◦ jwhere j = G
F
.

Suppose that
vs = α : A→ C and vt = β : A→ C.

Since v j = 1C, we have

α = α ◦ 1C = v(s ◦ j) = v(t ◦ j) = β

and for any a ∈ vA,

(s ◦ j)a = sa 
G(α(a))
F(α(a)) = ta 

G(α(a))
F(α(a)) .

Since G(α(a))
F(α(a)) is a monomorphism inD, sa = ta for all a ∈ vA. Hence s = twhich

implies that j = G
F
is a monomorphism in [−,D].

We have thus shown that P satisfies axioms (a) and (b) of definition Def-
inition 1.5. To verify (c), let f : F ⊆ G and 1 : F ⊆ H. If h : G

n
→ H is a

transformation such that f ◦ h = 1, then domG = domF = domH = C (say).
Hence h : G

n
→ H is a natural transformation and

( f ◦ h)c = fchc = 1c.

Since fc = 
G(c)
F(c) and 1c = 

Hc

F(c) are inclusions inD, by axion (c) of Definition 1.5,
hc is an inclusion in D for all c ∈ vC. Hence h : G ⊆ H. We have thus proved
the following:
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morphism!factorization
morphism!canonical factorization
category!– with factorization
category!– with unique factorization

Proposition 1.11. Let D be a category with subobjects and let [−,D] denote the
category of small functors. Define the relation ⊆ on v[−,D] by Equation (1.52). Then

P = { GF : F,G ∈ v[−,D], F ⊆ G}

is a choice of subobjects for [−,D]. Moreover, if C is any small category, then
the category [C,D] of all D-valued functors on C is a subcategory of [−,D] with
subobjects.

Example 1.10: In categories Set, Grp, V
tk, etc., the relation on objects induced by the
usual set-inclusion is a subobject relation in the sense of the definition above. Notice
that in these categories, all monomorphisms are embeddings.

Example 1.11: LetCbe a concrete category so that there is a faithful functorU : C → Set
which is injective on objects (see § Subsection 1.3.1). Let

P = { f ∈ C(c, d) : U( f ) = U(c) ⊆ U(d)}. (•)

It is easy to verify that P is a choice of subobjects in C according to Definition 1.5 and
with this subobject relation, U : C → Set becomes an inclusion preserving functor. In
this case, a morphism f ∈ C is a monomorphism if U( f ) is injective; but the converse
may not hold. In view of Proposition 1.9, this example also shows that every small
category has at least one choice of subobjects.

Example 1.12: The category Top of all topological spaces and continuous maps is
clearly a concrete category and so, the construction in the last example gives a choice of
subobjects inTop consisting of all continuous inclusions. So, with this choice, subobjects
of topological spaces will include spaces other than those with relative topology. For
this category, the natural choice of subobjects is the collection of all inclusions that are
homeomorphisms onto the range. This also shows that a category can have more than
one choice of subobjects.

Example 1.13: Let F : Set→ Grp be the functor given by the construction of freegroups.
It is clear thatF is naturally inclusionpreserving. Similarlymanyother familiar functors
are inclusion preserving. On the other hand, functors that arises in the construction
of fundamental groups or homology groups of topological spaces are not inclusion
preserving.

Categories with factorization A morphism f in a category C with subobjects
is said to have factorization if f can be expressed as f = pm where p is an
epimorphism and m is an embedding. The factorization of a morphism need
not be unique. For if f = pm is a factorization of f , then m is an embedding
and so, f ∼ j for some inclusion j. Then by Equation 1.45d m = uj where u

is an isomorphism in C. But then p′ = pu is an epimorphism and f = p′ j is a
factorization of f . This also shows that every morphism f with factorization
has at least one factorization of the form f = qj where q is epimorphism and j

is an inclusion. Such factorizations are called canonical factorizations.
We shall say that C is a category with factorization if C has subobjects and

if every morphism in C has factorization; the category has unique factoriza-

tion property if every morphism in C has unique canonical factorization. If C



1.3. small categories 35

functor!factorization preserving
morphism!image of –

andD are categories with factorization, a functor F : C → D is factorization pre-
serving if whenever f = xj is a canonical factorization of f in C, then F(x)F( j) is
a canonical of F( f ) inD. Clearly if F is factorization preserving then F preserve
inclusions and epimorphisms. The uniquiness of factorization is an important
property. A sufficient condition for its existance is given in the following.

Proposition 1.12. Let C be a category with factorization property such that every
inclusion in C splits. Then every morphism in C has unique canonical factorization.

Proof. Let f = xj = yj′ be two canonical factorizations of f ∈ C. Since inclu-
sions split, there exist u, v ∈ C with ju = 1a and j′v = 1b where a = dom j and
b = dom j′. Then

yj′uj = xjuj = xj = yj′

and since y is an epimorphism, we have ( j′u) j = j′. Similarly, ( jv) j′ = j. Hence
j and j′ are equivalent monomorphisms. Hence j = j′. Since xj = yj and j is a
monomorphism, x = y.

Example 1.14: If f : X→ Y is a mapping of sets and if f (X) = Im f then f (X) ⊆ Y and
we can write f = f ◦ Y

f (X). Here f ◦ denote the mapping of X onto f (X) determined by f .
Since surjective mappings are epimorphisms in Set, this gives a canonical factorization
of f in Setwhich is clearly unique. Thus Set is a category with unique factorization. In
a similar way it can be shown that categories such as Grp, V
tk, etc., are also categories
with unique factorization.

Example 1.15: Since surjective continuous mappings are epimorphisms in Top, it fol-
lows as in the last example that the category has factorization property. However, if
Y is dense in X, h = X

Y
is an epimorphism in Top and h = 1Y XY = X

Y
1X. Then both

1Y XY and X
Y
1X are canonical factorizations of h in Top. Thus Top does not have unique

factorization property.

Images Here we introduce the concept of the image of a morphism in a cate-
gory with factorization.

Proposition 1.13. LetC be a category with factorization. Suppose that the morphism
f ∈ C has the following property:

(Im) f has a canonical factorization f = xj such that for any canonical factorization
f = yj′ of f , there is an inclusion j′′ with y = xj′′.

Then the factorization f = xj is unique.

Proof. Suppose that f ∈ C satisfies the given condition and that the factoriza-
tion f = xj has the property stated above. Hence if f = yj′ is any canonical
factorization, then y = xj′′ where j′′ : a = cod x ⊆ cod y = b. Therefore if
f = yj′ also has this property, then we have a = b and so, j′′ ∈ C(a). Since the
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f ◦:epimorphic component of f
j f :inclusion of f
category!with images

inclusions form a preorder and 1a ∈ C(a), we must have j′′ = 1a. Therefore
y = x so that xj = xj′. Since x is an epimorphism, we have j = j′.

A morphism f in a category with factorization is said to have image if f

satisfies the condition (Im) of the Proposition above. In this case the unique
canonical factorization f = xj with the property stated in (Im) is denoted by
f = f ◦ j f where f ◦ is called the epimorphic component of f and j f is called the
inclusion of f . The unique vertex

Im f = cod f ◦ = dom j f (1.53)

is called the image of f .

Example 1.16: Since categories Set, Grp, etc., has unique factorization, morphisms in
these categories have images by the observation above. Though the category Top does
not have unique factorization, it can be seen that everymorphism inTop also has image.

If f ∈ C has image, we define the direct image of a subobject a ⊆ dom f by:

f (a) = Im( f |a) where f |a = 
Im f
a f . (1.54)

Here f |a = 
Im f
a f is called the restriction of f to a. Clearly, f |a is a morphism

with domain a and codomain cod f .
We say that C is a category with images if every morphism in C has image

in the sense defined above. Note that if C has unique factorization, then C has
images. Also, by Proposition 1.12 C has images if every inclusion in C splits.

Categories with unique factorization We have noted above that a category C
with unique factorization has images. Hence for any f ∈ C and a ⊆ dom f , the
direct image f (a) is defined.

Proposition 1.14. Let C be a category with unique factorization. Then we have

( f1)◦ = f ◦(1| Im f )◦ and Im f1 = 1(Im f ).

for all f , 1 ∈ C for which f1 exists.

Proof. Since f1 exists, cod f = dom 1 and so Im f ⊆ dom 1. Let h = j f 1 =

1| Im f . Then
( f1)◦ j f1 = f1 = f ◦ j f 1 = f ◦h = f ◦h◦ jh.

Now f ◦h◦ is an epimorphism and so the f ◦h◦ jh is a canonical factorization of
f1. Since C has unique factorization, we have ( f1)◦ = f ◦h◦. This proves the
first equality. Further, j f1 = jh and so,

Im f1 = dom j f1 = dom jh = Im h = 1(Im f )

by Equation (1.54).
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We have seen that every small categoryC is isomorphic to a subcategory ofSet (see Proposition 1.9). However, if C has subobjects, this isomorphism may
not preserve subobjects. We now use the Proposition above to obtain an inclu-
sion preserving isomorphism of a small category C with unique factorization
onto a subcategory of Set.
Theorem 1.15. Let C be a small category with unique factorization. Then there exists
a faithful, inclusion preserving functor U : C → Setwhich is injective on objects with
the following properties:

(a) c ⊆ d in vC ⇐⇒ U(c) ⊆ U(d) in Set.
(b) f ∈ C is monomorphism in C if and only if U( f ) is injective.

(c) f ∈ C is split epimorphism in C if and only if U( f ) is surjective.

Hence for f ∈ C, f ◦ is a split epimorphism if and only if

U(Im f ) = ImU( f ). In particular, U( f ) = U( f ◦)U( j f )

is the canonical factorization of U( f ) in Set. Consequently, every epimorphism in C
splits, if and only if U : C → Set is factorization preserving.

Proof. Define U : C → Set as follows: for c ∈ vC, let

U(c) = { f ◦ : f ∈ C, cod f = c}; (1.55)

and for f : c→ d ∈ C, let

U( f ) : 1◦ 7→ (1 f )◦, 1◦ ∈ U(c). (1.56)

We first observe that, since C is small, U(c) is a set for all c ∈ vC and that the
maps c→ U(c) and f → U( f )satisfies (a). If c ⊆ d and f ◦ ∈ U(c), then cod f = c

and so 1 ∈ U(d) if 1 = f dc . Then

1 = f ◦ j f 
d
c = f ◦ dIm f .

Since C has unique factorization, we have f ◦ = 1◦ and so f ◦ ∈ U(d). Thus
U(c) ⊆ U(d). By the definition of U( dc ), we have

U( dc ) : f
o ∈ U(c) 7→ ( f dc )

o ∈ U(d).

Since f dc = f o j f 
d
c is a canonical factorization of f dc , we have ( f dc )

o = f o.
Therefore

U( dc )( f
o) = f o = U(d)

U(c) ( f
o) for all f o ∈ U(c).
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Conversely, if U(c) ⊆ U(d), then 1c ∈ U(d). Hence 1c = 1◦ for some 1 with
cod 1 = d. Then Im 1 = c and so, we have c ⊆ d. Since vC is a strict preorder,
this also shows that the map c 7→ U(c) is injective.

To show that U is a functor, let f : c → d, 1 : d → e ∈ C and let h◦ ∈ U(c).
Then by Equation (1.56),

(h◦)U( f1) = (h f1)◦ = h◦( jh f1)◦ by Proposition 1.14,

= h◦( f | Im h)◦
(

1| f (Im h)
)◦ by Equation (1.54).

Similarly, using Proposition 1.14 and Equation (1.54), we get

(h◦)U( f )U(1) =
(

(h◦( f | Im h)◦
)

U(1)

= h◦( f | Im h)◦
(

1| f (Im h)
)◦ .

Hence U( f1) = U( f )U(1). If c ⊆ d and 1◦ ∈ U(c), then by Proposition 1.14,
(1 dc )

◦ = 1◦( dIm 1)
◦ = 1◦ by the unique factorization property of C. Hence, by

Equation (1.54), U( dc ) = U(d)
U(c) . In particular, U(1c) = 1U(c) and so, U is an

inclusion preserving functor.
Let f , 1 ∈ C(c, d). If U( f ) = U(1), then by Proposition 1.14, f ◦ = (1c f )◦ =

(1c1)◦ = 1◦. Hence by the definition of image, Im f = Im 1 and so, f = 1. Thus
U is faithful.

To prove (b), assume that f : c → d is a monomorphism. If (h◦)U( f ) =
(h f )◦ = (1◦)U( f ) = (1 f )◦, then, as above h f = 1 f and so h = 1which imply that
U( f ) is injective. Conversely, ifU( f ) is injective and if h f = 1 f for h, 1 ∈ C(a, c),
then (h◦)U( f ) = (h f )◦ = (1 f )◦ = (1◦)U( f ) and since U( f ) is one-to-one, h◦ = 1◦

which implies h = 1. Therefore f is a monomorphism. This proves (b).
If f : c→ d is a split epimorphism then there is 1 : d→ c with 1 f = 1d. Let

h◦ ∈ U(d). If k = h1, then cod k = cod 1 = c and (k◦)U( f ) = (k f )◦ = (h1 f )◦ = h◦.
Hence U( f ) is surjective.

Conversely, ifU( f ) is surjective, then there is 1◦ ∈ U(c) such that (1◦)U( f ) =
1d. Then we have (1 f )◦ = 1d and so Im(1 f ) = d = cod 1 f . Hence 1 f = 1d; thus
f is a split epimorphism and (c) follows.

Let f : c→ d be such that f ◦ is a split epimorphism. ThenU( f ) = U( f ◦ j f ) =
U( f ◦)U( j f ). By the above,U( f ◦) is surjective and hence an epimorphism in Set.
SinceU is inclusion preserving,U( j f ) = U( dIm f

) = U(d)
U(Im f ). HenceU( f ◦)U( j f ) is

the canonical factorization of U( f ) in Set. Therefore
U( f ◦) = U( f )◦, U(d)

U(Im f ) = 
U(d)
ImU( f ) and so, U(Im f ) = ImU( f ).

Let f : c→ d satisfy U(Im f ) = ImU( f ). If a = Im f , we have

U( f ) = U( f o da) = U( f o)U( da) = U( f o) U(d)
Im f
= U( f )o U(d)

Im f
.
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This implies that U( f o) = U( f )o and so, U( f o) is surjective. Hence by (c), f o is
a split epimorphism. The last statement now follows from this.

Remark 1.5: We have noted that every conctete category C is a category of
sets so that objects in C can be identified as sets and morphisms as maps. C
is said to be a category of sets with subobjects if, in addition, U : C → Set is a
v-isomorphism (so that U satisfies condition (a) of the theorem above). The
theorem above shows that every small category C with unique factorization
is isomorphic to and hence can be identified with a category of sets with
subobjects. To an extent, such identification enables us to replace categorical
arguments in C by elementary setheoretic arguments. However, the theorem
above also shows the limitations in this: the factorization of amorphism f inC
may be different from its factorization in Set. When epimorphisms in C splits,
the factorization in C coincides with those in Set; in this case one can more-
or-less replace completely replace categorical arguments in C by setheoretic
arguments.

1.4 groupoids

In this section we shall briefly discuss a class of small categories, called
groupoids, which we need in the sequel. Groupoids occur naturally in several
branches of mathematics. Here, in § Subsection 1.4.1 we content ourself by
giving necessary definitions, a few elementary properties and some examples.
We refer the reader to Higgins [1971] for a more detailed discussion. In § Sub-
section 1.4.2 we discuss a class of groupoid, called ordered groupoids endowed
with an additional structure in the form of a partial order. Aswe shall see later,
ordered groupoids are important structural components of the class of inverse
semigroups and regular semigroups. Finally, in § Subsection 1.4.3, we discuss the
relation between ordered groupoids and categories with subobjects.1.4.1 De�nition and examples
A groupoid is a small category in which every morphism is an isomorphism.
This means that when G is a groupoid and a, b ∈ vG, then for any u ∈ G(a, b),
there exists u−1 ∈ G(b, a) such that uu−1 = eu = 1a and u−1u = fu = 1b (see § Sub-
section 1.2.1). Recall that, by the convention introduced in § Subsection 1.2.1,
since groupoids are small categories, we regard them as partial algebras and
identify vertices with identities.

If G is a groupoid, then it is easy to see that for all a ∈ vG,Ha = G(a, a) is a
group under the composition in G. It is easy to see that maximal subgroups of
the groupoid G are precisely the groups Ha for a ∈ vG.

A groupoid G is said to be connected if for all a, b ∈ vG, G(a, b) , ∅. Given
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groupoid!component of – any groupoid G the relation

a ∼ b ⇐⇒ G(a, b) , ∅ ∀ a, b ∈ X, (1.57)

where X = vG, is an equivalence relation on X. For a ∈ X, let Xa denote the
∼-class of X containing a. If

Ga =
⋃

b,c∈Xa

G(b.c) (1.58)

then it can be seen that Ga is the maximal connected subgroupoid of G with
vGa = Xa. The subgroupoid Ga is called a component of G. If a, b ∈ X, then it is
easy to see that either

Ga = Gb or Ga ∩ Gb = ∅.

Thus we have:

Proposition 1.16. Let G be a groupoid with vG = X. Then Equation (1.57) defines
an equivalence relation ∼ on X and Ga defined by Equation (1.58) is the component
(maximal connected subgroupoid) whose vertex set is the ∼-class containing a. Hence
G is the disjoint union of its components.

We now give some examples of groupoids some of which will be of use
later.

Example 1.17: Every group G is a groupoid with exactly one vertex.

Example 1.18: Let G be a group and X be a set. Let

G = {(x, 1, y) : x, y ∈ X, 1 ∈ G} = X × G × X.

Define composition in G by:

(x, 1, y)(u, h, v) =















(x, 1h, v) if y = u;

undefined if y , u.

G, with this composition, is a connected groupoid such that we can identify vG with
X. In the following we will denote by X × G × X, the connected groupoid with vertex
set X and in which morphisms and composition is defined as above.

Example 1.19: Let H be a subgroup of a group G and let

G(G/H) = {xHy : x, y ∈ G}.

Define composition in G(G/H) as follows:

(xHy)(uHv) =















xHyuv if (yu)H = H(yu);

undefined if (yu)H , H(yu).

With this composition G(G/H) is a connected groupoid whose vertex set (set of identi-
ties) is the set of all conjugates of H in G.
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Example 1.20: Let σ be an equivalence relation on a set X. For (x, y), (u, v) ∈ σ, define
a partial composition in σ by:

(x, y)(u, v) =















(x, v) if y = u;

undefined if y , u.

With this composition, σ becomes a groupoid whose vertex set can be identified with
X. Note that in the groupoid σ, the hom-set σ(x, y) contain utmost one element; in
particular, maximal subgroups of σ are trivial. Conversely, any groupoid G with the
property that any hom-set of G contain atmost one element can be represented as a
groupoid determined by an equivalence relation on vG as above (see Higgins [1971]).
A groupoigd with this property is called a simplecial groupoid . We shall use the same
notation for the equivalence relation and the correspoinding simplecial groupoid.

Example 1.21: Let X be a set and let IX be the set of all bijections between subsets of
X. For α, β ∈ IX, let

α · β =















αβ the usual composition, if codα = dom β;

undefined if cod α , domβ.
(1.59)

With this product, IX is a groupoid. We shall refer to the composition defined above as
groupoid composition

Example 1.22: The example above can be generalized further by replacing X by any
specified mathematical system and IX by the class of all isomorphisms of suitable
subsystems provided that these isomorphisms are closed with respect to groupoid
composition (see Equation (1.59)). Thus if M is a (finite dimensional) manifold and if
M denote the set of all homeomorphisms co-ordinate neighborhoods (of suitable type
such as differentiable, smooth, analytic, etc), thenM is a groupoidwhen composition is
defined as in the last example. Similarly, ifAdenote the set of all analytic isomorphisms
of regions in the complex plane, thenA is a groupoid. Note that, by Riemann mapping
theorem, the set of all analytic isomorphisms of simply connected regions different
from the whole complex plane C, is a component inA.

Example 1.23: An important classical example of groupoid is the following: Let [α]
denote the path-homotopy class of a path α in the topological space X. For paths α, β
in X, let α · β denote the usual product of paths in X which is defined if α(1) = β(0).
Consider the set

H(X) = {[α] : α is a path in X}.

Define composition in H(X) by:

[α][β] =















[α · β] if α(1) = β(0);

undefined if α(1) , β(0).

H(X), with this composition, is a groupoid, called the homotopy group of paths in X.
The vertex set of H(X) can be identified with X. The maximal subgroup Hx of H(X) at
x ∈ X is the fundamental group of X based at x. Also the groupoidH(X) is connected
if and only if X is path connected. See Munkers [1984], Spanier [1971] or Singer and
Thorpe [1967] for details and proofs.
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We proceed to show that structure of connected groupoids is quite simple;
all of them are isomorphic to a groupoid constructed as in Example 1.18 above.

Proposition 1.17. Let G be a connected groupoid and let X = vG. Let 1 denote a
fixed element in X and suppose that H = G(1, 1). Then we have the following:

(a) G is equivalent (as categories) to the group H.

(b) G is isomorphic to the groupoid X ×H ×X (see Example 1.18).

In particular, all maximal subgroups (hom-sets G(a, a) for a ∈ X) of G are isomorphic
to H.

Proof. For each a ∈ X, choose ηa ∈ G(a, 1) such that η1 is the identity on the
vertex 1. Since G is connected G(a, 1) , ∅ for all a ∈ X and so it is possible to
choose ηa as above.(a) Define F : G → H by

F(u) = η−1a uηb ∀ u ∈ G(a, b).

Then clearly, F(u) ∈ H for all u ∈ G(a, b). Also, F is the morphism map of a
functor of G to H whose vertex map is the constant map on X with value 1.
Let J : H ⊆ G be the inclusion functor. It is easy to verify that for each a ∈ X, ηa
is universal from a to J and that the map η : a 7→ ηa is a natural isomorphism
of 1G

n
→ FJ. Hence by Theorem 1.6, F is a left adjoint to J and η : 1G

n
→ FJ is

the unit of adjunction. Now JF = 1H and so, the counit of the adjunction is the
identity on JF. It follows that

< F, J, η, 1 >: G
·
⇀ H

is an adjoint equivalence of G to H.(b) Let K : G → X × H × X and K′ : X × H × X → G in the reverse direction
be defined by

vK = 1X = vK′

and for a, b ∈ X,u ∈ G(a, b) and v ∈ H, let

K(u) = (a, F(u), b) and K′(a, v, b) = ηavη−1b .

Then K and K′ are mutually inverse functors from G to X × H × X and back
respectively. Hence K and K′ are isomorphisms.

Clearly, the functor F : G → H is fully faithful and so, its restriction to
maximal subgroups Ha are isomorphisms of Ha onto H.
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The statement (a) above implies that any groupoid is equivalent (as cat-
egories) to a groupoid whose components are all groups (that is, a disjoint
union of groups). Also, by statement (b), every groupoid is isomorphic to a
disjoint union of groupoids of the form X ×H × X.1.4.2 Ordered groupoid
Many groupoids that occur naturally carries additional structures. For exam-
ple, consider the groupoid IX of all partial bijections of the set X (see Example
1.21). Clearly, vIX = P(X), the set of all subsets of X. The inclusion relation is
a natural partial order on P(X). If α ∈ IX and D ⊆ domα, then the restriction
α|D of α to D is an injective map of D into codα. We denote by (α|D)◦, the
unique bijection of D onto (D)α determined by α|D. We can be extended the
partial order on P(X) to a partial order on IX by setting

α ≤ β ⇐⇒ domα ⊆ dom β and α = (β|domα)◦. (1.60)

Thus, the usual restriction of functions induces a partial order on IX. We
formalize this as follows:

Definition 1.6. Let G be a groupoid and ≤ be a partial order on G satisfying
the following:

(OG1) Suppose u ≤ x and v ≤ y in G. If products uv and xy exists in G, then
uv ≤ xy.

(OG2) If u ≤ x, then u−1 ≤ x−1.

(OG3) If x ∈ G and e ≤ ex with e ∈ vG, then there exists a unique e � x ∈ G such
that e � x ≤ x and ee�x = e.

Then G is called an ordered groupoidwith respect to ≤.

The unique element e � x of axiom (3) is called the restriction or domain

restriction of x to e. Often, we shall also use the usual notation x|e to denote
e � x. If u ≤ x, it follows from axioms (1) and (2) that

eu = uu−1 ≤ xx−1 = ex and similarly, fu ≤ fx.

Therefore, in view of the uniqueness in axiom (3), u ≤ x implies u = eu � x. The
relation ≤ is called the restriction (or restriction order) on G.

If G and G′ are ordered groupoids, a functor f : G → G′ is said to be order
preserving if whenever x ≤ y in G, f (x) ≤ f (y) in G′. In the following, unless
otherwise stated explicitly, by a functor of ordered groupoids, we shall mean
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an order preserving functor. The collection of all ordered groupoids forms a
category OGwith morphisms as order preserving functors.

An order preserving functor f : G → H of ordered groupoids is said to be
a v-isomorphism if v f is an order-isomorphism. f is an embedding of ordered
groupoids if f preserves and reflects partial orders; that is,

x ≤ y in G ⇐⇒ f (x) ≤ f (y) inH . (1.61)

The functor f is an isomorphism of ordered groupoids if f is an isomorphism
of groupoids as well as an order isomorphism.

A subgroupoid G′ of an ordered groupoid G is an ordered subgroupoid
if and only if e � x ∈ G′ for all x ∈ G′ and e ∈ vG′ with e ≤ ex. Note that, in
this case, G′ ⊆ G an embedding of ordered groupoids. Note that if f is an
embedding of G toH , then f (G) is an ordered subgroupoid of H and f is an
isomorphism of G onto f (G).

Observe that axioms (1) and (2) above are (left-right) self-dual. We show
below that the dual statement of (3) is equivalent to (3).

Proposition 1.18. Let G be a groupoid and ≤ denote a partial order on G such that
axioms (1) and (2) of Definition 1.6 hold. Then G satisfies axiom (3) if and only if it
satisfies the following:

(3)* For every x ∈ G and f ≤ fx with f ∈ vG, there exists a unique x � f ∈ G such
that x � f ≤ x and fx� f = f .

Proof. Assume that G satisfies axiom (3). Given x ∈ G and f ≤ fx, define

x � f = ( f � x−1)−1. (1.62)

Since f ≤ fx = ex−1 , by axiom (3), f � x−1 ≤ x−1 and so, by axiom (2), x � f =

( f � x−1)−1 ≤ x. Also, fx� f = e f �x−1 = f by axion (3). If y ∈ G also satisfies the
conditions y ≤ x and fy = f then by axiom (2), y−1 ≤ x−1 and ey−1 = fy = f .
Therefore by (3), we must have y−1 = f � x−1 and so y = x � f . This proves the
uniqueness of x � f . Thus x � f satisfies the conditions in (3)*.

Conversely, if (3)* holds, defining

e � x = (x−1 � e)−1. (1.62∗)

we can show, as above, that axiom (3) holds.

For x ∈ G and f ≤ fx, the morphism x � f defined by Equation (1.62) is called
the co-restriction (or range restriction) of x to f .

Example 1.24: By the remarks at the beginning of this section, for any set X, IX is
an ordered groupoid with order relation induced by restriction (see Equation (1.60)).
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Similarly, if X is any partially ordered set, the set of all order isomorphisms of order
ideals (see § Subsection 1.1.2 for definition of order ideals) is an ordered groupoid
with respect to the usual restriction of maps (again defined as in Equation (1.60)). We
denote this by OIX. Note that vOIX is the partially ordered set of all order ideals
under inclusion. Similarly, isomorphisms of pricipal order ideals ofX gives an ordered
subgroupoid T∗(X) of OIX. Since there exists an order-isomorphism of X onto the set
of principal orderideals of X, we may identify X with vT∗(X) and regard T∗(X) as an
ordered groupoid with vT∗(X) = X. Also, the groupoidsM andA of Example 1.22 are
also ordered groupoids under inclusion.

The next proposition lists a few useful properties of ordered groupoids

Proposition 1.19. For an ordered groupoid G, we have the following:

(1) Let x ∈ G, and e, f ∈ vG with e ≤ ex, f ≤ fx. Then f = fe�x if and only if
e = ex� f . When e and f satisfies this, we have e � x = x � f .

(2) Assume that xy exists in G. If e ≤ ex, then

e � (xy) = (e � x)( fe�x � y).

Dually, if f ≤ fy, we have

(xy) � f = (x � ey� f )(y � f )

Proof. (1). Let f = fe�x. Then e(e�x)−1 = f and by axiom (2), (e � x)−1 ≤ x−1. Hence
by the uniqueness in axiom (3), (e � x)−1 = f � x−1 and so, by Equation (1.62),
e � x = x � f . But then e = ee�x = ex� f . The converse can be proved similarly.(2) Suppose that xy exists in G and e ≤ ex. If h = fe�x, then using axioms (1)
and (2), we have

h = (e � x)−1(e � x) ≤ x−1x = fx = ey.

Hence the product z = (e � x)(h � y) exists in G and z ≤ xy by (1). Further,

ez = zz−1 = (e � x)(h � y)(h � y)−1(e � x)−1

= (e � x)h(e � x)−1 = (e � x)(e � x)−1

= ee�x = e.

Therefore, by axiom (3), z = e�xy. The remaining assertion is proveddually.

Next Proposition give a representation of an ordered groupoid (not nec-
essarily faithful) as an ordered subgroupoid of T∗(X) ⊆ OIX for a suitable
partially ordered set X. This will be useful later on.

Proposition 1.20. Let G be an ordered groupoid and V = vG. Then we have:
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(1) V is an order ideal in G.

(2) If x ∈ G, the map a(x) : e 7→ fe�x is an order isomorphism of V(ex) onto V( fx).

(3) The map a : x 7→ a(x) is a v-isomorphism of G onto T∗(V).

Proof. (1) To show that V is an order ideal in G, it is sufficient to show that for
e ∈ V and x ≤ e in G implies that x ∈ V. Since x ≤ e, x−1 ≤ e−1 = e and so,
ex = xx−1 ≤ ee = e by axiom (1). Then x = ex � e = ex by axiom (3).(2) If h ≤ e ≤ ex, then h � x ≤ e � x ≤ x. Hence fh�x ≤ fe�x ≤ fx; that is
ha(x) ≤ ea(x) ≤ fx. Hence a : V(ex) → V( fx) is order preserving. Dually, it can
be seen that the map a′(x) : f 7→ ex� f is an order preserving map of V( fx) into
V(ex). Now

(ea(x))a′(x) = ( fe�x)a′(x) = e

by Proposition 1.19(1). Hence a(x)a′(x) = 1V(ex). Similarly a′(x)a(x) = 1V( fx) and
so a(x) is an order isomorphism.(3) By the above, a(x) ∈ OIV for all x ∈ G. Hence a : x 7→ a(x) is a mapping
of G into OIV. Assume that xy exists in G and e ≤ ex. Then

ea(xy) = fe�xy

= f fe�x�y by Proposition 1.19(2)

= ( fe�x)a(y)

= (ea(x))a(y)

= e
(

a(x)a(y)
)

.

Hence a(xy) = a(x)a(y). If e ∈ V, then it is easy to see that a(e) = 1V(e) and so
a : G → OIV is a functor. If e ≤ ex then for any h ∈ V(e),

ha(e � x) = fh�(e�x) = fh�x = ha(x)

which shows that a(e � x) = (a(x)|V(e))◦. Therefore a is order preserving. Since,
for e, h ∈ V,

a(h) ≤ a(e) ⇐⇒ a(h) = (a(e)|V(h))◦ ⇐⇒ V(h) ⊆ V(e) ⇐⇒ h ≤ e,

va : G → OIV is an embedding. If ẽ ∈ vT∗(V) then, by definition of T∗(V), ẽ
must be an identitymap on some principal idealV(e) of e ∈ V. Clearly, a(e) = ẽ.
Hence va : vG → vT∗(V) is an order isomorphism.

The construction given in the Proposition above represents any ordered
groupoid G as a groupoid of order isomorphisms of principal order ideals
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of vG. Though this representation has important applications, it may not
be faithful. The next theorem shows that any ordered groupoid G can be
embedded (represented faithfully) as an ordered subgroupoid of OIX of a
suitable partially ordered set X. In the construction below, we take X = G and
consider X as a partially ordered set.

Theorem 1.21. Every ordered groupoid is isomorphic to an ordered subgroupoid of
OIX for a suitable partially ordered set X.

Proof. Let G be an ordered groupoid with vG = V. For each e ∈ V let

Λ(e) = {x ∈ G : fx ≤ e} (1)

If x ∈ Λ(e) and y ≤ x, then fy ≤ fx ≤ e and so y ∈ Λ(e). Hence Λ(e) is an order
ideal of G. Also, it is easy to see that

e ≤ f ⇐⇒ Λ(e) ⊆ Λ( f ); (2)

in particular, the mapping e 7→ Λ(e) is injective from V to the partially ordered
set of order ideals of G under inclusion.

Now, for each x ∈ G(e, f ), let

yθ(x) = y( fy � x) for all y ∈ Λ(e). (3)

Since y ∈ Λ(e), fy ≤ e = ex and so fy �x ≤ x. Then fy( fy�x) = f( fy�x) ≤ fx = f . Hence
θ(x) is a well defined map of Λ(e) into Λ( f ). Let z ≤ y ∈ Λ(e). Then fz ≤ fy ≤ e

and so, fz � x ≤ fy � x. Hence by axiom (1),

zθ(x) = z( fz � x) ≤ y( fy � x) = yθ(x)

and so θ(x) : Λ(e) → Λ( f ) is order preserving. Suppose that the product xy
exists in G so that fx = ey = f (say). Also, let e = ex and 1 = fy. Then for any
u ∈ Λ(e),

uθ(x)θ(y) = u( fu � x)(h � y) where h = f fu�x

= u( fu � xy) by Proposition 1.19

= uθ(xy) by Equation (3).

Hence

θ(x)θ(y) = θ(xy).

If e ∈ V, then clearly, θ(e) = 1Λ(e). Hence, for any x ∈ G,

θ(x)θ(x−1) = θ(ex) = 1Λ(ex)
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and similarly θ(x−1)θ(x) = 1Λ( fx). Therefore θ(x) : Λ(ex) → Λ( fx) is a bijection.
It follows that θ : G → OIG is a functor. If x ≤ y, then x = ex � y and so, for any
u ∈ Λ(ex), fu ≤ ex ≤ ey and we have

uθ(x) = u( fu � x) = u( fu � (ex � y))

= u( fu � y) = uθ(y) by axion (3).

Therefore θ(x) = (θ(y)|Λ(ex))◦ which implies that θ(x) ≤ θ(y) in OIG. On the
other hand, if θ(x) = (θ(y)|Λ(ex))◦, then ex ∈ Λ(ex) ⊆ Λ(ey) so that ex ≤ ey and
by the definition of θ (Equation (3)), x = exθ(x) = exθ(y) = ex � y. Thus x ≤ y. It
follows that

θ(x) = (θ(y)|Λ(ex))◦ ⇐⇒ x ≤ y.

Therefore θ : G → OIG is an embedding of ordered groupoids.1.4.3 Categories generated by ordered groupoids
We now discuss the relation between ordered groupoids and categories with
subobjects.

Recall that, if C is a category with subobjects, then vC, which is the same as
the set of identities of C, is a partially ordered set. Here we shall also use the
notations and conventions of § Subsection 1.3.2. Furthermore, it is clear that,
the set of isomorphisms of C is a subgroupoid G(C) of Cwith vC = vG(C).

Definition 1.7. We shall say that a small categoryCwith subobjects is generated
by an ordered groupoid G if

(CG1) there is an injection of groupoids θ : G → C which induces an iso-
morphism of G on to the groupoid of isomorphisms of C. the set of
isomorphisms of C which induces an order isomorphism of partially
ordered set of identities of G onto vC;

(CG2) given a morphism σ in C there exists x ∈ G with fθ(x) ≤ fσ such that σ
has the factorization

σ = θ(x)  fσ
fθ(x)
.

We now characterizes small categories generated by ordered groupoids:

Proposition 1.22. A category C with subobjects is generated by an ordered groupoid
if and only if C has the following property:

(CG*) Every morphism f ∈ C has a factorization f = uj in C where u is an
isomorphism and j is an inclusion.

In particular, if C is generated by an ordered groupoid, then C has images.
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Proof. If C is generated by the ordered groupoid G, then by axioms (CG1) and
(CG2) of Definition 1.7, C satisfies (CG*).

Conversely assume that C satisfies the condition (CG*) and that G denote
the set of all isomorphisms in C. Then G is a subgroupoid of C containing all
identities ofC. Let θ denote the inclusion ofG inC. Now the set of identities of
G (which is the same as those of C) is a partially ordered set and the inclusion
θ is clearly an order isomorphism. Thus axiom (CG1) holds and (CG2) follows
from (CG*). It remains to show that we can define a partial order on G with
respect to which G is an ordered groupoid.

We first observe that for any f ∈ C, the factorization f = uj given by (CG*)
is unique and that f ◦ = u. For if f = qj′ is any canonical factorization of f , we
have j = u−1qj′ and hence by axiom (c) of Definition 1.5, there is an inclusion
j′′ such that u−1q = j′′; that is, q = uj′′. Hence the factorization f = uj satisfies
condition (Im) of Proposition 1.13 which implies that it is unique and that
f ◦ = u ∈ G. For x ∈ G and e ≤ ex, define

e � x = ( exe x)
◦; (1�)

and

u ≤ x ⇐⇒ u = e � x. (2�)

Since the factorization given by axiom (CG*) is unique, the morphism e � x

given by (1�) is uniquely determined by x and e. It follows, again from the
uniqueness of the factorization, that the relation defined by (2�) is a partial
order on G. Clearly, axiom (3) of Definition 1.6 holds. Now if for x, y ∈ G, the
product xy exists in G, then for e ≤ ex,

e � xy 
fxy

fe�xy
= exe xy

= (e � x)  fx
h
y, where h = fe�x

= (e � x)(h � y) 
fy
fh�y

since fx = ey. Hence by the uniqueness of factorization, we have

e � xy = (e � x)( fe�x � y)

from which axiom (1) of Definition 1.6 follows. From

exe x = (e � x)  fx
h

where h = fe�x, we obtain

(e � x)−1 exe = 
fx
h
x−1

= (h � x−1) ex
f
h�x−1

.
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It follows, again by uniqueness of factorization, that

(e � x)−1 = f � x−1

which shows that axiom (2) also holds. Therefore G is an ordered groupoid
with respect to the partial order defined by (2�). This completes the proof.

Suppose thatG is an ordered groupoid. Then the embeddingθ constructed
in Theorem 1.21 embeds the groupoid G into the category of sets. Let C(E)
denote the smallest subcategory of sets containing θ(G) and the set of all
inclusions

P = { 
Λ( f )
Λ(e) : e, f ∈ vG, e ≤ f }

Clearly, P is a preorder isomorphic to vG. Also C(E) is a category with subob-
jects whose preorder of inclusions is P. Since C(E) is generated by θ(G) and P,
any morphism in C(E) is a finite product of the form

jiσ1 . . . jrσr, ji ∈ P, σi ∈ θ(G)

for all i = 1, . . . , r, where all indicated compositions exists in Set; that is cod ji =

domσi for i = 1, . . . r and codσi = dom ji+1 for i = 1, . . . r − 1. Now let j = Λ( f )
Λ(e)

with and σ : Λ( f )→ Λ(1) = θ(x). Then, in Set, we have

jσ = σ|Λ(e) = (σ|Λ(e))◦ Λ(1)
σ(Λ(e)).

As in the proof of the Theorem 1.21, (σ|Λ(e))◦ = θ(x � x). Hence


Λ( f )
Λ(e)θ(x) = θ(e � x) 

Λ(1)
Λ(h) (imfc)

where h = fe�x. It follows inductively that every morphism has a unique
factorization of the form σ jwhere σ = θ(x) for some x ∈ G and j is an inclusion
in P. Thus C(E) satisfies conditions (CG1) and (CG2) above and hence C(E) is
generated by G.

Theorem 1.23. Let G be an ordered groupoid. Then G generates a category C(E)
which is unique up to isomorphism. Further, if φ : G → H is a morphism of ordered
groupoids, there is a unique inclusion preserving functor C(φ) : C(E)→ C(H). Every
inclusion preserving functor of C(E) to C(H) arises in this way.

Proof. The discussion preceding the statement of the theorem shows that ev-
ery ordered groupoid generates a category C(E). Let C be another category
generated by G. Let

ψ = θ−1θ′

where θ and θ′ are embeddings of G in C(E) and C respectively. By axiom
(CG1) of Definition 1.7, ψ also induces an order isomorphism of the preorder
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of inclusions of C(E) to C. In view of axiom (CG2), ψ has a unique extension
to an isomorphism of C(E) to C, defined by

ψ( j1σ1 . . . jkσk) = ψ( j1)ψ(σ1) . . . ψ( jk)ψ(σk). (⋆)

Thus C(E) is unique up to isomorphism.
Let φ : G → H be a morphism of ordered groupoids. The embeddings

θ : G → C(E) and θ′ : H → C(H) are isomorphisms of G onto the ordered
groupoid θ(G) of isomorphisms of C(E) (see proof of Proposition 1.22) andH
onto θ′(H ) ⊆ C(H) respectively. Then

φ∗ = θ−1 ◦ φ ◦ θ′ : θ(G)→ θ′(H )

is a morphism of ordered groupoids and so φ∗ is an inclusion preserving
functor of θ(G) to θ′(H ). Then as in (⋆), we can define a unique extension
of φ∗ to an inclusion preserving functor C(φ) : C(E) → C(H). Conversely if
F : C(E)→ C(H) is an inclusion preserving functor, then F|θ(G) is a morphism
of ordered groupoids and so

φ = θ ◦ (F|θ(G)) ◦ (θ′)−1

is a morphism of ordered groupoids G toH . It follows from axiom (CG2) that
C(φ) = F.

Remark 1.6: The construction of the theorem above can be routinely extended
to a category equivalence C of the category of ordered groupoid with the
category of small categories satisfying conditions of Proposition 1.22. This
means that in any discussion, we can always replace ordered groupoids and
morphisms of ordered groupoids by categories generated by those groupoids
and inclusion preserving functors respectively.





N: natural numbers
Q: rational numbers
R: real numbers
C: complex numbers
N∗, Q∗, R∗, C∗: set of non-zero
numbers

Xn: Cartesian product of n copies of
X

n-airy operation
null-airy operation
unary operation
binary operation
universal algebras
binary operation!associative –

chapter2

Semigroups

In this chapter we introduce some of the basic concepts of semigroup theory.
The aim of this discussion is limited to setting up notations and to presenting
those results of semigroup theory needed in the sequel. For details of topics
and results covered here, we refer the reader to the standard books on semi-
group theory such as Clifford and Preston [1961], Howie [1976], Lallement
[1979], etc.

2.1 elementary definitions

In this section we give basic definitions of semigroups, homomorphisms, etc.,
and provide a list of standard examples.

Notation: In this book, we use the symbol N for natural numbers {0, 1, 2, . . .},
Q for rational numbers, R for real numbers and C for complex numbers. For
X = N, Q, R or C, X∗ denote the set of non-zero numbers in X.2.1.1 Monoids and semigroups
LetX be a set. For n ∈ N, Xn denotes Cartesian product of n copies ofX if n ≥ 1
and a fixed singleton set ∗ if n = 0. A function ⊙ : Xn → X is called an n-airy

operation on X. For n = 0, this is a mapping from ∗ to X and hence represent
a choice of an element in X; it is called a null-airy operation. For n = 1, ⊙ is a
mapping of X toX and is called a unary operation. For n = 2, ⊙ is called a binary
operation onX. In This bookwe aremainly interested in binary operations. For
a more general discussion of operations and the algebraic structures (called
universal algebras) determined by them we refer the reader to Cohn [1965].

Thus a binary operation on X is a mapping · : X × X→ X; the value of the
function · at (x, y) ∈ X × X is usually denoted by x · y. The binary operation ·
is associative if

(x · y) · z = x · (y · z) ∀ x, y, z ∈ X;

53
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semigroup
·,+, ∗, ◦: symbols for binary
operations

binary operation!commutative –
semigroup!subsemigroup
semigroup!extension
dual
dual!left-right –
Sop: Left-right dual of S
Top: dual of statement T
duality
self-dual
identity!left –

The binary operation · is commutative if

x · y = y · x ∀ x, y ∈ X.

A semigroup is a pair (S, ·) consisting of a set S and an associative binary
operation · on S. The binary operation · will be called the “product” of the
semigroup. Other symbols such as +, ∗, ◦ etc., may also be used to represent
product in a semigroup. However, often we shall not use any particular
symbol to represent the product in a semigroup if it does not lead to any
ambiguity. In this case, the product of x, y ∈ S is simply indicated as xy.
Again, for convenience, the set S itselfwill be used todenote the corresponding
semigroup. A semigroup S is commutative if the product in S is commutative.

A subset T of a semigroup S is a subsemigroup of S if T is a semigroup with
respect to the restriction of the binary operation of S to T; equivalently, if the
subset T has the property that

T2 = {xy : x, y ∈ T} ⊆ T

where xy denote the product of x and y in S. If T is a subsemigroup of S, then
S is called an extension of T.

Left-right duality: If S is any semigroup, we can form the semigroup, denoted
by Sop, as follows: the set underlying Sop is the same as the set underlying S

and the binary operation of Sop (denoted by ◦ here) is defined by

x ◦ y = yx ∀ x, y ∈ S. (2.1)

It is clear that the binary operation ◦, called the left-right dual of the binary op-
eration of S, is associative and hence Sop is a semigroup. We call the semigroup
Sop also as the left-right dual of S. If T any statement about a semigroup, then
we denote by Top the statement obtained by replacing every occurrence of
the binary operation in T by its left-right dual. The statement Top is called
the left-right dual of T. If T is true for S, it is clear that Top must be true for
Sop. Consequently, if T is a statement which is true for arbitrary semigroups,
then Top must also be true for arbitrary semigroups. The relation between
statements T and Top is called the left-right duality in semigroups. A statement
T is left-right self-dual if T is the same as Top. Note that statements about
commutative semigroups are always left-right self-dual.

Identities and zeros: If S is a semigroup and A ⊆ S, an element x ∈ S is a left

identity of A if
xa = a ∀ a ∈ A.
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identity!right –
identity
monoid
monoid!sub–
S1: monoid obtained by adjoining 1
to S

zero
zero!left, right –

An element x ∈ S is a right identity of A in S if it is a left identity of A in
Sop. If x is both a left as well as a right identity of A, then it is called a [two-
sided] identity of A. The element x is a left [right, two-sided] identity of S
if the equation above and its left-right dual holds with A = S. A subset of
semigroup may have more than one left [right] identities. However, while a
proper subset A ⊆ S may have more than one identity in S, identity of S, if it
exists, is unique. The unique identity of S, if it exists, will usually be denoted
by 1.

Given any semigroup S we can always adjoin a new left [right] identity as
follows: Let T = S ∪ {e} where e does not represent an element of S. Extend
the multiplication in S to T by setting ex = x [xe = x] for all x ∈ S and ee = e.
Clearly, this makes T a semigroup and e, a left [right] identity of T having S

as a subsemigroup. Note that this construction works even if S already have
left [right] identities. However, the old left [right] identities of Swill no longer
left [right] identities in T. Similarly, a new identity can be adjoined to S by
extending the multiplication in S to T by

ex = x = xe ∀ x ∈ S and ee = e. (2.2)

Again, as before, S is a subsemigroup of T and if S has identity, it will cease to
be identity in T.

A semigroup S with identity is called a monoid. A submonoid M′ of a
monoidM is a subsemigroup such that the identity ofM belongs toM′ (which
implies that M and M′ have the same identity). Note that, it is possible that
a subsemigroup S′ of a monoid M may itself be a monoid with out being
a submonoid of M. The remarks above implies that any semigroup can be
extended to a monoid by adjoining a new identity to S. Given any semigroup
S, we denote by S1 the monoid defined as follows:

S1 =















S if S is a monoid,

T if S has no identity
(2.3)

where T is the monoid obtained by adjoining an identity 1 to S.
An element z in a semigroup S is called a [respectively left, right, two-sided]

zero of a subset A ⊆ S if za = z [az = z, az = z = za] for all a ∈ A. When A = S,
we say that z is a [respectively left, right, two-sided] zero of S. Left and right
zeros of S need not be unique. But a two-sided zero (or just zero for short) of S,
when it exists, is unique and will be denoted by 0. As in the case of identities
it is possible to adjoin a new left, right or two-sided zero to S. Thus if 0 does
not represent an element of S, then T = S∪ {0} becomes a semigroup with zero
0 having S as a subsemigroup if we extend the multiplication in S to T by:

0x = 0 = x0 ∀ x ∈ S and 00 = 0.
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S0: semigroup obtained by
adjoining 0

idempotent
E(S): the biordered set of S
ideal!left –
ideal!right –
ideal
ideal!proper –
IS: lattice of ideals
LIS: lattice of left ideals
RIS: lattice of right ideals
ideal!maximal –
ideal!minimal –
ideal!0-minimal –

Again, as in Equation (2.2), we define S0 by

S0 =















S if S has zero,
T if S has no zero

(2.4)

where T is the semigroup obtained by adjoining a zero 0 to S. Note that an
element e [z] in a semigroup S is the identity [zero] of S if and only if every
element of S is a zero [identity] of the set {e} [{z}]. Also given a semigroup S,
for brevity, we shall often write S = S0 to mean that the semigroup S has zero
0.

An element e in a semigroup is called an idempotent if ee = e2 = e. Left
identities, right identities, identity, left zero, right zero and zero of a semigroup
S are all idempotents in S. Also if e is an idempotent, then the set of elements
of S for which e is a left identity [respectively right identity, identity, left
zero, right zero or zero] is non-empty (since each of this set contain e). In the
following, we shall denote the set of all idempotents of S by E(S).

Ideals A subset I of a semigroup S is called a left ideal [right ideal] if for all x ∈ I
and a ∈ S, ax ∈ I [xa ∈ I]. I is said to be a two-sided ideal (or simply an ideal) if I is
both a left as well as a right ideal. Clearly S is an ideal. An ideal respectively,
left or right ideal is said to be proper if it is different from S (so that it is a proper
subset of S). If S has 0, then {0} is clearly an ideal of S. In the following, if no
confusion is likely, we shall denote this ideal also by 0. It is easy to see that
the set of all ideals [respectively left ideals, right ideals] is a complete lattice
under union and intersection; consequently, these are distributive lattices. We
shall denote these lattices by IS, (or I if S is clear from the context) LIS (or
LI) and RIS (or RI) respectively. Note that the empty subset ∅ of S is clearly
an ideal in S and is the smallest ideal in S. We will follow that convention that
0 of IS (respectively llat[S] and RIS) is ∅ if S has no 0 and 0 = 0 if S has 0.
Thus in a semigroup with 0, an ideal is always non-empty. An ideal I is said
to be maximal if I is maximal in the partially ordered set of all proper ideals
and it is minimal if it is minimal in the partially ordered set of all non-empty
ideals. If S has 0, then an ideal I is said to be 0-minimal if I is minimal in the
partially ordered set of all non-zero ideals. Maximal, minimal and 0-minimal
left or right ideals are defined in the obvious way.

If {Iα : α ∈ Λ} is any set of left, right or two-sided ideals, then ∩α∈ΛIα is an
ideal of the same type. Hence, given any subset A ⊆ S, the set of ideal that
containA is not empty since S itself is a member of this set. Hence intersection
L(A) of all left ideals of S containing A is the smallest left ideal of S containing
A; L(A) is called the left ideal generated by A. Similarly the intersection R(A)
[J(A)] of all right [two-sided] ideals of S containing A is the right [two-sided]



2.1. elementary definitions 57

ideal!principal left –
JS, ΛS, IS: partially ordered set of
principal ideals

semigroup!simple –
semigroup!0-simple –
homomorphism
isomorphism
f ◦: homomorphism onto the image
of f

embedding

ideal generated by A. Given subsets A and B of a semigroup S, we use the
notation AB = {ab : a ∈ A, b ∈ B}; AB is called the set-product (or, simply, the
product) of A and B in S. It is easy to show, using the notation introduced in
Equation (2.3) that

L(A) = SA ∪A = S1A; (2.5)

R(A) = A ∪ SA = AS1; (2.6)

J(A) = S1AS1. (2.7)

WhenA = {a}, as usual, we write L(a) for L({a}); L(a) = S1a is called the principal
left ideal generated by a. Similarly, R(a) = aS1 denote the principal right ideal
and J(a) = S1aS1 denote the principal ideal generated by a. The set JS [ΛS, IS]
of all principal ideals, [principal left ideals, principal right ideals] is clearly a
partially ordered subset of I [respectively LI, RI]. Again the suffix S will be
omitted if the semigroup S is clear from the context.

A semigroup S is said to be simple if S has no proper ideal; it is said to
be 0-simple if S has 0 and 0 is the only proper ideal in S. Obviously similar
definitions can be given for semigroups that are left [right] simple, left [right]
0-simple, etc.2.1.2 Homomorphisms
Let S and T be two semigroups. A mapping f : S → T is called a homomor-

phism of S into T if

f (xy) = f (x) f (y) ∀ x, y ∈ S.

If f : S → T and 1 : T → U are homomorphisms of semigroup, it is easy to
verify that f1 : S→ U is a homomorphism. A homomorphism f is injective or
surjective if the map f is injective or surjective. A homomorphism f : S→ T is
said to be an isomorphism if themap f is a bijection. Clearly f is an isomorphism
if and only if f−1 : T → S is a homomorphism. In particular, the identity
map 1S : S → S is an isomorphism. Notice that for any homomorphism
f : S → T, f (S) = { f (s) : s ∈ S} is a subsemigroup of T. Also, f considered as
a homomorphism of S onto f (S) (that is, the range restriction of f to f (S)) is a
surjective homomorphism f ◦ : S→ f (S) and we can factorize f as:

f = f ◦ Tf (S). (2.8)

Consequently, if f : S → T is an injective homomorphism f ◦ : S → T is an
isomorphism of S onto f (S). Thus an injective homomorphism is also called
an embedding of S in T. If S′ is a subsemigroup of S then the inclusion map S

S′

is clearly an injective homomorphism or an embedding of S′ into S.
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homomorphism!monoid –
homomorphism!anti–
isomorphism!anti–
involution
x 7→ x∗: involution
S: category of semigroups
homomorphism!image
products

If S and T are monoids, a homomorphism f : S → T is a monoid ho-
momorphism if f (1) = 1′ where 1 [1′] is the identity of S [T]. Note that a
monoid homomorphism is, in particular, a semigroup homomorphism; but
there are semigroup homomorphisms of monoids that are not monoid homo-
morphisms. A monoid homomorphism is said to be injective, surjective or
is an isomorphism if the corresponding semigroup homomorphism has the
respective property. It is clear that f : S → T is a monoid isomorphism if
and only if it is a semigroup isomorphism. Also, if M′ is a submonoid of the
monoid M, then M

M′
: M′ →M is a monoid homomorphism.

A homomorphism [isomorphism] f : S → Top is called an anti-homomor-

phism [anti-isomorphism]. An anti-homomorphism θ : S→ S such that

θ2 = θ ◦ θ = 1S (2.9)

is called an involution on S. An involution θ is therefore a unary operation
and is denoted by notations like θ(x) = x∗ x◦ or x′ etc. Hence the assignment
x 7→ x∗ is an involution on S if and only if for all x, y ∈ S, we have

(xy)∗ = y∗x∗ and x∗∗ = (x∗)∗ = x. (2.10)

Note that the second condition above implies that the assignment x 7→ x∗ is, in
fact, an anti-isomorphism.

The category S The discussion above implies that we have a category S in
which objects are semigroups and morphisms are homomorphisms. S has a
natural subobject relation (see § Subsection 1.3.2). It is easy to verify that those
inclusions that aremorphisms inS gives a choice of subobjects inS according
to Definition 1.5. Further, for any homomorphism f : S → T in S, in the
factorization given by Equation (2.8), f ◦ is a surjective homomorphism onto
f (S). Hence it is an epimorphism in S(see Remark 2.1 below). Clearly, the
inclusion f (S) ⊆ T is a morphism inS. Hence Equation (2.8) gives a canonical
factorization of f inS. It is easy to see that this factorization satisfies condition
(Im) of Proposition 1.13. Hence f ◦ denote the epimorphic component of f and
by Equation (1.53),

Im f = f (S) = {y ∈ T : y = f (x) for some x ∈ S}. (2.8∗)

is the image of f . Thus the category S has images (see § Subsection 1.3.2).
Since f ◦ is an isomorphism if f is injective, it follows that every injective homo-
morphism is an embedding (see § Subsection 1.3.2). Therefore, by Remark 2.1
below, every monomorphism is an embedding in S. The discussion in § Sec-
tion 2.3 shows thatS has products in the usual categorical sense (see MacLane
[1971], page 69,70).
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Similarly, there exists a category M whose objects are monoids and mor-
phisms are monoid homomorphisms. Thus M is a subcategory of S with
subobjects, factorizations and images.

Remark 2.1: In the category S, a homomorphism is a monomorphism if it is
injective and an epimorphism if it is surjective. This follows from the fact that
in the category Set, a map (morphism in Set) is a monomorphism if and only
if it is injective and an epimorphism if and only if it is surjective.

Conversely, every monomorphism in S is injective. To see this, we first
observe thatN = {1, 2, . . .} is a semigroupunder addition and if x is any element
of a semigroup S, then there is a unique homomorphism θx : N → S sending 1
to x (set θx(n) = xn for all n ∈ N). Now if f : S→ T is a homomorphism which
is not injective, then there is x, y ∈ S with x , y such that f (x) = f (y). Then
θx ◦ f = θy ◦ f and θx , θy. Hence f is not a monomorphism in S.

However, not all epimorphisms in S are surjective. We can construct an
counter example (which is an adaptation of the example given in Remark 1.6
of Lallement [1979]) as follows. Let R∗ be the set of non-zero elements of an
integral domain (commutative andwith identity)R. ThenR∗ is a subsemigroup
of the multiplicative semigroup of R. Let D∗ denote the group of non-zero
elements of the field of fractions of R. Then D∗ = { ab : a, b ∈ R∗}. Let f : a 7→ a

1
be the embedding of R∗ in D∗. Then, if θ : D∗ → T is any homomorphism of
D∗ to a semigroup T, then Imθ is a subgroup of T and

θ
(

a

b

)

=
(

θ( f (a))
) (

θ( f (b))
)−1

for all a
b ∈ D∗. Hence if θi : D∗ → T, i = 1, 2 are homomorphisms such that

f ◦θ1 = f ◦θ2, then θ1 = θ2. Therefore f is an epimorphism. If R is not a field,
then f is not surjective.

The arguments above can be easily adopted for the category M. Thus a
monoid homomorphism f is amonomorphism inM if and only if f is injective;
f is an epimorphism if it is surjective; but the converse is not true.2.1.3 Examples
Here we give a list of examples of semigroups. These are standard examples
and we shall have occasion later to refer back to some of these.

The semigroup of relations on the set X: From the discussion in Subsec-
tion 1.1.1 it follows that BX is a semigroup in which product is the composition
of relations defined by Equation (1.2). It has identity 1X and zero ∅. This
semigroup has additional structures. Since every R ∈ BX has the unique con-
verseR−1 defined by Equation (1.4) (see also § Subsection 1.1.1) the assignment
R 7→ R−1 is a mapping and hence a unary operation on BX. It is easy to see
that it is an involution (that is, satisfies conditions given in Equation (2.10)).
Moreover, BX is an ordered semigroup in the sense that inclusion ⊆ is a partial
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order on BX compatible with the binary operation:

R1 ⊆ R2 ⇒















R ◦ R1 ⊆ R ◦ R2 and
R1 ◦ R ⊆ R2 ◦ R.

The involution R 7→ R−1 is also admits the order on BX:

R1 ⊆ R2 ⇒ R−11 ⊆ R−12 .

Note that ∅, the zero of BX, is the smallest element with respect to this order
and X × X is the largest.

This semigrouphas several important subsemigroups; we list some of them
below.

The semigroup of partial transformations: Let PT X denote the set of all par-
tial transformations (single-valued relations) on the set X. Since composite
of single-valued relations are single-valued, PT X is a subsemigroup of the
semigroup BX. Each α ∈ PT X is a surjective function α : domα → Imα

and hence determines an equivalence relation πα on (partition of) domα and
a bijection of domα/πα onto Imα (see Equations (1.10a) and (1.10b)). Hence
each α ∈PT X determines a symmetric and transitive relationπα and a subset
Y ⊆ X such that

|domα/πα| = |Y|.

α is an idempotent in PT X if and only if Y is a cross-section of πα (that is,
a subset such that it intersect every partition class in exactly one element).
Also every pair (π,Y) where π is a symmetric and transitive relation and Y

is a cross-section determines a unique idempotent in PT X. Moreover, any
α ∈PT X can be factorized relative to a cross-section Y of πα as

α = e ◦ α̃

where e is the idempotent determined by (πα,Y) and α̃ = α|Y is a bijection.

The semigroup IX: We denote by IX the set of all injective elements of PT X.
If α, β ∈ IX, it is easy to verify that α ◦ β ∈ IX. Hence IX is a subsemigroup
of PT X. Since every α ∈ IX is injective, the equivalence relation πα induced
by α on domα is the identity relation on domα. Therefore IX consists of all
bijections of subsets of X. In particular, idempotents in IX are identity maps
on subsets of X. In fact IX is a subsemigroup of BX which inherits the structure
of BX. Thus, since α−1 ∈ IX for all α ∈ IX, the involution R 7→ R−1 restricts to
an involution on IX. IX is also an ordered semigroup with respect to inclusion
and the set of idempotents of IX has the structure of a lattice (Boolean algebra)
with respect to inclusion (see also Section Subsection 1.4.2).
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Remark 2.2: Clearly, the inclusion gives PT X the structure of an ordered
semigroup. However, this is not of much significance for PT X. On the
other hand, the inclusion is an important structural part of the semigroup
IX and is called the natural partial order on IX. It may also be noted that the
groupoid IX considered in Example 1.21 is obtained from the semigroup IX by
restricting the product in the semigroup to pairs α, βwith codα = dom β in the
semigroup IX; in other words, the product in the semigroup IX is an extension
of the composition in the groupoid IX.

The semigroup TX: The set TX of all transformations on X (maps of X into
X) is clearly a subsemigroup of PT X. Hence most of the remarks for the
semigroupPT X can be adopted forTX. Thus idempotents inTX areuniquely
determined by pairs (π,Y) where π is an equivalence relation on X and Y is a
cross-section of π. Further every f ∈ TX can be factorized as

f = e ◦ α

where e is an idempotent in TX and α is a bijection of the cross-section Im e of
π f = πe onto Im f . Also, composition in TX (same as relational composition)
is written in the order in which they appear in commutative diagrams and
elements of TX (transformations of X) are regarded as operating on the right.
Often it will also be necessary to consider the left-right dualT op

X
of TX or sub-

semigroups of T
op
X

. In this case transformations of X, considered as elements
of T

op
X

, are written as left operators.
This (that is TX) gives an important class of examples; we shall discuss

other properties of these semigroups later. All examples of semigroups given
so far are all monoids.

Semilattices: A semilattice is a commutative semigroup of idempotents (that is, a
semigroup inwhich every element is an idempotent). If E is a lover semilattice
(meet-semilattice) as defined in Subsection 1.1.2, then clearly, the map

(e, e′) ∈ E × E 7→ e ∧ e′

which assign to each (e, e′), the meet e ∧ e′ is a binary operation on E. It
follows from the definition of ∧ (see Equation (1.13)) that this binary operation
is associative, commutative and idempotent. Hence E is a semilattice with
respect to the binary operation ∧. In the partially ordered set does not have
1, then E is a semigroup which is not a monoid. Similarly, if E is an upper
semilattice, E is a semilattice in the sense above with respect to ∨.

Conversely, any semilattice E (as defined above) can be considered as a
lover semilattice as follows: for e, e′ ∈ E, define

e ≤ e′ ⇐⇒ ee′ = e.
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semigroup!cyclic –
semigroup!cyclic
semigroup!generator

Then ≤ is a partial order on E such that

ee′ = e ∧ e′ ∀ e, e′ ∈ E.

Hence E becomes the lover semilattice with respect to the partial order defined
above. On the other hand if we set

e � e′ ⇐⇒ ee′ = e′,

then � is a partial order on E and E becomes the upper semilattice with respect
to �. Thus a semilattice is a semigroup; it can be regarded as an order structure
in two ways: as a lover semilattice or an upper semilattice as above. In the
following, unless otherwise stated, a semilattice will be regarded as a lover
semilattice.

Cyclic semigroups: A semigroup S is said to be cyclic if every element of S is
a positive integral power of an element in S; that is, S = {an : n ∈ N∗} for some
a ∈ S, where N∗ = {1, 2, . . . }. The element a is called the generator of S and S is
denoted by 〈a〉. There are two possibilities:

1. Powers of a are distinct. In this case 〈a〉 is clearly infinite and is isomor-
phic to the additive semigroup (N∗,+).

2. Not all powers of a are distinct; that is, an = am for some n,m ∈ N∗, n , m.

In the second case, there exists the smallest integer s > 1 such that ar = as for
some r < s with r ≥ 1. The choice of s implies that

a, a2, . . . , ar, . . . , as−1

are distinct powers of a in 〈a〉. We show that these are precisely the set of all
distinct elements of 〈a〉 so that, in this case, the order of 〈a〉 is s − 1.

Proposition 2.1. Let S = 〈a〉 be the cyclic semigroup generated by a. Then either S
is isomorphic to (N∗,+) or there exists positive integers r and m such that

S = {a, a2, . . . , ar, ar+1, . . . , ar+m−1};

the order of S being r +m − 1. The set

Ka = {a
r, ar+1, . . . , ar+m−1}

is a cyclic subgroup of S of order m with identity at where t is the unique integer
satisfying

t ≡ 0 (mod m), r ≤ t < r +m.

The integer r is called the index of S and m is called the period of S.
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order!– of an element
semigroup!periodic

Proof. In view of the discussion preceding the statement, it is sufficient to
consider the case in which there is the smallest positive integer s and 0 < r < s

such that ar = as. In this case, powers ai, 1 ≤ i < s are distinct elements of S.
Letm = s− r. Then we have ar = ar+m = ar+km for all k ∈ N. If n ≥ r, we can find
k ∈ N and 0 ≤ j < m such that n − r = km + j and so

an = ar+km+ j = ar+ j where n ≡ r + j (mod m), r ≤ r + j < r +m. (⋆)

It follows that S = {ai : 1 ≤ i < r + m}. Since these powers are all distinct, the
order of S is r +m − 1. We now show that for any n, n′ ∈ N∗, we have

an = an
′

⇐⇒















n = n′ if min{n, n′} < r,

n ≡ n′ (mod m) if min{n, n′} ≥ r.
(•)

Assume that n < n′. If n < r, then by the definition of s = r +m, n′ ≥ s. By (⋆),
there is a unique n′′ with r ≤ n′′ < s such that an

′′

= an
′

= an which contradicts
the definition of s. Hence we must have n = n′. Let n ≥ r. Choose p, q ∈ N∗

with r ≤ p, q < s, n ≡ p (mod m) and n′ ≡ q (mod m). Then an = an
′

implies by
Equation (⋆) that ap = aq. Since, for i < s, powers ai are distinct, it follows that
p = q and so, n = n′ (mod m). On the other hand, if n = n′ (mod m), then it is
immediate from (⋆) that an = an

′

.
It follows from (•) that the map φ : an 7→ n (mod m), n ≥ r is a bijection of

Ka onto Zm, the cyclic group of integers (mod m). Also, for p, q ≥ r,

φ(apaq) = φ(ap+q) = (p + q) (mod m)

= p (mod m) + q (mod m) = φ(ap) + φ(aq).

Thereforeφ : Ka → Zm is an isomorphism. If at ∈ Ka, r ≤ t < r+m, is the identity
in Ka, then we have atat = at and so, by Equation (•), t = 0 (mod m).

The order of an element a in a semigroup S is the order of the cyclic sub-
semigroup 〈a〉 of distinct powers of a in S. The order of a is finite if the order
of 〈a〉 is finite; otherwise, the order of a is infinite. The semigroup S is said to
be periodic if the order of every a ∈ S is finite.

Example 2.1: Given two positive integers r andm there is a finite cyclic semigroupwith
index r and period m. Consider the transformation α of the set M = {0, 1, . . . , r, . . . , r +
m − 1} defined as follows:

iα =















i + 1 if i < r +m − 1,

r if i = r +m − 1.

It is easy to show that αr = αr+m which implies that the cyclic semigroup 〈α〉 of all
powers of α is a finite cyclic semigroup of index r and periodm.
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monoid!cyclic –
group with 0
matrix!Rees –
matrix!monomial –
M0(G; I,Λ;P): Rees I ×Λ-matrix
semigroup over G0

semigroup!Rees matrix –
matrix!sandwich –

The cyclic monoidM generated by a is the set {an : n ∈ N} (including a0 which
is defined as 1). Note thatM = 〈a〉1, the monoid obtained by adjoining identity
1 to 〈a〉. It follows from the above that the cyclic monoid 〈a〉1 is either infinite
in which case all powers of a (including a0) are distinct and is isomorphic to
(N,+), or there exist integers r and m such that ar = ar+m, in which case the
monoid 〈a〉1 is of order r +m.

Rees-matrix semigroups: Let G be a group and let G0 be the semigroup ob-
tained by adjoining 0 to G (see Equation (2.4)). G0 is called a group with 0. Let
Λ and I be sets. A mapping P : Λ× I→ G0 is aΛ× I-matrix overG0; we denote
the value of P at (λ, i) by pλi. Let a

M0(G; I,Λ;P) = (G × I ×Λ) ∪ {0}. (2.11a)

Define product inM0(G; I,Λ;P) by

(a, i, λ) · (b, j, µ) =















(apλ jb, i, µ) if pλ j , 0;

0 otherwise.
(2.11b)

Non-zero elements (a, i, λ) ofM0(G; I,Λ;P) can be interpreted as I×Λ-matrices
as:

(a, i, λ) = (ai′λ′ )I×Λ

in which

ai′λ′ =















a if (i′, λ′) = (i, λ);
0 if (i′, λ′) , (i, λ).

Such matrices are called monomial matrices or Rees matrices. The element 0
is treated as I × Λ 0-matrix (0)I×Λ. If we do this, the product defined above
reduces to the row-column product

(a, i, λ) · (b, j, µ) = (a, i, λ)P(b, j, µ).

If x = (a, i, λ), y = (b, j, µ) and z = (c, k, ν) are elements of M0(G; I,Λ;P),
then using Equation (2.11b), we have

(xy)z = (apλ jbpµkc, i, ν) = x(yz).

Hence M0(G; I,Λ;P) is a semigroup. M0(G; I,Λ;P) is called the Rees I × Λ-

matrix semigroup over G0 with sandwich matrix P. The sandwich matrix P is
said to be regular if every row and every column contain at least one non-zero
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semigroup!Rees matrix – with out
zero

entry; that is, for each λ ∈ Λ there is some i ∈ I such that pλi , 0 and for each
i ∈ I there is λ ∈ Λwith pλi , 0.

Let x = (a, i, λ) ∈ M0(G; I,Λ,P). If P is regular, we can find µ ∈ Λ such that
pµi , 0 and j ∈ I such that pλ j , 0. Let

x′ = (b, j, µ) where pλ j , 0, pλ j , 0, b = (pµiapλ j)−1.

An easy computation with the product defined above shows that

xx′x = x.

Hence, to each x ∈ M0(G; I,Λ;P) there is some x′ ∈ M0(G; I,Λ;P) satisfying
the equation above if P is regular. Conversely, if the semigroupM0(G; I,Λ;P)
has this property, it can be shown easily that the matrix P must be regular as
defined. For if x = (a, i, λ) , 0 (that is, a , 0) the condition implies that for
some x′ = (b, j, µ), x = xx′x and so we have, in particular, xx′ , 0. This implies
that pλ j , 0 and so for λ ∈ Λ, there is j ∈ I with pλ j , 0. Similarly from x′x , 0
we infer that for i ∈ I, there is µ ∈ Λ with pµi , 0. Semigroups satisfying this
condition is said to be regular (see Subsection 2.6.2).

By Equation (2.11b), the set of non-zero elements of M0(G; I,Λ;P) is a
subsemigroup ofM0(G; I,Λ;P) if and only if pλi , 0 for all (λ, i) ∈ Λ× I. When
P satisfies this condition, we denote the subsemigroup of non-zero elements
byM(G; I,Λ;P); it is called the Rees matrix semigroup over the groupG or a Rees
matrix semigroup with out zero. Note thatM(G; I,Λ;P) is always regular. In
particular, if we choose G = {1}, the one element group and P as the constant
mappingwith value 1, then the Reesmatrix semigroup overG can be identified
with a semigroup on the set I ×Λwith product defined by

(i, λ) · ( j, µ) = (i, µ) ∀ (i, λ), ( j, µ) ∈ I ×Λ.

This semigroup is called the I×Λ-rectangular band. Note that every element in
the I ×Λ-rectangular band is idempotent.

Semigroup of matrices and linear transformations: Let V be a vector space
over the field k. It is well known that the set L T (V) of all linear endomor-
phisms of V is a semigroup under composition and so it is a subsemigroup of
TV. In this case ǫ ∈ L T (V) is an idempotent if and only if

N(ǫ) ⊕ Im ǫ = V

where N(ǫ) denote the subspace of V given by:

N(ǫ) = {v ∈ V : ǫ(v) = 0}.
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congruences
congruence
congruence!right
congruence!left

Conversely, given any direct-sum decomposition N⊕U = V, there is a unique
idempotent ǫ ∈ L T (V) withN(ǫ) = N and Im ǫ = U (as well as an idempotent
ǫ′ with N = U and Im ǫ′ = N; we have ǫ′ = 1− ǫ). As in Subsection 2.1.3, every
f ∈ L T (V) can be factorized as f = ǫ ◦αwhere ǫ is an idempotent in L T (V)
and α : Im ǫ→ Im f ia a linear isomorphism.

Further properties of this semigroup will be considered later.

2.2 congruences

Let φ : G→ H be a surjective homomorphism of groups. The basic homomor-
phism theorem for groups states that the quotient groupG/ kerφ is isomorphic
toH. This implies that, up to isomorphism, φ is completely determined by the
normal subgroup kerφ (see for example, Hungerford [1974]). Moreover, kerφ
is an object of the same type as G and is the kernel of the morphism in the cat-
egory Grp of groups. On the other hand, for homomorphisms of semigroups
there exist no sub-semigroup, or an object in the categorySwhich determines
homomorphisms in this way. In particular the category S does not have
kernels. This is an important point of difference between group theory and
semigroup theory. If ψ : S → T is a homomorphism of semigroups, it is nec-
essary to replace the kernel in the theory of group homomorphisms with the
equivalence relation πψ determined by the function ψ as in Equation (1.10a).
Equivalence relations arising in this way are called congruences.

In this section, we give preliminary definitions of congruences and de-
rive some of the basic properties of homomorphisms. We also give a brief
discussion of the lattice of congruences on a semigroup.2.2.1 Congruen
es and homomorphisms
Let S be a semigroup. A relation ρ on S is right compatible if ρ satisfies the
following: a

(x, y) ∈ ρ ⇒ (xa, ya) ∈ ρ ∀a ∈ S1. (2.12a)

A relation ρ is left compatible if it is right compatible as a relation on Sop. ρ is
compatible if it is both left and right compatible. For any ρ ∈ BS

RS = {(axb, ayb) : a, b ∈ S1 and (x, y) ∈ R}. (2.12b)

can be shown to be the smallest compatible relation that contain R.
A right [left] congruence on a semigroup S is an equivalence relation ρ on

S which is right [respectively, left] compatible. ρ is a congruence on S if it
is compatible so that it is both a right and a left congruence on S. This is
equivalent to the fact that ρ satisfies the following:

(x, y), (x′, y′) ∈ ρ ⇒ (xx′, yy′) ∈ ρ. (2.13)
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S/ρ: quotient semigroup
homomorphism!quotient –

We have the following:

Proposition 2.2. Let ρ be a congruence on the semigroup S. For each x ∈ S, let
ρ(x) denote the ρ-class containing x (the equivalence with respect to ρ that contain
x). Then

ρ(x) ◦ ρ(y) = ρ(xy) ∀ x, y ∈ S (2.13∗)

defines a single-valued binary operation ◦ on

S/ρ = {ρ(x) : x ∈ S} (2.14)

which is associative. Hence S/ρ is a semigroup with respect to ◦. Moreover, the
quotient map ρ# : x 7→ ρ(x) is a surjective homomorphism of S onto S/ρ.

Proof. The fact that ◦ is single-valued is equivalent to Equation (2.13). The
remaining statements are immediate consequence of the definitions.

We denote the semigroup constructed above also by S/ρ and is called the
quotient of S with respect to the congruence ρ.

Example 2.2: If G is a group, an equivalence relation ρ on G is a left congruence if and
only if the equivalence class ρ(e) = K containing the identity e of G is a subgroup of G
and ρ(1) = 1K for all 1 ∈ G. Thus ρ is a left congruence on G if and only if the partition
of ρ is a left-coset decomposition of Gwith respect to the subgroup ρ(e) of G. Similarly
a right congruence ρ on G is a right-coset decomposition with respect to the subgroup
ρ(e). Thus ρ is a congruence on G if and only if for all 1 ∈ G, ρ(1) is a left as well as a
right coset of G. This is true if and only if ρ(e) is a normal subgroup of G.

Isomorphism theorems of group theory can be extended to semigroups.
The following is the analogue of the first homomorphism for groups. The
routine verification is omitted.

Theorem 2.3 (First isomorphism theorem). Let φ : S→ T be a homomorphism of
the semigroup S =into T. Then

κφ = {(x, y) : xφ = yφ}

is a congruence on S. Further, the map ψ : S/κφ→ T defined by

(κφ(x))ψ = xφ ∀ x ∈ S

is an injective homomorphism such that the following diagram commutes:

T

ψ

S

φ

(κφ)#
S/κφ

(D2)

The homomorphism φ is injective if and only if κφ = 1S and surjective if and only if
ψ : S/κφ→ T is an isomorphism.
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Other isomorphism theorems for groups can also be extended to semi-
groups by replacing subgroups by subsemigroups and normal subgroups by con-

gruences in the corresponding statements for groups. Thus the second isomor-
phism theorem can be stated as follows.

Theorem 2.4 (Second isomorphism theorem). Let σ be a congruence on the semi-
group S and let T be a subsemigroup of S. Then the restriction σT = σ ∩ (T × T) of σ
to T is a congruence on T and there is an isomorphism

φ : T/σT → σ(T)/σ

where

σ(T) =
⋃

t∈T

σ(t)

denote the union of all congruence classes of σ that intersect T.

Proof. Let Φ = σ#|T denote the restriction of the quotient homomorphism
σ# : S → S/σ to T. Then Φ is a homomorphism of T into S/σ. It is easy to see
that κΦ = σT and ImΦ = σ(T)/σ. By Theorem 2.3, there is an isomorphism of
T/σT onto σ(T)/σ.

Theorem 2.5 (Third isomorphismtheorem). suppose thatρ, σ ∈ L are congruences
on S such that ρ ⊆ σ. Then

σ/ρ =
{

(ρ(x), ρ(y)) : (x, y) ∈ σ
}

is a congruence on S/ρ such that there is an isomorphism

Φ : S/σ→ (S/ρ)/(σ/ρ)

making the following diagram commute.

(S/σ)/(σ/ρ)

Φ

S

φ

σ#
S/σ

(2.15)

Moreover, σ 7→ σ/ρ is an inclusion preserving bijection of the set of all congruences
on S containing ρ and the set of all congruences on S/ρ.

Proof. It is easy to verify that σ/ρ is a congruence of S/ρ and that the map
φ : x 7→ σ/ρ(ρ(x)) is a homomorphism such that κφ = σ. By Theorem 2.3, there
is an isomorphism Φ : S/σ → (S/ρ)/(σ/ρ) The last statement is also easy to
verify (see Proposition 2.8 and Remark 2.5).
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congruence!Rees –
semigroup!Rees quotient –
S/I: Rees quotient semigroup of S
by ideal I

extension!ideal –

Rees congruences Let I be an ideal in a semigroup S and let

ρI = {(x, y) : either x = y or x, y ∈ I}. (2.16)

It is easy to verify that ρI is a congruence on S such that

ρI(x) =















I if x ∈ I;

{x} if x < I.

Note that the congruence ρI is completely determined by the ideal I. ρI has
atmost one non-trivial congruence class I in S. Congruences determined by
ideals in this way are called Rees congruences. The quotient (or factor) semi-
group S/ρI is called the Rees quotient semigroup or Rees factor semigroup and
is denoted (for brevity) as S/I. Note that S/I is the semigroup obtained by
identifying all elements in I as a single element I in S/Iwhich is the 0 of S/I and
leaving every other element (not in I) unaltered. We have noted that ∅ is an
ideal in S. We follow the convention that the Rees quotient S/∅ = S. Similarly,
if S has 0, then for I = 0, the Rees quotient S/I is isomorphic to S; in this case
also, we will assume that S/I = S/0 = S.

Let T and N be semigroups. A semigroup S is called an ideal extension of
the semigroup N by the semigroup T if N is isomorphic an ideal N′ of S and
the Ree’s factor semigroup S/N′ is isomorphic to T.

We observe that, if ρ is any congruence on S the S/ρ is a semigroup with
zero if and only if there is a congruence class ρ(x) which is an ideal in S; in
this case, the zero in S/ρ is the ideal I = ρ(x) and ρI ⊆ σ. Thus every such
congruence contains a Rees congruence.

Remark 2.3: Isomorphism theorems for Rees congruences can be stated in
much more simpler way. Thus the second and third isomorphism theorems
can be stated as follows:

(a) Let I be an ideal in the semigroup S and let T be a subsemigroup. Then

(I ∪ T)/I � T/(I ∩ T).

(b) Let I and J be ideals in the semigroup S such that I ⊆ J. Then

S/J � (S/I)/(J/I).

Moreover, J 7→ J/I is an inclusion preserving bijection of the set of all
ideals of S containing I and the set of all ideals of S/I.

These statements follows immediately fromTheorems 2.4 and 2.5 respectively.

Remark 2.4: For a more detailed discussion of ideal theory of semigroups,
including the theory of ideal series such as composition series, principal series,
etc. and the Jordan-Hö lder-Schreier refinement theorem, we refer the reader
to Clifford and Preston [1961], Rees [1940]. Since we have no occasion to use
these results in this book, we shall not discuss them here.
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e of 
ongruen
es
LetL denote the set of all congruences on the semigroupS. ThenL is nonempty
since the identity relation 1S and the universal relation S × S belongs to it.
Clearly, L is a partially ordered set with respect to inclusion in which S × S is
the largest element, 1 and 1S is the smallest, 0 (see § Subsection 1.1.2.

Recall that a complete lattice is a partially ordered set in which every
subset has both join and meet (see § Subsection 1.1.3). The Proposition below
describes the join and meet in the partially ordered set L and shows that it is
a complete lattice.

Proposition 2.6. Let S be a semigroup. Then L is a complete sublattice of the lattice
ES of all equivalence relations on S with join and meet defined as follows:

∧Λ =
⋂

i∈I

ρi; (2.17)

∨Λ =















⋃

i∈I

ρi















(t)

(2.18)

for any subset Λ = {ρi : i ∈ I} of L.

Proof. It is easy to verify that ∧Λ ∈ L; clearly it is the largest congruence
contained in each ρi. Hence ∧Λ is the meet of Λ in L.

Letρ =
⋃

i∈I ρi andσ = ρ
(t). Sinceρ is reflexive and symmetric, bydefinition,

σ is the join of Λ in ES. Hence it is sufficient to show that σ is compatible. Let
a ∈ S1 and (x, y) ∈ σ. Then by Equation (1.8a), (x, y)ρn for some n ∈ N; that is,
there exist ut ∈ S, t = 0, 1, . . . , n with u0 = x and un = y such that (ut−1, ut) ∈ ρ.
Then for each t, there is it ∈ I with (ut−1, ut) ∈ ρit . Since ρit is a congruence for
every t, (ut−1a, uta), (aut−1, aut) ∈ ρit . It follows that (xa, ya), (ax, ay) ∈ σ and so
σ ∈ L.

For each Λ ⊆ L, it is clear from the definitions above that ∧Λ and ∨Λ are
respectively meet and join of Λ in ES. Hence L is a sublattice of ES.

Note that, if G is a group, LG can be identified with the lattice of normal
subgroups of G (see Example 2.2). The following result gives some useful
consequences of the Proposition above:

Proposition 2.7. Let S be a semigroup. We have:

(a) For any R ∈ BS, there is a congruence R(c) such that R(c) is the smallest
congruence containing R. The map R 7→ R(c) is a complete ∨-homomorphism
of the lattice BS of all relations on S onto L.
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(b) Let E be an equivalence relation on S and let

E(c) = {(x, y) : (axb, ayb) ∈ E ∀ a, b ∈ S1}.

Then E(c) is the largest congruence contained in E. The mapping E 7→ E(c) is a
complete ∧-homomorphism of the lattice ES of all equivalences on S onto L.

Proof. To prove (a), let

Rc = {(axb, ayb) : a, b ∈ S1 and (x, y) ∈ R ∪ R−}.

Then by Equation (2.12b), Rc is the smallest relation containing R∪R−1. Hence
Rc is the smallest symmetric and compatible relation of S containing R. It
follows from the construction of the transitive closure (see Equation (1.8a))
that the transitive closure of a symmetric and compatible relation is again
symmetric and compatible. Hence

R(c) = (Rc)(t)

is the smallest congruence containing Rc and hence containing R. The map
R 7→ R(c) is clearly inclusion preserving. Let M ⊆ BS. Then (∨M)(c) ⊇ R(c) for
all R ∈M and so

∨

R∈M

R(c) ⊆ (∨M)(c).

Now, since for each R ∈M,
∨

R∈M

R(c) ⊇ R(c) ⊃ R,

∨

R∈M

R(c) ⊇ (∨M)(c).

Hence
∨

R∈M R(c) = (∨M)(c). Thus the map R 7→ R(c) is a complete ∨-homomor-
phism.

To prove (b), we observe that, since E an equivalence relation, so is E(c). If
(x, y) ∈ E(c), then from the definition of E(c), we see that (xa, ya), (ax, ay) ∈ E(c)

for all a ∈ S1. Hence E(c) is both a left as well as a right congruence. Thus E(c)

is a congruence which is clearly contained in E. Now let ρ be any congruence
contained in E. If (x, y) ∈ ρ, then for all a, b ∈ S1, (axb, ayb) ∈ ρ ⊆ E. By the
definition of E(c), we conclude that (x, y) ∈ E(c); thus ρ ⊆ E(c).

Again, the map E 7→ E(c) is inclusion preserving. LetM ⊆ ES. Since, for all
E ∈M, ∧M ⊆ E and so,

(∧M)(c) ⊆ E(c) and so,

(∧M)(c) ⊆
∧

E∈M

E(c).
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Since
∧

E∈M E(c) ⊆ ∧M, we have

∧

E∈M

E(c) ⊆ (∧M)(c).

Hence

∧

E∈M

E(c) = (∧M)(c)

which proves that the map E 7→ E(c) is a complete ∧-homomorphism.

Recall (see Equation (1.11a) and Remark 1.2) that in a partially ordered set
Λ, we use the notation

[α, β] = {γ : α ≤ γ ≤ β} ⊆ Λ.

for α, β ∈ Λ. If Λ is a complete lattice, so is [α, β]. Recall also that an order
preserving map of a lattice is a ∨-homomorphism [∧-homomorphism] if it
preserve join [meet](see Subsection 1.1.3).

Proposition 2.8. Let f : S → T be a surjective homomorphism of the semigroup S
onto T. For each ρ ∈ L and ρ′ ∈ LT, define

f ∗(ρ) = {(x f , y f ) ∈ T × T : (x, y) ∈ ρ};

f∗(ρ′) = {(x, y) ∈ S × S : (x f , y f ) ∈ ρ′}.
(2.19)

Then we have the following:

(a) f ∗ : L → LT is a surjective complete ∨-homomorphism.

(b) f∗ : LT → [δ, 1] is a lattice isomorphism such that

f∗ ◦ f ∗ = 1LT

where κ f = δ and 1 = S × S.

(c) For each ρ ∈ [δ, 1], there is a unique isomorphism fρ : S/ρ → T/ f ∗(ρ) such
that the following diagram commutes:

S
f

ρ#

T

f ∗(ρ)#

S/ρ
fρ

T/ f ∗(ρ)

(D3)

Here ρ# and f ∗(ρ)# denote the quotient homomorphisms (see Proposition 2.2).
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Proof. It is clear that f ∗(ρ) is a congruence on T for any congruence ρ ∈ L; also
the mapping ρ 7→ f ∗(ρ) is order preserving from L to LT. For ρ′ ∈ LT, it is
clear that f∗(ρ′) defined in the statement, is a congruence in [δ, 1]. Moreover, it
is easy to see that f∗ is also an order preserving map of κT into [δ, 1] and for all
ρ′ ∈ LT,

f ∗
(

f∗(ρ′)
)

= ρ′. Hence f∗ ◦ f ∗ = 1LT
.

It follows that f∗ is a one-to-one order preserving map of LT into [δ, 1] and that
f ∗ is surjective.

We now show that f∗ : LT → [δ, 1] is surjective. Let ρ ∈ [δ, 1] so that δ ⊆ ρ.
Let ρ̄ = f∗( f ∗(ρ)). Then ρ ⊆ ρ̄. If (x, y) ∈ ρ̄, then (x f , y f ) ∈ f ∗(ρ) and so, by
the definition of f ∗, there is (u, v) ∈ ρ such that (x f , y f ) = (u f , v f ). Hence
(x, u), (v, y) ∈ δ. Therefore

(x, y) ∈ δ ◦ ρ ◦ δ ⊆ ρ3 = ρ

since ρ is transitive. Hence

(x, y) ∈ ρ ⇐⇒ (x f , y f ) ∈ f ∗(ρ). (⋆)

This shows that ρ̄ = ρ. Therefore f∗ is surjective and

( f ∗|[δ, 1]) ◦ f∗ = 1[δ,1].

Thus f∗ : LT → [δ, 1] is an order isomorphism.
To prove that f ∗ is a complete ∨-homomorphism, assume that Λ ⊆ L,

σ = ∨Λ and σ′ = ∨ f ∗(Λ) where f ∗(Λ) = { f ∗(ρ) : ρ ∈ Λ}. Since f ∗ is order
preserving, σ′ ⊆ f ∗(σ). Since f ∗(ρ) ⊆ σ′ for all ρ ∈ Λ,

ρ ⊆ f∗
(

f ∗(ρ)
)

⊆ f∗(σ′)

so that

σ ⊆ f∗(σ′) which implies f ∗(σ) ⊆ f ∗
(

f∗(σ′)
)

= σ′.

Thus f (σ) = σ′ and this proves (a) and (b).
To prove (c), define fρ by:

(ρ(x)) fρ = f ∗(ρ)(x f ) for all x ∈ S.

It follows from (⋆) that fρ : S/ρ→ T/ f ∗(ρ) is a bijection. Using Equation (2.13)
and Proposition 2.2 we can easily show that fρ is a homomorphism. Hence fρ
is an isomorphism. Using quotient maps the definition of fρ may be rewritten
as

xρ# fρ = x f
(

f ∗(ρ)
)# for all x ∈ S

which shows that the Diagram (D3) is commutative.
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product
sets!Cartesian product of –
∏

i∈I Si :Direct product of the family
{Si} of semigroups

product!direct product
senigroups!direct product of –

Remark 2.5: The statement Proposition 2.8(c), in particular, implies the third
isomorphism theorem Theorem 2.5. For if ρ, σ ∈ L are such that ρ ⊆ σ, then by
Equation (2.19), σ/rho = (ρ#)∗(ρ) is a unique congruence on S/ρ induced by the
quotient homomorphism ρ# and by Proposition 2.8(c), there is an isomorphism

ρ#σ : S/σ→ (S/ρ)/(σ/ρ).

which is the the third isomorphism theorem. Applied to Rees congruences,
the statement Proposition 2.8(b) implies that given any ideal I in S, the map
A 7→ A/I is an inclusion preserving bijection of the set of all ideals A in S
containing I and all ideals in S/I such that S/A � (S/I)(A/I) (by Theorem 2.5).

2.3 products

Various types of products are basic methods of constructing new semigroups.
The reader can find a good discussion of direct products and coproducts of
sets, groups, etc., in any good book on set theory / algebra (for example
Hungerford [1974] gives a good account of these). In fact we can define these
concepts categorically (see MacLane [1971]).2.3.1 Dire
t produ
t of semigroups
Recall that the Cartesian product of a family of setsA = {Ai : i ∈ I} is the set of all
functions f : I → ∪iAi where f (i) ∈ Ai for all i ∈ I. The function on the indexset
Isatisfying the condition above will also be denoted as f = ( fi)i∈I (as I-tuples).
When I is a finite set having cardinality n ∈ N, this definition coincides with
the definition of n-tuples. We use these notations below.

Proposition 2.9 (Direct products). Let F = {Si : i ∈ I} be a family of semigroups.
Assume that

S =
∏

i∈I

Si =
∏

F (2.20a)

denote the cartesian product of sets Si. Define a binary operation on S pointwise:

xy = (xiyi) for all x = (xi), y = (yi) ∈ S. (2.20b)

Then S with the binary operation above, is a semigroup such that for each i ∈ I

πi(x) = xi for all x ∈ S (2.20c)

is a homomorphism πi : S→ Si.

The semigroup S =
∏

F constructed above is called the Direct product of
the family F = {Si : i ∈ I}. When F is finite, say F = {S1, S2, . . . , Sn}we use the
usual notation

S = S1 × S2 × · · · × Sn
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product!subdirect productto denote the product. The above equations are valid for an arbitrary familyF
of semigroups (where I is a set). Hence product of any family of semigroups
exists. Moreover, products can be characterized upto isomorphisms abstractly
(categorically) in terms of homomorphisms. The proof of the following is
routine exercise.

Theorem 2.10. A semigroup T is isomorphic to the product
∏

i∈I Si if and only if T
satisfies the following universal property:

(x) For each i ∈ I, there is a homomorphismσi : T → Si such that, to each semigroup
U and each family {τi : U → Si, i ∈ I} of homomorphisms, there corresponds a
unique homomorphism τ : U → T making the following diagram commute:

U
τi

τ

T σi
Si

(2.21)

There are several constructions related to direct products that are useful in
structure theory of semigroups. We discuss two such constructions below that
are of interest to us in the sequel.

Remark 2.6: The proposition above proves the existance and gives a construc-
tion of direct products in the category of semigroups and the theorm gives
the unvesal property of direct products. If, in these results one replaces
semigroups by monoids or semigroups with zero and homomorphisms with
monoid homomorphisms or homomorphisms that preserve zero, then it can
be shown easily that the resulting product will also be of the same type; that
is, the category of monoids and the category of semigroups with zero have
products and is the same as the product in the category of semigroups.. In
particular, it is useful to note that, the category of all groups with zero also has
this property. However, other products discussed below does not have this
property.2.3.2 Subdire
t produ
ts
A subsemigroup T of the direct product S of the family F = {Si}i∈I is called a
subdirect product provided that, for each i ∈ I, σi = πi|T : T → Si is a surjective
homomorphism.

Subdirect products is a concept from universal algebra that has been useful
in semigroup theory. In many constructions of semigroups, we need a sub-
direct product rather than direct product. However, it may be noted that a
subdirect product is not uniquily specified by the family F ; we need addi-
tional conditions to fix it uniquely. The following results are consequences of
G. Birkhoff’s basic work on universal algebras ? (see also Grillet Grillet).
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semigroup!subdirectly irreducible – If θ : S→ T is an isomorphism of S to a subdirect product T of F , then for
each i ∈ I, φi = θ ◦ σi where σi = πi|T is a surjective homomorphism. Now, for
each t ∈ T,

θ(t) = (σi(θ(t))) = (φi(t))

Since θ is an isomorphism, for any t, t′ ∈ T, t , t′, θ(t) , θ(t′). Hence for
any t, t′ ∈ T, t , t′ there exists i ∈ I with φi(t) , φi(t′). Therefore the family
{φi}i∈I of surjective homomorphisms separate points of S. Conversely if S is a
semigroup and if {φi : S → Si}i∈I is family of surjective homomorphisms of S
to semigroups in F , then by Theorem 2.10, there is a unique homomorphism
θ of S to the product

∏

F such that the Diagram 2.21 commutes for all i ∈ I.
If T = Imθ, this implies in particular that πi(T) = Si for all i ∈ I. Hence T is a
subdirect product of F . Moreover, θ is injective if and only if the family {φi}

separates points of S. Thus we have

Proposition 2.11. A semigroup S is isomorphic to a subdirect product of a family
F = {Si}i∈I if and only if there is a family {φi : S→ Si}i∈I of surjective homomorphisms
that seperate points of S.

When S satisfies the conditions of the proposition above, we will refer to S

as a subdirect product of F with projections φi. We can formulate the result
above in terms of congruences as follows.

Corollary 2.12. Let {ρi : i ∈ I} be a set of congruences on the semigroup S and let
ρ = ∩iρi. Then S̄ = S/ρ is a subdirect product of semigroups Si = S/ρi.

Proof. By Theorem 2.5, for each i ∈ I, σi = ρi/ρ is a congruence on S̄ = S/ρ such
that S̄/σi is isomorphic to Si = S/ρi. Hence there exists surjective homomor-
phisms φi : S̄→ Si, i ∈ I. Suppose that ā, b̄ ∈ S̄ are such that φi(ā) = φi(b̄) for all
i ∈ I. Since the map θ : x 7→ ρ(x) is a surjective homomorphism of S onto S̄we
can find a, b ∈ S with ā = ρ(a), b̄ = ρ(b). Then

(ρ(a), ρ(b)) ∈ σ⇒ (a, b) ∈ ρi for all i ∈ I.

This gives ā = ρ(a) = ρ(b) = b̄. Hence the family of homomorphisms {φi}i∈I

separates points of S̄.

A semigroup S is said to be subdirectly irreducible if S hasmore than one ele-
ment and has the following property: if S is isomorphic to a subdirect product
of semigroups Si, i ∈ I, there is atleat one i ∈ I such that the corresponding pro-
jection S→ Si is an isomorphism. By the proposition above, this is equivalent
to the statement that intersection of any set of proper (non-trivial) congruences
on S is proper.

The following result is due to G. Birkhoff ?.
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Theorem 2.13. Every semigroup is a subdirect product of subdirectly irreducible
semigroups.

Proof. Let S be a semigroup. Consider (a, b) ∈ S2 with a , b. Let Ra,b denote
the set of all congruences ρ on S for which (a, b) < ρ. Clearly, union of any
chain (under inclusion) of congruences in Ra,b again belongs to Ra,b. Hence
by Zorn’s lemma Ra,b contains maximal congruences. For each (a, b) ∈ S2 with
a , b choose a maximal congruence ρa,b ∈ Ra,b. The maximality of ρa,b implies
that for every congruence ρ ⊇ ρa,b with ρ , ρa,b, (a, b) ∈ ρ. Hence intersection
of any set of congruences on S properly containing ρa,b properly contains ρa,b.
This implies that intersection of any set of proper congruences of Sa,b = S/ρa,b is
proper. Therefore the semigroup Sa,b is subdirectly irreducible for all (a, b) ∈ S2,
a , b. Also since

⋂
{

ρa,b : (a, b) ∈ S
2, a , b

}

= 1S,

by Corollary 2.12, S is a subdirect product of semigroups Sa,b.2.3.3 Fibered produ
ts
Let φ : S→ U and θ : T→ U be homomorphisms of semigrroups. Then

S ×U T = {(s, t) ∈ S × T : sφ = tθ} (2.22)

is easily seen to be a subsemigroup of the direct product S × T. We use the
notations introduced above in the statement:

Proposition 2.14. Let S, T, φ and θ be as above. Assume that

ψ1 = π1|F, ψ2 = π2|F

where

π1 : S × T → S, π2 : S × T → T, are projections and F = S ×U T.

Then the first diagram below is commutative:

S ×U T
ψ1

ψ2

S

φ

T
θ

U

W
η1

η2

S

φ

T
θ

U

(2.23)

Moreover, if η1 : W → S and η2 : W → T are homomorphisms such that the second
diagram above is commutative, then there exist a unique homomorphism ξ : W →
S ×U T such that

η1 = ξ ◦ ψ1, and η2 = ξ ◦ ψ2. (∗)
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S ×U T:fibered product of S and T
over U

product!fibered product
homomorphism!fiber
homomorphism

homomorphism!induced fiber –
diagram!pullback
word!normalized –

Proof. Thedefinition of S×UT implies that the first diagram in 2.23 is commuta-
tive. If ηi, i = 1, 2 are homomorphisms making the second diagram commute,
then

uξ = (uη1, uη2) for all u ∈W

defines a homomorphism ξ : W → S ×U T satisfying the conditions (∗). These
conditions imply that, for all u ∈W,

uη1 = (uξ)ψ1, and uη2 = (uξ)ψ2.

Since ψi, i = 1, 2 are projections the equations above shows that uξ = (uη1, uη2)
for all u ∈W and so, ξ is unique.

The semigroup S ×U T is called the fibered product of semigroups S and T

over U. Homomorphisms φ and θ are refered to as fiber homomorphismswhile
ψ1 and ψ2 are induced fiber homomorphisms. Here ψ1 is induced by φ and ψ2 is
induced by θ. The result above says that the first diagram in (2.23) defining
the fibered product is a pullback diagram (see MacLane [1971], page 71).

We can generalize the construction for an arbitrary family of semigroups
in the obvious manner.2.3.4 Coprodu
ts
To define coproducts of F , we may assume with out loss of generality that

S1i ∩ S1j = {1} for all i , j.

Consider the set

X =
⋃

i∈I

Si.

A word in X is the concatenation

w = xi1xi2 . . . xin , xit ∈ Sit

of a finite sequence

(xii , . . . , xin) = (xit)1≤t≤n

in of elements in X. The word w is said to be normalized if no two adjacent
terms of the sequence (xit)1≤t≤n belongs to the same semigroup; equivalently,
is , is+1 for any s, 1 ≤ s < n. Given an arbitrary finite sequence (xit)1≤t≤n, if xis
and xis+1 belongs to the same semigroup, we may multiply these and obtain
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∐

i∈I Si :free product of {Si}i∈I
semigroups!coproduct of –
semigroups!free product of –

a modified sewquence in which the term xis is replaced by the product xisxis+1
and xis+t is replaced by xis+t+1 , t ≥ 1. Repeating this process a finite number of
time, we will obtain a unique normalized word. For convenience we denote
the normalizes word obtained from (xit)1≤t≤n by w(xii , . . . , xin). Notice that for
a ∈ Si, i ∈ I, the normalized word w(a) given by the sequence with the only
term a is a itself. It is not difficult to verify the following.

Proposition 2.15. LetF = {Si : i ∈ I} be a family of semigrpoups and let X =
⋃

i∈I Si.
Suppose that

P =
∐

i∈I

Si = {w : w is a normalized word in X}. (2.24a)

For any words w = xi1xi2 . . . xin and w
′ = y j1 . . . y jm in P, define the product ww′ by

ww′ = w(xii , . . . , xin , y j1 , . . . , y jm). (2.24b)

This defines a product in P and with this product P is a semigroup. Further, for each
i ∈ I, the map

i : a 7→ w(a)

is an injective homomorphism of Si into P.

The semigroup P constructed above is called the Coproduct or free product of
the family F . Free products are (categorical) duals of products.

The following is the dual of Theorem 2.10; its proof is left as an exercise.

Theorem 2.16. A semigroup P is isomorphic to the coproduct of a family {Si}i∈I of
semigroups if and only if P satisfies the following universal property:

(y) For each i ∈ I, there is a homomorphism i : Si → P such that, to each semigroup
U and each family {ηi : Si → U, i ∈ I} of homomorphisms, there corresponds a
unique homomorphism η : P→ U making the following diagram commute for
each i ∈ I:

Si

ηi

i
P

η

U

(2.25)

We discuss an important particular case of free products in the next section.

2.4 free semigroups and presentations of semigroups

Free semigroups form one of the most important and naturally occuring class
of semigroups. In this section we provide the elementary definitions and
discuss presentations of semigroups by generators and relations.
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word
alphabet
X+: Free semigroup on X
semigroup!free –
word!empty
X∗: Free monoid on X
monoid!free –

2.4.1 Free semigroups and monoids
Let X be a set. A word over [the alphabet] X is a finite sequence (x1, x2, . . . , xr)
of symbols representing elements of X in which repetitions are allowed. We
denote words by juxtaposition as w = x1x2 . . .xr. We can define a binary
operation in the set of all words by juxtaposition: if w1 = x1 . . . xr and w2 =

y1 . . . ys are words, we set

w1w2 = (x1 . . . xr)(y1 . . . ys) = x1 . . . xry1 . . . ys.

This binary operation is clearly associative. Thus the collection X+ of all non-
empty words over X is a semigroup; X+ is called the free semigroup on X. A
semigroup S is said to be free if it is isomorphic to X+ for some X , ∅.

If w1 and w2 are non-empty words over X, then clearly it is not possible to
have

w1w2 = w1 or w1w2 = w2.

Hence X+ is a semigroup and not a monoid. If we include, in the set of words
over X, a word ewhich does not have any symbol, called the empty word, then
for any word w over X, we must have

we = ew = w

Hence the set X∗ of all words over X (including empty word) is a monoid and
is called the free monoid over X.

Example 2.3: Let X = {x} be a singleton set. Then words over X are precisely powers
of x and so x+ = {xn : n ∈ N∗}. Hence x+ = 〈x〉. Since no two distinct words in x+ can
be equal, by Proposition 2.1, it is an infinite cyclic semigroup which is isomorphic to
(N∗,+). Similarly the free monoid x∗ is the infinite cyclic monoid isomorphic to (N,+).

The free semigroup is characterized by the following universal property:

Proposition 2.17. Let jX : X → X+ denote the map which identifies each x ∈ X
with the word containing the only symbol x. Then the pair (X+, jX) has the following
property:

• Let S be a semigroup and f : X → S be a map. Then there exists a unique
homomorphism f̃ : X+ → S such that the following diagram commute:

S

X

f

jX
X+

f̃

(D1)

The free semigroup X+ is characterized up to isomorphism by the property above.
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generating setProof. For w = x1 . . . xr ∈ X+, define

f̃ (w) = f (x1) . . . f (xr) (2.26)

where, on the right-hand side, the product is taken in the semigroup S. Clearly,
f̃ : X+ → S is a homomorphism. If x ∈ X, then jX(x) is theword inX+having the
only symbol x and so, by the definition above, f ( jX(x)) = f (x); this proves that
the diagram (D1) commute. The uniqueness of f̃ is clear from the definition.

Suppose that (S, f ) is a pair consisting of a semigroup S and a mapping
f : X → S that satisfies the property above. Since X+ is a semigroup and
jX : X → X+ is a mapping, by the above, there exists a homomorphism
h : S→ X+ such that f ◦ h = jX. By the diagram above jX ◦ f̃ = f . Hence

jX = jX ◦ 1X+ = f ◦ h = ( jX ◦ f̃ ) ◦ h

= jX ◦ ( f̃ ◦ h) = jX ◦ 1

where f̃ ◦ h = 1 : X+ → X+ is a homomorphism. By the uniqueness, we have
1 = 1X. Similarly h ◦ f̃ = 1S. Thus f̃ : X+ → S is an isomorphism.

Example 2.4: Let X be a set. Show that there is an isomorphism θ : X+ →
∐

x∈X x+.

The proposition above holds for monoid also; in fact, we have:

Proposition 2.18. Let jX : X → X∗ denote the map which identifies each x ∈ X
with the word containing the only symbol x. Then the pair (X∗, jX) has the following
property:

• Let M be a monoid and f : X→M be a map. Then ere exists a unique monoid

homomorphism f̂ : X∗ →M such that

jX ◦ f̂ = f .

The free monoid X∗ is characterized up to isomorphism by the property above.

Proof. The proof for Proposition 2.17 goes through in this case if we replace
X+ by X∗, the semigroup S by the monoid M, homomorphism h by a monoid
homomorphism, and define f̂ by Equation (2.26) and the condition that f̂ (e) =
1, the identity of M.

A subset A of a semigroup [monoid] S [M] is called a generating set (or a
set of generators) for S [M] if every element of S [M] can be written as a finite
product of elements in A. Note that X (identified as a subset of X+ by the
function jX) is a generating set for X+, where as X ∪ {e} is a generating set
for X∗. It is easy to see that every semigroup S [monoid M] has at least one
generating set (the trivial generating set S [M] of all elements of S [M]). We
have:
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semigroup!presentation
〈A; {wi = w′

i
, i ∈ I}〉:semigroup

presented with generators A and
relations R

word!directly derivable
word!derivable
consequence

Corollary 2.19. Every semigroup [monoid] is a homomorphic image of a free semi-
group [monoid].

Proof. Let A be a generating set for the semigroup [monoid] S [M]. By the
Proposition 2.17 [Proposition 2.18], f̃ : A+ → S [ f̂ : A∗ → M] is a homomor-
phism [monoid homomorphism], where f denote the inclusion of A in S [M].
Clearly A ⊆ Im f̃ [A ⊆ Im f̂ ] and hence f̃ [ f̂ ] is surjective.

Remark 2.7: The universal property of the construction of X+ given in Propo-
sition 2.17 implies that the construction X+ gives a left-adjoint of forgetful
functor U : S → Set (see Theorem 1.6). Similar remark holds for the free
monoid construction also.2.4.2 Presentations
We have seen that every semigroup S is a quotient (homomorphic image) of a
free semigroupA+whereA is a generating set for S (see Corollary 2.19). Hence
by Theorem 2.3, there is a congruence ρ on A+ such that A+/ρ is isomorphic
to S. If R is any relation that generate the congruence ρ (that is, R(c) = ρ, see
Proposition 2.7) then S is determined, up to an isomorphism by the set A and
the relation R. We say that 〈A;R〉 is a presentation of S. If R and R′ are both
relations generating ρ they give two equivalent presentations of S. Since

R(c) = (R ∪ R−1)(c),

we may assume that R is symmetric. If R = {(wi,w′i ) : i ∈ I}, is symmetric, we
indicate the presentation 〈A;R〉 as

〈A; {wi = w′i , i ∈ I}〉.

Note that, if f : A ⊆ S denotes the inclusion, then the homomorphism f̃ :
A+ → S defined by Equation (2.26) maps both wi and w′

i
to the same element

in S. Now, since R is symmetric, from the proof of Proposition 2.7, we have

ρ = (RS)(t)

By Equation (2.12b), (u, v) ∈ RS if and only if u = rwis, v = rw′
i
s or u = rw′

i
s,

v = rwis for some i ∈ I. We say that the word v is directly derivable from the
word u; if (u, v) ∈ R(c) then v is said to be derivable from u. In this case the
relation u = v is said to be a consequence of relations {wi = w′

i
, i ∈ I}.

Note that every semigroup (S, ·) admits at least the trivial presentation

〈S; {xy = x · y ∀ x, y ∈ S}〉
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semigroup!finitely generated
semigroup!finitely related
semigroup!finitely presented

If S admits a presentation 〈A; {wi = w′
i
, i ∈ I}〉 in which A [I] is finite, then S is

said to be finitely generated [finitely related]. If both A and I are finite, then S is
said to be finitely presented .

Presentations of monoids can be defined as above by replacing A+ by A∗

and f̃ by f̂ (see Proposition 2.8) in the discussion above. Note that a monoid
can have a semigroup presentation if there is a word v ∈ A+ such that v = 1 is
a consequence of the the relations R = {wi = w′

i
, i ∈ I}.

We have the following universal property for semigroups [monoids] with
a given presentation. We formulate the result for semigroups. The same result
holds for presentations of monoids also with appropriate modification.

Proposition 2.20. Let S = 〈A; {wi = w′
i
, i ∈ I}〉 be a semigroup presented with gen-

erators A and relations wi = w′
i
, i ∈ I. Let f : A → T be a mapping of A into a

semigroup T. If for every i ∈ I,

x1 f . . .xn f = x′1 f . . . x
′
m f where wi = x1 . . . xn, w′i = x′1 . . . x

′
m (1*)

then there exists a unique homomorphism f̄ : S→ T such that the following diagram
commutes.

T

A

f

ιA
S

f̄

(D1∗)

where ιA denote the insertion of the generators A in S.

Proof. Since f : A → T is a mapping, by Proposition 2.17 there is f̃ : A+ → T

such that jA ◦ f̃ = f . Let σ = κ f̃ . Since equations (1*) holds for each i, wi f̃ = w′
i
f̃

for all i. Hence if R = {wi = w′
i
: i ∈ I} denote the relation determined by the

presentation of S, then R ⊆ σ. Hence ρ = R(c) ⊆ σ. Therefore if we set

(ρ(w)) f̄ = w f̃ for all w ∈ A+

then f̄ : S → T is clearly a homomorphism. Since ιA : A → S is a mapping,
by Proposition 2.17, there is a unique homomorphism ι̃A = φ : A+ → S such
that jA ◦ φ = ιA. Also, by the definition of ρ, ιA sends each a ∈ A to the ρ-class
containing the word a; that is,

aιA = ρ(ajA) = ajA ◦ ρ
#

for all a ∈ A. Hence by the uniqueness, φ = ρ#. Therefore by the definition of
f̄ , φ ◦ f̄ = f̃ . Hence,

ιA ◦ f̄ = jA ◦ φ ◦ f̄

= jA ◦ f̃ = f .
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Thus the given diagram commutes. The uniqueness of f̄ is clear from its
definition.

Example 2.5: A semigroup S is free if and only if it has a presentation of the form
〈X; ∅〉.

Example 2.6: 〈x〉 is a finite cyclic semigroup if and only if it has a presentation of the
form 〈x; xr = xr+m〉 with r ∈ N and m ∈ N∗. This shows in particular that, given any two
positive integers r and m, there is finite cyclic semigroup with index r and period m
which is clearly unique up to isomorphism (see also the Example in § Subsection 2.1.3).
Moreover, any presentation of a semigroup with one generator is a consequence of
a presentation of the form 〈x; xr = xr+m〉 if it is not free. For any presentation of a
semigroup S with one generator x, relations must be a set of equations of the form
{xri = xsi : i ∈ I}with ri, si ∈ N∗ and ri , si. If I , ∅, by Proposition 2.1, S must be a finite
cyclic semigroup and hence these relations must be consequence of a single relation of
the form xr = xr+m.

Example 2.7: Let S = 〈p, q; pq = 1〉 be the monoid generated by elements p and q with
relation pq = 1. Then in S, we have

qnpn , 1 for n ∈ N∗. (a)

To see this holds for n = 1, by Proposition 2.20, it is sufficient to find a monoid T and
a, b ∈ Twith ab = 1 and ba , 1. For example consider T = TN, and a, b ∈ TN be the maps
defined by a : n 7→ n + 1, 0b = 0, nb = n − 1 for n > 0. Then it is readily seen that ab = 1
and ba , 1. For n > 1, assume that the result holds for 1 ≤ r < n. If qnpn = 1, then, using
the relation pq = 1, we obtain

qn−1pn−1 = p(qnpn)q = pq = 1

which is a contradiction. Further, for any m,n ∈ N, again using the relation pq = 1, we
deduce that

pmqn =















pm−n if m ≥ n;

qn−m if m < n.
(b)

Here, we write p0 = 1 = q0. Moreover,

qmpn = qrps ⇐⇒ m = r, n = s. (c)

To prove (c), we first observe that p and q are of infinite order in S. For, if p is
of finite order, by Proposition 2.1, there exist r,m ∈ N∗ such that pr = pr+m. Then
pm = pr+mqr = prpr = 1 and so, qp = pmqp = pm−1p = pm = 1 which contradicts (a). In
Equation (c) we note that, if m = r then pn = ps which implies the p is of finite order
if n , s. Assume that m > r. If n < s then we get qm−r+s−n = 1 which implies that q
is of finite order. If n > s, then pm−r = pn−s which implies that p is of finite order if
m − r , n − s. If m − r = n − s, this gives qm−rpm−r = 1 which contradicts (a). The case
m < r can be treated similarly. It follows that (c) holds. Therefore the monoid S can be
described as:

S = {qmpn : m, n ∈ N} (d)
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semigroup!bicyclic semigroup
representation
representation!– by transformations
representation!linear –
representation!faithful –
action

with product defined by

(qmpn)(qrps) =















qmpn−r+s if n ≥ r;

qm+r−nps if n < r.
(e)

The monoid S can also be given a semigroup presentation:

S = 〈p, q; pqp = p2q = p, qpq = pq2 = q〉.

Suppose that T is the semigroup presented as above. If pq = ǫ, it is easy to verify that ǫ
is the identity in T and so the relation pq = 1 is a consequence of the relations of T. It is
clear that the relations of T is a consequence of the relation pq = 1. Hence S = T. The
semigroup (or monoid) S is called the bicyclic semigroup (or monoid).

2.5 representations

By a representation of a semigroup S, we shall mean a homomorphism φ :
S → T of S into a semigroup T of some specific type. If S is a monoid,
then φ is a representation of monoids if T is also a monoid and φ is a monoid
homomorphism. Thus ifT = TX,φ is a representationby transformations onX,
if T =PT X, it is called a representation by partial transformations, etc. Linear
representations, that is, representations by linear transformations on vector
spaces are also important. This is particularly true if V is finite dimensional.
Note that such a representation is equivalent to a representation by n × n

matrices over a field. A representation φ is said to be faithful if φ is a one-to-
one homomorphism.

In the first subsection below, we consider representations of semigroups
by functions on sets. In Subsection 2.5.2 we examine a specific representation
and in Subsection 2.9.3we discuss a representation by row-monomial matrices
over a group with 0.2.5.1 Representation by fun
tions
We begin by showing that every representation of a semigroup S by functions
on a set X determines an action of S on X.

Proposition 2.21. Let S be a semigroup and X be a set. Suppose that φ : S→ TX is
a representation of S by functions on X. Define

φ̄(x, s) = xφ(s) for all (x, s) ∈ X × S. (2.27)

Then φ̄ : X × S→ X is a map such that

φ̄(x, st) = φ̄
(

φ̄(x, s), t
)

for all x ∈ X, s, t ∈ S. (2.28a)

Conversely, if φ̄ : X × S → X is a map satisfying the condition (2.28a) above, then
for each s ∈ S Equation (2.27) defines a map φ(s) : X→ X such that φ : s 7→ φ(s) is
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action
action!right –
S-set:right –
S-set
S-set!faithful –
action!left –

a representation of S by functions on X. Moreover, if S is a monoid (with identity 1),
then φ̄ satisfies the following:

φ̄(x, 1) = x for all x ∈ X. (2.28b)

if and only if φ is a representation of monoids.

Proof. Since φ is a representation, for s, t ∈ S

φ̄(x, st) = xφ(st)

=
(

xφ(s)
)

φ(t), since φ is a homomorphism;

=
(

φ̄(x, s)
)

φ(t) by Equation (2.27)

= φ̄
(

φ̄(x, s), t
)

which provesEquation (2.28a). Ifφ is amonoid homomorphism, then φ̄ clearly
satisfies Equation (2.28b).

Conversely assume that the function φ̄ satisfies Equation (2.28a). It is clear
that for fixed s ∈ S, Equation (2.27) defines a function φ(s) : X→ X. Moreover,
if s, t ∈ S, then for all x ∈ X,

xφ(st) = φ̄
(

φ̄(x, s), t
)

by Equation (2.28a)

=
(

xφ(x)
)

φ(t) by Equation (2.27).

It follows that φ is a representation and clearly φ is a monoid homomorphism
if Equation (2.28b) holds.

The Proposition above shows that there is a bijection between represen-
tations of a semigroup S by functions on X and functions φ̄ : X × S → X

satisfying Equation (2.28a). A function φ̄ : X×S→ X is called an right action of
the semigroup S on the set X if it satisfies Equation (2.28a). φ̄ is the right
action of a monoid S onX if and only if it also satisfies Equation (2.28b). When
the action of S on X is clear from the context, we may simplify the notation
by writing φ̄(x, s) as xs. With this simplification, Equations 2.28a and 2.28b
becomes x(st) = (xs)t and x1 = x respectively for all x ∈ X and s, t ∈ S. If φ̄ is
a right action of the semigroup [monoid] S on the set X, then the pair (X, φ̄) is
called a right S-set. Again we abbreviate the notation to X and say that X is a
right S-set if φ̄ is clear from the context. A right S-set X is said to be faithful if
the associated representation is faithful.

Dually a left action of S onX is defined as a function ψ̄ : S×X→ X satisfying:

ψ̄(st, x) = φ̄
(

s, ψ̄(t, x)
)

for all x ∈ X, s, t ∈ S. (2.28a∗)
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S-set!orbit
xS1 :cyclic right S-set generated by
x

S-set!cyclic –
S1x :cyclic left S-set generated by xSetS:category of right S-sets

If S is a monoid, ψ̄ is the left action of the monoid if, in addition, we have

ψ̄(1, x) = x for all x ∈ X. (2.28b∗)

In this case, the dual of Proposition 2.21 also holds. However, it may be noted
that, the function ψ : S→ TX defined by (the dual of Equation (2.27))

ψ̄(s, x) = xψ(s) for all (s, x) ∈ S × X

gives a homomorphism ψ : S → T
op
X

(that is an anti-homomorphism of S to
TX). We shall refer to this as a dual or left representation. Again if ψ̄ is clear
from the context, we may write sx for ψ̄(s, x). A left S-set is a pair (X, ψ̄) where
X is a set and ψ̄ is a left action of S on X; again we abbreviate this to X if the
left action is clear from the context. A left S-set is faithful if the associated
representation is faithful.

We observe that the concept of left S-sets is the left-right dual of right S-sets
and sowemay dualise every definition right S-sets to left S-sets and vice-versa
and to every result that holds for right S-sets, the dual result holds for left S-
sets. Consequently, in the following we shall not repeat the dual statements
explicitly.

If X and Y are right S-sets, a mapping λ : X → Y is called a morphism of

right S-sets or an S-morphism if (using simplified notations)

λ(xs) = (λ(x)) s for all x ∈ X; s ∈ S. (2.30)

We shall follow the convention that morphism of right [left] S-sets are written
as left [right] operators. As a consequence, the endomorphism semigroup of
a right [left] S-set X is naturally identified as a subsemigroup of T

op
X

[TX] (see
§ Subsection 2.1.3).

A subset X′ of a right S-set X is called an S-subset if for all x′ ∈ X′, x′S1 ⊆ X′

where x′S1 = {x′s : s ∈ S1}. Thus the subset X′ ⊆ X is an S-subset if and only
if X′ is a right S-set and the inclusion X

X′
is a morphism of right S-sets. Note

that, for any x ∈ X, xS1 itself is an S-subset of X and is called the orbit of x in
X. A right S-set X for which X = xS1 for some x ∈ X is said to be a cyclic (or
monogenic) S-set generated by x. Dually, a left S-set X is cyclic if X = S1x for
some x ∈ X.

Given a semigroup S, the collection of all right S-sets with morphisms
defined as above is clearly a category SetS. Isomorphisms, endomorphisms,
automorphisms, etc. of right S-sets are isomorphisms, endomorphisms, etc.
in the category SetS. The discussion of S-subsets above implies that SetS has
subobjects in the sense of § Subsection 1.3.2. Also it is easy to see that if
f : X → Y is a morphism of right S-sets, then the factorization of f as a
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SSet:category of left S-sets
congruence!– on S-set
S-set!right regular –
S-set!left regular –
Sr : right regular S-set
Sl : left regular S-set
representation!right regular –
ρS :right regular representation of S
translation
translation!inner right –
translation!right –

mapping (that is, factorization of f in Set) gives a factorization of f in SetS also.
Therefore the category SetS has images (see § Subsection 1.3.2). We also have
a category SSet of all left S-sets which has images.

Let X be a right S-set. A congruence on X is an equivalence relation µ
satisfying the following condition:

(x, y) ∈ µ ⇐⇒ (xs, ys) ∈ µ for all s ∈ S1. (2.31)

A congruence on a left S-set is defined dually. The routine proof of the follow-
ing statement is left as an exercise.

Proposition 2.22. Let µ be a congruence on the right S-set X. Then X/µ is a right
S-set with respect to the action defined by

(µ(x), s) 7→ µ(xs) for all (µ(x), s) ∈ X/µ × S (2.32)

such that the quotient map µ# : X → X/µ is a morphism of S-sets. Moreover, if
θ : X→ Y is a morphism of S-sets then

µθ = {(x, x′) ∈ X × X : θ(x) = θ(x′)}

is a congruence on X and there exists an injective S-morphism ψ : X/µθ : Y such that
the following diagram commutes:

Y

ψ

X

θ

µ#
θ

X/µθ

(D4)

In particular, θ is surjective, if and only if ψ is an isomorphism.2.5.2 Regular representations
If S is a semigroup, with respect to the product in S, S can be regarded as a
right S-set as well as a left S-set. Here we shall refer to these as right regular
and left regular S-set and use the notations Sr and Sl respectively to denote
these. A subset X of S is an S-subset of Sr [Sl] if and only if X is a right [left]
ideal of S and X is cyclic if and only if X is a principal right [left] ideal. The
representation ρS = ρ associated with the right regular S-set Sr is called the
right regular representation of S. In this case, for any a ∈ S, we write ρa for
ρS(a). The map ρa : s 7→ sa is called the inner right translation of S by a. Note
ρa : S → S is an endomorphism of the left regular S-set Sl. More generally,
a right translation ρ is an endomorphism of Sl. It follows from the discussion
that

ρ : S→ End(Sl)
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λS : left regular representation
translation!inner left –
translation!left –
semigroup!right reductive
semigroup!left reductive

is a homomorphism of S to the endomorphism semigroup of Sl.
These definitions can be dualized for the left regular S-set Sl. In particular,

the left representation determined by Sl is denoted by λS and for a ∈ S, the
map λS(a) = λa : s 7→ as is called the inner left translation by a. As above,
a left translation is an endomorphism of the right regular S-set. Note that,
according to the convention adopted for morphisms of left and right S-sets
(see Subsection 2.5.1), left translations are considered as maps in T

op
S

and
written as left operators. Consequently End(Sr) is naturally a subsemigroup
of T

op
S

and
λS = λ : S→ End(Sr)

is a homomorphism of S into the semigroup of endomorphisms of the right
regular S-set Sr.

Also, every inner right translations commute with every inner left transla-
tions; that is for all s, t, a ∈ S,

(λsa)ρt = λs(aρt). (2.33)

We say that a semigroup S is right[left] reductive if right regular [left regular]
representation is faithful.

It is clear from Equation (2.31) that an equivalence relation µ on S is con-
gruence on the right regular S-set if and only if µ is a right congruence on
the semigroup S (see § Subsection 2.2.1). Dually µ is a congruence on the left
regular S-set if and only if µ is a left congruence on the semigroup S.

Let M be a monoid. Cyclic right [left] M-sets and right [left] congruences
on the monoid M are related as follows.

Proposition 2.23. Let µ be a right congruence on the monoid M. Then M/µ is the
cyclic right M-set xM, generated by x = µ(1). Conversely, if X = xM is a cyclic right
M-set, then

µ(X) = {(s, t) ∈M ×M : xs = xt}

is a right congruence onMsuch thatX is isomorphic toM/µ(X). Moreover, if X = xM
and Y = yM are cyclicM-sets, there is surjective morphism θ : X→ Y with θ(x) = y
if and only if µ(X) ⊆ µ(Y).

Proof. Since a right congruence onM is a congruence on the right regularM-set,
it follows thatM/µ is a rightM-set by Proposition 2.22. Since µ# : M→M/µ is
a surjective morphism, we have

µ#(s) = µ#(1s) = µ#(1)s = xs

and so M/µ = xM. Conversely, given X = xM, (s, t) ∈ µ(X) implies xs = xt and
so x(su) = x(tu) for all u ∈ M. This implies that (su, tu) ∈ µ(X). Thus µ(X) is a
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right congruence. Also, the map θX : s 7→ xs is a surjective morphism of the
rightM-set onto X such that θX(s) = θX(t) if and only if (s, t) ∈ µ(X). Therefore,
by Proposition 2.22 X is isomorphic toM/µ(X).

Suppose that f : s 7→ xs and 1 : s 7→ ys where X = xM and Y = yM. Then,
by the above, f and 1 are morphisms of the right regular M-set to X and Y

such that the right congruences on M induced by f and 1 are µ(X) and µ(Y)
respectively. Also we have f (1) = x and 1(1) = y. If µ(X) ⊆ µ(Y) then it is easy
to see that

θ( f (s)) = 1(s) for all s ∈M

defines a surjective morphism θ : X → Y with θ(x) = y. Conversely, assume
that a surjective morphism θ : X→ Y exists with θ(x) = y. If (s, t) ∈ µ(X) then
by the definition of µ(X) we have xs = xt. Then

ys = θ(x)s = θ(xs) = θ(xt) = θ(x)t = yt

which shows that (s, t) ∈ µ(Y). Thus µ(X) ⊆ µ(Y).

Remark 2.8: The Proposition above shows that cyclic right [left] actions of
monoids are characterized, up to isomorphisms, as quotients of monoids by
right [left] congruences. A similar characterization of semigroup actions is
not possible. However, we can always associate a cyclic S-set with every right
[left] congruence µ on a semigroup S. For ifX = S/µ, let u denote some symbol
not representing any element inX. ThenX1 = {u}∪X becomes a cyclic S-set by
defining action of S on u by us = µ(s). But the cyclic S-setX1 may not a quotient
of the right [left] regular S-set even though it is a quotient of S1. Notice that
S1, the semigroup obtained by adjoining identity to S (see Equation (2.3)) is
always a faithful, cyclic [right, left] S-set.

Remark 2.9: Let M is a monoid with identity 1. A right M-set A = (X, φ̄) is
also called an M-automaton (see Eilenberg [1974], Lallement [1979]). In this
case the set X is called the set of states of A and φ̄ : X ×M → X is called its
transition function. If φ : M→ TM is the representation determined byA, then
Imφ = φ(M) is a sub-semigroup of TX; φ(M) is called the transition monoid of
A. If X is a finite set, then A is called a finite state automaton. Concepts such
as sub-automaton, morphism of automata, etc., can be defined in the obvious
way.

2.6 ideals green’s relations

Study of the structure the set ideals (both one-sided and two-sided) has beenan
important technique for analyzing the structure of various types of algebraic
systems. For semigroups this technique has proved to be of great importance.
Of particular importance are the classes of principal left and right ideals. These
are usually studied via certain equivalence relations induced by them on the
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L(S):l-category of S
category!l-category of S
category!r-category of S
R(S):r-category of S

semigroup. These relations were first introduced and studied by Green Green
[1951] and has shed considerable light on the local structure of semigroups in
general and the class of regular semigroups in particular. Here we shall study
these relations in terms of certain categories of principal left and right ideals.2.6.1 Green's relations
Let S be a semigroup. Recall from Subsection 2.5.2 (see also § Subsection 2.1.1)
that I ⊆ S is a left ideal of S if and only if I is an S-subset of the left-regular S-set
Sl. In particular, for any a ∈ S, L(a) is a cyclic S-subset of Sl and is a quoitent of
the left S-set S1

l
. Dual remarks hold for right ideals. I is a two-sided ideal of S

if and only if I is an S-subset of both Sl and Sr.

Definition 2.1. Let L(S) denote the subcategory of the category SSet of left
S-sets (cf.Subsection 2.5.1) for which vertices are:

vL(S) = {L(a) : s ∈ S}; (2.34)

and ρ ∈ SSet(L(a), L(b)) is a morphism in L(S) if and only if there is t ∈ S1 such
that

xρ = xt for all x ∈ L(a). (2.35)

L(S) is called, for brevity, the l-category of S. The r-category R(S) of S is defined
dually.

Thus L(S) is a clearly a subcategory of SSet. Therefore if ρ : L(a) → L(b)
is a morphism in L(S), it is a morphism in SSet. The converse may not be
true (see Example 2.8). Also if L(a) ⊆ L(b), L(b)

L(a) satisfies Equation (2.35) with
t = 1. Hence inclusions are moriphisms in L(S). It is easy to verify that
this provides a choice of suboblects in L(S) (see Subsection 1.3.2). Furtermore,
everymorphism in L(S) has unique factorization so thatL(S) has images. Dual
remarks hold for R(S).

Remark 2.10: If I and J are left [right] ideals, any S-morphism (in the category
SSet) is amorphismof ideals. In particular, if a ∈ J, thenρa|I [λa|I] is amorphism
of I to J. However, if I and J are principal ideals, by a morphism θ : I → J, we
shall mean a morphism in the category L(S) [R(S)].

Since L(S) has subobjects, vL(S) is a partially ordered set which we denote
by ΛS = Λ. Thus Λ is the partially ordered set of principal left ideals under
inclusion. Dually we denote by IS = I the paritally ordered set of principal
right ideals and we have vR(S) = I.
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≤l, ≤r, ≤ j : quasi-orders induced by
principal ideals

Green’s relations
L , R, H , D , J : Green’s relations
L [R, H ,D , J ]-class
La, Ra, Ha, Da, Ja: equivalence class
of Green’s relations

Definition 2.2 (Fundamental quasi-orders). The set of principal left and right
ideals of a semigroup S (§ Subsection 2.1.1) induce some fundamental relations
on S:

a ≤l b ⇐⇒ L(a) ⊆ L(b); (2.36a)

a ≤r b ⇐⇒ R(a) ⊆ R(b); (2.36b)

a ≤ j b ⇐⇒ J(a) ⊆ J(b). (2.36c)

These are quasi-orders (that is reflexive and transitive relations) on S (see §
Subsection 1.1.2) such that order ideals with respect to these are respectively
left, right and two-sided ideals.

We shall write ≤l (S), ≤r (S), etc., if it is necessary to indicate the semigroup
on which the relations are defined.

Recall (see § Subsection 1.1.2) that if ρ is a quasi-order on a set X, then
ρ ∩ ρ−1 is an equivalence relation on X. The quasi-orders above generate
certain equivalence relations on the semigroupSwhichare alsoof fundamental
importance.

Definition 2.3 (Green’s relations). The following equivalence relations on a
semigroup S are called Green’s relations:

L =≤l ∩(≤l)−1 = {(a, b) ∈ S × S : L(a) = S1a = L(b)}; (2.37a)

R =≤r ∩(≤r)−1 = {(a, b) ∈ S × S : R(a) = aS1 = R(b)}; (2.37b)

H =L ∩ R; (2.37c)

D =L ∨ R; (2.37d)

J =≤ j ∩(≤ j)−1 = {(a, b) ∈ S × S : J(a) = S1aS1 = J(b)}. (2.37e)

Again we shall use the notations L (S), R (S), etc., to denote these rela-
tions in case it is necessary to specify the semigroup to which these relations
corresponds.

If a ∈ S, then the L [R, H ,D , J ]-class of a is denoted by La [respectively,
Ra, Ha, Da, Ja]. It may be noted that La, Ra and Ja are generating sets of the
principal ideal L(a), R(a) and J(a) respectively. If (a, b) ∈L , then for any s ∈ S1,
L(as) = L(bs) and so, L is a right congruence. Similarly R is a left congruence.
However, in general, H and J are neither left nor right congruences. Recall
that ∨, in Equation (2.37d), denote the join of L and R in the lattice ES of all
equivalence relations on S (Corollary 1.2). Since L⊆J and R⊆J , we have
L ∨ R=D⊆J . It is easy to see that Green’s relations satisfy the following
inclusions:

H ⊆L⊆D⊆J ; H ⊆R⊆D⊆J .

In general all these inclusions are proper (see examples at the end of this
section).
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semigroup!bisimple –
semigroup!0-bisimple –

The partially ordered sets of Green’s classes The quasiorder ≤l induces a par-
tial order on the quotient set S/ L defined by

La ≤ Lb ⇐⇒ L(a) ⊆ L(b) for all La, Lb ∈ S/ L (2.38)

so that S/ L is order isomorphic with the partially ordered set ΛS = Λ =

vL(S) of all principal left ideals under inclusion (see § Subsection 2.1.1) and
Definition 2.1. In the following, we shall identify the partially ordered set
S/ L with ΛS (or Λ). Similar remarks are valid for quasi-order ≤r; we will
identify partially ordered sets S/ R with IS = vR(S). JS denotes the partially
ordered set of j-classes (see Subsection 2.1.1).

It is clear that a semigroup S is simple [0-simple] if and only if it has only
one [non-zero] J -class. Similar remarks hold for left simple semigroups,
right simple semigroups, etc. A semigroup having only one [non-zero] D-
class is said to be [0-]bisimple. Since D⊆J , a bisimple [0-bisimple] semigroup
is simple [0-simple]; but the converse is not true (see Example 2.13).

The following results are statements regarding categories L(S) and R(S).
Thereforemorphisms and/or isomorphisms considered aremorphisms and/or
isomorphisms in L(S) or R(S). Snce these are left-right duals, the dual of
any result proved for one of them holds for the other. In particular R is the
left-right dual of L .

Since principal ideals are cyclic S-sets, the following uniqueness property
holds for morphisms of principal ideals.

Lemma 2.24. Let S be a semigroup and let a, b ∈. If ρ, σ : L(a)→ L(b) are morphisms
in L(S) such that aρ = aσ, then ρ = σ.

Proof. If aρ = aσ, for any u = sa ∈ L(a) (s ∈ S1), we have uρ = s(aρ) = s(aσ) =
(sa)σ = uσ. Therefore ρ = σ.

The following result exhibit certain connections between isomorphisms of
principal ideals (in L(S) or R(S)) and Green’s relations L and R.

Theorem 2.25. Let S be a semigroup and ρ : L(a) → L(b) be an isomorphism of left
ideals. Then we have the following:

(a) For any x ∈ L(a), x R xρ.

(b) For any x ∈ L(a), ρ|Lx is a bijection of Lx onto Lxρ.

(c) If c = aρ, then a R c L b.

In particular, ρ|Hx is a bijection of Hx onto Hxρ.
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Proof. By the definition of isomorphisms there exists t, t′ ∈ S1 such that xρ = xt

for all x ∈ L(a) and yρ−1 = yt′ for all y ∈ L(b). If y = xρ, then this shows that
y ∈ R(x) and so R(y) ⊆ R(x). Similarly, R(x) ⊆ R(y). Hence x R y = xρ. This
proves (a) and the relation a R c in (c). Since ρmaps L(a) onto L(b), and since
Imρ = L(c), we have L(c) = L(b) which implies c L b proving (c). If x ∈ L(a),
then Lx ⊆ L(a) and since L is a right congruence, Lxρ = Lxt ⊆ Lxt = Lxρ. Thus ρ
maps Lx into Lxρ. Similarly ρ−1 maps Lxρ into Lx. It follows that ρ is a bijection
of Lx onto Lxρ. This proves (b). Finally, if u H x, then u L x which implies,
by (b), that uρ L xρ. Also, by (a), uρ R u R x R xρ and so uρ H xρ. As in
the proof of (b), it can be shown that ρ is a bijection of Hx onto Hxρ.

Theorem 2.26 (Green). Let a and b be elements of a semigroup S. Then a R b if and
only if there is a unique isomorphism ρ : L(a)→ L(b) such that aρ = b.

Proof. Assume that a R b. Then R(a) = R(b) and so b ∈ R(a). Hence b = at

for some t ∈ S1. Similarly there is t′ ∈ S1 with a = bt′. Let ρ = ρt|L(a) and
ρ′ = ρt′ |L(b). Then ρ : L(a) → L(b) and ρ′ : L(b) → L(a) are morphisms in L(S)
such that aρ = b and bρ′ = a. Then ρρ′ : L(a) → L(a) is a morphism with
aρρ′ = a and so by Lemma 2.24, ρρ′ = 1L(a). Similarly ρ′ρ = 1L(b). Thus ρ is an
isomorphism. Uniqueness of ρ also follows from Lemma 2.24. Conversely, if
ρ : L(a) → L(b) is an isomorphism such that aρ = b, then by Theorem 2.25(c),
a L b.

Let a, x ∈ S. Then, by the above, a R ax if andonly if there is an isomorphism
σ : L(a) → L(ax) with aσ = ax and ρx|L(a) is a morphism of left ideals L(a) to
L(ax). Hence, by Lemma 2.24, σ = ρx|L(a). This remark is often useful and so
we state it as:

Corollary 2.27. Let a, x ∈ S. Then a R ax if and only if σ = ρx|L(a) is the unique
isomorphism of L(a) onto L(ax) such that aσ = ax.

If α, β are equivalence relations on a set X and if they commute, it is easy
to see that γ = α ◦ β = β ◦ α is an equivalence relation. Since α ⊆ γ and β ⊆ γ,
α ∨ γ ⊆ γ. On the other hand, if ρ is any other equivalence relation with
α, β ⊆ ρ, then by the transitivity of ρ, γ = α ◦ β ⊆ ρ . Hence

α ◦ β = β ◦ α = α ∨ β.

We use these remarks in the following characterization of the Green’s relation
D .

Proposition 2.28. Let D denote the relation defined by Equation (2.37d) on a semi-
group S. Then

D=L ◦ R=R ◦ L .
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Proof. Let (a, b) ∈L ◦ R. Then, by the definition of composition (Equa-
tion (1.2)), for some c ∈ S, a L c R b and by Theorem 2.25, there is a unique
isomorphism σ : L(a) = L(c)→ L(b) such that cσ = b. Let d = aσ. Then by The-
orem 2.25(b), a R d and by (c), d L b. Hence a R d L b and so (a, b) ∈R ◦ L .
Thus

L ◦ R⊆R ◦ L . Similarly, R ◦ L⊆L ◦ R

and so L and R are commuting equivalence relations on S. Hence

L ◦ R=R ◦ L=L ∨ R=D .

by the remarks preceding the statement of the proposition and the definition of
D (Equation (2.37d)). The last statement is now clear from Theorem 2.25.

The following are some of the consequences of the Proposition above.

Corollary 2.29. For a, b ∈ S, the principal ideals L(a) and L(b) are isomorphic in
L(S) if and only if a D b.

Proof. If σ : L(a) → L(b) is an isomorphism, then by Theorem 2.25(a) and the
Proposition above, a D b. Conversely, if a D b, then by the above, there
is c ∈ S with a R c L b and by Theorem 2.26, there is an isomorphism
σ : L(a)→ L(c) = L(b) such that aσ = c.

Corollary 2.30. Let L denote an L -class and R, an R-class of a semigroup S. Then
H = L∩R , ∅ if and only if there is aD-class D with L∪R ⊆ D. Moreover, if H , ∅,
then H is a H -class of S.

Proof. If L ∩ R , ∅, then for any a ∈ L and b ∈ R, a L c R d for any c ∈ L ∩ R.
Hence a D b. Therefore L∪R ⊆ Da. Conversely if L∪R ⊆ D, then a D b for any
a ∈ L and b ∈ R. Hence by Proposition 2.28, there is c with a L c R b so that
c ∈ L ∩ R. The last statement is a consequence of the definition of the relation
H (Equation (2.37c)).

Corollary 2.31. Let H1 and H2 be two H -classes contained in the same D-class of
S. Then there is a bijection of H1 onto H2.

Proof. Let D be the D-class such that H1 ∪ H2 ⊆ D and let a ∈ H1 and b ∈ H2.
Then a D b and so, by Proposition 2.28, a R c L b for some c ∈ D. By
Theorem 2.25 there exist an isomorphism σ : L(a) → L(c) which is a bijection
of Ha = H1 onto Hc. Dually, there is an isomorphism λ : R(c) → R(b) which is
a bijection of Hc onto H2. Hence σ ◦ λ|H1 is a bijection of H1 onto H2.

Corollary 2.32. Let L denote an L -class and R, an R-class of a semigroup S. Then
the set product LR of L and R is contained in some D-class of S.
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egg-box picture Proof. Let a, a′ ∈ L and b, b′ ∈ R. Since L [R] is a right [left] congruence we
have ab L a′b R a′b′. Hence by Proposition 2.28, ab D a′b′.

Remark 2.11 (The “egg-box” picture of D-classes): LetD be aD-class in S. Since
L⊆D , D is the union of all L -classes intersecting D. Similarly, D is the union
of all R-classes intersecting D. Let {Ri : i ∈ I} and {Lλ : λ ∈ Λ} be the sets
of R and L -classes contained in D. Then by Corollary 2.30, Hi,λ = Ri ∩ Lλ
is not empty and so, is an H -class for any (i, λ) ∈ I × Λ. By Corollary 2.31
there is a bijection between any two of these H -classes. Therefore D is a
rectangular grid of H -classes Hi,λ having I rows, the R-classes contained in
D, andΛ columns, theL -classes inD, and such that each cell contains the same
number of elements. Wemay thus visualizeD-classes as “egg boxes” in which
each cell contain the same number of “eggs”. In the following, whenever we
refer to the egg-box picture of D-classes, we shall assume that columns of the
egg-box represent L -classes and rows represent R-classes. The semigroup S itself
may be viewed as a stalk of egg boxes placed one over the other with the box
containing 1 (if it exists) at the top and the a single box containing 0 alone at
the bottom.

Note that the fundamental quasiorders≤l,≤r and≤ j (see Equations (2.36a)–
(2.36c)) and Green’s relations (see Equations (2.37a)–(2.37d)) on a semigroup
S are defined in terms of the product in S. Therefore they are preserved under
homomorphisms. For example, if a ≤l b in S then s = sb for some s ∈ S1. Hence
if φ : S→ T is a homomorphism, then aφ = (sφ)(bφ) and so aφ ≤l bφ in T. In a
similar way it can be shown that φ preserves other relations also. This fact is
of constant use in the sequel and so we state it as:

Lemma 2.33. Let φ : S→ T be a homomorphism of a semigroup S into T. If a, b ∈ S
are related by any one of the fundamental quasi-orders defined by Equations (2.36a)–
(2.36c) or Green’s relations defined by Equations (2.37a)–(2.37d), then aφ and bφ are
related by the same relation in T.

Even though homomorphisms preserve these relations, they do not reflect
them; that is, if aφ and bφ are related by, say L in T, it is clear that a and b

may not be so related in S. It is not even true that if aφ L bφ then they are so
related in the subsemigroup φ(S) = Imφ of T (see Example 2.9).

We end this section with some counter examples and examples which
illustrate the computation of Green’s relations on some important classes of
semigroups.

Example 2.8: Let S = X∗ over the set X and let u be a non-empty word. Then S = L(e)
where e is the empty word and L(u) = Su are objects in the category L(S) amd the
mapping 1 : w 7→ wu is a morphism of L(S) from S to Sw which is clearly injective.
Infact, it can be seen that the map 1−1 : Sw→ S is a morohism od S-sets in the catehory
SSet; but there exists no t ∈ S = S1 such that 1−1 = ρt|S. For, if it did, we must have
ut = 1 which is imposible in a free monoid if u , 1. Thus 1−1 is not a morphism in L(S).
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equivalence relation!cross-section of
–

regular

Example 2.9: Let S = (N,+). It is clear that the quasi-orders≤l, ≤r and≤ j coincideswith
the natural order on N and so all Greeen’s relations on S coincides with the identity
relation on N. It is clear that on any group G, all the fundamental quasiorders and
Green’s relations coincides with the universal relation G × G. Therefore, even though
S = (N,+) is a subsemigroup of the additive group (Z,+) of integers, the fundamental
quasi-orders or the Green’s relations on S is not the restriction of the corresponding
relation on (Z,+) to S.

Example 2.10: Let S = TX (cf. § Subsection 2.1.3 be the semigroup of transformations
of a set X. Recall Corollary 1.2 that EX denote the lattice of all equivalence relations
on X and let P(X) denote the partially ordered set (under inclusion) of all non-empty
subsets of X. We say that Y ∈ P(X) is a cross-section of π ∈ EX if each π-class contains
exactly one element of Y. If yx denote the unique element in Y ∩ π(x), this implies that
the map π(x) 7→ yx is a bijection of X/π onto Y. By Zorn’s lemma, every π ∈ EX has at
least one cross-section; it is also easy to see that for any Y ∈ P(X), there is at least one
π ∈ EX such that Y is a cross-section of π.

For each f ∈ S we can associate a subset Im f Equation (1.1b) of X an equivalence
relationπ f Equation (1.10a) such that |X/π f | = | Im f | (see Equation (1.10b)). Conversely
given π ∈ EX and Y ∈ P(X) with |X/π| = |Y|, for any bijection ψ : X/π → Y, the map
f = π# ◦ψ is a transformation of X such that π f = π and Im f = Y. Given f ∈ S, choose
π ∈ EX such that Im f is a cross-section of π and let Y be a cross-section of π f . Then f |Y
is a bijection of Y onto Im f and so ψ : π(x) 7→ ( f |Y)−1(yx), where yx denote the unique
element in Im f ∩ π(x), is a bijection of |X/π| onto Y. Hence by the remarks above,
f ′ = π# ◦ ψ is a transformation of X with π f ′ = π and Im f ′ = Y. Moreover, for this f ′,
we have

f f ′ f = f and f ′ f f ′ = f ′.

This shows that the semigroup S = TX is regular (see § Subsection 2.6.2 for definition
of regular semigroups). These Equations shows in particular that f f ′ : X → Y and
f ′ f : X→ Im f are idempotents (so that f f ′|Y = 1Y and f ′ f | Im f = 1Im f ).

If 1 = s f for s ∈ S1 = S, then it is clear that Im 1 ⊆∈ f . Suppose conversely that
Im 1 ⊆ Im f . If f ′ : X→ Y ∈ TX is constructed as in the paragraph above, then 1 f ′ f = 1.
So 1 = s f where s = 1 f ′. Hence

1 ≤l f ⇐⇒ Im 1 ⊆ Im f and by (2.37a), we have 1 L f ⇐⇒ Im 1 = Im f . (1)

Again, if 1 = f t with t ∈ S, then π1 ⊇ π f . Conversely, if π1 ⊇ π f , then any cross-section
Y of π f contains a cross-section of 1 and so f f ′1 = 1 where f ′ is constructed as above.
Then 1 = f t where t = f ′1. Thus we have

1 ≤r f ⇐⇒ π f ⊆ π1 hence by (2.37b), 1 R f ⇐⇒ π f = π1. (2)

By Equation (2.37c) and (1) and (2) above, we obtain

1H f ⇐⇒ Im 1 = Im f and π f = π1. (3)

If f D 1, then by Proposition 2.28 f L h R 1 for some h ∈ S. Hence by (1) and (2)
above, Im f = Im h and πh = π1 and so,

| Im f | = | Im h| = |X/πh| = |X/π1| = | Im 1|.

On the other hand, if | Im f | = | Im 1|, we can find t ∈ S such that α = t| Im f is a bijection
of Im f onto Im 1. Then by (1), f t L 1 and since f t = fα, π f = π f t so that f R f t. Hence
by Proposition 2.28, we have

1 D f ⇐⇒ | Im 1| = | Im f |. (4)
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If 1 ≤ j f , then 1 = s f t for s, t ∈ S. Then t maps Im f onto Im 1 and so | Im 1| ≤ | Im f |. If
f and 1 satisfies this condition, it is easy to see that for some t ∈ S, t maps Im f onto
| Im 1 and so, by (1), f t L 1; in particular, 1 ≤ j f t. Also f t ≤r f and so 1 ≤ j f . Thus

1 ≤ j f ⇐⇒ | Im 1| ≤ | Im f |. (5)

Hence by (2.37e) and Equation (4), we have

J=D . (6)

We have noted above that the quasiorder ≤l induces a partial order on the quotient set
S/ L which is order-isomorphic with the partially ordered set of principal left ideals
under inclusion. The Equation (1) above shows that S/ L is order isomorphic with
P(X). Similarly, it follows from Equation (2) that S/ R is order isomorphic with EX. If
LY denote the unique L -class corresponding to Y ∈ P(X) and Rπ denote the the unique
R-class corresponding to π ∈ EX, then LY ∩Rπ , ∅ and hence an H -class if and only if
there is f ∈ Swith Im f = Y and π f = π; this is true if and only if |X/π| = |Y|. If we set

Hπ,Y =















{ f : π f = π, Im f = Y} if |X/π| = |Y|;

∅ otherwise.

then we have

S/ H = {Hπ,Y : |X/π| = |Y|}.

By Equation (5), S/ J is order isomorphic with the linearly ordered set of all cardinal
numbers α ≤ |X|.

Example 2.11: Let S = L T (V), (cf. § Subsection 2.1.3 the semigroup of all linear
transformations on a vector space V over some field k. Most of the arguments in the
last example carries over to this situation if we replace maps by appropriate linear
transformations. In this case, if f ∈ S, Im f is a subspace of V and π f is the coset
decomposition of V with respect to the null-space N( f ) = {v ∈ V : v f = 0}. Recall that,
for f ∈ L T (V), Rank f = dim(Im f ). We have the following description of Green’s
relations on S = L T (V).

1 ≤l f ⇐⇒ Im 1 ⊆ Im f , 1 L f ⇐⇒ Im 1 = Im f ; (1)

1 ≤r f ⇐⇒ N( f ) ⊆ N(1), 1 R f ⇐⇒ N(1) = N( f ); (2)

1 ≤ j f ⇐⇒ Rank 1 ≤ Rank f , 1J f ⇐⇒ 1 D f . (3)

It follows from (1) above that, for the semigroup S = L T (V), the partially ordered
set S/ L is order isomorphic with the lattice P(V) of all subspaces of V and by (2),
S/ R is dually isomorphic with P(V) (or isomorphic to P(V) with dual order— see §
Subsection 1.1.2). If for N,U ∈ P(V), RN the unique R-class corresponding to N and
LU denote the unique L -class corresponding to U, then RN ∩ LU , ∅ if and only if
dimN + dimU = dimV; when N and U satisfy this condition, RN ∩ LU = HN,U is an
H -class of S consisting of all linear transformations with null space N and image U.
Again, using Equation (3), we can see that S/ J is order isomorphic with the linearly
ordered set of all cardinal numbers α ≤ dimV.
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Example 2.12: Let S = 〈p, q : pq = 1〉 denote the bicyclic semigroup (see Example 2.7).
For any x = qnpm, y = qrps ∈ S, using Equations (c) and (e) in 2.7, we find that there is
t = qupv ∈ S with y = xt if and only if n ≤ r; that is

qrps ≤r q
npm ⇐⇒ n ≤ r and qrps R qnpm ⇐⇒ r = n. (1)

Similarly

qrps ≤l q
npm ⇐⇒ m ≤ s and qrps L qnpm ⇐⇒ s = m. (2)

It follows that every R-class of S is of the form

Rn = Rqn = {q
nps : s ∈ N}, (3r)

for n ∈ N and every L -class of S has the form

Lm = Lpm = {q
rpm : r ∈ N}, (3l)

for m ∈ N. It follows from (1) and (2) that S/ R= {Rn : n ∈ N} and S/ L= {Lm : m ∈ N}

are both order isomorphic with N. Now for any n,m ∈ N, by (1) and (2), we have
Rn ∩ Lm = {q

npm}. Hence every H -class of S contain exactly one element. Also, this
shows that any R-class of S intersect any L -class. Therefore, by Corollary 2.30, any
two elements of S areD-related. Hence S has exactly oneD-class (and so, oneJ -class);
that is, S is bisimple.

Example 2.13: Let R+ denote the set of all positive real numbers and A = R+ × R+.
Define product in A by:

(a, b)(c, d) = (ac, bc + d). (1)

If α = (a, b), β = (c, d), γ = (e, f ) ∈ A, then, using (1), we compute

(αβ)γ = (ac, bc + d)(e, f ) = (ace, (bc + d)e + f )

= (ace, bce + de + f ) = (a, b)(ce, de + f )

= α(βγ).

Hence A is a semigroup. Given α = (a, b), β = (c, d) ∈ A, choose positive real numbers u
and v satisfying bu + v < d. Let x and y be solutions of Equations

c = xau, and d = yau + bu + v.

Then σ = (x, y), τ = (u, v) ∈ A and β = σατ. This implies that β ∈ J(α) and since β
is arbitrary, we have J(α) = A. It follows that A does not contain any proper ideal.
Therefore A is simple. Now suppose that α R β. If α , β, there exists τ, τ′ ∈ A such
that β = ατ and α = βτ′. Then α = αττ′. If α = (a, b) and ττ′ = (u, v), then we have
(a, b) = (a, b)(u, v) = (au, bu + v) and so u = 1 and v = 0. This implies that (u, v) < A
which is a contradiction. Hence α = β; that is, R= 1A. Similarly, L= 1A and so,
D=L ∨ R= 1A. Therefore A is simple, but not bisimple; in particular, D,J .
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lasses
Herewe introduce the concept of regular elements and investigate the structure
ofD-classes containing regular elements. Most of the results are reformulation
of results due to A. H. Clifford and D. D. Miller (from Miller and Clifford
[1956]). The first result is of basic importance in the discussion of regularity
Clifford and Preston [1961], Miller and Clifford [1956].

Theorem 2.34. Let a and b be elements of a semigroup S. Then ab ∈ Ra ∩ Lb if and
only if La ∩ Rb contains an idempotent.

e b

a ab

Fig. 1

Proof. The result stated canbe illustrated, using
the “egg-box picture” (see Remark 2.11), given
on the left.
Suppose that ab ∈ Ra ∩ Lb. Then by Corol-

lary 2.27 the map σ = ρb|L(a) is an isomor-
phism of L(a) onto L(ab) = L(b). Since, by
Theorem 2.25, σ preserves L -classes, there is
a unique e ∈ La ∩ Rb such that eσ = eb = b.
Now e2 ∈ L(a) and e2σ = e2b = eb = b.
Hence eσ = e2σ and since σ is an isomorphism,
e = e2. Conversely, if there is an idempotent
e ∈ La ∩ Rb, then b = et for some t ∈ S1 and so
eb = e2t = et = b. Hence, as above σ = ρb|L(a) is
an isomorphism of L(a) onto L(b) and by Theo-
rem 2.25, ab = aσ ∈ Ra ∩ Lb.

Remark 2.12: Theorem 2.34 is one of the few theorems in semigroup theory
that assert the existence of an idempotent. Since idempotents have strong
relation to the structure of important classes of semigroups such as regular
semigroups, finite semigroups, etc., we will find this an indispensable tool in
the sequel.

As a consequence of Theorem 2.34, we have the following characterization
of H -classes that contain idempotents.

Corollary 2.35. Let H be an H -class of a semigroup S. Then there exists a, b ∈ H
such that ab ∈ H if and only if H contains an idempotent.

Proof. If there exist a, b ∈ H such that ab ∈ H, then by Theorem 2.34,H contains
an idempotent. Conversely, if e = e2 ∈ H, then e, e, ee = e2 ∈ H.

The following properties of idempotents are useful frequently and so, for
convenience of reference, we state them as:

Lemma 2.36. For an idempotent e in a semigroup S, we have the following:
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group!subgroup
group!automorphism –
regular
inverse!generalized –
inverse

(a) e is a right identity of every element in L(e) and hence right identity of every
element in Le. Further, L(e) = Se.

(b) e is a left identity of every element in R(e) and hence of every element in Re.
Further, R(e) = eS.

(c) e is a two-sided identity of every element in eSe and hence of every element in
He.

Proof. If a ∈ L(e) = S1e, then a = se for some s ∈ S1 and so, ae = se2 = se = a.
Since e = e2 ∈ Se, it follows that

Se ⊆ S1e = Se ∪ {e} ⊆ Se.

This proves (a). Proof of (b) is dual and (c) is an immediate consequence of (a)
and (b).

Proposition 2.37. Let e be an idempotent in a semigroup S. Then He is a subgroup of
S and there are isomorphisms σ : He → Aut[L(e)] and τ : He → Aut[R(e)] of He

onto the group of automorphisms of L(e) and R(e) respectively. Moreover, maximal
subgroups of S are precisely those H -classes that contain idempotents.

Proof. Since e is an idempotent in S, by Theorem 2.34, ab ∈ He for all a, b ∈ He

and so He is a subsemigroup of S. By Lemma 2.36, ea = a for all a ∈ He. Hence
for any a ∈ He, σa = ρa|L(e) is the unique automorphism of L(e) such that eσa = a

by Corollary 2.27. If a, b ∈ He,

eσaσb = eab = eσab

and by the uniqueness (Lemma 2.24), we have σaσb = σab. Thus σ : a 7→ σa is a
homomorphism ofHe into the groupAut[L(e)] of automorphisms of L(e) which
is injective by Lemma 2.24. If α ∈ Aut[L(e)], then a = eα ∈ He by Theorem 2.25
and, again by Lemma 2.24, α = σa. Thus σ : He → Aut[L(e)] is an isomorphism.
In particularHe is a group with identity e. Dually the map τ : a 7→ τa = λa|R(e)
is an isomorphism of He onto the group Aut[R(e)] of automorphisms of R(e).

Now suppose that G is a subgroup of S with identity e. Then clearly, e is
an idempotent in S. If a ∈ G, equations ae = ea = a and aa−1 = a−1a = e in G

implies that e H a and so G ⊆ He. This proves that a subgroup G of S is a
maximal subgroup if and only if G = He for some idempotent e of S.

An element a ∈ S is said to be regular if there is t ∈ S1 such that ata = a; in this
case t is called a generalized inverse of a. An element a′ ∈ S is called a semigroup

inverse or simply an inverse if there is no ambiguity if a′ is a generalized inverse
of a and vice versa; that is a and a′ satisfies the following:

aa′a = a and a′aa′ = a′; (2.39)
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V(a): The set of inverses of a
semigroup!regular –

a′ is called a group-inverse of a if

aa′a = a, a′aa′ = a′ and a′a = aa′. (2.40)

The set of all inverses of a is denoted by V(a). A semigroup S is said to be
regular if every element of S is regular.

If a is regular with generalized inverse t, and if a′ = tat then

a′aa′ = t(ata)tat = t(ata)t = tat = a′;

aa′a = (ata)ta = ata = a.

Hence a′ = tat is an inverse of a. Moreover
e = aa′ is an idempotent such that ea = a and
so e R a. Similarly e L a′ and if f = a′a, then
a L f R a′. These relations are shown in the
figure on the right. These imply that a D a′ and
so, V(a) ⊆ Da. Further, if a′ is a group inverse of
a (so that e = f ), then by the above, a ∈ He and a′

is the inverse of a in the group He. Conversely,
if a is an element of a maximal subgroup He of
S, the inverse of a in the group He is clearly a
group inverse as defined above.

a′a a′

a aa′

Fig. 2

For convenience of later reference, we summarize the discussion as:

Lemma 2.38. An element a in a semigroup S is regular if and only ifV(a) , ∅. Further,
if a′ ∈ V(a), then e = aa′ and f = a′a are idempotents such that

a R e L a′ R f L a.

In particular, V(a) ⊆ Da. Moreover, a′ ∈ V(a) is a group inverse of a if and only if a
belongs to a maximal subgroup He of S and a′ is the inverse of a in the group He.

We now characterize regular elements in terms of Green’s relations.

Proposition 2.39. For an element a in a semigroup S, the following statements are
equivalent:

(a) a is regular;

(b) La contains an idempotent;

(c) Ra contains an idempotent.

Further, if a is regular, every element in Da is also regular.

Proof. The statement (a) implies (b) by Lemma 2.38. Conversely, if e is an
idempotent in La, then e = sa for some s ∈ S and asa = ae = a by Lemma 2.36.
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regular!– D-classThus statements (a) and (b) are equivalent. Dually, statements (a) and (c) are
equivalent. Also, the equivalence of (a) and (b) implies that, if one element of a
L -classL is regular, then every element of L is regular. Dually if one element of
an R-class R is regular, then every element of R is regular by the equivalence
of (a) and (c). Now if if a is regular and if b ∈ Da, then by Corollary 2.30,
Ra∩Lb , ∅. Hence there is c such that a R c L b. SinceRc = Ra, by the remarks
above, c is regular. Again, this implies that every element of Lc = Lb is regular
and so, b is regular.

If D is a D-class of a semigroup S, the result above shows that either every
element of D is regular or none of them are regular. We say that D is a regular
D-class of S if every element of D is regular.

The next result locates all inverses of a regular element. Recall from
Lemma 2.38 that every inverse a′ of a regular element a of S belongs to Da. In
the following, for any X ⊆ S, we write E(X) for the set of idempotents in X.

Proposition 2.40. Let a be a regular element of a
semigroup S and let a′ be an inverse of a.

(a) For every e ∈ E(Ra) and f ∈ E(La), f a′e is an
inverse of a in Le ∩ R f (see the figure on the
right).

(b) If a′ H a′′, a′, a′′ ∈ V(a) then a′ = a′′.

(c) V(a) = { f a′e : e ∈ E(Ra), f ∈ E(La)}.

In particular, a ∈ S has unique inverse if and only
if La and Ra contains exactly one idempotent each.

f f a′ fa’e

a′a a′ a’e

a aa′ e

Fig. 3

Proof. Since a′ is an inverse of a, by Lemma 2.38, aa′ and a′a are idempotents
such that a ∈ Raa′ ∩ La′a and a′ ∈ Laa′ ∩ Ra′a. Hence a′a ∈ Ra′ ∩ L f and so
f a′ ∈ R f ∩ La′ by Theorem 2.34. Similarly, aa′ ∈ L f a′ ∩ Re and so, again by
Theorem 2.34, f a′e ∈ R f a′ ∩ Le = R f ∩ Le. Further,

a( f a′e)a = (a f )a′(ea) = aa′a = a;

( f a′e)a( f a′e) = f a′(ea f )a′e = f (a′aa′)e = f a′e.

This proves (a) (see the egg-box diagram on the right).
To prove (b), suppose that a′ and a′′ are H -equivalent inverses of a. Then

aa′, aa′′, a′a and a′′a are idempotents such that aa′ H aa′′ and a′a H a′′a (by
Lemma 2.38). By Proposition 2.37, aa′ = aa′′ and a′a = a′′a. Hence we have

a′ = a′aa′ = a′′aa′ = a′′aa′′ = a′′.
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E(S): the biordered set of
idempotents of S

Finally, Let X denote the set on the right of the equation in item (c). By (a),
X ⊆ V(a). If a′′ ∈ V(a), then by Lemma 2.38,

e = aa′′ ∈ Ra ∩ La′′ ; f = a′′a ∈ La ∩ Ra′′ .

Then by (a), f a′e is an inverse of a in Le ∩ R f = Ha′′ . Hence by (b), f a′e = a′′

and so a′′ ∈ X. The last statement is am immediate consequence of (c).

Remark 2.13: The result above throws considerable light on the structure of the
set of inverses of a regular elements. An H -class Hb contains a an inverse of
an element a if and only if H -classes Ra∩Lb and La∩Rb contains idempotents.
If e and f are respectively these idempotents, one can calculate the unique
inverse in Hb in terms of any other inverse a′ of a as f a′e. It may be noted that,
in this case, a′, f a′, a′e and f a′e are all inverses of a (see the figure above). It
follows that there is a bijection (e, f ) 7→ f a′e of E(La)×E(Ra) onto V(a). We may
therefore visualize the set V(a) as a rectangular E(La)×E(Ra)-array of elements
in Da.

Recall that for any a ∈ S, La [Ra, Ja] is the set of generators of the principal
ideal L(a) [respectively R(a), J(a)]. Therefore L(a) has an idempotent generator
if and only if La contains an idempotent. We have the following important
characterization of regular semigroups and their homomorphisms in terms
of Green’s relations and idempotents. Note that an idempotent is always a
regular element.

In the following, we denote by E(S) the set of all idempotents of the semi-
group S.

Theorem 2.41. The following statements are equivalent for a semigroup S:

(a) S is regular.

(b) Every principal left ideal has an idempotent generator.

(c) Every principal right ideal has an idempotent generator.

(d) For every D-class D, E(D) , ∅.

Moreover, if φ : S→ T is a homomorphism of a regular semigroup S onto a semigroup
T, then T is regular and

E(S)φ = E(T).

Proof. Equivalence of (a), (b) and (c) are immediate consequences of statements
(a), (b) and (c) of Proposition 2.39. If (a) holds, then every D-class D is regular
andhence byLemma 2.38,E(D) , ∅. Therefore (a) implies (d). If (d) holds, then
every D-class contain idempotents and hence regular elements. Therefore, by
Proposition 2.39, (a) holds.
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To prove the last statement, let y = xφ ∈ T. If x′ ∈ V(x), clearly, x′φ ∈ V(xφ)
and so y is a regular element of T. Hence T is regular. Also it is clear that
E(S) ⊆ E(T) and so, to complete the proof, it is sufficient to show that given
any e′ ∈ E(T), there is an idempotent e ∈ S with eφ = e′. So, assume that
e′ ∈ E(T). Since φ is onto, there is x ∈ S with xφ = e′. Choose f ∈ E(Lx),
1 ∈ E(Rx), a ∈ V( f1) and let e = 1a f . Then

e2 = 1a( f1)a f = 1a f = e.

Now, by the choice of f and 1, we have

f ′ = fφ L xφ = e′ R 1φ = 1′

and so, by Theorem 2.34, f ′1′ ∈ L1′∩R f ′ . It is easy to verify that e′ is the inverse
of f ′1′ in L f ′ ∩ R1′ . Also, aφ is an inverse of ( f1)φ = f ′1′ and by statement
(a) of Proposition 2.40, 1′(aφ) f ′ is the inverse of f ′1′ in L f ′ ∩ R1′ . Hence by
Proposition 2.40(b),

e′ = 1′(aφ) f ′ = (1a f )φ = eφ.

Whence the proof is complete.

The foregoing theorem is essentially due to Clifford and Miller Miller and
Clifford [1956]. The last assertion of the theorem implies that idempotents in
the homomorphic image of a regular semigroup are images of idempotents.
As far as we know, this important property of homomorphisms of regular
semigroups was first noted by Lallement Lallement [1967]

If T is a subsemigroup of a semigroup S, then it is clear that, if ρ denote
any one of the Green’s relations L , R, H , D or J , then

ρ(T) ⊆ ρ(S) ∩ (T × T)

whereρ(S) denote the relationρon the semigroupS. In general these inclusions
are proper (see Example 2.14). However, we have following result due to Hall
Hall [1972].

Corollary 2.42. Let T be a regular subsemigroup of a semigroup S. Then

ρ(T) = ρ(S) ∩ (T × T)

for ρ =L ,R or H .

Proof. Weshall varify the assertion forρ =L . Let a L (S)bwhere a, b ∈ T. Since
T is regular, by Theorem 2.41, there are idempotents e, f ∈ Twith e L (T)a and
b L (T) f . Then

e L (S) a L (S) b L (S) f
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semigroup!orthodox –
band

and so, e L (S) f . Hence by Lemma 2.36, e f = e and f e = f . This implies that
e L (T) f . Hence a L (T) b.

Note that the statement of the Corollary above is not true for relations D

and J (see Example 2.16).
Before ending this section, we give preliminary classification of regular

semigroups that illustrate the use of concepts and results developed in this
section. We consider two subclasses of the class of regular semigroups:orthodox
semigroups and inverse semigroups. These classes appread early in the de-
velopment of the theory of regular semigroups; many structure theorem that
exist to day (especially for regular semigroups) were modeled on theorems
developed for these semigroups. Moreover, they will provide a rich source of
examples in the sequel.

Orthodox semigroups A regular semigroup S is said to be orthodox if E(S) is
a subsemigroup of S. A semigroup in which every element is an idempotent
(or briefly, an idempotent semigroup) is called a band. Thus S is orthodox if
and only if E(S) is a band. As far as we know, the following characterization
of orthodox semigroups is due to Schein Schein [1966].

Theorem2.43. Aregular semigroupS is orthodox if and only if it satisfies the following
condition: for all x, y ∈ S

x′ ∈ V(x), y′ ∈ V(y)⇒ y′x′ ∈ V(xy). (2.41)

Further, if φ : S→ T is a homomorphism of an orthodox semigroup onto a semigroup
T, then T is orthodox.

Proof. Assume that S is orthodox. Let x, y ∈ S, x′ ∈ V(x) and y′ ∈ V(y). Since S
is orthodox, (x′x)(yy′) and (yy′)(x′x) are idempotents. Using this we deduce

(xy)(y′x′)(xy) = x(yy′)(x′x)y

= x(x′x)(yy′)(x′x)(yy′)y

= x(x′x)(yy′)y = (xx′x)(yy′y)

= xy

and similarly,

(y′x′)(xy)(y′x′) = y′(yy′)(x′x)(yy′)(x′x)x′

= (y′yy′)(x′xx′)

= y′x′.
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semigroup!inverse –
a−1: unique inverse of a

Hence y′x′ ∈ V(xy). Conversely suppose that S satisfies the given condiyion
and let f , 1 ∈ E(S). Then f ∈ V( f ) and 1 ∈ V(1) and so, by the given condition,
1 f ∈ V( f1). Hence

f1 = ( f1)(1 f )( f1) = ( f1)( f1)

which shows that f1 ∈ E(S) so that S is orthodox.
Finally if φ : S → T is a homomorphism of the orthodox semigroup S

onto T, then by Theorem 2.41, T is regular and E(S)φ = E(T). Since E(S) is a
subsemigroup of S,it follows that E(T) is a subsemigroup of T and hence T is
orthodox.

Remark 2.14: Note that the condition stated in Equation (2.41) is the analogue
of the group-theoretic fact that

(uv)−1 = v−1u−1

for any twoelementsu and v in a groupG. The theoremabove therefore implies
that this property does not hold in an arbitrary regular semigroupwhich is not
orthodox. However, we will show later in the next chapter (Chapter 3, ) that ref ?
there is a suitable interpretation of this condition which is valid for arbitrary
regular semigroups.

Note also that in a group the mapping u 7→ u−1 is an involution of groups
(see Equation (2.9)). For arbitrary orthodox semigroups the relation

V = {(x, x′) : x ∈ S, x′ ∈ V(x)}

is not single valued. However, in the class of semigroups defdined below,
(inverse semigroup) this property also holds. Furthermore, the theorem above
implies that when S is othodox the set V is closed with respect to the product

(x, x′)(y, y′) = (xy, y′x′)

and V is a semigroup.

Inverse semigroups A semigroup S is called an inverse semigroup if every
element in S has a unique inverse. In this case, a−1 will usually denote the
unique inverse of a ∈ S. Note that an inverse semigroup is regular; in fact, by
the theorem below, it is orthodox. The theorem below also gives some useful
characterizations of inverse semigroups using Green’s relations. Recall that a
semilattice is a commutative semigroup of idempotents (see Subsection 1.1.3).

Theorem 2.44. The following conditions on a semigroup S are equivalent.

(1) S is regular and E(S) is a subsemilattice of S;

(2) Every principal left ideal and every principal right ideal has a unique idempotent
generator;
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(3) S is an inverse semigroup.

When S is an inverse semigroup the map x 7→ x−1 is an involution S.
Moreover, if φ : S → T is a homomorphism of an inverse semigroup S onto a

semigroup T, then T is an inverse semigroup.

Proof. (1) ⇒ (2). It is sufficient to show that every L -class and every R-class
contain exactly one idempotent. By Theorem 2.41, every L [R] class contains
idempotents. Let e L f . Then by Lemma 2.36 and (1),we have e = e f = f e = f .
Similarly, every R-class also contains exactly one idempotent.(2) ⇒ (3). By Proposition 2.40, (2) implies that each element in S has exactly
one inverse (see Proposition 2.40). Hence S is an inverse semigroup.(3)⇒ (1). Since, by definition, inverse semigroups are regular, it is sufficient
to show that the set of idempotents is a commutative subsemigroup of S. Let
e and f be idempotents in S and a ∈ V(e f ). If h = f ae, then

(e f )h(e f ) = (e f 2)a(e2 f ) = (e f )a(e f ) = e f ; h(e f )h = f (a(e f )a)e = f ae = h and

h2 = ( f ae)( f ae) = f (a(e f )a)e = f ae = h.

Hence h is an idempotent inverse of e f and so, h, e f ∈ V(h). Therefore by
(3), h = e f . Hence e f is an idempotent. Similarly f e is also an idempotent.
Consequently,

(e f )( f e)(e f ) = (e f )(e f ) = e f and similarly, ( f e)(e f )( f e) = f e.

Therefore f e, e f ∈ V(e f ) and so, f e = e f by (3).
To show that the map θ : x 7→ x−1 is an involution, consider x, y ∈ S. Then,

using statement (1) above, we get

y−1x−1xyy−1x−1 = y−1(x−1x)(yy−1)x−1

= y−1(yy−1)(x−1x)x−1 = y−1x−1;

and

xyy−1x−1xy = x(yy−1)(x−1x)y

= x(x−1x)(yy−1)y = xy.

Therefore, the uniquiness of inverse implies that (xy)−1 = y−1x−1 and so θ is an
involution.

Finally, ifφ : S→ T is a surjective homomorphismof the inverse semigroup
S, then by Theorem 2.41,T is regular and E(S)φ = E(T). This implies that, since
E(S) is a commutative subsemigroupofS, E(T) is a commutative subsemigroup
of T and so, T is inverse.
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The following statement intutively mean that every D-class has the same
length breadth; that is the number of R-class contained in a D-class D is the
same as the number of L-class contained in D.

Corollary 2.45. If D is a D-class of an inverse semigroup, then there is a bijection θ
of the set D/L of allL-classes contained in D onto the set D/R such that theH-class
L ∩ φ(L) contains an idempotent.

Proof. For each L-class L, let eL denote the unique idempotent in L. Clearly
L 7→ eL is a bijection of D/L onto E(D). Since each R-class contain a unique
idempotent the map θ defined by θ(L) = ReL is a bijection such that L ∩ θ(L)
contains eL.

Example 2.14: In the semigroup (N,+), the D-relation is the identity relation and
the only regular D-class is {0}. (N,+) is a subsemigroup of the group (Z,+) and all
Green’s relations on (Z,+) is the universal relation (see Corollary 2.42). Similarly, for
the semigroupA of Example 2.13 each D-class is singleton and has no regular D-class.
However, if S is a semilattice, D-classes are singletons, but every D-class is regular.

Example 2.15: Let S = TX. Let f ∈ S, U = Im f and π = π f . It follows from Example
2.10 that an inverse of f can be uniquely constructed from a cross-sectionY of π and an
equivalence relation π′ having U as a cross-section. If IU denote the set of equivalence
relations having U as a partition and Λπ denote the set of all cross-sections of π, then
there is a bijection between Λπ × IU and V( f ). Note that there are bijections between IU
and E(L f ) andΛπ and E(R f ). It is clear that if |X| > 1 and if f is not a bijection, then f has
more than one inverse. Similarly if S = L T (V) and dimV > 1, then any f ∈ S which
is not invertible has more than one inverse; in fact there is a bijection between V( f )
and C(N) × C(U) where C(N) [C(U)] denote the set of all complements of the subspace
N = N( f ) [U = Im f ].

Example 2.16: Let S = 〈p, q : pq = 1〉 be the bicyclic semigroup (see Examples 2.7 and
2.12). Each L -class Lpn contain exactly one idempotent qnpn and each R-class Rqm

contain exactly one idempotent qmpm. Hence S is an inverse semigroup (which is
bisimple—see Example 2.12). It can be seen that the unique inverse of qmpn is qnpm.

Now, the set of idempotentsE of S is a regular subsemigroupof S and theD-relation
on E is the identity relation where as the D-relation on S is the universal relation.2.6.3 The S
hützenberger group of an H -
lass
If He is any H -class of a semigroup S containing the idempotent e, then
by Proposition 2.37 He is a group isomorphic with both the automorphism
groups Aut[L(e)] and Aut[R(e)] of L(e) and R(e) respectively. P. M. Schützen-
berger Schützenberger [1957] gave an appropriate extension of this result to
an arbitrary H -class.

Herewe give a different formulation of his result which exhibits its relation
with the ideal structure of the semigroup as well as its left-right symmetry.
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Note that since H ⊆ La [H ⊆ Ra] L(H) = L(a) [R(H) = R(a)] for any a ∈ H.
Now elements σ ∈ Aut[L(H)] [τ ∈ Aut[R(H)]] are induced by inner right [left]
translations of S. Hence by Equation (2.33)

(τu)σ = τ(uσ)

for all u ∈ H. We use this remark in the proof below.

Proposition 2.46. For any H -class H in the semigroup S, there is a isomorphism

φ : Aut[L(H)]→ Aut[R(H)].

In particular, if H contains an idempotent e, then we can choose the isomorphism φ
so that the following diagram commute:

H

Aut[L(H)] Aut[R(H)]

σ τ

φ

Here σ and τ denote isomorphisms defined in Proposition 2.37.

Proof. Fix a ∈ H. For each σ ∈ Aut[L(H)], by Theorem 2.25, aσ ∈ Ha and by the
dual of Lemma 2.24 and Theorem 2.26, there is a unique τ ∈ Aut[R(H)] such
that τa = aσ. For each σ ∈ Aut[L(H)], let

φ(σ) = τ, where τ ∈ Aut[R(H)] with τa = aσ.

This defines a mapping φ of Aut[L(H)] to Aut[R(H)]. By Lemma 2.24,
Theorem 2.26 and their duals, φ is a bijection. If σ1, σ2 ∈ Aut[L(H)], by the
definition of φ, we have

φ(σ1σ2)a = aσ1σ2 = (aσ1)σ2

= (φ(σ)a)σ2 = φ(σ1)(aσ2)

= φ(σ1)
(

φ(σ2)a
)

= φ(σ1)φ(σ2)a.

Since φ(σ1σ2) and φ(σ1)φ(σ2) are morphisms of principal right ideals, this
implies by the dual of Lemma 2.24 that φ(σ1σ2) = φ(σ1)φ(σ2). Hence φ is an
isomorphism.

To prove the last statement, let φ be the isomorphism determined by the
condition φ(σ)e = eσ where e ∈ H is the idempotent. Then using the defi-
nition of isomorphisms σ : a 7→ σa = ρa|L(H) and τ : a 7→ τa = λa|R(H) in
Proposition 2.37, we have

(

(aσ)φ
)

e = φ(σa)e = eσa = a = (τa)e
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g(H): Schützenberger group of H
Schützenberger group
group!Schützenberger –
action!simply transitive –
group!Schützenberger –!right
group!Schützenberger –!left

Hence

aσφ = τa = aτ for all a ∈ H.

This proves that the given diagram commutes.

Note that the isomorphism φ : Aut[L(H)]→ Aut[R(H)] constructed above
depends on a and so is not “natural” as isomorphism of the corresponding au-
tomorphism groups. However we can associate an abstract group g(H) which
is isomorphic to both Aut[L(H)] and Aut[R(H)]. It is clear that the group g(H)
does not depend on the element a used in the definition of φ and only on the
H -class H. The group g(H) is called the Schützenberger group of the H -class
H.

Let G be a group acting on the set X. We say that the action (or the G-set)
is [simply] transitive if given (a, b) ∈ X × X there is [a unique] 1 ∈ G such that
a1 = b. Note that the G-setX is transitive if and only if it is cyclic (this does not
hold if G is not a group). Now, by Theorem 2.25, σ|H is a permutation of H for
any σ ∈ Aut[L(H)]. Thus Aut[L(H)] acts onH on the right. By Lemma 2.24 and
Theorem 2.26, the action is faithful and simply transitive. It follows that the
corresponding representation of Aut[L(H)] is an injective homomorphism of
Aut[L(H)] into the symmetric group S(H) of all permutations of H and hence,
an isomorphism of Aut[L(H)] onto a simply transitive permutation group
Γ(H) which clearly depend depend only on the H -class H. Consequently, by
the definition above, g(H) is isomorphic to the permutation group Γ(H) of H.
WhenH contains an idempotent, by Proposition 2.37, there is the isomorphism
σ : H → Aut[L(H)] which induces an isomorphism a 7→ σa|H of H onto Γ(H).
It is easy to see that this isomorphism is in fact the right regular (or Keyley’s)
representation of H. Thus, when H is a group, Γ(H) is the image of the right
regular representation of H. Similarly Aut[R(H)] acts simply transitively on
the left onH and so it is isomorphic to a subgroup of S(H)op. SinceAut[R(H)] is
a group of automorphisms of the right S-setR(H), it acts on the left ofR(H) and
hence on H. By lemma 2.24 the map α 7→ α | H is an embedding of the group
Aut[R(H)] into S(H)op. Thus Aut[R(H)] is isomorphic to a permutation group
acting on the left of H. This group is then anti-isomorphic to a permutation
group Γ∗(H) ⊆ S(H) which is faithful and simply transitive. The groups Γ(H)
andΓ∗(H) are callef the right Schützenberger group and left Schützenberger groupof
the H -class H respectively. As above, when H is a group, Γ∗(H) is the image
of the left regular representation of H. Consequently the group g(H) acts on
H both on the right and the left and these actions are faithful and simply
transitive. We summarize the discussion as:
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Sλ: symmetric group of degree αGlα(k): general linear group of
degree α

Theorem 2.47. Let H be an H -class of a semigroup S. Then there exists a group
g(H), called the Schützenberger group of H, satisfying the following:

(a) g(H) is isomorphic to both Aut[L(H)] and Aut[R(H)].

(b) There exist simply transitive permutation groups Γ(H) and Γ∗(H) acting on H
such that g(H) is isomorphic to Γ(H) and anti-isomorphic to Γ∗(H).

If H contains an idempotent, then H is isomorphic to g(H) and Γ(H) [Γ∗(H)] is the
image of the right [left] regular representation of H.

The result above shows that we can associate a group, the Schützenberger
group g(H)with everyH -classH in such away that it is isomorphic toHwhen
H is a group. Since g(H) is isomorphic to Aut[L(a)] for any a ∈ H, it is clear that
g(H) is isomorphic to g(H′) if L(H) and L(H′) are isomorphic (or dually, if R(H)
and R(H′) are isomorphic). By Corollary 2.29 L(H) and L(H′) are isomorphic if
H and H′ are H -classes contained in the same D-class. Hence we have:

Corollary 2.48. If H and H′ are H -classes contained in the same D-class of S, then
g(H) and g(H′) are isomorphic.

Example 2.17: Let α be a cardinal number. By the symmetric group of degree α, denoted
by Sα, we shall mean the group isomorphic to the group S(U) of all permutations of a
setUwith |U| = α. By Example 2.10, there is a bijection α 7→ Dα of the set of all cardinal
numbers α ≤ |X| and the set S/ D of all D-classes TX. It follows from Example 2.10 that
for α ≤ |X|, an H -class H of the D-class Dα has the form

H = Hπ,Y = { f : π f = π, Im f = Y} where |X/π| = |Y| = α}.

If e is any idempotent with πe = π, then e R f for any f ∈ H. Also, ifU = Im e, then it is
easy to verify that the map f 7→ f |U is an isomorphism ofHe onto S(U). It follows from
Theorem2.47 and Corollary 2.48 that the Schützenberger group g(H) ofH is isomorphic
to Sα.

Example 2.18: Let V be a vector space over the field k and let α be a cardinal with
α ≤ dimV. We denote by Glα(k), the group Gl(U) of all linear isomorphisms of a
subspaceU ofV with dimU = α; Glα(k) is called the general linear group of degree α. Let
S = L T (V) be the semigroup of all linear endomorphisms of V (see Example 2.11).
Any H -class in S has the form (Example 2.15)

H(N,U) = { f ∈ S : N( f ) = N, Im f = U} with dimN + dimU = dimV.

If U′ is any complement of N, then it is easy to see that the map f 7→ f |U′ is an
isomorphism of H(N,U′) onto Gl(U′). It follows from Corollary 2.48 that g (H(N,U)) is
isomorphic to Glα(k). Thus if f ∈ Swith Rank f = α, then g(H f ) is isomorphic to Glα(k).
Example 2.19: If S = 〈p, q; pq = 1〉 is the bicyclic semigroup (see Examples 2.7 and
2.12) then every H -class in S contain only one element and so the Schützenberger of
every H -class in S is trivial. Similarly, Schützenberger group of every H -class of the
semigroupA of Example 2.13 is also trivial.
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ideal!minimal
ideal!0-minimal

Example 2.20: Let H be an H -class of a semigroup S and a ∈ H. For each b ∈ H,
Lemma 2.24 and Theorem 2.26, there is a unique automorphism σb ∈ Aut[L(H)] such
that aσb = b and by Theorem 2.25, σ∗

b
= σb|H is a permutation of H belonging to Γ(H).

Since the action of Γ(H) on H is simply transitive, the map σ∗ : b 7→ σ∗
b
is a bijection of

H onto Γ(H). It is therefore clear that

bc = aσ∗bσ
∗
c

defines a binary operation onHwith respect to whichH becomes a groupwith identity
a. Further, the map σ∗ : b 7→ σ∗

b
is the right regular representation of the group H. In

particular, if a = e is an idempotent, the binary operation ofH defined above, coincides
with the binary operation of the maximal subgroup He = H and σ∗ coincides with the
isomorphism induced by the isomorphism of Proposition 2.37.

2.7 simple and 0-simple semigroups2.7.1 Minimal and 0-minimal ideals
Recall § Subsection 2.1.1 that a left [right,two-sided] ideal L in a semigroup S

is aminimal if L is minimal in the lattice LI [respectivelyRI, IS]. If S has 0, the
left [right or two-sided] ideal L is 0-minimal (§ Subsection 2.1.1) if L satisfies
the following:

(i) L , 0; and

(ii) if L′ , 0 is an ideal of the same type as L in S with L′ ⊆ L, then L′ = L.

Remark 2.15: If S is a semigroup with out 0, then any ideal (of any type) I in S
corresponds to the non-zero ideal I0 = I∪{0} of the same t ype in the semigroup
S0 and the correspondence I 7→ I0 is an inclusion preserving bijection of the
set of all left [right, two-sided] ideals of S onto to the set of all non-zero ideals
of the same type in S0. Therefore from any result about non-zero ideals (of
some type) in a semigroup with 0, one can derive a result about ideals (of
the same type) in a semigroup with out 0. In the following such results will
not be stated explicitly unless there is some strengthening in case of ideal in
a semigroup with out 0 or emphasis is desired. It should be noted that the
reverse derivation of results about non-zero ideals in semigroups with 0 from
results about ideals in semigroups with out 0 may not always possible.

Note that if I is 0-minimal ideal of any type, then either I2 = 0 or I2 = I. For
if I2 , 0, then I2 is a non-zero ideal of the same type as I, contained in I and so
I2 = I by the 0-minimality of I. Thus we have

Lemma 2.49. Let I be a [left,right or two-sided] 0-minimal ideal of a semigroup with
0. Then either I2 = 0 or I2 = I.

The following result gives the structure of left [right, two-sided] 0-minimal
ideals in terms of the corresponding Green’s relations.
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Lemma 2.50. Let L [R, J] be a left [right, two-sided] ideal in a semigroup S. Then L
[R, J] is 0-minimal if and only if L = La ∪ {0} [R = Ra ∪ {0}, J = Ja ∪ {0}] for all
a ∈ L− {0} [a ∈ R− {0}, a ∈ J − {0}]. Further L [R, J] is minimal if and only if L = La
[R = Ra, J = Ja] for all a ∈ L [a ∈ R, a ∈ J].

Proof. Weprove the result for left ideals. Proofs for the other cases are obtained
by appropriate modification of this.

Suppose that L = La∪{0}where La is the L -class of S of a non-zero element
a ∈ L. If L′ ⊆ L is any non-zero left ideal and if is b , 0 in L′ then a L b and so,
La = Lb ⊆ L′. Since 0 ∈ L′, we have L ⊆ L′. Thus L is 0-minimal.

Conversely assume that L is 0-minimal. If for some a ∈ L − {0} Sa = 0 then
L′ = {0, a} is a non-zero left ideal in S contained in L and by the 0-minimality
of L, L = L′. Hence La = {a} and so, L = La ∪ {0}. Suppose now that Sa , 0 for
any non-zero a ∈ L. Since Sa is a left ideal contained in L, we have Sa = L for
all a ∈ L − {0}. Hence a ∈ Sa and so, L = Sa = S1a = L(a) for all a ∈ L − {0}.
By Equation (2.37a) (the definition of L relation) it follows that the set of all
non-zero elements of L is a L -class in S.

In view of Remark 2.15, the statement about minimal ideals follow from
that of 0-minimal ideals.

Lemma 2.51. Let S be a semigroup with 0 and let I be an ideal in S such that I2 , 0.
Then I is 0-minimal if and only if IaI = I for all a ∈ I with a , 0.

An ideal I is minimal if and only if IaI = I for all a ∈ I. Moreover if S has a minimal
ideal I, then it is the minimum ideal in the partially ordered set of all non-empty ideals
and hence unique.

Proof. Let I be a 0-minimal ideal in S with I2 , 0. By Lemma 2.49, I2 = I. Let
J = {x ∈ I : IxI = 0}. Then J is an ideal in S and so, either J = 0 or J = I by
the 0-minimality of I. If J = I, then IxI = 0 for all x ∈ I and so I3 = 0. But
I3 = I2I = II = I2 = I. Since I is 0-minimal, I , 0 and so I3 , 0. Hence J = I is
not possible. Thus J = 0 which implies that IxI , 0 for any x ∈ I with x , 0.
Since IxI is an ideal contained in I, by 0-minimality of I, we have I = IxI for all
x ∈ I with x , 0. Conversely, assume that I is an ideal in S satisfying the given
conditions. Since I2 , 0, we have I , 0. Let J , 0 be an ideal contained in I

and 0 , x ∈ J. Since J is an ideal, we have

I = IxI ⊆ S1xS1 ⊆ J

which implies that J = I. Thus I is 0-minimal.
If I is minimal and x ∈ I, then IxI = I as above. Conversely if I satisfies

this condition and if J is any ideal in S, then for any x ∈ I ∩ J, we have
I = IxI ⊆ S1xS1 ⊆ J. Thus I is minimum.
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semigroup!kernel
K(S): kernel of the semigroup S

Examples can be constructed to show that theremay exist 0-minimal ideals
I with I2 = 0; however, this condition is not sufficient to ensure 0-minimality.
For if S is any null semigroup (that is, if S is a non-empty semigroup with 0
such that S2 = 0). If Y is any subset of S containing 0, then is an ideal in S such
that Y2 = 0. If Y contains more than one non-zero element, then Y is clearly
not 0-minimal.

Note also that a minimal ideal is minimum and hence unique. The unique
minimal ideal of a semigroup S is called the kernel of S. We shall denote by
K(S) the kernel of S when it exists.

It should also be noted that there is no uniqueness for minimal left or right
ideals (see Example 2.21 below) and for 0-minimal ideals of any type (see
Example 2.22 below).

Notice the difference in the corresponding characterization of one-sided
0-minimal ideals below. The analogue of the condition IaI = I for one sided
ideals should have been Ia = I for left ideal and aI = I for right ideals. In
fact the corresponding statements for left and right ideals are not true for 0-
minimal ideals(see Example 2.23). In fact the condition for left [right] ideal is
sufficient but not necessary (see also Corollary 2.58). However, these are both
necessary and sufficient for minimality.

Most of the results that follows (about one-sided ideals) are stated for left
ideals; the corresponding results for right ideals follow by duality.

Lemma 2.52. Let L be a left ideal in a semigroup S such that L2 , 0. Then L is
0-minimal if and only if Sa = L for all a ∈ L with a , 0.

A left ideal L in S is minimal if and only if La = L for all a ∈ L.

Proof. Suppose that L is 0-minimal and that a ∈ L − {0}. Then Sa is a left ideal
contained in L and so, by 0-minimality of L, either Sa = L or Sa = 0. If Sa = 0,
then L′ = {0, a} is a non-zero left ideal contained in L and so, L′ = L. But then
L2 = 0, a contradiction. Hence Sa = L for all a , 0 ∈ L. Conversely, assume
that L satisfies the condition Sa = L for all a , 0 ∈ L. Let L̄ be any non-zero left
ideal contained in L. Choose a ∈ L̄ with a , 0. Then L = Sa ⊆ S1a ⊆ L̄ since L̄ is
a left ideal. Hence L = L̄.

If L is any left ideal and a ∈ L, then aL is clearly a left ideal contained in L

and so aL = L if L is minimal. Conversely if L satisfies the given condition and
if L′ ⊆ L is any left ideal, then L = La ⊆ Sa ⊆ L′ for some a ∈ L′. Hence L is
minimal.

Recall from § Subsection 2.1.1 that for anyX ⊆ S, X2 denote the set product
of X with itself.



116 2. semigroups

semigroup![left,right, two-sided]
simple –

semigroup![left,right,
two-sided]0-simple –

A semigroup S is said to be [left, right, two-sided]simple if S is the only [left,
right, two-sided] ideal of S. If S has 0, then S is said to be [left,right, two-sided]
0-simple if

(1) S2 , 0; and

(2) if J is any ideal [left ideal, right ideal] of S then either J = 0 or J = S.

Note that a semigroup S is simple if and only if the semigroup S0 obtained by
adjoining 0 to S is 0-simple. Note that condition (2) ‘nearly’ implies condition
(1).For, we have

Lemma 2.53. Let S be a semigroup with 0 such that S , 0. If S has no non-zero proper
[left, right, two-sided] ideal, then S is either [left, right, two-sided] 0-simple or S is a
semigroup of order two.

Proof. We shall consider the case of left ideals. The proof for others are similar.
So, assume that S has no proper non-zero left ideal. Then S2 is left ideal in S

and so, either S2 = S or S2 = 0. In the first case, since S , 0, S2 , 0 and hence S
is left 0-simple. If S2 = 0, then for any proper non-empty subset X of S, X∪ {0}
is a proper non-zero left ideal of S. This is not possible by hypothesis. Hence
S − {0} contains exactly one element.

An alternate characterization of 0-simplicity follows as a Corollary to
Lemma 2.51.

Corollary 2.54. A semigroup S is 0-simple if and only if S , 0 and SaS = S for all
0 , a ∈ S.

Proof. If S is 0-simple, S is a 0-minimal ideal and so, by Lemma 2.51, SaS = S

for all a ∈ S with a , 0. Conversely, if S , 0 and SaS = S for all 0 , a ∈ S,
then for some a ∈ S with a , 0, we have S = SaS ⊆ S2 and so, S2 , 0. The
0-simplicity of S now follows from the 0-minimality of the ideal S which is a
consequence of Lemma 2.51.

Combining the Corollary above with Lemma 2.51, we obtain

Corollary 2.55. Let I be an ideal in S with I2 , 0. Then I is 0-minimal in S if and
only if the semigroup I is 0-simple. I is minimal if and only if I is simple. Thus if S
has kernel, then it is a simple subsemigroup of S

Lemma 2.56. A semigroup S with 0 is left 0-simple if and only if S , 0 and the set
T = {a ∈ S : a , 0} is a left simple subsemigroup of S.
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zero-divisorsProof. Assume that S , 0 and that T is a left simple subsemigroup of S. Then
T2 = T and so S2 = T2 ∪ {0} = S. Hence S2 , 0. If L is any non-zero left ideal
ideal in S, then L′ = L− {0} = L∩T is an ideal in T and so L′ = Twhich implies
that L = S. Thus S is left 0-simple.

Conversely assume that S is left 0-simple. Suppose that a, b ∈ T and ab = 0.
Then L = {s ∈ S : sa = 0} is a left ideal and b ∈ L so that L , 0. Since S is left
0-simple, L = S. But this implies that L′ = {0, a} is a non-zero left ideal in S and
so, S = L′. Then S2 = {0, a2} = 0 which contradicts the hypothesis that S is left
0-simple. Therefore T is a subsemigroup of S. If L is any left ideal in T, then
L ∪ {0} is a non-zero left ideal in S and so S = L∪ {0}which implies that L = T.
Hence T is left simple.

The result above shows that there is no essential difference between the
theory of left [right] simple and right 0-simple semigroups in the sense that
a right 0-simple semigroup can always be obtained by adjoining a 0 to a left
simple semigroup or a left simple semigroup can be obtained by removing
the 0 from a right 0-simple semigroup. Thus from any result about left simple
semigroups we can obtain a corresponding result about left 0-simple semi-
groups and vice-versa. However, the situation is entirely different for simple
and 0-simple semigroups. For example, a 0-simple semigroup may contain
zero-divisors; that is there are elements a , 0, b , 0 such that ab = 0 so that the
set of non-zero elements does not form a subsemigroup. Thus the theory of
0-simple semigroups is quite different from that of simple semigroups.

Corollary 2.57. A semigroup S is left 0-simple if and only if Sa = S for all a ∈ S−{0}.

Proof. Let S be left simple. Then by Lemma 2.56, S = T ∪ {0} where T is a left
simple subsemigroup of S. If a ∈ S and a , 0, then a ∈ T and by Corollary 2.54,
Ta = T. Hence Sa = Ta ∪ {0} = T ∪ {0} = S> Conversely assume that Sa = S

for all a ∈ S with a , 0. Let L be a non-zero left ideal in S. If 0 , a ∈ L, then
S = Sa ⊆ L(a) ⊆ L since L is a left ideal. Hence L = S and so, S is 0-simple.

Corollary 2.55 gives a characterization of 0-minimality of two-sided ideals
in terms of 0-simplicity of semigroups. There is no analogous characterization
of 0-minimality of one-sided ideals. However, we have the following:

Corollary 2.58. Let L be a left ideal in a semigroup S. If L is a left 0-simple
subsemigroup of S, then L is 0-minimal and L is a left simple subsemigroup if and
only if L is minimal in S.

Proof. Suppose that L is left 0-simple. By Corollary 2.57, La = L for all a ∈ L,
a , 0. Let L′ be a non-zero left ideal of S contained in L. Then L′ is clearly a
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non-zero left ideal of the semigroup L and by 0-simplicity of L, L′ = L. Thus L
is left 0-minimal.

If L is a left simple subsemigroup of S, it follows from Lemma 2.56 and the
proof above that L is minimal. Conversely, if L is minimal and if L′ ⊆ L is a
left ideal in L, then for any a ∈ L′, La is a left ideals of S contained in L and so
La = L. Since La is clearly a left ideal in L contained in L′, we have L = La ⊆ L′.
Hence L is minimal.

Example 2.23 shows that a 0-minimal left ideal L satisfying the condition
L2 , 0 may not satisfy the condition that La = L for all a , 0 ∈ L and hence L

may not be 0-simple.

Lemma 2.59. Let I be a 0-minimal ideal of a semigroup S with 0 such that I2 , 0. If L
is any non-zero left ideal contained in I, then L2 , 0.

Proof. Since LS is an ideal contained in I, by 0-simplicity of I, either LS = 0 or
LS = I. If LS = 0, then L is a non-zero ideal contained in I and so L = I and
I2 = LI ⊆ LS = 0 which contradicts the hypothesis that I2 , 0. Hence LS = I.
Since I2 = I by Lemma 2.49, we have I = I2 ⊆ LSLS ⊆ L2S which shows that
L2 , 0.

Lemma 2.60. Let L be a 0-minimal left ideal of a semigroup S with 0 and x ∈ S. Then
either Lx = 0 or Lx is a 0-minimal left ideal of S. If L is a minimal left ideal of S, then
Lx is a minimal left ideal for all x ∈ S.

Proof. By Lemma 2.50, L = La∪{0} for any non-zero a ∈ L. Assume that Lx , 0.
Then there is a ∈ L − {0} such that ax , 0. If bx = 0 for some b ∈ L − {0}, since
b L a, a = sb for some s ∈ S and so, ax = sbx = 0 which contradicts the choice
of a. Hence ax , 0 for any a ∈ L − {0}. It follows that Lax = Lax is precisely
the set of all non-zero elements of Lx which is clearly a left ideal of S. Hence
Lx = Lax ∪ {0} and so by Lemma 2.50, Lx is a 0-minimal left ideal.

If L is minimal in S, L0 = L ∪ {0} is 0 minimal in S0. Since Lx , 0 for any
x ∈ S, it follows from above that L0x = Lx∪ {0} is 0-minimal in S0 and hence Lx
is minimal in S.

Theorem 2.61. Let M be a 0-minimal ideal in a semigroup containing at least one
0-minimal left ideal of S. Then M is the union of all 0-minimal left ideals contained
in M. Moreover, if M2 , 0, then every left ideal of the semigroup M is also a left ideal
of S.

Proof. Let M0 be the union of all 0-minimal left ideals contained in M. Then
M0 is clearly a left ideal of S contained inMwhich, by hypothesis, is non-zero.
Let L be a 0-minimal left ideal contained in M and x ∈ S. Then Lx ⊆ Mx ⊆ M.
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E(S):set of idempotents of S
primitive
primitive! – idempotent

By Lemma 2.60, either Lx = 0 or Lx is a 0-minimal left ideal of S; in either case,
Lx ⊆M0. It follows thatM0 is a non-zero ideal contained inM and so,M0 =M

by the 0-minimality of M.
Now suppose that M2 , 0. Then by Corollary 2.55, M is a 0-simple sub-

semigroup of S. Let K ⊆ M be a non-zero left ideal of M. If a ∈ K, a , 0,
then by the above there exists a 0-minimal left ideal L of S with a ∈ L ⊆ M.
By Lemma 2.51, MaM = M and so Ma , 0. Since M is an ideal in S, Ma

is a left ideal in S and Ma ⊆ L. Hence, by the 0-minimality of L, we have
Ma = L; in particular, a ∈ Ma. Clearly Ma is a left ideal in M and so, Ma ⊆ K.
Hence K = ∪{Ma : a ∈ K}. Thus K is a union of left ideals in S and so K itself
is a left ideal in S (since the lattice of all left ideals in S is complete—see §
Subsection 2.1.1).

For a semigroup S we use the notation

E(S) = {e ∈ S : e2 = e}; (2.42)

the set of all idempotents in E. In E(S) define the relation

e ω f ⇐⇒ e f = f e = e. (2.43)

It is easy to verify that when E(S) , ∅, this defines a partial order on E(S). In
the following (in this chapter) E(S)will denote this partially ordered set. (Later
in Chapter III, we will define additional properties of E(S).)

Let S be a semigroup with 0. We shall say that e ∈ E(S) is a primitive if for
any f ∈ E(S) − {0}, f ω e implies f = e; that is, e is minimal in the partially
ordered set of all non-zero idempotent in S. In a semigroup S with out 0, by a
primitive idempotent, we shall mean an idempotent which is minimal in E(S)

Theorem 2.62. Let M be a 0-minimal ideal in a semigroup with 0. Then the following
statements are equivalent.

(a) M2 , 0 and M contains at least one 0-minimal left ideal and at least one
0-minimal right ideal.

(b) M contains a primitive idempotent.

When M satisfies these equivalent conditions, M is a 0-bisimple and regular subsemi-
group of S (see § Subsection 2.6.1) and every non-zero idempotent in M is primitive.

Proof. Suppose that (a) holds. Let a, b ∈M−{0} such that ab , 0; such elements
exist since M2 , 0. By Theorem 2.61, there is a 0-minimal right ideal R such
that a ∈ R. Then ab ∈ R and since ab , 0, by Lemma 2.50, a R ab. Dually
b L ab. Hence by Theorem 2.44, La ∩ Rb contains an idempotent.
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We now show that any non-zero idempotent e in M is primitive. Let
f ∈ E(S) with f ω e and f , 0. Then f = e f ∈ eS. By Theorem 2.61, eS is a
0-minimal right ideal and hence Lemma 2.50, e R f . So, by Lemma 2.36(b),
e = f e = f . Hence e is primitive. This shows that (a) implies (b).

Now assume (b). Let e be a primitive idempotent in M. Then e ∈ M2 and
so, M2 , 0. Let L = Se. Since e ∈ Se, L = S1e = L(e). Let L′ be a non-zero left
ideal contained in L and a ∈ L′ − {0}. Then by Lemma 2.51, MaM = M and so
there is s′, t′ ∈M with e = s′at′. Let s = es′ and t = et′e. Then

e = sat, satsa = esa = as, tsat = te = t.

Hence sa ∈ V(t) and by Lemma 2.38, f = tsa is an idempotent. Also we have

e f = (et)sa = tsa = f , f e = ts(ae) = tsa = t;

and e = e2 = sa(tsa)t = sa f t.

It follows that f ≤ e and f , 0. Since e is primitive, we have e = f ∈ Sa.
Therefore L = Se = Sa ⊆ L′. This proves that L = Se is a 0-minimal left ideal.
Dually R = eS is a 0-minimal right ideal. Thus (b) implies (a).

Suppose that M satisfies (a) and (b) and a, b ∈ M − {0}. Then by (a) and
Lemma 2.51,MaM =M and so, b = sat for s, t ∈M. Since b , 0, sa, at ∈M − {0}
and so, by Lemma 2.50, a L sa and a R at. Then a R at L sat = b and
so, a D b. Hence M − {0} is a D-class of S and contains an idempotent by
(b). Therefore by Proposition 2.39, every non-zero element, and hence every
element inM is regular. We have already shown that any non-zero idempotent
inM is primitive.

A semigroup may have kernel (minimal ideal) but may not have minimal
left or right ideals (see Example 2.24). The following result for minimal ideals
(kernels) due to Clifford Clifford [1948] which corresponds to Theorems 2.61
and 2.62 above for 0-minimal ideals, shows that if a semigroup has minimal
right or left ideal, then it has kernel.

Theorem 2.63. For a semigroup S, we have the following:

(a) Suppose that S has at least one minimal left ideal. Then the union K of all
minimal left ideals of S is the kernel of S and minimal left ideals of S are
L -classes contained in K.

(b) Suppose that S has at least one minimal left ideal and at least one minimal right
ideal. Then K is a D-class of S and every H -class contained in K is a subgroup
of S.



2.7. simple and 0-simple semigroups 121

Proof. Let L be a minimal left ideal in S and x ∈ S. Then by Lemma 2.60, Lx is a
minimal left ideal of S. It follows that the union K of all minimal left ideals of
S is an ideal in S. Since every a ∈ K is contained in a minimal left ideal, there
is a minimal left ideal L of S containing a. Let c ∈ L. Then L(c) is a left ideal
contained in L and so L(c) = L. It follows that every element of L generates L
as a left ideal and so, L = La. Hence L is a minimal left ideal of S if and only
if it is a L -class of S contained in K. Suppose that J ⊆ K be an ideal. If L is
any minimal left ideal, then we have J.L ⊆ J ∩ L ⊆ L and so J ∩ L is non-empty
and is a left ideal. By the minimality of L, we have J ∩ L = L; that is, L ⊆ J. It
follows that K ⊆ J and so K is the minimal ideal of S. This proves (a).

To prove (b), let K [K′] be the union of all minimal left [right] ideals of
S. Then by (a) and its dual K and K′ are minimal ideals of S and so K = K′

by Lemma 2.49. Therefore, by (a), minimal left [right] ideals are L -classes
[R-classes] contained in K. Let L be an L -class and R be an R-class contained
in K. If a ∈ L and b ∈ R, then ab ∈ R(a) = Ra and dually, ab ∈ Lb. Hence by
Theorem 2.34, La ∩ Rb = L ∩ R contains an idempotent. It follows that L ∩ R is
nonempty and hence an H -class of K. By Corollary 2.30 and Proposition 2.37,
K is a D-class of S and every H -class contained in K is a group.

Example 2.21: Let S = TX. Then K(S) is the set of all constant maps on X which is
therefore in one-to-one correspondence with X. Also K(S) is a minimal right ideal also
and for any f ∈ K(S), { f } is a minimal left ideal. Dually, in Sop, K(S) is a minimal left
ideal and { f } is a minimal right ideal for any f ∈ K(S).

Example 2.22: Let {Gi : i ∈ I} be a set of groups and let S denote the disjoint union
of the groups Gi together with a symbol 0 that does not represent any element in any
group Gi. Define product in S as follows: for s, t ∈ S,

st =















the product in Gi if s, t ∈ Gi for some i;

= 0 otherwise.

Then S is a semigroup in which Gi ∪ {0} is a 0-minimal ideal which is also a 0-minimal
left as well as a right ideal for each i ∈ I. Hence if |I| > 1, then S has more than one
0-minimal [left, right] ideals.

Example 2.23: Let S = L T (V) where V is a vector space of dimension n over the
field k and let W be a subspace spanned by a non-zero vector v ∈ V. Let LW be the
L -class of S corresponding to the subspace W (see Example 2.11). It is easy to check
that L = LW ∪ {0} is a 0-minimal left ideal of S such that L2 , 0. Choose a hyperplane U
(subspaceUwith dimU = n−1) such thatW ⊆ U. ThenHU,W = RU∩LW is a non-empty
H -class. Let f ∈ HU,W . Then f , 0 and L f = 0. In this case L′ = {0, f } is a proper
non-zero left ideal in L and so, the semigroup L is not left 0-simple. Also it is easy to
see that f L = HU,W ∪ {0} is a proper non-zero two-sided ideal in L and so L is also not
0-simple.

Example 2.24: Let S = 〈p, q; pq = 1〉 be the bicyclic semigroup (see Examples 2.7 and
2.12). It follows from Example 2.16 that S is a bisimple inverse semigroup and hence
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semigroup!completely 0-simple simple. Therefore S has minimal ideal (S itself). Now R is a right ideal in S if and only
if for some r ∈ N, R = Rr and any left ideal of S is Ls for s ∈ N, where

Rr = {q
r+mpn : m, n ∈ N} Ls = {q

mpn+s : m, n ∈ N}.

Since Rr ⊆ Rs for r ≥ s, right ideals in S is an infinite chain and so has no minimum.
Thus S does not have minimal right ideals. Similarly S also does not have minimal left
ideals. Also, idempotents in S are en = qnpn, n ∈ N (see Example 2.16) and it is easy to
verify that

en ω em ⇐⇒ n ≤ m.

It follows from Example 2.7(a) and (c) that en = em if and only if n = m. Hence
idempotents in S also form an infinite descending chain and so S does not contain
primitive idempotents.2.7.2 Completely 0-simple semigroups
A semigroup S with 0 is said to be completely 0-simple if

1. S is 0-simple; and

2. S contains a primitive idempotent.

A semigroup S with out 0 is said to be completely simple if S is simple and
contains a primitive (minimal) idempotent.

Now S is 0-simple if and only if S is a 0-minimal ideal in S. Hence Theo-
rem 2.62 implies the following result due to Clifford Clifford [1949]

Theorem 2.64. The following statements are equivalent for a semigroup S:

1. S is completely 0-simple;

2. S is 0-simple and contains a 0-minimal left ideal and a 0-minimal right ideal;

3. S is 0-bisimple, regular and every non-zero idempotent in S is primitive.

In view of Remark 2.15, from this result, we derive the following charac-
terization of completely simple semigroups. (This also follows from Theo-
rem 2.63).

Theorem 2.65. Let S be a semigroup (with out zero). The following statements are
equivalent:

1. S is completely simple;

2. S is simple and contains a minimal left ideal and a minimal right ideal;

3. S is bisimple, regular and every non-zero idempotent in S is primitive.

Moreover, when S is completely simple, every H -class of S is a group.
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If S is completely 0-simple, then by Theorem 2.64, S is 0-bisimple and so
S = D0 = D ∪ {0} where D is the set of all non-zero elements of S, which is a
D-class in S. Now, by Theorem 2.61 and its dual, S is the union of all 0-minimal
left ideals and the union of all 0-minimal right ideals. Hence we have

D = ∪{La : 0 , a ∈ S} = ∪{Ra : 0 , a ∈ S};

where

L(a) = La ∪ {0}, R(a) = Ra ∪ {0}

where L(a) andR(a) are unique 0-minimal left and right ideals of S respectively
containing a ∈ S, a , 0. We now list some important properties of completely
0-simple semigroups thatwill, later, enable us to construct all such semigroups.

Theorem 2.66. Let D denote the set of non-zero elements of a completely 0-simple
semigroup S. Then

(1) For a, b ∈ D, LaRb , 0 if and only if La ∩ Rb contains an idempotent. If this
holds, then LaLb = D.

(2) For all a, b ∈ S, HaHb = Hab.

In particular, for any a ∈ D, either a2 = 0 or a2 ∈ Ha and Ha is a subgroup of S.

Proof. Suppose that LaRb , 0. Then for a′ L a and b′ R b, a′b′ , 0. Since
a′b′ ∈ R(a′) and since R(a′) is the 0-minimal ideal containing a′, we have
a′ R a′b′. Dually b′ L a′b′ and so, by Theorem 2.34, La′ ∩Rb′ = La∩Rb contains
an idempotent. Let e ∈ La∩Rb be the idempotent. Then again by Theorem 2.34,
a′′b′′ ∈ D and hence a′′b′′ , 0 for any a′′ ∈ La and b′′ ∈ Rb. Therefore LaRb ⊆ D.
Let c ∈ D. By Corollary 2.29, there is an isomorphism σ : L(e) → L(c). Since
L(e) = Le ∪ {0} and L(c) = Lc ∪ {0}, by Theorem 2.25, σ is an R-class preserving
bijection of Le onto Lc. Therefore if t = eσ, then we have e R t L c and σ = ρt.
Let s be the unique element in Le with sσ = c. Then c = sσ = st which implies
that c ∈ LeRe = LaRb. This proves (1).

To prove (2), suppose that HaHb , 0. Then for some a′ H a and b′ H b,
a′b′ , 0. Then LaRb = La′Rb′ , 0 and so, by (1), LaRb = D. Hence a′′b′′ , 0 for
all a′′ ∈ Ha and b′′ ∈ Hb. Moreover, a′′b′′ ∈ Ra′′ ∩ Lb′′ = Hab. Since for all s ∈ La,
s R sb, by Theorem 2.34, σ : s 7→ sb is an R-class preserving bijection of La
onto Lab and maps Ha onto Hab by Theorem 2.25. Hence

HaHb ⊇ Hab = (Ha)σ = Hab.

Therefore HaHb = Hab. If HaHb = 0, then ab = 0 and so, in this case also,
HaHb = Hab.
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If a2 , 0, then by (1) above,Ha contains an idempotent and so, by Proposi-
tion 2.37,Ha is a group and hence a2 ∈ Ha.

We proceed to prove another characterization of completely 0-simple semi-
groups. We need some preliminary results. Recall that if x is a regular element
in S and x′ ∈ V(x), then by Lemma 2.38 e = xx′ and f = x′x are idempotents
in S such that x R e L x′ R f L x. Further for e ∈ E(S) we denote by
ω(e) = {1 : 1 ω e} the order ideal of S with respect to the partially ordered set
defined by Equation (2.43).

Lemma 2.67. Let x be a regular element in the semigroup S and let x′ ∈ V(x). Then
the map a(x, x′) defined by

1a(x, x′) = x′1x for all 1 ω xx′ (2.44)

is an order isomorphism of ω(xx′) onto ω(x′x).

Proof. Let e = xx′ and f = x′x. If 1 ω e, we have,

f
(

1a(x, x′)
)

= x′xx′1x = x′1x = 1a(x, x′);
(

1a(x, x′)
)

f = x′1xx′x = 1a(x, x′).

Thus by Equation (2.43), 1a(x, x′) ω f . If h ω 1 for h, 1 ∈ ω(e), then

(

1a(x, x′)
)

(ha(x, x′)) = x′1(xx′)hx = x′1ehx = x′hx = ha(x, x′);

and similarly,
(

1a(x, x′)
)

(ha(x, x′)) = ha(x, x′). Therefore ha(x, x′) ω 1a(x, x′).
Thus a(x, x′) : ω(e) → ω( f ) is an order preserving map. Similarly, a(x′, x) :
ω( f )→ ω(e) is also an order preserving map. Further. for 1 ∈ ω(e),

(

1a(x, x′)
)

a(x′, x) = x(x′1x)x′ = e1e = 1.

Therefore a(x, x′)◦a(x′, x) = 1ω(e). Similarly a(x′, x)a(x, x′) = 1ω( f ) and so a(x, x′)
is an order isomorphism.

A more details study the map a(x, x′) defined above will be made later in
the chapter on inductive groupoids.

Recall from Proposition 2.28 that two idempotents e and f are D-related if
and only if Re ∩ Le and Le ∩ Re are non-empty and that, for each x ∈ Re ∩ Le
there is a unique inverse x′ ∈ Le ∩ Re (by Proposition 2.40).

Lemma 2.68. Let B = 〈p, q; pq = 1〉 be the bicyclic semigroup. Let e and f beD-related
idempotents in a semigroup S such that f ω e and f , e. If x ∈ Re ∩ Le and y is the
unique inverse of x in Le ∩ Re, then for each n ≥ 1,

yn ∈ V(xn) with xnyn = e (2.45a)
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and for n,m ∈ N with n < m

1m = ymxm ω 1n = ynxn, 1m , 1n. (2.45b)

Further, {xn : n ≥ 1} and {yn : n ≥ 1} are sequences of elements belonging to distinct
H -classes in Re and Le respectively. Moreover, if B∗ = 〈x, y〉 is the subsemigroup of
S generated by x and y, there is an isomorphism φ : B → B∗ such that φ(p) = x and
φ(q) = y.

Proof. By Lemma 2.38, e = xy and f = yx. Also, by Lemma 2.67, a(x, y) :
ω(e) → ω( f ) is an order isomorphism. Since ω( f ) ⊂ ω(e), a(x, y) is an order
embedding of ω(e) into itself. Hence for each n ∈ N,

a(x, y)n = a(x, y) ◦ · · · ◦ a(x, y) n factors

is also an order embedding of ω(e) into itself. Since e , f , it follows that
ea(x, y)n , fa(x, y)n = ea(x, y)n+1. If 1n = ea(x, y)n, it follows that

1n ω 1m for n < m and 1n , 1m.

Thus {1n : n ∈ N} is a descending infinite sequence of idempotents in De. It
follows from the Lemma 2.67 that

1n = ynxn, xnyn = e and yn ∈ V(xn). (∗)

Therefore, by Lemma 2.38,

xn ∈ Re ∩ L1n , yn ∈ Le ∩ R1n .

It follows that x and y satisfies Equations (2.45a) and (2.45b). Now since
1n ω 1m and 1n , 1m for n < m, it is not possible that 1n and 1m are L related
or R related. It follows that {xn : n ∈ N} is a sequence of elements belonging
to distinct H -classes in in Re. Similarly, {yn : n ∈ N} is a sequence of elements
belonging to distinct H -classes of in Le. Hence ynxm ∈ R1n ∩ L1m . It follows
that

ynxm = yrxs ⇐⇒ n = r, m = s.

Also, using (∗) we have,

(ynxm)(yrxs) =















ynxm−r+s if m ≥ r;

yn+r−mxs if m < r.
(p∗)

It follows that {ynxm : n,m ∈ N} is a subsemigroup of S containing x and y

and so B∗ = {ynxm : n,m ∈ N}. Therefore, compairing the product in B given
in Example 2.7(e) and the equation above, it is clear that the map φ : B → B∗

defined by
φ(qnpm) = ynxm for all m, n ∈ N

is an isomorphism of B onto B∗ with φ(p) = x and φ(q) = y.
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semigroup!group-bound – We shall say that the semigroup B∗ of S constructed above is a bicyclic
subsemigroup of S generated by x and y and with identity e.

Proposition 2.69. Let e be a non-zero idempotent of a 0-simple semigroup S. If f , 0
is any idempotent with f ω e and f , e, then there exist x, y ∈ S such that

xy = e and 1 = yx is an idempotent with 1 ω f .

The subsemigroup B∗ = 〈x, y〉 generated by x and y is a bicyclic semigroup with
identity e. Therefore if S is not completely 0-simple, then S contains a copy of the
bicyclic semigroup.

Proof. By Corollary 2.54, S fS = S and so there is x′, y′ ∈ S, with x′ f y′ = e. Let
x = ex′ f and y = f y′e. Then we have

xy = e, xyx = ex = x, yxy = ye = y.

Hence y ∈ V(x) and so 1 = yx is an idempotent. Also

f1 = f yx = yx = 1, and 1 f = yx f = yx = 1.

Hence 1 ω f ω e. Since f , e, we have 1 , e. Therefore, by Lemma 2.68, x and
y generates a bicyclic subsemigroup of S with e = xy as identity.

If S is not completely 0-simple, the idempotent e is not primitive. Hence
there is 0 , f ∈ E(S) with f ω e and f , e and so, by the above, S contains a
bicyclic semigroup with identity e.

We may restate the result above as a characterization of those 0-simple
semigroups that are not completely 0-simple:

Corollary 2.70. A 0-simple semigroup S is not completely 0-simple if and only if S
satisfies one of the following conditions:

A S does not contain non-zero idempotents;

B S contains a copy of the bicyclic semigroup.

Asemigroup S is said to be group-bound if some finite power of each element
of S belongs to a subgroup of S. If S is a semigroup with 0 and if S2 = 0, then
a2 = 0 for all a ∈ S and so S is group-bound. A cyclic semigroup is group-
bound if and only if it is finite (see § Subsection 2.1.3). Hence any periodic
semigroup (§ Subsection 2.1.3) is group bound.

The next theorem is due to Munn Munn [1961]

Theorem 2.71. A 0-simple semigroup S is completely 0-simple if and only if it is
group-bound.
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homomorphism!0-restricted –Proof. If S is completely 0-simple, then by Theorem 2.66, S is group-bound.
Conversely suppose that the 0-simple semigroup S is group-bound. Then

for any a , 0 in S, SaS = S by Corollary 2.54. Then a ∈ SaS and so there are
x, y ∈ S with a = xay. It follows from this that a = xnayn for all n ∈ N and since
a , 0, xn , 0 for any n. Since S is group-bound, xn belongs to a subgroup of S;
the identity of this groupmust be a non-zero idempotent in S. Thus S contains
non-zero idempotents.

Assume that S is not completely 0-simple. Let e be a non-zero idempotent.
Then by Proposition 2.69 there are elements x, y ∈ S such that B∗ = 〈x, y〉 is
a bicyclic semigroup with identity e. Then xy = e and y ∈ V(x). So, yx D e,
yx , e and yx ω e. Hence by Lemma 2.68, {xn : n ≥ 1} is a sequence of
elements in Re belonging to distinct H -classes. This implies that Hxn is not a
group for any n ≥ 1. For if Hxn is a group, we have x2n = (xn)2 ∈ Hxn . Then
1n L xn H x2n L 1en. Since 12n ω 1n, this gives 1n = 12n which is impossible
by Lemma 2.68. Therefore S is not group bound.

In view of the discussion preceding the theorem, we have:

Corollary 2.72. Every periodic, in particular, every finite, 0-simple semigroup S is
completely 0-simple.

Let φ : S→ T be a homomorphism of a semigroup Swith 0 to a semigroup
T. We shall say that the homomorphism φ is 0-restricted if it has the property
that xφ = 0 implies x = 0.

Theorem 2.73. Letφ : S→ T be a homomorphismof a completely 0-simple semigroup
onto a semigroup T. Then T is either T = 0, the trivial (one-element) semigroup or T
is completely 0-simple and φ is 0-restricted.

Proof. Let xφ = 0 and x , 0. Since S is regular, there is a non-zero idempotent
e ∈ S with e R x. Then eφ R xφ = 0 in T (using Lemma 2.33) which implies
that eφ = 0. It follows similarly that yφ = 0 for all y ∈ Re and y ∈ Le. If z ∈ De,
by Theorem 2.66(1), there is y1 ∈ Le and y2 ∈ Re such that z = y1y2 so that
zφ = (y1φ)(y2φ) = 0. Therefore zφ = 0 for all z ∈ S and since φ is surjective,
T = 0. Hence if T , 0, then φ is 0-restricted.

We now assume that T , 0. If I is any non-zero ideal in T, clearly, Iφ−1 is
a non-zero ideal in S and so Iφ−1 = S which implies that I = T. Hence T is
0-simple. Let t ∈ T and let a ∈ S with aφ = t. By Theorem 2.66, either a2 = 0
or a2 ∈ Ha and Ha is a group. Then either t2 = 0 or t2 ∈ Haφ ⊆ Ht and Ht is a
group. Therefore T is group-bound and so, by Theorem 2.71, T is completely
0-simple.
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LetG0 be a group with 0 (§ Subsection 2.1.3) and I and Λ be sets. Recall from §
Subsection 2.1.3 that a sandwich Λ× I-matrix over G0 is a map P : Λ× I→ G0,
(λ, i) 7→ pλi. A Rees I × Λ-matrix semigroup over a group with 0, G0 with
sandwich Λ × I-matrix P is the set

M0(G; I,Λ;P) = (G × I ×Λ)
⋃

{0} (2.46a)

together with product defined, for any s, t ∈ M0(G; I,Λ;P), by

st =























(apλ jb, i, µ) if s = (a, i, λ), t = (b, j, µ) and pλ j , 0;

0 if s = (a, i, λ), t = (b, j, µ) and pλ j = 0;
0 if either s = 0, t = 0 or s = t = 0.

(2.46b)

By § Subsection 2.1.3, the binary operation defined above is associative and
so, S =M0(G; I,Λ;P) is a semigroup with 0. Again, it follows from § Subsec-
tion 2.1.3 that the semigroup is regular if and only if the matrix P is regular in
the sense that P satisfies the following:

∀ i ∈ I, ∃ µ ∈ Λ such that pµi , 0

∀ λ ∈ Λ, ∃ j ∈ I such that pλ j , 0.
(2.46c)

In particular, if pµ,i , 0 for all µ ∈ Λ and i ∈ I, then P is clearly regular. In this
case, it follows from the equation (2.46b) that the set of all non-zero elements
of the semigroupM0(G; I,Λ;P) is a subsemigroupM(G; I,Λ;P). Recall from
Example Subsection 2.1.3 thatM(G; I,Λ;P) is the Rees matrix semigroup with
out zero.

In the following discussion, we will use the notations in introduced above:

Lemma 2.74. Let S =M0(G; I,Λ;P) be a regular Rees matrix semigroup. For λ ∈ Λ
and i ∈ I, let

Lλ = {(b, j, λ) : b ∈ G, j ∈ I} and Ri = {(b, j, µ) : b ∈ G, µ ∈ Λ}.

If x = (a, i, λ) ∈ S, we have:

Lx = Lλ and L(x) = Lλ ∪ {0}; (2.47a)

Rx = Ri and R(x) = Ri ∪ {0}; (2.47b)

Hx = Hiλ = {(b, i, λ) : b ∈ G}. (2.47c)

Consequently there exist bijections λ 7→ Lλ and i 7→ Ri of the set Λ onto the set
of non-zero L -classes of S and of the set I onto the set of non-zero R-classes of S
respectively. Further, the map (i, λ) 7→ Hiλ is a bijection of I × Λ onto the set of
non-zero H -classes of S.
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Proof. . Let x = (a, i, λ) ∈ S and y ∈ L(x). Since S regular, by Lemma 2.36, y = sx

for some s ∈ S and so, either y = 0 or by Equation (2.46b), y = (b, j, λ) for some
b ∈ G and j ∈ I. Conversely if y = (b, j, λ), then by Equation (2.46c), there is
µ ∈ Λ with pµi , 0 and if c = ba−1pµi, then we have y = (c, j, µ)(a, i, λ). Hence
y ∈ L(x). By symmetry, we have

(a, i, λ) L (b, j, µ) ⇐⇒ λ = µ and so, L(x) = Lλ ∪ {0}

where Lλ is the set defined in the statement. Dually, we have

(a, i, λ) R (b, j, µ) ⇐⇒ i = j and so, R(x) = Ri ∪ {0}.

It follows that every non-zero L [R] class is of the form Lλ [Ri] and the
mapping λ 7→ Lλ [i 7→ Ri] is a bijection. Also for any (i, λ) ∈ I×Λ,Hiλ is a non-
empty set consisting of non-zero elements of S and the mapping (i, λ) 7→ Hiλ

is clearly a bijection. Also, by the above,

Hiλ = Ri ∩ Lλ = Rx ∩ Lx = Hx.

Theorem 2.75. Every regular Rees matrix semigroup is completely 0-simple.

Proof. Let S = M0(G; I,Λ;P) be a regular Rees matrix semigroup. It follows
from Lemmas 2.50 and 2.74 that every principal left and right ideal in S is
0-minimal. Further if x = (a, i, λ) and y = (b, j, µ) are non-zero elements in S

and c ∈ G, then by Equations (2.47a) and (2.47b)

(a, i, λ) R (c, i, µ) L (b, j, µ).

Therefore the set of non-zero elements from a D-class in S and so, S is 0-
bisimple. By Theorem 2.64, S is completely 0-simple.

Specializing the areguements above to Rees matrix semigroups with out
zero, we obtain:

Corollary 2.76. Every Rees matrix semigroup with out zero is completely simple.

The theorem above is a part of the important theorem due to Rees Rees
[1940] which asserts that a semigroup is completely 0-simple if and only if it is
isomorphic with a regular Reesmatrix semigroup. Thus Rees theorem consists
of Theorem 2.75 and its converse which we proceed to prove. Here we shall
derive the converse from an important result due to Miller and Clifford Miller
and Clifford [1956], which applies to regular D-classes of any semigroup.
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x ∗ y: trace product of x and y
trace!trace product
D(∗): trace of the D-class D
trace
trace!– of the D-class D
trace!– of S

Let D denote a D-class of a semigroup S. For x, y ∈ D, let

x ∗ y =















xy if Lx ∩ Ry contains an idempotent;
undefined otherwise.

(2.48a)

x ∗ y, when it exists, is called the trace product of x and y. Then ∗ is a partial
binary operation on D. The partial algebra D(∗) = (D, ∗) is called the trace of
D. Note that, by Theorem 2.34, we may define ∗ equivalently by requiring that
x ∗ y is defined if and only if xy ∈ Rx ∩ Ly. The partial binary operation ∗ can
be extended to a binary operation on D0 = D ∪ {0}, again denoted by ∗, in the
obvious way. For x, y ∈ D0 let

x ∗ y =























xy if x, y ∈ D and xy ∈ Rx ∩ Ly;

0 if x, y ∈ D and xy < Rx ∩ Ly;
0 if either x = 0, y = 0 or x = y = 0.

(2.48b)

The partial algebra

S(∗) =
⋃

D∈S/D

D(∗)

is called the trace of S.
Note that, the trace product of x, y ∈ D exists as in Equation (2.48a) if and

only if x ∗ y , 0 in D0(∗). The proof the following statement is quite routine.

Lemma 2.77. The binary algebra D0(∗) with operation defined by Equation (2.48b) is
a semigroup.

Rx → x xy xyz

Ry → f y yz

Rz → 1 z

Lx ↓ Ly ↓ Lz ↓

Fig. 4

Proof. Suppose that x, y, z ∈ U = D0(∗). If x∗y ,
0 and y∗z , 0, then it is easy to see that x∗(y∗z) ,
0 and (x ∗ y) ∗ z , 0 and the two expressions are
equal (see the egg-box diagram on the right).
From the diagram it is also clear that if one of
x ∗ y and y ∗ z is 0, then x ∗ (y ∗ z) = 0 = (x ∗ y) ∗ z.
It follows that ∗ is associative.

The semigroup D0(∗) is called the trace semi-
group (or simply trace if there is no ambiguity).
Note that ifD is not regular then the trace prod-
uct is not defined for any pair of elements in D
and the semigroupD0(∗) is the null semigroup.

Let D be a regular D-class of the semigroup S and let e be an idempotent
in D. By Proposition 2.39 D contains idempotents. Let

D/ R= {Ri : i ∈ I} and D/ L= {Lα : λ ∈ Λ}
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be the set of R and L -classes of S contained in D. Then

D/ H = {Hiλ = Ri ∩ Lλ : (i, λ) ∈ I ×Λ}

is the set of all H -classes of S contained in D. Since H -classes are disjoint,
each x ∈ D belongs to a unique H -class Hiλ in the above set. Now with out
loss of generality, we may assume that e ∈ I∩Λ and thatHee = He by renaming
the index i0 ∈ I for the R-class Re as e and similarly renaming the index for Le
in Λ also as e. We use these notations in the following statement.

Theorem 2.78. Let D be a regular D-class of a semigroup S and let I and Λ denote
index sets for R and L -classes of S contained in D. For each λ ∈ Λ and i ∈ I, choose

rλ ∈ Heλ = Re ∩ Lλ and qi ∈ Hie = Ri ∩ Le

and set

pλi =















rλqi if Hiλ contains idempotent;

0 otherwise.
(2.49)

Then the map P : (λ, i) 7→ pλi is a regular Λ × I matrix over H0
e . For t ∈ T =

M0(He; I,Λ;P), define

tφ =















qiarλ if t = (a, i, λ) , 0;
0 if t = 0.

(2.50)

This is an isomorphism φ : T → D0(∗). Hence D0(∗) is a completely 0-simple
semigroup.

Proof. Letλ ∈ Λ. Then by Proposition 2.39, there is an idempotent f ∈ Lrλ = Lλ.
Let R f = Ri. Then

f ∈ Hiλ = Rqi ∩ Lrλ ;

so, by Theorem 2.34,

pλi = rλqi = rλ ∗ qi ∈ Lqi ∩ Rrλ = He.

Hence for each λ ∈ Λ, there is i ∈ I with pλi ∈ He; in particular, for this i,
pλi , 0. Dually, for each i ∈ I, there is λ ∈ Λ with 0 , pλi ∈ He. It follows from
Equation (2.46c) that the map P : (λ, i) 7→ pλi is a regular Λ × I matrix over H0

e .
Hence T = M0(H0

e ; I,Λ;P) is a regular Rees matrix semigroup over H0
e (see §

Subsection 2.1.3).
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We first show that φ defined by Equation (2.50) is a bijection of T onto
U = D0(∗). If 0 , t ∈ T, then t = (a, i, λ) for some a ∈ He, i ∈ I and λ ∈ Λ. Also,
it is easy to see that

tφ = qiarλ = qi ∗ a ∗ rλ ∈ Hiλ (1)

(see the diagram below). It follows that φ maps T into U such that tφ , 0 if
and only if t , 0. Now for any λ ∈ Λ, by Proposition 2.40, Le contains at least
one inverse of rλ. Let r′

λ
be an inverse of rλ in Le so that rλr′λ = e and r′

λ
rλ is

an idempotent in Lλ. Similarly, for each i ∈ I, choose an inverse q′
i
of qi in Re.

If x ∈ Hiλ, using Theorem 2.34, we see as above that a = q′
i
xr′λ ∈ He (see the

diagram below) and so,

(q′ixr
′
λ, i, λ)φ = qiq

′
ixr
′
λrλ = x.

Hence φ is surjective. If, for a, b ∈ He, qiarλ = qibrλ, then, by the choice of q′
i

and r′
λ
, we have

a = eae = q′iqiarλr
′
λ = q′iqibrλr

′
λ = b.

Hence if (a, i, λ)φ = (b, j, µ)φ, thenHiλ = H jµ which implies i = j and λ = µ and
this in turn implies, by the above, that a = b. Hence (a, i, λ) = (b, j, µ). Thus φ
is one-to-one.

Ri → qi qiq
′
i

x = qiarλ

r′λ r′λrλ

Re → a = q′
i
xr′λ q′

i
rλ

Le ↓ Lλ ↓

Fig. 5

Let s, t ∈ T. If s = 0 or t = 0, then sφ = 0 or tφ = 0 in U by the definition
of φ. Hence (sφ) ∗ (tφ) = 0 in U and so, (st)φ = (sφ)(tφ) in this case. Let
t = (a, i, λ), s = (b, j, µ). By Equation (2.46b), st = 0 if and only if pλ j , 0. Using
Equation (1) we obtain

sφ = qi ∗ a ∗ rλ L rλ L pλ j and tφ = q j ∗ a ∗ rµ R q j R pλ j.
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Hence

Lsφ ∩ Rtφ = H jλ.

Therefore, by Equations (2.46b), (2.48b) and (2.49), we have

sφ ∗ tφ , 0 ⇐⇒ pλ j , 0 ⇐⇒ st , 0.

Moreover, using Lemma 2.77, we obtain

(sφ) ∗ (tφ) = (qi ∗ a ∗ rλ) ∗ (q j ∗ b ∗ rµ) by (1)

= qi ∗ (a ∗ pλ j ∗ b∗)rµ by Equation (2.49)

= (apλ jb, i, µ)φ by (1)

= (st)φ by Equation (2.46b).

Hence φ : T → S is a homomorphism. Since φ is a bijection, it is an isomor-
phism.

We nowprove the theoremdue to Rees on completely 0-simple semigroups
Rees [1940, 1941]. A particular case of this result has been proved earlier by
Suschkewitsch in his paper published in 1928 Suschkewitch [1928]. (see also
Suschkewitch [1937] where he discuss some further results on this class of
semigroups.)

Theorem 2.79 (Rees). A semigroup S is completely 0-simple if and only if S is
isomorphic to to a regular Rees matrix semigroup.

Proof. If S is isomorphic to a regular Rees matrix semigroup, then by Theo-
rem 2.75, S is completely 0-simple.

Suppose that S is completely 0-simple. By Theorem 2.64 S is 0-bisimple.
Let D denote the D-class of non-zero elements of S. Identifying the 0 of S
with the 0 of U = D0(∗), the underlying sets of S and U coincide. Let x, y ∈ S.
By Theorem 2.66, xy , 0 in S if and only if Lx ∩ Ry contain an idempotent.
By Equation (2.48b), this is true if and only if x ∗ y , 0 in U and, in this
case, xy = x ∗ y. It follows that binary operations in S and U also coincide.
Therefore S = U and by Theorem 2.78, S is isomorphic to a regular Rees matrix
semigroup.

Specializing the arguements above to completely simple semigroups and
Rees matrix semigroups with out zero, we obtain:

Corollary 2.80. A semigroup S is completely simple if and only if S is isomorphic to
a Rees matrix semigroup with out zero.
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The isomorphism completely 0-simple semigroups with regular Rees ma-
trix semigroups constructed above is not unique. In fact, from the construction
in Theorem 2.78, it is clear that the isomorphism φ depends on

(a) the choice of the idempotent e in D; and

(b) the choice of elements rλ ∈ Heλ and qi ∈ Hie.

For a different choice of these parameters, a different Rees matrix semigroup
will result. However, it follows from Theorem 2.78 that these Rees matrix
semigroups will be isomorphic. We shall discuss abstract characterization of
such isomorphisms (more generally, homomorphisms of Rees matrix semi-
groups) after we have developed better machinery to analyze structure of
regular semigroups and their homomorphisms (see Chapters Chapter 6 and
??).

2.8 semisimplicity of semigroup2.8.1 Prin
ipal fa
tors
Recall that an ideal I in a semigroup S is maximal if there is no proper ideal
J in S with I ⊂ J (see § Subsection 2.1.1). If I and J are ideals in S with I ⊆ J,
then I is maximal in J, if A is any ideal in S with I ⊆ A ⊆ J, then either I = A

or A = J; that is, the interval [I, J] = {I, J} in the lattice IS of ideals of S (see §
Subsection 2.1.1).

Recall that, by the convention adopted in § Subsection 2.1.1, an ideal I in a
semigroup with 0 is always non-empty.

Lemma 2.81. Let I be an ideal in a semigroup S.

(1) If J is an ideal in S with I ⊆ J, then I is maximal in J if and only if J/I is
a minimal or 0-minimal ideal in S/I; if this is the case, then J/I is a simple,
0-simple or null semigroup. J/I is simple if and only if I = ∅.

(2) I is maximal in S if and only if S/I has no proper non-zero ideal; if this is so,
then S/I is either simple, 0-simple or a null semigroup of order two. Again S/I
is simple if and only if I = ∅

Proof. (1) Assume that I , ∅. Let θ : S → S/I be the quotient mapping. If Ā
is a non-zero ideal in S/I contained in J/I, then A = Āθ−1 is an ideal in S that
properly contain I and contained in J. Since I is maximal in J, A = J and so
Ā = A/I = J/I. Hence J/I is 0-minimal. Hence byCorollary 2.55, the semigroup
J/I is 0-simple if (J/I)2 , 0.
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semigroup!principal factor of the –
F a(S): Principal factor of S at a

If I = ∅, the statement that I is maximal in J is equivalent to the statement
that J does not have any proper ideal; that is J is the minimal ideal which is
therefore a simple subsemigroup of S by Corollary 2.55. If I , ∅, then clearly
J/I has 0 and so is not simple.(2) If I , ∅ is a maximal ideal in S, then, as above, we see that there is no
proper ideal A in S with I ⊂ A and so S/I has no proper non-zero ideal. By
Lemma 2.53, if S/I is null, it is a null semigroup of order two. As in (1), we see
that, I = ∅ if and only if S = S/I is simple.

Remark 2.16: Let I and J be ideals in a semigroup S with I ⊆ J. If I is maximal
in J in the sense defined above, then I need not be a maximal ideal in the
subsemigroup J of S. Consequently, the statement (2) of the Lemma above
does not follow from (1) as a particular case of J = S. In fact, when I is
maximal in J and J2 ⊆ I (so that J/I is null), the semigroup J/I can cotain more
than two elements. The reason for this is that, if A is an ideal of an ideal J in a
semigroup S, then A need not be an ideal in S (see Example 2.25 below).

Proposition 2.82. Let S be a semigroup and a ∈ S. Then

I(a) = J(a) − Ja. (2.51)

Then I(a) is an ideal in S which is maximal in J(a) and so, J(a)/I(a) is either a minimal
or 0-minimal ideal in S/I(a) and the semigroup J(a)/I(a) is either simple, 0-simple or
null. J(a)/I(a) is simple if and only if J(a) is the kernel of S or equivalently, I(a) = ∅.

Proof. Suppose that b ∈ I(a) and s ∈ S1. If sb ∈ Ja, then usbv = a for some
u, v ∈ S1. But this implies that a ∈ J(b) and so J(a) = J(b) which contradicts
the hypothesis. Hence sb ∈ I(a). Similarly bs ∈ I(a) for all s ∈ S1. Hence I(a)
is an ideal in S. If A is any ideal in S with I(a) ⊂ A ⊆ J(a), then A ∩ Ja , ∅; if
b ∈ A∩ Ja, then J(a) = J(b) ⊆ A and so A = J(a). Thus I(a) is maximal in J(a). By
Lemma 2.50, J(a) is minimal if and only if J(a) = Ja; that is, I(a) = ∅. If this is
true then J(a)/I(a) = J(a) (see § Subsection 2.1.1) and I(a) is clearly the maximal
ideal in J(a). The remaining statements follow from Lemma 2.81(1).

The semigroup J(a)/I(a), for a ∈ S, is called the principal factorof S at a; we
denote it by F a(S). Thus

F a(S) =















J(a)/I(a) if I(a) , ∅;
J(a) if I(a) = ∅.

(2.52)

By the Proposition above, F a(S) is either a simple, 0-simple or null semigroup
and F a(S) is simple if and only if J(a) is the kernel of S.
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semigroup!semisimple – Example 2.25: Let C = 〈a〉 denote the infinite cyclic group generated by a and let
B = {bn : n ∈ Z}. Let

S = A ∪ B ∪ {0} with product in S defined by

anbm = bn+m; bma
n = bmbn = 0 ∀ m,n ∈ Z;

and 0 is the zero of S. Then S is a semigroup and B0 = B ∪ {0} is the unique maximal
ideal in S. Further, Jbn = B for all n ∈ Z. Hence the ideal {0} is maximal in B0, but {0} is
not maximal in the semigroup B0 (which is the null semigroup). Also B0/{0} = B0 and
the semigroup B0 has infinitely many non-zero proper ideals; none of these are ideals
in S. Thus an ideal of an ideal in a semigroup Smay not be an ideal in S.2.8.2 Semisimple and 
ompletely semisimple semigroups
A semigroup S is said to be semisimple if its principal factors are either simple
or 0-simple. Thus by Proposition 2.82, a semigroup is semisimple if and only
if none of its principal factors are null.

The definitions show that simple and 0-simple semigroups are semisimple.
The following proposition shows that the class of semisimple semigroups is
quite large.

Proposition 2.83. Every regular semigroup is semisimple.

Proof. LetSbe a regular semigroupand a ∈ S. Then, byLemma2.38, Ja contains
an idempotent, say, e. Hence e ∈ J2a which implies that F a(S)2 , 0. Hence, by
Proposition 2.82, F a(S) is simple or 0-simple. Thus S is semisimple.

Example 2.25 shows that an ideal of an ideal in a semigroup S need not be
an ideal in S. However, we have:

Proposition 2.84. An ideal of an ideal in a semisimple semigroup S is an ideal in S.

Proof. Let I be an ideal in S and let A be an ideal in the subsemigroup I. Then
clearly IAI ⊆ A. Let b ∈ A − IAI Since S is semisimple, F b(S) is simple or
0-simple; in either case, F b(S)3 = F b(S). Hence J(b)3 ∪ I(b) = J(b). Now

J(b)3 = S1bS1S1bS1S1bS1 ⊆ S1bS1bS1S1 = J(b)bJ(b).

Since J(b) ⊆ I and b ∈ A, we have

J(b)3 ⊆ J(b)bJ(b) ⊆ IAI.

Consequently,

J(b) = J(b)3 ∪ I(b) ⊆ IAI ∪ I(b).

Since b < IAI and b < I(b), the above Equation implies that b < J(b) which is a
contradiction. Hence A = IAI and so A is an ideal in S.
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semigroup!completely semisimple –
M∗

L
: minimum condition on

L -classes in a J -class
M∗

R
: minimum condition on

R-classes in a J -class

A semigroup is completely semisimple if its principal factors are completely
simple or completely 0-simple.

Clearly a simple [0-simple] semigroup S is completely semisimple if and
only if S is completely simple [0-simple]. This is an important class of semi-
groups; we proceed to obtain a number of equivalent characterizations of this
class.

Recall (§ Subsection 2.6.1) that Λ [I, J] (or ΛS, etc., if necessary) denote the
partially ordered set set S/ L of all L -classes [respectively S/ R, S/ J ].

We say that S satisfies the conditionM∗
L
[M∗

R
] if for every a ∈ S the set of L

[R] classes contained in Ja has a minimal element with respect to the ordering
in ΛS [IS]. We first show that the condition M∗L (dually M∗R) imply a stronger
property.

Lemma 2.85. Let S be a semigroup and a ∈ S.

A If I(a) , ∅, then the L -class La is minimal in the set of L -classes contained in
Ja if and only if L0a is a 0-minimal left ideal of S/I(a).

B If I(a) = ∅, then the L -class La is minimal in the set of L -classes in Ja if and
only if La is a minimal left ideal of S.

Moreover, if Ja contains a minimal L -class, then every L -class in Ja is minimal.

Proof. Since I(a) is the 0 of S/I(a), by Lemma 2.50 L0a = La ∪ {0} is an ideal in
S/I(a) if and only if L0a is a 0-minimal left ideal in S/I(a). If θ : S→ S/I(a) is the
quotient map, by Theorem 2.5 (see also Remark 2.3) L0a is a left ideal in S/I(a)
if and only if

La ∪ I(a) = (L0a)θ
−1

is a left ideal in S. If La ∪ I(a) is a left ideal and Lc is a L -class contained in Ja
with Lc ≤ La, then c ∈ La ∪ I(a). Since c < I(a), we have c ∈ La and so, La = Lc.
Hence La is minimal in the set of all L -classes in Ja. Conversely, suppose that
La is minimal in the set of all L -classes in Ja. Let b ∈ La ∪ I(a) and s ∈ S. If
b ∈ I(a), clearly sb ∈ La ∪ I(a) since I(a) is an ideal. If b ∈ La then sb ∈ L(a) ⊆ J(a).
So, if sb < I(a), then sb ∈ Ja. Hence Lsb is a L -class in Ja with Lsb ≤ La and so
Lsb = La byminimality. Hence sb ∈ La which implies that La ∪ I(a) is a left ideal.
This proves A. Proof of B is similar.

By Proposition 2.82, J(a)/I(a) is a 0-minimal ideal in S/I(a). If Ja contains a
minimalL -classLa, then byA,L0a is a 0-minimal left ideal contained in J(a)/I(a).
If Lc is any L -class in Ja, by Theorem 2.61, Lc is contained in a 0-minimal left
ideal L ⊆ J(a)/I(a). Since Lc consist of non-zero elements of L, by Lemma 2.50,
L = L0c . Hence by A, Lc is minimal in Ja. Therefore every L -class contained in
Ja is minimal.
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M∗
E
: minimum condition on

idempotents in a J -calss
We shall say that the semigroup S satisfies the condition M∗

E
(minimum

condition on idempotents in a J -class) if for any e, f ∈ E(S)

e ω f and e J f ⇒ e = f . (2.53)

We now show that the relation J in the equation above can be replaced by D .

Lemma 2.86. The semigroup S satisfiesM∗
E
if and only if for any e, f ∈ E(S),

e ω f and e D f ⇒ e = f . (2.53∗)

Proof. Since D⊆J , the condition M∗
E
clearly implies Equation (2.53∗). Con-

versely assume that Equation (2.53∗) holds. Suppose that e, f ∈ E(S)with e J f

and e ω f . If T = J(e)/I(a), then clearly T2 , 0 and so, by Proposition 2.82, T is
simple of 0-simple. Since f ∈ Je, f , 0 in T. Hence by Proposition 2.69 there
is an idempotent 1 ω f ω e such that 1 D e. Then by hypothesis, 1 = e and so
f = e.

Theorem 2.87. The following conditions are equivalent for a semigroup S.

(a) S is completely semisimple.

(b) S is regular and satisfies the conditionM∗
E
.

(c) S is regular and satisfies the conditionM∗
L
.

(d) S is regular and satisfies the conditionM∗
R
.

(e) S is semisimple and satisfies bothM∗
L
andM∗

R
.

Proof. (a) ⇒ (b) Let a ∈ S. By (a), F a(S) is completely 0-simple or completely
simple. Hence F a(S) is 0-bisimple or bisimple. In either case F a(S) is regular
and the set of non-zero elements is the D-classDa of S. Hence every D-class is
regular and so S is regular. Since every idempotent inDa is primitive inF a(S),
S satisfies the condition M∗

E
.(b) ⇒ (
) Let La and Lb be L -classes in the same J -class such that Lb ≤ La.

Since S is regular, by Proposition 2.39, we can find idempotents e and f with
La = Le and Lb = L f . Since f ∈ L(e), by Lemma 2.36, f e = f . Let 1 = e f . Then

1
2 = e( f e) f = e f = 1, 1 f = 1 f1 = f e f = f .

Hence 1 is an idempotent with L1 = L f , 1 J e and 1 ω e. Hence by the
condition M∗

E
, 1 = e and so L f = Le. Hence S satisfies M∗

L
.
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) ⇒ (e) Since S is regular, it is semisimple by Proposition 2.83. So it is
enough to prove that S satisfies M∗R. Let R1 ≤ R2 where R1 and R2 are R-
classes in the same J -class. Since S is regular, by Proposition 2.39, we may
assume that R1 = Re and R2 = R f where e, f ∈ E(S). Since R1 and R2 are
contained in the same J -class, we have e J f and by Lemma 2.36, f e = e.
If 1 = e f , as above, we find that 1 is an idempotent with R1 = Re and 1 ω f .
Then L1 ≤ L f . By M∗L, we have L1 = L f . So, 1 L f and 1 ω f and these imply
that 1 = f . Hence R f = Re and this provesM∗R.

The implications (b)⇒ (d)⇒ (e) can be proved dually.(e)⇒ (a) Let T = F a(S). Then by hypothesis, T is simple or 0-simple. Since S
satisfiesM∗L andM∗R, by Lemma 2.85 and its dual T contains 0-minimal left and
right ideals. ByTheorems 2.64 and 2.65,T is completely 0-simple or completely
simple. Therefore S is completely semisimple.

Corollary 2.88. If the semigroup S is completely semisimple, then S is regular and
D=J .

Proof. Regularity of S follows from the theorem above. So, it is sufficient to
show that D=J . Now the set of non-zero elements of F a(S) is Ja. Since F a(S)
is either completely simple or completely 0-simple any two elements in Ja are
D-related in F a(S) and hence in S. Thus Ja = Da.

The Example below shows that the converse of this Corollary is not true.
The following gives some further class of semigroups that are completely
semisimple.

Theorem 2.89. Let S be a semisimple, group bound semigroup. Then S is completely
semisimple. In particular any semisimple periodic or semisimple finite semigroup is
completely semisimple.

Proof. If S is group bound any subsemigroup, in particular, any ideal in S is a
group bound semigroup. Hence J(a) is group bound for all a ∈ S. It follows
thatF a(S) is a group bound semigroup. If S is also semisimple, thenF a(S) is a
simple or 0-simple, group bound semigroup. Hence by Theorem 2.71F a(S) is
completely simple or completely 0-simple for each a ∈ S. When S is periodic
or finite, it is clearly group bound.

Remark 2.17: For a more extensive discussion of the minimal conditions of the
set of left, right and two-sided ideals and some related concepts such as stable
semigroups, elementary semigroups, etc., we refer the reader to Clifford and
Preston [1967], § 6.
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Example 2.26: If B = 〈p, q : pq = 1〉 is the bicyclic semigroup, then it is regular and sat-
isfies the condition D=J ; but is not completely semisimple. Similarly the semigroup
A of Example 2.13 is simple and hence semisimple but not completely semisimple.

Example 2.27: Let S = TX be the semigroup of transformations on the set X (see §
Subsection 2.1.3 and Example 2.10). Then S is regular and D=J . If X is infinite, for
any infinite subset Y ofX, there is Z ⊆ Y such that |Z| = |Y|. Then there are idempotents
e, f ∈ S such that Im e = Y, Im f = Z and f ω e. Since there is a bijection of Y onto Z,
by Example 2.10, e D f . Hence S is not completely semisimple if X is infinite. If X is
finite, then clearly S is a finite regular semigroup and by Theorem 2.89, S is completely
semisimple. In a similar way, it can be shown that the semigroup L T (V) (cf. §
Subsection 2.1.3) of linear transformations on a vector space V is a regular semigroup
which satisfies the condition D=J (see Example 2.11). Also, L T (V) is completely
semisimple if and only if V is finite dimensional.

Example 2.28 (Baer-Levi semigroups): Let p, q be infinite cardinals such that p ≥ q
and letX be a set with |X| = p. Consider the set S of all one-to-one mappings α : X→ X
such that |X −Xα| = q. If α, β ∈ S, then

X −Xαβ = (X −Xβ) ∪ (Xβ − Xαβ).

Since β is one-to-one,

|X − Xα| = |(X −Xα)β| = |Xβ − Xαβ| = q.

Since X−Xβ and Xβ−Xαβ are disjoint and have the same infinite cardinal q, (X−Xβ)∪
(Xβ − Xαβ) has cardinal q. Hence |X − Xαβ| = q. Thus αβ ∈ S and so, S is a semigroup
under composition (that is, a subsemigroup of TX); clearly, S does not have 0.

Since S is a semigroup of one-to-one mappings, it is right cancellative. We now
show that S is right simple. Accordingly let α, β ∈ S. Then |X − Xα| = |X − Xβ| = q.
Since q is infinite, we can find a subset Y of X − Xβ such that Y and its complement in
X −Xβ has the same cardinal q. Let δ : X − Xα→ Y be a bijection. Now define

xγ =















(xα−1)β if x ∈ Xα;

xδ if x ∈ X −Xα.

Then γ is one-to-one and Xγ = Xβ ∪ Y. Hence, by the choice of Y, we have

|X −Xγ| = |X − Xβ − Y| = q.

Thus γ ∈ S and clearly, αγ = β. Therefore S is right simple. If α ∈ S, we have
|X−Xα| = |Xα−Xα2 |. Since q is infinite, α , α2 and so, S does not contain idempotents;
in particular, S is not regular.

Since S is right simple, it is semisimple and satisfies the conditionM∗
R. If S satisfies

M∗
L, then by Theorem 2.87(e), S is completely semisimple and hence regular. This is not

possible. Hence S does not satisfy the conditionM∗
L. It is not difficult to verify directly

that S contains an infinite descending chain of L -classes which will also show that it
does not satisfyM∗

L. The dual construction will give a semigroupwhich is semisimple,
satisfyM∗

L, but not M
∗
R. This shows that the conditionsM∗

L and M∗
R are independent.

Example 2.29: Let
S = {(i, j) : 1 ≤ i, j ≤ ∞, i < j} ∪ {0}.
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translation!linked pair
bitranslation
bitranslations!inner –

Define a product in S by the rule

(i, j)(r, s) =















(i, s) if j = r;

0 if i , j;

and for all x ∈ S, let
0x = 0 = x0.

Swith this product is a semigroup. Also, for all (i, j) ∈ S, using the definition of product
in S, we see that the principal left, right and two-sided ideals and Green’s classes are
given by

L(i, j) = {0} ∪ {(r, j) : 1 ≤ r ≤ i}, L(i, j) = {(i, j)};

R(i, j) = {0} ∪ {(i, s) : s ≥ j}; R(i, j) = {(i, j)};

J(i, j) = {0} ∪ {(r, s) : 1 ≤ r ≤ i, s ≥ j} J(i, j) = {(i, j)}.

It follows that S satisfies bothM∗
L and M∗

R. Now J(i, j)2 = 0 and so F (i, j)(S) is null for all
non-zero elements of S. Hence S is not semisimple.

2.9 some special representations of semigroups

In Section 2.5 we had given a general discussion about representations of
semigroups. In particular Subsection 2.5.1 discusses representations of semi-
groups by functions on a set. Given any semigroup S, the right S-system
Subsection 2.5.2 Sr affords the specific representation ρ by functions on the set
S and the left S-system Sl affords the dual representation λ. Here we discuss a
few such representations by pairs of transformations, partial transformations,
matrices over groups with 0, etc. that have proved to be of importance in the
structure theory of various classes of semigroups.2.9.1 Representation by pairs of linked translations
Given a right translation ρ and a left translation λ of a semigroup S, we say
that (ρ, λ) is a pair of linked translations or that ρ is linked to λ if for all s, t ∈ S,

(sρ)t = s(λt). (2.54)

A linked pair of translations is also called a bitranslation. For each a ∈ S, (ρa, λa)
is clearly a linked pair and these are called inner bitranslations. We can define
a right and left action of a bitranslation β = (ρ, λ) on S as follows: for s ∈ S

sβ = sρ, and βs = λs.

Thus β acts on the right of S as a right translation and on the left as a left
translation.

Combining the right regular representation ρS and the left regular repre-
sentation λS, we can obtain a new representation of S by bitranslations. We
have the following:
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Theorem 2.90. Let S be a semigroup and define

Ω(S) = {(ρ, λ) : ρ is linked to λ}.

Then Ω(S) is a semigroup with multiplication defined by

(ρ, λ)(ρ′, λ′) = (ρρ′, λλ′).

Moreover, for any a ∈ S and (ρ, λ) ∈ Ω(S),

(ρ, λ)(ρa, λa) = (ρλa, λλa) and (ρa, λa)(ρ, λ) = (ρaρ, λaρ).

Consequently the map πS = π, defined for all s ∈ S, by

sπ = (ρs, λs)

is a homomorphism of S onto an ideal of Ω(S).

Proof. First observe that for (ρ, λ), (ρ′, λ′) ∈ Ω(S),

(s)ρρ′t = (sρ)ρ′t

= (sρ)(λ′t) ρ′ is linked to λ′;

= s(λ(λ′t)) ρ is linked to λ;

= s(λλ′t).

Hence ρρ′ is linked to λλ′. Since the binary operation defined in the statement
is obviousely associative,Ω(S) is a semigroup. For any a ∈ S it is clear that

aπ = (ρa, λa) ∈ Ω(S)

and the map π : S→ Ω(s) defined above is a homomorphism. If (ρ, λ) ∈ Ω(S)
and s ∈ S, we have

sρρa = (sρ)a= s(λa) = sρλa;

λλas = λ(as)= λ(a)s = λλas;

sρaρ = (sa)ρ= s(aρ) = sρaρ;

λaλs = a(λs)= (aρ)s = λaρs.

Hence

(ρ, λ)(ρa, λa) = (ρλa, λλa);

(ρa, λa)(ρ, λ) = (ρaρ, λaρ).

Therefore
Imπ = {aπ : a ∈ S}

is an ideal of the semigroup Ω(S).
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semigroup!translational hull of –
Ω(S) :translational hull of S
πS: representation of S by
bitranslations

representation!regular –
semigroup!weakly reductive

The semigroup Ω(S) is called the translational hull of the semigroup S and
the homomorphism πS = π is called the regular representationof S by linked
translations. S is said to be weakly reductive if the representation π is faithful;
that is, if and only if S satisfies the condition

sa = sb and as = bs for all s ∈ S ⇒ a = b.

Notice that any right or left reductive semigroup is weakly reductive. The
following observation implies that the class of weakly reductive semigroups
is quite large.

Theorem 2.91. Every regular semigroup is weakly reductive.

Proof. Suppose that S is a regular semigroup and aπ = bπ for a, b ∈ S. Then
ρa = ρb which implies in particular that L(a) = L(b). Similarly from λa = λb,
we have R(a) = R(b) and so, by Equations (2.36a), (2.36b) and (2.37c), a H b.
Since a is a regular element, by Proposition 2.39 there is an idempotent e ∈ Ra

which by Lemma 2.36, is a left identity of Ra = Rb. Therefore,

a = eρa = eρb = b.

This proves that the representation π is faithful.

The representation by bitranslations affords a representation by pairs of
mappings. Several existing structure theorems for classes of semigroups uses
this directly or related representations especially when the semigroup under
consideration is weakly reductive. The theorem above suggests that the cost
of this assumption is comparatively small.

Theorem 2.90 also shows that π is a representation having some special
properties. When S is weakly reductive, it provides an embedding of S as an
ideal of its translational hull Ω(S). We will use this fact in the next section to
construct ideal extensions of weakly reductive semigroups.2.9.2 Lallement's representation
Here we consider a special representation of semigroups by partial tramsfor-
mations due to G. Lallement Lallement [1967]. It is shown in Nambooripad
and Sitaraman [1979] that various known representations for special classes
of semigroups are particular cases of this representation and that it is closely
related to the ideal structure of the semigroup.

We beginwith a representation closely related to Lallements representation
which is also of independent interest.
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̺D :Representation of S by partial
transformations on the D-class D
̺D :representation of S by partial
transformations on the D-class D

representation!partial –
representation!partial dual –

λD : anti-representation of S by
partial transformations on D
̟D:partial symmetric
representation of S on D

Proposition 2.92. Let D be a D-class of a semigroup S. For each a ∈ S let

D̺Da = {x ∈ D : x R xa} and ̺Da = ρa | D̺
D
a .

Then ̺Da : D̺Da → L(a) ∈PT D and the map

̺D : a 7→ ̺Da ; S→PT D

is a representation of S by partial transformations on D.

Proof. Clearly ̺Da ∈ PT D for all a ∈ S. For a, b ∈ S let x ∈ A = dom
(

̺Da ◦ ̺
D
b

)

.
Then x ∈ D̺Da and xa ∈ D̺Db and so,

x R xa R xab

which implies that x ∈ D̺Dab. Conversely, if x ∈ D̺Dab, then x R xab implies,
by Theorem 2.26, that x = xabs for some s ∈ S1. If t = bs then x = xat and so,
x R xa. Therefore

x R xa R xab.

Thus A = D̺Dab and for any x ∈ D̺Dab,

x
(

̺Da ◦ ̺
D
b

)

= xab = x̺Dab.

Therefore the map ̺D : a 7→ ̺Da is a representation by partial transformations.

The representation ̺D is called the partial representation of S on D. Its left-
right dual, called partial anti-representation, is the homomorphism λD : a 7→
λDa of S to PT

op
D

where for each a ∈ S,

DλDa = {x ∈ D : x L ax} and λDa = λa|Dλ
D
a .

Combining these we can get another representation of S as follows:

Corollary 2.93. For each a ∈ S let

a̟D = (̺Da ,λ
D
a ).

Then ̟D : S→PT D ×PT
op

D
is a representation of S. Moreover, if D is a regular

D-class, then̟D is injective on D.

Proof. The fact that ̟D is a representation as claimed, follows readily from
Proposition 2.92 and its dual. Th show that ̟D is injective on D when D

is regular, suppose that a̟D = b̟D for a, b ∈ D. Since D is regular, by
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representation!partial symmetric –
on D

Propositions 2.39 and 2.40, there is an inverse a′nV(a) such that e = a′a and
f = aa′ are idempotents with

e L a R f L a′ R e.

Then e̺Da = ea = a and since ̺Da = ̺
D
b
, eb = a. Hence a ∈ L(b). Similarly b ∈ L(a)

and hence a L b. Similarly, considering the representation λD we get a R b

dually. Hence a H b. Therefore

a = e̺Da = e̺Db = b

since e ∈ Ra = Rb and so, by Lemma 2.36, e is a left identity of both a and b.

̟D is called the partial symmetric representation of S on D.
The following result, obtained by considering Proposition 2.92 above for all

D-classes simultaneousely, is essentially due to G. Lallement Lallement [1967].

Theorem 2.94. Let S be a semigroup and for each a ∈ S, let

D̺a =
⋃

D∈D/D

D̺Da and ̺a =
⋃

D∈D/D

̺Da .

Then D̺a is a left ideal such that

D̺a = {x ∈ S : x R xa}.

Moreover ̺a : D̺a → L(a) is a morphism of ideals and ̺ : a 7→ ̺a is a representation
of S by partial transformations on S.

Proof. First notice that, since S/D is a partetion of S, from the definition ofD̺Da
in Proposition 2.92 we see that D̺a = {x ∈ S : x R xa}. Let x ∈ D̺a. If y ∈ L(x),
then y = tx for some t ∈ S1. If D is the D-class of x then by the definition of
D̺a, x ∈ D̺

D
a and so x R xa by Proposition 2.92. Hence x = xas for some s ∈ S1.

Then
y = tx = txas = yas

and so, y ∈ D̺a. Hence L(x) ⊆ D̺a for all x ∈ D̺a which shows that D̺a is a
left ideal. It is clear from the definition of ̺a that

̺a = ρa | D̺a

and so, ̺a is a morphism of left ideals.
To show that ̺ is a representation, consider a, b ∈ S. For any x ∈ S, let

D = Dx be the D-class containing x. Then

x̺ab = x̺Dab = x
(

̺Da ◦ ̺
D
b

)

= x
(

̺a ◦ ̺b

)

by Proposition 2.92. Hence ̺
ab
= ̺a ◦ ̺b. Therefore ̺ is a representation in

PT S.
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isodomain
D̺a:isodomain of ρa
̺a:partial right translation by a
partial right translation
̺:representation by partial right
translations

Dλa:isodomain of λa
λa:partial left translation by a
partial left translation
λ :representation by partial left
translations
̟:partial symmetric representation
of on S

representation!partial symmetric –

The idealD̺a has the important property that restriction of the translation
ρa (or the partial translation ̺a) to any L(x), x ∈ D̺a induces an isomorphism
of L(x) onto L(xa). In fact D̺a is the union of all principal left ideals with
this property. We shall call D̺a as the isodomain of ρa and ̺a as partial right

translation by a. The representation ̺ is called the representation by partial
right translations

Again, the left-right dual of ̺ is a representation λ : S → PT
op
D

(or an
anti-representation in PT S) where each λa : Dλa → R(a) is a morphism of
right ideals. HereDλa is the isodomain of λa which is the left-right dual of D̺a
given by

Dλa = {x ∈ S : x L ax} and λa = λa | Dλa.

For any a ∈ S λa is called the partial left translation by a. The representation λ is
called the representation by partial left translations

We may combine the representations ̺ and λ to get a new representation
of S in PT S ×PT

op
S
. As a consequence of Theorem 2.94 and its dual, we

have:

Corollary 2.95. Let S be a semigroup. For each a ∈ S let

a̟ =
(

̺a,λa
)

.

Then ̟ : S→PT S ×PT
op

S
is a representation.

̟ is called the partial symmetric representation of S. Assume that S is regular.
Then for any a ∈ S, by Proposition 2.39, there is an idempotent e ∈ Swith e R a

and e is a left identity of a. Hence Hence L(e) ⊆ D̺a and ̺a is an isomorphism
of L(e) onto L(a). In particular ̺a is surjective from D̺a onto L(a). Similarly λa
is surjective from Dλa onto R(a). Now let a̟ = b̟. Then ̺a = ̺b and λa = λb.
In particular L(a) = L(b) and R(a) = R(b) which implies that a H b. If e is an
idempotent in Ra, then we have

a = ea = e̺a = e̺b = eb = b.

Therefore̟ is faithful.

Corollary 2.96. If S is a regular semigroup, then the representation̟ of S is faithful.

Recall Subsection 2.6.2 that a semigroup is an inverse semigroup if every
element of S has a unique inverse. See Theorem 2.44 for various equivalent
characterizations of inverase semigroups. In particular, every inverse semi-
group is a regular semigroup.
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semigroup!weakly inverse –Theorem 2.97. If S is an inverse semigroup, then

D̺a = L(aa−1) = L(ea) and

and ̺a : L(ea) → L( fa) is a is a one-to-one partial transformation. Thus ̺ is a
faithful representation of S by one-to-one partial transformations of S. Similarly
representations λ and ̟ are also faithful.

Proof. Since S is inverse, by Theorem 2.44, it is regular and by |cor 2.96,the
representation ̟ is faithful. To prove that ̺ is faithful, let ̺a = ̺b. By
Theorem 2.44, Ra contains a unique idempotent e (say). Then

e ∈ D̺a = D̺b and so, eb = ea = a ∈ Re ∪ Lb.

By Theorem 2.34, Le ∪ Rb contains an idempotent f . Then e L f and by
Theorem 2.44, e = f . Therefore a R b and so, a H b. Then a = ea = eb = b.
Therefore ̺ is faithful. Dually λ is faithful.

Finally we show that ̺a is one-to-one for every a ∈ S. If e is the idempotent
in Ra, it is clear that e ∈ D̺a and ̺a | L(e) = ρa | L(e) is an isomorphism of
L(e) onto L(a). Suppose that x ∈ D̺a and f be an idempotent in Lx. Since
s̺a = sa = (se)a for all s ∈ D̺a, it follows from the definition ofD̺a that f R f e.
By Theorem 2.44 f e is an idempotent in Re and so, again by Theorem 2.44,
f = f e. Hence f ∈ L(e) and so, L(x) ⊆ L(e). Hence L(e) = D̺a and so,
̺a = ρa | L(e) which is an isomorphism of L(e) onto L(a). This proves that ̺a is
a ono-to-one partial transformation of S.

The representation ̺ for inverse semigroups is known as Vager-Preston

representation and it was first studied by Vagner Vagner [1953a] and indepen-
dently by Preston Preston [1954b]. B. R. Srinivasan introduced an studied a
class of regular semigroup called weakly inverse semigroups ? which properly
contains the class of inverse semigroups and for which the representation ̺
is faithful. This representation need not be faithful for arbitrary regular semi-
groups. For, let S = B1 where B is an n × n rectangular band (n > 1) and
S is obtained by adjoining identity to B. Then the regular representation of
S is faithful but the representation ̺ is not faithful. Notice that B is a regu-
lar semigroup for which neither the regular representation nor the Lallement
representation is faithful.2.9.3 S
hutzenberger representations
Here we shall discuss some representations by matrices over a group with
0 G0 (see § Subsection 2.1.3 and § Subsection 2.7.3 for relavent definitions).
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matrix!row-monomial
matrix!column-monomial –
Mrow-mon:semigroup of
row-monomial matrices

Suppose that {1i : i ∈ I} is an indexed subset of G0 indexed by an arbitrary set
I. For convenience, we shall write

∑

i∈I

1i =























0 if 1i = 0 for all i;

1k if 1i = 0 for all i with i , k and

unde f ined if there exist k, l ∈ I, k , l such that 1k , 0 and 1l , 0.
(∗)

Recall that, for any set I, an I×I-matrixoverG0 is amap I×I→ G0. Suppose that
m = (1i j) andm′ = (hkl) are two I× Imatrices over G0. The usual (row-column)
product of these matrices is

(1i j)(hkl) = (cil) where cil =
∑

j∈I

1i jh jl

if the sum is meaningful. Unless an additive structure exists on G0, the sum
should be interpreted as in (∗). Hence the product exists if and only if, for each
i, l ∈ I, there is exactly one j with cil = 1i jh jl. This will hold if either every row
ofm contains exactly one non-zero entry or every column ofm′ contain exactly
one non-zero entry. Thus the productmm′ exists if either m is row-monomial or
ifm′ is column-monomial. Ifm is row-monomial, so ismm′ for anymatrixm′ and
mm′ is column-monomial, if m′ has this property. Thus the set Mrow-mon of all
rowmonomial matrices is a semigroup under matrix multiplication abow and
similarly, we have the semigroup Mcol-mon of all column-monomial matrices.
Notice that the set of all monomial matrices § Subsection 2.7.3 is a common
subsemigroup of these.

We have discusses representation of completely 0-simple semigroups by
monomial matrices in § Subsection 2.7.3. Here we discuss some representa-
tions by row-monomial and column-monomial matrices over a group with
0.

Let D be a D-class of S and let H ⊆ D be an H-class contained in D. Let

D/R = {Ri : i ∈ ID} and D/L = {Lλ : λ ∈ ΛD}

denote the set ofR-classes andL-classes contained inD respectively. For each
i ∈ ID = I, we denote by R(i) the principal right ideal generated by Li; similarly
L(α) denote the principal left ideal generated by Lλ, λ ∈ ΛD = Λ. Also, we
write R = R(H) and L = L(H). Recall Proposition 2.46 that the automorphism
groups of L and of R are isomorphic to the Schützenberger group g(H) of the
H-class ofH. It will be convenient in the sequel to identify these groups. Thus
an automorphism α ∈ Aut(L) [α ∈ Aut(R)] will be identifies with the unique
element θ ∈ g(H) such that aα = aθ [α(a) = θa] for all a ∈ H.

Now if a, b ∈ D, by Proposition 2.28 there is c ∈ D with a R c L b and
by Theorem 2.26, there is a unique isomorphism σ : L(a) → L(b) in L(S) with
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aσ = c. Sinceσ is an isomorphism inL(S), there is s, s′ ∈ S1 such thatσ = ρs | L(a)
and σ−1 = ρs′ . It follows that for each λ ∈ Λwe can choose sλ, s′λ ∈ S

1 such that

γλ = ρsλ | L is an isomorphism onto L(λ) and ρs′
λ
| L(λ) = γ−1λ .

Suppose that a ∈ S. For any λ ∈ Λ, ρa | L(λ) is an isomorphism onto L(µ) for
some µ ∈ Λ if and only if

x R xa ∈ Lµ for all x ∈ Lλ.

If this is true then

hλµ = γλ
(

ρa | L(λ)
)

γ−1µ (2.55a)

is an automorphism of L = L(H) and so corresponds to a unique element in
g(H). Now let

mλ,µ(a) =















hλµ if ρa | L(λ) : L(λ)→ L(µ) is an isomorphism

0 otherwise.
(2.55b)

When mλ,µ , 0, it is an automorphism of L(H) = L and so, can be taken to be
an element of the Schützenberger group g(H) of the H-class H. In either case
mλ,µ represents a unique element in the group with zero (g(H))0. Note that for
any λ ∈ Λ, there exist utmost one µ ∈ Λ for which mλ,µ , 0. It follows thatMD(a) = M(a) =

(

mλ,µ(a)
)

(2.55c)

is a row monomial I × I-matrix over (g(H))0 where I = ID. If a, b ∈ S, by the
definition of the product,M(a)M(b) =

(

pλν
)

where pλν =
∑

µ∈Λ

mλµ(a)mµν(b)

By Equation (2.55b), pλν , 0 if and only if there exists a uuique η ∈ Λ such that

pλν = mλη(a)mην(b)

and so,pλµ , 0 if and only if

mλη(a) , 0 and mην(b) , 0.

Therefore x R xa R xab for all x ∈ Lλ. Hence x R xab and so mλν(ab) , 0. Also
the automorphism of L corresponding to pλν = g(a)ληg(b)ην in g(H) is

pλν = mλη(a)mην(b)

= γλ
(

ρa | L(λ)
)

γ−1η γη
(

ρb | L(η)
)

γ−1ν

= γλ
(

ρaρb | L(λ)
)

γν

= γλ
(

ρab | L(λ)
)

γν

= mλν(ab).
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Therefore pλν = mλν(ab). Conversely, if mλν(ab) , 0, x R xab for all x ∈ Lλ and
as in the proof of Proposition 2.92, we have x R xa R xab. This implies that

mλη(a) , 0 and mην(b) , 0.

Thus pλν , 0. Consequently M(a)M(b) = M(ab).

Dually, for each i ∈ ID = I, we can choose an isomorphism δi : R → R(i) and
for each a ∈ S, define M′(a) = (

m′λ,µ(a)
)

(2.55c∗)

where

m′λ,µ(a) =















δi (λa | R(i)) δ−1j if λa | R(i) : R(i)→ R( j) is an isomorphism

0 otherwise.
(2.55b∗)

Then it can be verified, using Proposition 2.46 and Theorem 2.47 thatM′ : a 7→M′(a) is a dual (anti) representatyion of S by row-monomial matrices over the
Schützenberger group with zero (g(H))0. If we setM∗D(a) = (M′(a))t (2.55d)

as the transpose of the matrix M′(a), then M∗(a) is column-monomial and we
have M∗(a)M∗(b) = (M′(a))t (M′(b))t

= (M′(b)M′(a))t
= (M′(ab))t = M∗(ab).

Therefore M∗
D
is a representation of S by column-monomial ID × ID-matrices

over (g(H))0. We use the notations introduced above in the following state-
ment.

Theorem 2.98. Let D be aD-class of a semigroup S and let H be anH-class contained
in D. For each a ∈ S, let MD(a) be defined by Equation (2.55c). Then the mapMD : a 7→ MD(a)

is a representation of S by row-monomial ID × ID-matrix over (g(H))0.
Dually for each a ∈ S, letM∗

D
(a) be the matrix defined by 2.55c∗ and (2.55d). Then

the map M∗D : a 7→ M∗D(a)
is a representation of S by ΛD ×ΛD column-monomial matrices over (g(H))0.
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representation of with respect to D

representation!Schützenberger –M∗
D
:The dual Schützenberger

representation of with respect to D
representation!dual Schützenberger
–

representations!equivalent –

The representation MD is called the Schützenberger representation of S with
respect to the D-class D. Similaely the representation M∗D is called the dual

Schützenberger representation of Swith respect to the D-class D.
Suppose that φ and ψ are two representations of the semigroup S. We shall

say that φ and ψ are equivalent if κφ = κψ. If this is the case, it is clear that the
semigroups Imφ and Imψ are isomorphic.

Theorem 2.99. Let D be a D-class of a semigroup S then the partial representation
̺D and the Schützenberger representation MD are equivalent. Similarly, the dual

representations λD and M∗
D
are also equivalent.

Proof. Suppose that a, b ∈ S. For brevity, we have write M(a) for MDD(a), etc.
Then, by (2.55b) and (2.55c), M(a) = M(b) if and only if, for each λ ∈ ΛD, ρa is
an isomorphism on L(λ) if and only if ρb is an isomorphism on L(λ) and the
two isomorphisms coincide. Now, by Corollary 2.27, for x ∈ D, ρa | L(x) is an
isomorphism if and only if x R xa. Hence ρa | L(x) is an isomorphism if and
only if x ∈ D̺Da . It follows that M(a) = M(b) if and only if D̺Da = D̺Db and the
restrictions of ρa and ρb to this set are equal. ThereforeM(a) = M(b) if and only
if ̺Da = ̺

D
b
; that is MD and ̺D are equivalent representations. Dually we can

see that κM∗
D
= κλD and so, these representations are also equivalent.

The representationMD clearly depends on the choice of the isomorphisms
γλ : L→ L(λ). However, if M′D is another representation with respect to D, by
the result above, we have

κMD = κ̺
D = κM′D.

Therefore:

Corollary 2.100. Let D be a D-class of a semigroup S. The Schützenberger repre-
sentation of S with respect to D is unique up to an equivalence.

For each ω in an index set Ω, let Mω be a representation of the semigroup
S by Λω × Λω-matrices over the group with zero G0

ω . If Mω (S) = ImMω ,
then Mω (S) is a semigroup and Mω is a homomorphism onto Mω (S). Let
T =

∏

ω∈ΩMω (S). Each s ∈ S determine a unique elementM(s) = (. . . ,Mω (s), . . . ) ∈ T

such that the map M : s 7→ M(s)
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⊕

ω∈ΩMω :direct sum of
representations Mω

representations!direct sum

is a homomorphism of S into T. We writeM =⊕

ω∈Ω

Mω

and is called the direct sum of representations Mω . Let Λ =
⋃

ω∈ΩΛω be the
disjoint union of sets Λω and let G0 be any group with zero containing, for
each ω ImΩ, G0

ω as a subgroup with zero (for example, we may take G0 as the
direct product

∏

ω∈ΩG
0
ω of all semigroups G0

ω see Rmk 2.6). Then, for each
s ∈ S, M(s) can be regarded as a Λ ×Λ-matrix over G0M(s) =



























. . . Mω (s)
. . .



























(2.56)

in which the matrices Mω (s) form the diagonal blocks along the main diago-
nal. If each Mω is a representation by row-monomial (or column-monomial)
matrices so is the direct sumM.

Let S/D = Ω be the sert of all D-classes of S. By Corollary 2.48, upto
isomorphism, there is a unique group associated with each D ∈ Ω which is
isomorphic to the Schützenberger group of any H-class ofD. We shall refer to
this group as the Schützenberger group ofD. Recall that for eachD ∈ Ω,MD is
a homomorphism of S into the semigroup of all row-monomial matrices over
G0

D
where GD is the Schützenberger group of D. Clearly, sets ΛD are mutually

disjoint and Λ = S/L =
⋃

D∈ΩΛD. It follows from the remarks above that the
direct sum M =⊕

D∈Ω

MD (2.57)

is a representation by row-monomial Λ×Λ-matrices over the group with zero
G0 where

G0 =
∏

D∈Ω

G0
D. (2.58)

the direct product G0 of all Schützenberger groups of S. Notice that, by
Remark 2.6, G0 is a group with zero.

Theorem 2.101. The direct sum M (2.57) of all Schützenberger representations of a
semigroup S is a representation of S by row-monomialΛ×Λ-matrices (Λ = S/L) over
G0. Morewover, M is equivalent to the representation ̺ by partial right translations
(see Theorm 2.94).

Dually, the direct sum M∗ of all dual Schützenberger representations is is a repre-
sentation by column-monomial I × I-matrices (I = S/R) over G0 and is equivalent to
the representation λ by partial left translations. Finally, if U = Λ ∪ I, the direct sumMσ = M ⊕M∗ is a representation of S over G0 and Mσ is equivalent to the by partial
symmetric representation̟ (see Corollary 2.95).
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extension
extension!Schreier –

Proof. In view of the discussion preceding the statement, it is only necessary
to prove the equivalence of representations M with ̺. The equivalence of M∗
with λ will follow by duality and that of Mσ with ̟ from the equivalences
mentioned above. To prove that κ̺ = κM, assume that (a, b) ∈ κ̺. By the
definition of ̺a and ̺b, we obtain, for every x ∈ S,

x R xa or x R xb⇒ xa = xb. (1)

Now if x R ax then, by Equation (2.55b), mλµ(a) , 0 where L(λ) = L(x) and
L(µ) = L(xa). If this hold, the condition (1) above implies that

mλµ(a) = mλµ(b)

When x R xb we similarly see that this equality hold. If neither of these hold
then

mλµ(a) = mλµ(b) = 0.

Therefore

mλµ(a) = mλµ(b) for all λ, µ ∈ Λ = S/ L (2)

and so, we have M(a) = M(b). Conversely, let M(a) = M(b) so that a and b

satisfies Equation (2). Assume that x ∈ D̺a so that x R xa. Then, as above,
we see that mλµ(a) , 0 where L(λ) = L(x) and L(µ) = L(xa). By Equation (2),
mλµ(a) = mλµ(b). By Equation (2.55b) it follows that ρa | L(x) = ρb | L(x) and so,
xa = xb. Similarly, we see that when x ∈ D̺b, xa = xb. It follows that ̺a = ̺b.
This completes the proof.

It follows fromTheorem2.97 and the result above that the representationMσ

is faithful for regular semigroups. For inverse semigroups the representationsM, M∗ and Mσ are all faithful.

2.10 extensions

By an extension of a semigroup Swemean a semigroup T containing S as a sub-
semigroup. The problem of constructing all extensions of a given semigroup
is too general to be of much interest (even for groups). A much restricted
form of this problem for groups is the following: given two groups N and H

construct all groupsG havingN as a normal subgroup and G/N isomorphic to
H. This construction is possible and is given by the Schreier extension theory.
A direct generalization of this to semigroups is again not possible since, in
the case of semigroups, there is no proper replacement for concept of kernel
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extension!ideal – of homomorphisms. However, in some particulae cases, this construction has
been carried out successfully for semigroups (see, for example, Leech ?, Grillet
Grillet, ? and Clifford Clifford [1949], Clifford and Preston [1961]). Here we
shall briefly discuss the later construction due to clifford Clifford and Preston
[1961] which is particularly useful in finding structure of several classes of
semigroups (in particular, certain classes of finite semigroups).2.10.1 Ideal extensions
To save repetition we shall assume through out this section that S is a semi-
group with zero 0 and U is a semigroup disjoint from S. A semigroup T is an
ideal extension of a semigroupU ifU is isomorphic to an idealU′ of T. Further,
we say that T is an ideal extension by a semigroup S with zero if the Rees
quotient T/U′ is isomorphic to S. For convenience, we may identifyUwithU′

by the given isomorphism and regard U as an ideal of T and S = T/U. The-
orem 2.90 says that when U is weakly reductive, the translational hull Ω(U)
is an ideal extension of U. Clifford [1949] was first to study ideal extensions
(see also Clifford and Preston [1961], Grillet). Petrich and Grillet ? have also
contributed significantly.

Notice that the construction of T from the given semigroups U and S is
analogous to the Schreier construction of groups. On the other hand, there are
also significant differences between these constructions. For example, given
two groups N andH there is always a Schreier extension of N by H; the direct
productN×H is one such extension. However, as shown by the Example 2.30,
this is not true for ideal extensions of semigroups.

Let T be an ideal extension of U by S. Then it is clear that

T = U ∪ S∗ where S∗ = S − {0}.

Also, if s, t ∈ T, the product s ∗ t in T is formed as follws. In the following,
products in S or U is indicated by juxtaposition.

(1) s ∗ t = st ∈ S∗ if s, t, st ∈ S∗;

(2) s ∗ t ∈ U if s, t ∈ S∗ and st = 0;

(3) s ∗ t ∈ U if s ∈ S∗ and t ∈ U;

(4) s ∗ t ∈ U if s ∈ U and t ∈ S∗;

(5) s ∗ t = st ∈ U if s, t ∈ U.

(2.59)

Therefore an ideal extension T of U by S defines an associative product on
T = U ∪ S∗ satisfying equations (1) – (5). We proceed to discuss some of the
consequences of this. Since S and U are given, conditions (1) and (5) can be
ensured with out any further work. Other products must be specified in such
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ramification
homomorphism!partial –

away that the resulting product is associative. The products of type (2) defines
a map φT = φ defined by

φ(s, t) = s ∗ t for all (s, t) ∈ Z(S) (2.60a)

where

Z(S) = {(s, t) ∈ S∗ × S∗ : st = 0 in S}. (2.60b)

Following Clifford and Preston [1961], any map φ : Z(S) → U is called a
ramification of S into U. Hence every ideal extension T of U by S induces a
unique ramification φT of S into U.

If s ∈ S∗ the products of the form (3) gives a map

λU
s t = s ∗ t for all t ∈ U (2.61a)

of U into itself which is clearly a left translation of U. In fact, λU
s = λs | U is

the restriction of the inner left translation of T determined bt s to U. Similarly
products of the type (4) gives the map, defined for all t ∈ S∗, by

sρUt = s ∗ t for all s ∈ U (2.61b)

which is a right translation of U. Moreover, for any s ∈ S∗

(

tρUs
)

u = t
(

λU
s u

)

for all t, u ∈ U.

Hence the pair

ηTs = ηs = (ρUs , λ
U
s ) (2.62a)

satisfies Equation (2.54) and so, this pair belongs toΩ(U). Associativity of the
product ∗ in T imples that

ηst = ηsηt for all s, t ∈ S∗ such that st , 0. (2.62b)

By a partial homomorphism of a semigroup Swith 0 to a semigroup U we mean
is a mapping η of S∗ = S − {0} into U satisfying Equation (2.62b) above. Thus
the discussion above shows that every ideal extension T of U by S induces a
partial homomorphismηT = ηofS toU. ηT is called thepartial homomorphism
induced by T.

Excep for minor changes in notation and terminology, the following result
is the same as Proposition 1.1 of Chapter III in Grillet.
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Theorem 2.102. Suppose that S is a semigroupwith zero andU is a semigroup disjoint
from S. Let T be an ideal extension of U by S. Then the partial homomorphisn ηT = η
and ramification φT = φ of S to U satisfy the following: for s, t, x ∈ S∗,

(1) (ηsu)ηt = ηs(uηt) for all u ∈ U;

(2) ηsηt =
(

φ(s, t)
)

π if st = 0 in S;

(3) ηsφ(t, x) = φ(s, t)ηx if st = 0 = tx;

(4) ηsφ(t, x) = φ(st, x) if st , 0, tx = 0;

(5) φ(s, t)ηx = φ(s, tx) if st = 0, tx , 0;

(6) φ(s, tx) = φ(st, x) if st , 0 , tx and stx = 0.

(2.63)

Conversely, let η : s 7→ ηs be a partial homomorphism and φ be a ramification of
S to U satisfying the conditions (1) . . . (6) above. On T = S∗ ∪ U define the binary
operation ∗ as follows: For all s, t ∈ T

s ∗ t =































st if s, t, st ∈ S∗ or s, t ∈ U;

φ(s, t) if s, t ∈ S∗ and st = 0 in S;

ηst if s ∈ S∗ and t ∈ U;

sηt if s ∈ U and t ∈ S∗.

(2.64)

Then T with this binary operation is the unique ideal extension of U by S such that the
partial homomorphism and ramification induced by T coincides with the given maps.

Proof. Letφ be the ramification defined by Equation (2.60a) and η be the partial
homomorphism defined by Equation (2.62a). The properties listed in Equa-
tion (2.63) are immediate consequences of the definitions and the associativity
of the product in T. The verification of these are left as exercise.

To prove the converse, we first verify that the product defined by Equa-
tion (2.64) is associative. To do this it is necessary to verify the following
equality in various cases:

(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ T. (!)

Let s, t, x ∈ S∗ and u, v,w ∈ U. The case a, b, c ∈ U follows from the associativi-
ties in the semigroup U. Since ηs acts on the left of U as a left transtlation, we
have

s ∗ (u ∗ v) = ηs(uv) = (ηsu)v = (s ∗ u) ∗ v.

Dually, we have (u ∗ v) ∗ s = u ∗ (v ∗ s). Since ηs ∈ Ω(U) the two translations
represented by ηs are linked. Hence

(u ∗ s) ∗ v = (uηs)v = u(ηsv) = u ∗ (s ∗ v).

Again by condition (1) above, we have

(s ∗ u) ∗ t = (ηsu)ηt = ηs(uηt) = s ∗ (u ∗ t).
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homomorphism!U-homomorphism
congruence!S-congruence

If st , 0, since η is a partial homomorphism, we have,

(s ∗ t) ∗ u = ηstu = ηsηtu = s ∗ (t ∗ u).

If st = 0, then by the case 2 of the definition of ∗ and conditions (1) and (2),

(s ∗ t) ∗ u = φ(s, t)u = πφ(s,t)u = ηsηtu = s ∗ (t ∗ u).

Now if st , 0 , tx and stx , 0, then by the case 1 in the definition of ∗, we have
(s ∗ t) ∗ x = s ∗ (t ∗ u). If st , 0 , tx and stx = 0 then

(s ∗ t) ∗ x = st ∗ x = φ(st, x) ands ∗ (t ∗ x) = φ(s, tx)

and so, (!) follows by condition (6). Let st , 0 and tx = 0. Then (st)x = 0.
Hence

(s ∗ t) ∗ x = (st) ∗ x = φ(st, x) and s ∗ (t ∗ x) = s ∗ φ(t, x) = ηsφ(t, x).

So, the equality (!) holds by condition (4). Similarly it can be shown that in
the case when st = 0 and tx , 0 (!) holds because of condition (5). Finally if
st = 0 = tx,

(s ∗ t) ∗ x = φ(s, t) ∗ x = φ(s, t)ηx and s ∗ (t ∗ x) = ηsφ(t, x).

Therefore, in this case, (!) holds by condition (3). This completes the proof of
associativity of ∗.

Equation (2.64) clearly shows that U is an ideal in T. Since T = S∗ ∪ U,
the Rees quotient T/U is clearly in one-to-one correspondance with S. The
first and second cases in Equation (2.64) shows that this correspondance is
an isomorphism. Thus T is an ideal extension of U by S. Comparing Equa-
tion (2.60a) and Equation (2.64), we see that the ramifcation φT of T (defined
by Equation (2.60a)) and the given map coincide. Similarly compairing Equa-
tions (2.61a), (2.61b), (2.62a) and (2.64), we see that ηT = η; that is, the partial
homomorphism ηT associated with T coincides with the given map η. This
proves the uniqueness of the construction of T.

Let T and T′ be ideal extensions of U. A homomorphism θ : T → T′ is
said to be an U-homomorphism if θ | U = 1U (see Grillet, page 65). Similarly
a congruence σ on T is an U-congruence if the restriction of σ to U is identity;
that is σ ∩ U × U = 1U. Recall from Theorem 2.90 that π : U → Ω(U) is a
homomorphism which sends u ∈ U to (ρu, λu).
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Theorem 2.103. Let T be an ideal extension of U by S and let η = ηT be the partial
homomorphism induced by T. Then there is a unique homomorphism τ = τT : T →
Ω(U) defined for all s ∈ T by

sτ =















ηs for all s ∈ S∗;

sπ = (ρs, λs) for all s ∈ U.

τ is a U-homomorphism if and only if U is weakly reductive.

Proof. Since S∗ ∩U = ∅ and S∗ ∪ U = T, τ is well defined map of T into Ω(U).
We must show that

(a ∗ b)τ = (aτ)(bτ) for all a, b ∈ T (!!)

We need to verify several cases.

1 s, t ∈ S∗ and st , 0. Then by the deinitionof τ, we have

(s ∗ t)τ = (st)τ = ηst = ηsηt = (sτ)(tτ).

2 s, t ∈ S∗ and st = 0. Then for any v ∈ U,

v(s ∗ t)τ = v ∗ (s ∗ t) = (v ∗ s) ∗ t = (vηs)ηt = v ((sτ)(tτ)) .

Hence the right translation determined by (s ∗ t)τ and (sτ)(tτ) are the
same. Similarly

(s ∗ t)τv = ηs(ηtv) = ((sτ)(tτ)) v

and so, the left translation by (s ∗ t)τ and (sτ)(tτ) are also the same.
Therefore (!!) holds in this case.

3 s ∈ S∗ and u ∈ U.

v ((s ∗ u)τ) = v ((s ∗ u)π) = vρs∗u = v ∗ (s ∗ u) = (v ∗ s) ∗ u

= v
(

ρsρu
)

= v ((sπ)(uπ)) = v ((sτ)(uτ)) .

Similarly,

((s ∗ u)τ) v = (s ∗ u) ∗ v = s ∗ (u ∗ v) = (λsλu)v = ((sτ)(uτ)) v.

It follows from these that (s ∗ u)τ = (sτ)(uτ). It can be shown in a similar
way that (u ∗ s)τ = (uτ)(sτ).

4 u, v ∈ U. Since τ | U = π, the equation (!!) is obviousely hold.
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iEU :The category of ideal extensions
of U

Therefore τ is a homomorphism of T into Ω(U). The uniqueness of τ follows
from the fact that, by definition, τ | S∗ = η and τ | U = π.

If τ is a U-homomorphism then τ | U = 1U = π. Therefore U is weakly
reductive. Comversely, if U is weakly reductive, then τ | U = π is an isomor-
phism. Identifying U with Imπ by π, Ω(U) become an ideal extension of U
and τ : T → Ω(U) a U-homomorphism.

It is clear that, given a semigroup U, there is a category iEU with ideal
extensions of U as objects and U-homomorphisms as morphisms. Recall Sub-
section 1.2.3 that from a base F : C → D to d ∈ vD is a natural transformation
from F to the constant functor ∆d from C to d. A cone from the inclusion
functor of iEU in the category S of semigroups to the constan functor from
iEU to Ω(U) will, for convenience, be called a cone from the base iEU to the
vertexΩ(U). This is a map τ : T → τT from v iEU to the morphism class of iEU

making the following diagram commute:

Ω(U)

τT′

T

τT

θ
T′

(2.65)

Theorem 2.104. Let T and T′ be ideal extensions of U and let θ : T → T′ is a
U-homomorphism. Then the map τ : T 7→ τT is a cone from the base iEU to the vertex
Ω(U). If U is weakly reductive, then the cone τ is universal and so,

Ω(U) = lim
−−→

iEU.

Furthermore, in this case,

τT = 
Ω(U)
T

whenever T is an ideal extension of U which is a subsemigroup of Ω(U).

Proof. Write τ = τT and τ′ = τT′ . Since θ is a U-homomorphism,

uθ ◦ τ′ = uπ = uτ for all u ∈ U.

Let a ∈ S∗. Then for any u ∈ U, since θ | U = 1U, we have

u(aθ ◦ τ′) = u ∗ (aθ) = uθ ∗ aθ = (u ∗ a)θ = u ∗ a = uηa.

Similarly, (aθ ◦ τ′)u = ηau. Therefore

aθ ◦ τ′ = aτ for all a ∈ S∗
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idealextension!dense – Consequently θ◦τ′ = τ and so the diagram 2.65 commutes. Therefore τ : T 7→
τT is a cone with base iEU and vertexΩ(U).

Suppose now that U is weakly reductive and let

τ′ = τΩ(U).

Then Ω(U) is an ideal extension of U. Since U is identified with π(U), τ′ is a
U-homomorphism of Ω(U) onto itself. We first show that τ′ = 1U. If u ∈ U,
we have uτ′ = uπ = u. If a ∈ S∗ where S = Ω(U)/U, then a is an outer
bitranslation (bitranslation which is not inner). By the definition of τ′ = τΩ(U)

in Theorem 2.103 and Equation (2.62a) (definition of ηΩ(U)), we have

u(aτ′) = uηa = u ∗ a = ua for any u ∈ U.

Similarly au = (aτ′)u for all u ∈ U. Since both a and aτ′ are bitranslations,
this implies that a = aτ′ for all a ∈ S∗. Therefore τ′ = 1Ω(U). To show that
the cone τ is universal, let σ be amy cone from the base iEU to the vertex
V. Tnen σ′ = σΩ(U) is a U-homomorphism. Then for any T ∈ v iEU, τT is a
U-homomorphism and so,

σT = τT ◦ σ
′.

This shows that τ is universal and so, Ω(U) = lim
−−→

iEU. Finally, assume that

U ⊆ T ⊆ Ω(U). Since Ω(U)
T

is a U-homomorphism, by the above,

τT = 
Ω(U)
T
◦ τΩ(U) = 

Ω(U)
T

because τΩ(U) = 1Ω(U).

An ideal extension D of U is said to be dense if identity is the only non-
trivial U-congruence on D. This is equivalent to the statement that any U-
homomorphism of D is injective. When U is weakly reductive, any sub-
semigroup T of Ω(U) containing U is dense. For, let θ : T → T′ be any
U-homomorphism. Then φ = θ ◦ τT′ is a U-homomorphism of T to Ω(U).
Then by Theorem 2.104, we have

φ = φ ◦ τΩ(U) = τT = 
Ω(U)
T

which says that φ is injective. Hence θ is also injective. Thus T is dense. In
the same way, it can be seen that an ideal extension D is dense if and only if D
is isomorphic to an ideal extension T ⊆ Ω(U).

Corollary 2.105. Let D be an ideal extension of a weakly reductive semigroup U.
Then D is dense if and only if it is isomorphic to an ideal extension T ⊆ Ω(U).
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If S is a semigroup with 0 andU is disjoint from S, then by Theorem 2.102,
an ideal extension of U by S is determined by a partial homomorphism η and
a ramification φ satisfying the conditions in Equation (2.63). The condition (2)
in Equation (2.63) shows that the ramification φ is uniquely determined by the
partial homomorphism whenU is weakly reductive. This simplifies the result
considerably as the following theorem shows.

For convenience, ifU is weakly reductive, we shall assume thatU has been
identified with π(U) ⊆ Ω(U) so that a statement that the bitranslation β ∈ U

will mean that β is an inner bitranslation sπ for some unique s ∈ U.

Theorem 2.106. Suppose that U is weakly reductive and let η : S∗ → Ω(U) be a
partial homomorphism such that

ηsηt ∈ U for all s, t ∈ S∗ with st = 0. (⊲)

Then T = S∗ ∪U with product ∗ defined, for all s, t ∈ T, by

s ∗ t =































st if s, t, st ∈ S∗ or s, t ∈ U;

ηsηt if s, t ∈ S∗ and st = 0 in S;

ηst if s ∈ S∗ and t ∈ U;

sηt if s ∈ U and t ∈ S∗.

(2.66)

is the unique ideal extension of U by S such that the partial homomorphism ηT induced
by T coincides with η. Conversely if T is any ideal extension of U by S, then the partial
homomorphism induced by T satisfies the property (⊲).

Proof. Assume that η : S∗ → Ω(U) is a partial homomorphism satisfying (⊲).
We proceed to show that we can define a ramification φ such that the pair η
and φ satisfies the conditions in Equation (2.63). Define

φ(s, t) = ηsηt for all (s, t) ∈ Z(S). (⊳)

By (⊲) φ(s, t) ∈ U and so defines a ramification of S in U. Since we have
identified U with Imπ = π(U), condition (1) of Equation (2.63) follows from
associativity in Ω(U). Since π = 1U, condition (2) is the definition of φ. If
st = 0 = tx, using (⊳), we have

ηsφ(t, x) = ηs(ηtηx) = (ηsηt)ηx = φ(s, t)ηx.

This proves condition (3). To prove (4), let st , 0 and tx = 0. Then ηsηt = ηst
and (st)x = 0. Hence

ηsφ(t, x) = ηs(ηtηx) = (ηsηt)ηx = ηstηx = φ(st, x).
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The statement (5) is proved in a similar way. To prove (6), assume that st ,
0 , tx and stx = 0. Then

φ(s, tx) = ηsηtx = (ηsηt)ηx = ηstηx = φ(st, x).

Hence partial homomorphism η and ramificationφ satisfy the six conditions of
Equation (2.63). Also, in view of (⊳), the definition of ∗ in the statement coincide
with the product ∗ defined by Equation (2.64). Therefore, by Theorem 2.102,
T = U∪ S∗ is a semigroup with respect to ∗which is an ideal extension ofU by
S. The uniquiness of T also follows from Theorem 2.102.

To prove the converse, let T be an ideal extension of U by S where U

is weakly reductive. Since π = 1U, by condition (2) of Equation (2.63), the
ramificationφT induced byT satisfies (⊳) and hence the partial homomorphism
ηT induced by T satisfies (⊲).

Remark 2.18: The result above can be generalized to arbitrary semigroups by
replacing the particular dense extensionΩ(U) by an arbitrary dense extension
D. Thus an ideal extension of a semigroup U by a semigroup S can be con-
structed by considering a partial homomorphism θ : S∗ → D satisfying the
condition (⊲). Then we can get a partial homomorphism into Ω(U) as θ ◦ ηD.
Defining ramification by φ(s, t) = (sθ)(tθ) we can show that this pair satisfies
conditions of Equation (2.63). See Grillet for details. Notice that, by Corol-
lary 2.105, this is equivalent to Theorem 2.106 when U is weakly reductive.

Example 2.30: Let S = {e, f , 0} be the semilattice with e f = 0 and N = x+ be the
free cyclic semigroup. Any partial homomorphism θ of S to Ω(N) must map f to an
idempotent in Ω(N). But Ω(N) is isomorphic to N1 and so, any idempotent in Ω(N)
must be identity which is also the only external bitranslation of N. Hence if θ exists,
we must have (eθ)( fθ) = 1N . So, there cannot exist φ(e, f ) ∈ N such that

(eθ)( fθ) =
(

φ(e, f )
)

π.

Therefore there cannot exist an ideal extension of N by S.



biordered

chapter3

Biordered sets

In many algebraic systems like semigroups, rings, algebras, etc. idempotents
idempotents are important structural elements. To use them effectively in
analysing the structure of the abgebraic object under consideration, it is nec-
essary to know the nature of the set of their idempotents. In the case of
inverse and orhtodox semigroups the set of idempotents form subsemigroups
of known type. Many authors used this fact to determine the structure of
semigroups in these classes of semigroups. However, these methods cannot
be extend to determine the structure of semigroups in the more general class
of semigroups such as the class of regular semigroups, completely regular
semigroups, etc. since the set of idempotents E(S) of a regular (or completely
regular, etc.) semigroup S is not in general a subsemigroup of S even though
the role of E(S) in the structure of S is transparent. T.E. Hall (1973) made
an attempt to study the the structure of regular semigroup S in terms of the
subsemigroup generated by idempotents. He constructed a universal funda-
mental representation of S using the subsemigroup < E(S) > of S generated by
E(S). The concept of biordered set was originally introduced by Nambooripad
[1972, 1979] to represent the structure of the set of idempotents of a semigroup
in general and that of a regular semigroup in particular. He identified a par-
tial binary operation on E(S) arising from the semigroup product in S. The
resulting structure on E(S) involving the partial binary operation is abstracted
to the concept of a biordered set.Histori
al Ba
kground
The idea using of the set E(S) of idempotents of a semigroup S in studying its
structure has a long history. In 1941 Clifford [1941] used E(S) to characterize
certian semigroupswhichwere semilattice of groups. Later in 1966W.D.Munn
constructed an inverrse semigroup T(E), now called the Munn semigroup,
form an arbitrary semilattice E for which E(T(E)) is isomorphic to E (seeMunn

163
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semigroups!inverse! fundamental
semigroup!orthodox
idempotent generated semigroup
cross-connections
warp
biordered set

[1970]). Morever, if S is any inverse semigroup for which E(S) is isomorphic to
E then there is an idempotent separating homomorphism of φS : S → T(E) to
a full subsemigroup of T(E). φS is an isomorphism onto a full subsemigroup
of T(E) if and only if S is fundamental. This implies that the structure an
inverse semigroup S is determined by its semilattice of idempotents and a
certain family of groups. This turned out to be a landmark contribution
and many people tried to extend the results to wider class of semigroups.
Recall that a semigroup S is orthodox if the set E(S) is a band (a semigroup
of idempotents). Hall [1968] and Yamada [1970] observed that when S is a
regular orthodox semigroup, the structure of S can be described in terms of
E(S). In particular,Hall suitably extendedMunn’s theory to the class of regular
orthodox semigroups [see Hall, 1968].

For an arbitrary regular semigroup S, E(S) is not a subsemigroup of S.
Consequently it is not clear how one can extend Munn’s theory to this class of
semigroups. Three different approaches to the use of the set of idempotents
E(S) in the study of the regular semigroup can be traced. T.E.Hall(1973) used
the idempotent generated semigroup < E(S) > as the basic object in place of the
set E(S) of idempotents in studying the structure of the regular semigroup S.
Grillet [1974a,b,c] refined Halls results using the theory of cross-connections.
A.H. Clifford (1974) introduced the concept of warp which was the partial
algebraW on E(S) with partial binary operation ∗ induced from the semigroup
product in S: for e, f ∈ E(S)

e ∗ f =















e f if e f ∈ E(S);
undefined otherwise.

K.S.S. Nambooripad introduced the concept of a biordered set in Nambooripad
[1972] as an order the structure to represent the set of idempotents of a semi-
group; [see also Nambooripad, 1975]. He identified two quasiordersωr andωl

and a set of partial tranofsformations on the set E(S) of idempotents of a semi-
group satisfying certain axioms (see the definition below). Later, followiing
Clfford’s work ([see Clifford, 1974]), he refined the definition of biordered set
by showing that biordered sets are cetain partial binary algebras. Namboori-
pad [1979] showed that any biordered set satisfying the regularity condition
(see below) can be embedded as the set of idempotents of a regular semigroup.
It is known from Nambooripad [1979] that the partial algebra of idempotents
of any semigroup satisfies the axioms in Nambooripad [1979]. David Eas-
down (1985) proved the converse that any biordered set can be embedded as
the biorered set of idempotents of a suitable semigroup and thus showing that
the biorder axioms of Nambooripad [1979] are both necessary and sufficient
in order that the resulting structure represents the set of idempotents of a
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biordered set
E:biordered set
ωr:right quasiorder
quasiorder!right
τr(e):right translation
translation!right
ωr:left quasiorder
quasiorder!left

τl(e):left translation

semigroup.

3.1 biordered sets

As observed above, biordered sets can be viewed either as an order structure
or as a partial algebra. We give below both versions. The first definition
is essentially from Nambooripad [1972] with some rationaizations (see also
Nambooripad [1975]).

Recall from Section 1.1 that given any relation R on the set X and x ∈ X,
R(x) denote the set {x′ ∈ X : x′Rx} (see Equation (1.5a)). Also, 1X denote the
identty map (or relation) on X.

Definition 3.1. Let E be a non empty set and ωl, ωr be quasiorders on E. Let

R= ωr ∩ (ωr)−1, L= ωl ∩ (ωl)−1 and ω = ωl ∩ ωr. (3.1)

Suppose further that

Tr = {τr(e) : e ∈ E} and Tl = {τl(e) : e ∈ E}.

are families of partial transformations of E. Here, by the dual of a statement
involving the quasiorderes ωr, ωl and partial tranesforfmations τr(e), τl(e),
e ∈ E, we mean the statement that result by interchanging ωr with ωl and
τr(e) with τl(e). The structure < E, ωl, ωr,Tl,Tr > is called a biordered set if
the following axioms and their duals hold. Here e, f , 1, etc. denote arbitrary
elements of E.

(BO1) (1) ωr ∩ (ωl)−1 = ωl ∩ (ωr)−1 = 1E.

(2) For each e ∈ E, τr(e) : ωr(e) → ω(e) is an idempotent partial trans-
formation.

(BO2) (1) f ωr e⇒ f R fτr(e) ω e.

(2) 1 ωr f ωr e⇒ 1τr( f ) = (1τr(e))τr( f ).

(BO3) Let f , 1 ∈ ωr(e) and 1 ωl f . Then

(1) 1τr(e) ωl fτr(e) and

(2)
(

1τl( f )
)

τr(e) =
(

1τr(e)
)

τl
(

fτr(e)
)′.

(BO4) Let 1, f ∈ ωr(e) and 1τr(e) ωl fτr(e). Then there exist 11 ∈ ωr(e) such that
11 ωl f and 11τr(e) = 1τr(e).

Thedata required to specify a biordered setE consist of a pair of quasiorders
ωr and ωl and two families of partial transformations Tr and Tl. We will refer
to ωrright quasiorder of E and, for each e ∈ E, the partial transformation τr(e) as
the right translation of E. Similarly ωl is called the left quasiorder and τl(e),
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translation!left
biordered set!natural partial order
< E,DE, ∗ >:partial algebra on E
with domain DE

DE:domain of the partial operation
on E

dual
T∗:dual of T

e ∈ E is called the left translation of E. For brevity, we shall often write
E =< E, ωl, ωr,Tl,Tr > to mean that E is a biordered set with quasiordersωl, ωr

and translations Tl,Tr. The relation ω defined by (3.1) is clearly a quasiorder
and axiom (BO1) implies in particular that

ω ∩ (ω)−1 ⊆ ωr ∩ (ωl)−1 = 1E.

Hence the relation ω on E defined by (3.1) is a partial order. We shall call ω,
the natural partial order of the biordered set E.

A. H. Clifford (1974) observed that the data required to specify a biordered
set may be given in terms of a partial binary operation on the underlying set E.
This idea simplified the definition of biordered set a great deal. The definition
of biordered sets given in Nambooripad [1979] used this idea to simplify the
presentation. The following theorem formulates this definition in which we
have also taken into account the reordering of axioms suggested by the work
of ?.

Recall from Subsection 1.2.1 that a partial algebra is a set together with a
partial binary operation. We write < E,DE, ∗ > for a partial algebra on the
set E with DE denoting the domain of the binary operation or < E,DE > if
the binary operation is clear from the context. If no confusion is likely, we
shall use juxtaposition to denote the product. If E is a partial algebra, we
shall often denote the underlying set by E itself; and the domain of the partial
binary operation on E will then be denoted by DE. Also, for brevity, we write
e f = 1, to mean (e, f ) ∈ DE and e f = 1. The dual of a satatement T about a
partial algebra E is the statement T∗ obtained by replacing all products e f by
its left-right dual f e. When DE is symmetric, T∗ is meaningful whenever T is.

Proposition 3.1. Let E =< E, ωl, ωr,Tl,Tr > be a biordered set. Define

DE = ω
r ∪ ωl ∪ (ωr)−1 ∪ (ωl)−1 (3.2)

and for (e, f ) ∈ DE define e ∗ f by

e ∗ f =































eτr( f ) if e ωr f ;

e if e ωl f ;
f if f ωr e;

eτl( f ) if f ωl e.

(3.3)

Then E(E) =< E,DE, ∗ > is a partial algebra such that, for all e, f ∈ E, we have:

e ωr f ⇐⇒ f ∗ e = e;

e ωl f ⇐⇒ e ∗ f = e.
(3.4)
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Proof. From the defenition of DE it is clear that DE is reflexive and symmetric.
Nowwe observe that e ∗ f is well-defined. For let e ωr f and e ωl f . Then e ω f .
Now by axiom (BO1)(2), τr( f ) is identity on ω( f ) and so eτr( f ) = e. Also by
definition of ∗ we have e ∗ f = eτr( f ) = e since e ωr f and e ∗ f = e since e ωl f .
Hence the two assignments coinside and so e ∗ f is well defined in this case.
Now suppose that e ωr f and f ωr e. Then by (BO21), we have

f ωr e R eτr( f ) ω f

which gives f = eτr( f ) and so, ∗ is welldefined. If e ωr f and f ωl e then
e = f by (BO1)(1) and again the definition of ∗ is consistant. In a similar way,
the remaining cases can be checked for consistancy. Therefore Equation (3.3)
defines a partial binary operation on E with domain DE.

To prove Equation (3.4), let e ωr f . Then f ∗ e = e by Equation (3.3).
Conversely if f ∗ e = e then (e, f ) ∈ DE and so, one of the statemnts e ωr f ,
e ωl f , f ωr e or f ωl e holds. If e ωl f , by Equation (3.3) and (BO2)(1),
e = f ∗ e = eτr( f ) ω f and so, e ωr f . If f ωr e, e = f ∗ e = fτr(e) R f by (BO2)(1)
which gives e ωr f . Finally, if f ωl 1, by (BO1)(1), 1 = f and the relation 1 ωr f

follows. Therefore, in all cases, the first equation in Equation (3.4) is true. The
second equation can be proved similarly.

The next theorem characterizes those partial algebras that are induced by
biordered sets as in the proposition above.

Theorem 3.2. Let E =< E,DE > be a partial algebra. Define ωr, ωl, τr and τl as
follows: for all e, f ∈ E,

e ωr f if f e = e,

e ωl f if e f = e; and

fτr(e) = f e, for all f ∈ ωr(e),

1τl(e) = e1, for all 1 ∈ ωl(e).

(3.5)

Let Tr = {τr(e) : e ∈ E} and Tr = {τr(e) : e ∈ E}. Then E =< E, ωr, ωl,Tr,Tl > is a
biordered set and the partial algebra E(E) determined as in Proposition 3.1 coincides
withE if and only if E satisfies the following axioms and their duals. In the statements
below R, L and ω denote relations defined by Equation (3.1) and e, f , 1, etc., denote
arbitrary elements in E.

(B1) (1) ωr and ωl are quasiorders on E.

(2) DE = (ωr ∪ ωl) ∪ (ωr ∪ ωl)−1.

(B2) (1) For all e ωr f ⇒ e R e fω f .

(2) 1 ωr f ωr e⇒ 1 f = (1e) f .



168 3. biordered sets

(B3) For 1, f ∈ ωr(e), 1 ωl f ⇒ 1e ωl f e and ( f1)e = ( f e)(1e).

(B4) If f , 1 ∈ ωr(e) and 1e ωl f e, then there exists 11 ∈ ωr(e) such that 11 ωl f and
11e = 1e.

Proof. Suppose that E =< E,D > satisfies the given axioms. If e ωr f and
f ωl e, by Equation (3.5), f ∗ e = e and f ∗ e = f . Hence e = f and so, E satisfies
axiom (BO1)(1). By Equation (3.5) and (B2)(1), fτr(e) = f ∗ e ∈ ω(e) for all
f ∈ ωr(e) and fτr(e) = f for all f ∈ ω(e). Hence E satisfies axiom (BO1)(2).
The remaining axioms (BOi) are translations of the corresponding axioms (Bi),
i = 2, 3, 4 obtained by replacing the elements fτr(e) and 1τr(h) by appropriate
products given by Equation (3.5). To show that E = E(E) it is clear that from
Equations (3.3) and (3.5) that the underlying sets of E and E′ = E(E) coincide
with E. Let D′ denote the domain of the partial product on E′. If (e, f ) ∈ D

implies, by (B1)(2), that e ωr f , e ωl f , f ωr e or f ωl e. If the first case is true,
then by Equation (3.5), f e = e in E and f e = e in E′. Hence (e, f ) ∈ D′. In the
same way, this conclusion holds in all cases so that D ⊂ D′ and the products
coincide on D in both algebras. Reverse inclusion can be verified in a similar
way using Equations (3.4) and (3.5). Therefore E = E′.

Conversely assume that E is a biordred set andE = E′. Axiom (B1)(1) holds
by hypothesis and (B1)(2) follows from Equation (3.3). The remaining axioms
are obtained by replacing the values fτr(e), fτl(e), etc. by products f e, e f , etc.
Hence E satisfies axioms of the statement.

Definition 3.1 and Theorem 3.2 shows that biordred sets are structures that
affords resentation either as an order structure or as a partial algebra. The
partial algebra representation simplifies the presentation significantly. On the
other hand, any nontrivial discussion of biordered sets will have to deal with
the order structure. We shall therefore use a hybrid approch that combine
both these representations. Notice also that the empty set can be regarded as
a biordered set.

Easdown [1985] proposed yet another way of presenting biorder axioms.
He uses two arrow symbols to denote the relations ωr and ωl. Combining
these arrows suitably he derives arrow symbols to dente other relations ω, R
and L . In this way he is able to exibit complex relations between elements of
a biordered set using arrows [see Easdown, 1985, Higins, 1992, Chapter 3].

Since biordered sets are partial algebras, morphisms of biordered sets can
be defined as partial algebra homomorphisms. However, we shall find it
convenient to adopt a more restrictive definition.
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bimorphism!isomorphism
biordered set! biordered subset
bimorphism!embedding

Definition 3.2. A mapping θ : E→ E′ of biordered sets is called a bimorphism
if

(DE)θ ⊆ DE′

and for all (e, f ) ∈ DE,

(e f )θ = (eθ)( fθ).

A bijective bimorphism θ : E → E′ is an isomorphism if θ−1 : E′ → E is
also a bimorphism. A biordered set E′ =< E′,DE′ > is a biordered subset of
E =< E,DE > if E′ ⊆ E and

DE′ = DE ∩ E′ × E′.

We write E′ ⊆ E. A biorder isomorphism φ : E → E′ of E onto a biordered
subset of E′ is called an embedding of E in E′.

It is clear that the identity maps on biordered sets are bimorphisms and
that composit of bimorphisms are again bimorphisms. Hence there is a cat-
egory B of biordered sets with objects as biordered sets and morphisms as
bimorphisms. An isomorphism of biordered sets is an isomorphism in B.
The concept of biordered subsets defined above provide a natural choice of
subobjects inB.

Remark 3.1: It may be noted that not all subalgebras of a biordered set are
biordered subsets. For, let E be a biordered set containing e, f and 1 with
f , 1 ∈ ωr(e), 1e ωl f e and ( f , 1) < DE. Then E′ = {e, f , 1, f e, 1e} is a subalgebra of
E which is not a biordered subset.

Also if E′ ⊆ E, then the inclusion E′ ⊆ E is a bimorphism. However, the
converse is not true. For, let E′ =< E′,D′ > be the partial algebra with

E′ = {e, f , z}, D′ = E′ × E′ − {(e, f ), ( f , e)}

and with product ee = e, f f = f , e0 = 0e = 0 f = f0 = 0.
(M)

It can be seen that E′ is a biordered set. Let E =< E,D > be the partial algebra
with E = E′, D = E × E and the products in E are those given above together
with

e f = f and f e = e.

Then E is also a biordered set and identity mapping on E is a bimorphism. But
E′ is not a biordered subset of E.

Notice that there is a change in the terminilogy fromNambooripad [1979].
A biordered set E′ is a biordered subset of E according to our definition above
if and only if it is a is a biordered subset that is relatively regular in E according
to the definition there [see Nambooripad, 1979, page. 3].
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As shown in theorem below, the set of idempotents of a semigroup is a
biordered set and the restriction of homomorphisms to the biordered set of
the domain are bimorphisms. The concept of biordered sets has evolved as an
abstraction of the structure of the set of idempotents of a semigroup.

Theorem 3.3. For each semigroup S, let E(S) = {e ∈ S : e2 = e} denote the set of
idempotents in S and

DE(S) = ω
r ∪ ωl ∪

(

ωr ∪ ωl
)−1

where

ωr = {(e, f ) ∈ E(S) × E(S) : f e = e} and ωl = {(e, f ) ∈ E(S) × E(S) : e f = e}.

Then E(S) =< E(S),DE(S) > is a biordered set with respect to the restriction of the
product in S to DE(S). Further, if φ : S→ S′ is a homomorphism of semigroups, then
E(φ) = φ | E(S) is a bimorphism of E(S) to E(S′). The assignments

S 7→ E(S) and φ 7→ E(φ) (3.6)

is a functor E : S → B from the category of semigroups to the category of biordered
sets.

Proof. First,we show thatE(S) is a partial algebra; that is, for every (e, f ) ∈ DE(S),
e f , f e ∈ E(S). By the definition of D(S), e ωr f , e ωl f , f ωr e or f ωl e. If the first
possibility hold, f e = e ∈ E(S) by the efinition of ωr and (e f )2 = e f e f = ee f = e f

so that e f ∈ E(S). The remaining cases can be verified in the sameway. Axioms
(Bi), i = 1, 2, 3, are consequences of associativity ofmultiplication inS. Toprove
(B4), let e, f , 1 ∈ E(S) with f , 1 ∈ ωre and 1e ωl f e. Let 11 = 1 f , the product in S.
Then

1
2
1 = 1 f1 f = (e1)(e f )(e1) f since e, f , 1 ∈ E(S),

= (e1) f = 1 f since 1e ωl f e.

Hence 11 ∈ E(S). Also, by associativity,

11 f = 11 and so, 11 ωl f . Again

11e = (1 f )e = (1e)( f e) = 1e.

This proves that E(S) is a biordered set. The remaining assertions are routine
to verify.

Easdown [1985]proved the converse of this by showing that eachbiordered
set can be realised as the biordered set of some semigroup.
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M(e, f ):quasiordered set

(ωl(e) ∩ ωr( f ),�)
sandwich set
S (e, f ): Sandwich set
≃: equivalence relation � ∩ �−1

maximum
biordered set!regular
bimorphism!regular

3.1.1 Regular Biordered Sets
We now consider biordered sets arising from regular semigroups. We require
the concept of sandwich sets of a pair of idempotents.

Definition 3.3. Let E be a biordered set. For e, f ∈ E let

M(e, f ) =
(

ωl(e) ∩ ωr( f ),�
)

where � is the relation defined by

1 � h ⇐⇒ 1, h ∈ ωl(e) ∩ ωr( f ) and e1 ωr eh, 1 f ωl h f .

The sandwich set of e and f is defined as

S (e, f ) = {h ∈M(e, f ) : 1 � h for all 1 ∈M(e, f )}

Clearly, � is a quasiorder on ωl(e) ∩ ωr( f ). Hence M(e, f ) is a quasiodered
set and

≃=� ∩ �−1 (3.7)

is an equivalence relation onM(e, f ). Therefore, if

M̃(e, f ) = {ẽ : e ∈ E}

denote the quotient setM(e, f )/ ≃, then M̃(e, f ) is a partially ordered set under
the induced relation defined by

1̃ ≤ h̃ ⇐⇒ 1 � h.

The sandwich set of e and f , if nonempty, is a ≃ class inM(e, f ) and represents
themaximum element in the partially ordered set M̃(e, f ). It is easy to construct
example of a biordered sets E to show that S (e, f ) = ∅ for some e, f ∈ E. Also,
it is clear that S (e, f ) and S ( f , e) are in general not the same.

The distinguishing property of a biordered set arising from regular semi-
groups can be seen in the sandwich sets.

Definition 3.4. A biordered set E is said to be a regular if

(R) S (e, f ) , ∅ for all e, f ∈ E.

A bimorphism θ : E→ E′ is said to be regular if it satisfies the following:

(RM1) S (e, f )θ ⊆ S (eθ, fθ); and

(RM2) S (e, f ) , ∅ ⇐⇒ S (eθ, fθ) , ∅.
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biordered subset!relatively regular
B̃:subcategory of B with
morphisms as regular
bimorphisms

RB:subcategory of B̃ with objects
as regular biordered sets

S1(e, f ):see definition on 172
S2(e, f ):see definition on 172

We shall say that a biordered subset E′ ⊆ E is said to be relatively regular in E if
the inclusion E

E′
is a regular bimorphism.

Note that the sandwich set of every pair of idempotents in a biordered set
need not be non-empty (see the example below). Also we can have regular
bimorphisms of nonregular biordered sets. If E is regular, it is clear that any
bimorphism of θ : E → E′ is regular if it satisfies the condition (RM1). Thus
axiom (RM2) is relevant only for bimorphisms of nonregular biordered sets.

Clearly compositions of regular bimorphisms are regular and identity on
biordered sets are regular. Hence we have a category B̃ in which objects
are biordered sets and morphisms are regular bimorphisms. Clearly B̃ is a
subcategory of B. Moreover, there is a subcategory RB of B̃with objects are
regular biordered sets.

We proceed to prove that the biordered set of idempotetns of a regular
semigroup is a regular biordered set.

First we give a different description of sandwich sets for biordered sets of
idempotents of a semigroup. In the following, we write x ⊥ y for elemente
x, y of a semigroup S to mean that x ∈ V(y).

Proposition 3.4. Let E = E(S) be the biordered set of a semigroup S. For e, f ∈ E
define

S1(e, f ) = {h ∈M(e, f ) : eh f = e f } and S2(e, f ) = {h ∈M(e, f ) : h ⊥ e f }.
(3.8)

Then we have

S1(e, f ) = S2(e, f ) ⊆ S (e, f ). (a)

Moreover, e f is a regular element in S if and only if

S1(e, f ) = S2(e, f ) = S (e, f ) , ∅. (b)

Proof. Let h ∈ S1(e, f ). Then h ∈M(e, f ) and so,

h(e f )h = (he)( f h) = hh = h; and (e f )h(e f ) = e( f he) f = eh f = e f .

Hence h ∈ S2(e, f ). If h ∈ S2(e, f ), eh f = (e f )h(e f ) = e f and so, h ∈ S1(e, f ).
Therefore S1(e, f ) = S2(e, f ).

Again let h ∈ S1(e, f ) and 1 ∈M(e, f ). Then

(eh)(e1) = (ehe)1 = (eh f )1 = e f1 = e1; and

(1 f )(h f ) = (1e)( f h f ) = 1(eh f ) = 1e f = 1 f .

Thus 1 � h and so, h ∈ S (e, f ). Thus Equation (a) follows.
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Now suppose that e f is a regular element in S and let a ∈ V(e f ). If h = f ae,
then

h2 = ( f ae)( f ae) = f (ae f a)e = f ae = h.

Hence h ∈ S1(e, f ) ⊆ S (e, f ). To complete the proof on Equation (b), it
is sufficient to show that S (e, f ) ⊆ S1(e, f ). If 1 ∈ S (e, f ), by the above,
h, 1 ∈ S (e, f ). This gives e1 R eh and 1 f L h f so that

e1 f = (e1)(e f ) = (e1)(eh f ) = (e1)(eh) f = (eh) f = e f .

Hence 1 ∈ S1(e, f ). This complete the proof.

Observe that the sandwich setS (e, f ) of e, f ∈ E is defined entirely in terms
of the structure of the biordered set E. On the other hand, the sets S1(e, f ) and
S2(e, f ) depend on the semigroup product e f non-trivially. However, this
distinction is not of any consequence if we are dealing entirely with regular
biordered sets and regular semigroups (see Proposition 3.8).

Theorem 3.5. The biordered set E(S) of a regular semigroup S is regular. Further, if
φ : S → S′ is a homomorphism of the regular semigroup S to a semigroup S′, then
Sφ is a regular subsemigroup of S′ and E(φ) : E(S)→ E(S′) is a regular bimorphism
such that

E(Sφ) = (E(S))E(φ). (3.9)

In particular, if φ is injective or surjective, so is E(φ).

Proof. By Theorem 3.3, E(S) is a biordered set. To show that E(S) is regular,
consider e, f ∈ E(S). Then by Proposition 3.4, S (e, f ) , ∅. Hence, by Defini-
tion 3.3, E(S) is regular. Next, let φ : S→ S′ be a homomorphism where S is a
regular semigroup. If x ∈ S and if x′ ∈ V(x), then

(x′φ)(xφ)(x′φ) = (x′xx′)φ = x′φ

and (xφ)(x′φ)(xφ) = xφ.

Therefore x′φ ∈ VS′(xφ). Hence every element of Sφ is regular and so, Sφ
is a regular subsemigroup of S′. Let θ = φ | E(S). By Theorem 3.3, θ is a
bimorphism. If h ∈ S (e, f ), by Proposition 3.4, h ∈ S1(e, f ) and so, h ∈M(e, f )
and eh f = e f . Since φ is a homomorphism, hθ ∈ M(eθ, fθ) and (eθ)(hθ)( fθ) =
(eθ)( fθ). Therefore, by Proposition 3.4, hθ ∈ S1(eθ, fθ). Hence S (e, f )θ ⊆
S (eθ, fθ) and by Proposition 3.4, θ : E(S)→ E(S′) is a regular bimorphism.

Clearly E(Sφ) ⊇ (E(S))θ where θ = E(φ). To prove Equation (3.9), let
h̄ ∈ E(Sφ) so that xφ = h̄ for some x ∈ S. Since S is regular, by Lemma 2.38,
there is x′ ∈ V(x). Let h ∈ S (e, f ) where e = x′x and f = xx′. Since θ is a regular
bimorphism hθ ∈ S (eθ, fθ). Since e L x R f , we have eθ L xφ = h̄ R fθ.
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local structure An application of Proposition 3.4 gives h̄ ∈ S (eθ, fθ). Now suppose that
1̄ ∈ S (eθ, fθ). Then by Definiton 3.3, we have

eθ1̄ ω eθ and 1̄ L eθ1̄ L eθh̄ = eθ L h̄.

Similarly, 1̄ R h̄ which gives 1̄ = h̄. Thus S (eθ, fθ) = {h̄}. Therefore hθ = h̄.
This proves Equation (3.9).

It is clear that, if φ is injective, so is θ. If φ is surjective, by Equation (3.9),
θ is surjective.

Equation (3.9) implies the following important result due to Lallement [see
Lallement, 1967, Proposition 3.5].

Corollary 3.6. Let φ : S→ S′ be a homomorphism of regular semigroups. If e ∈ Sφ
is an idempotent if and only if there is an idempotent f ∈ S such that fφ = e.

It is clear from Theorem 3.5 that there is a functor of the category RS of
regular semigroups to the category RB of regular biordered sets which is the
restriction E | RS of the functor E : S → B of Theorem 3.3 to the category
RS of regular semigroups. We shall denote this restriction also by E.

Recall that the trace product x ∗ y of x, y ∈ S exists if and only if Lx ∩ Ry

contains an idempotent. If this is the case, x ∗ y = xy (see Equation (2.48a)).
The partial algebra S(∗) on the set Swith respect to the trace product represents
the local structure of S. The structure of S(∗) is known by Theorem 2.78. Next
theorem shows that arbitrary products in a regular semigroup S can be reduced
to trace products of suitable elements using the structure of the biordered set
E(S).

Theorem 3.7. Let x and y be regular elements of a semigroup S, x′ ∈ V(x) and
y′ ∈ V(y). If 1 ∈M(x′x, yy′), then

x1y = (x1) ∗ (1y), y′1x′ = (y′1) ∗ (1x′)

where ∗ denote the trace product in S and x1y ⊥ y′1x′. In particular, if h ∈
S1(x′x, yy′), then

(xh) ∗ (hy) = xy ⊥ y′hx′

where S1(e, f ) is defined in Proposition 3.4.

Proof. Let e = x′x and f = yy′. By Lemma 2.38, e L x and f R y. Since
1 ∈M(e, f ) 1e = 1 = f1 and so,

(x1)(1x′)(x1) = x11e1 = x1 and (1x′)(x1)(1x′) = 1e11x′ = 1x′.

Hence 1x′ ∈ V(x1) and, again by Lemma 2.38,

1 = 1x′x1 L x1 R x1x′ L 1x′ R 1.
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Similarly,

1 = (1y)(y′1) R 1y L y′1y R y′1.

Consequently, we have

x1 L 1 R 1y and y′1 L 1 R 1y

It follows by Equation (2.48a) that the trace products (x1) ∗ (1y) and (y′1) ∗ (1x′)
are defined. A simple computation shows that y′1x′ ∈ V(x1y).

By the definition of S1(e, f ), h ∈ M(e, f ) and so chy ⊥ y′hy by the above.
Also, eh f = e f (see Proposition 3.4). Hence

xhy = x(eh f )y = x(e f )y = xy.

This completes the proof.

If S′ ⊆ S is a regular subsemigroup of S, then the inclusion is a homomor-
phism of a regular semigroup S′ into the semigroup S. Hence by Theorem 3.5
its bimorphism is regular. It is clear that E( S

S′
) = E(S)

E(S′). Hence E(S′) is a regular
biordered subset of E(S) which is relatively regular in E(S). Thus a regular
biordered subset E′ of E(S) is relatively regular in E(S) if there exist a regular
subsemigroup S′ ⊆ S such that E(S′) = E′. The following result shows that the
converse of this also holds under an additional condition.

Proposition 3.8. Let S be a semigroup such that E(S) , ∅ and let E be a regular
biordered subset of E(S). Then E is the biordered set of a regular subsemigroup of S
if and only if E is relatively regular in E(S) and for all e, f ∈ E, S1(e, f ) , ∅. In
particular, if S is regular and if E′ is a regular biordered subset of E(S) then there is
a regular subsemigroup S′ of S such that E′ = E(S′) if and only if E′ is relatively
regular in E(S).

Proof. If there exist a regular subsemigroup S′ of S such that E(S′) = E′, then
by the remark above, E′ is relatively regular in E(S). Further, if e, f ∈ E′, then
e f is a regular element of S and so S1(e, f ) , ∅ by Proposition 3.4.

Conversely assume that E′ satisfies the given conditions and let S′ be the
subsemigroup of S generated by idempotents. Consider e, f ∈ E′. Since
S1(e, f ) , ∅, by Proposition 3.4, S (e, f ) = S1(e, f ). Since E′ is regular and
the inclusion is relatively regular, there exists h ∈ E′ such that h ∈ S (e, f ) =
S1(e, f ). It follows from Proposition 3.4 that h ⊥ e f in S. Since h, e f ∈ S′, we
have eh, h f ∈ E′ and e f ∈ Reh ∩ Lh f . Inductively assume that every product x of
n elements in E′ has the property that there are ex, fx ∈ E′ with ex R x L fx and
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let x = e0e1 . . . en. If x = yen where y = e0 . . . en−1 then the induction hypothesis
holds for y and so we can find f ∈ E′ with y L f . As before, we can find
k ∈ S1( f , en) ∩ E′. Then k ωr en and so, ken ∈ E′. By Theorem 3.7, x ∈ Ryk ∩ Lken
and so, x L ken. Dually we can show that there exists 1 ∈ E′ such that 1 R x.
This implies in particular that S′ is a regular subsemigroup of S. By definition,
E′ ⊆ E(S′). Let u ∈ E(S′). By the above, there is e, f ∈ E′ such that e L u R f .
Then by Theorem 2.34, e f ∈ Re ∩ L f . Let h ∈ S1(e, f ) ∩ E′. Then h ωr f and
by axiom (B21), h f ω f . But by Theorem 3.7, h f L e f L f which gives
h f = f . Hence h R f . Duall h L e. This implies that h and u are H-equivalent
idempotents in S′ and so u = h. Therefore u ∈ E′ and so, E′ = E(S′).

To prove the last statement, we observe that when S is regular, e f is a
regular element of S and so, S1(e, f ) , ∅ for all e, f ∈ E′. Therefore every
regular biordered subset of E(S) which is relatively regular is the biordered set
of a regular subsemigroup of S. This complete the proof.3.1.2 Examples
Now we give some examples of biordered sets.

Example 3.1: The empty set with respect to empty relations and translations is a
biordered set. (Observe that if E = ∅, all axiom remain valid vacuously.)

Example 3.2: Every semilattice is a biordered set. Let (E, ω) be a semilattice. We
assume every semilattice to be a lower semilattice; i.e., for every e, f ∈ E, the greatest
lover bound e ∧ f exists. It is easy to see that ∧ is a commutative and associative
multiplication on E and thus (E∧) is a commutative band. We regard E as a biordered
set as follows. The quasiorders are ωr = ωl = ω on E. The domain DE of the partial
binary operation is

DE = {(e, f ) : e ω f or f ω e}

The axioms are easily verfied. We observe that for e, f ∈ E, if h = e∧ f , the setM(e, f ) is
given by

M(e, f ) = {h : h ω h} andS (e, f ) = {h}

is singleton.

Example 3.3: Let I,Λ be non-empty sets and B = I × Λ be the rectangular band on I
and Λ. That is, define multiplication in B by

(i, λ)( j, µ) = (i, µ) for all (i, λ), ( j, µ) ∈ I ×Λ.

This gives B, the structure of a band and by Theorem 3.3, B = EB is a biordered set.
Here the domain DB is given by

DB = {((i, λ)( j, µ)) : i = j or λ) = µ}.

In this case

(i, λ) ωr ( j, µ) if and only if i = j and

(i, λ) ωl ( j, µ) if and only if λ = µ.
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Also the sandwich set is given as follows. For e = (i, λ) and f = ( j, µ) we have
S(e, f ) = {( j, λ)}.

Example 3.4: Let E = (X,≤) be a partially ordered set. Then one can verify with out
difficulty that E is a biordered set with

ωr = ωl = ω =≤ (1)

Then clearly DE =≤ ∪(≤−1) and the basic product in E is given by

e f = f e = e if and only if e ≤ f .

Conversely, ifE is any biordered set satisfying (1), thenE is the biordered set determined
by the partially ordered set (E, ω).

Recall that, in any partially ordered set E and e, f ∈ E, e∧ f denote the greatest lover
bound of e and f in E if it exists. In this case, in the biordered set E determined by the
partially ordered set as above, the sandwich set of e, f ∈ E is

S (e, f ) =















{e ∧ f } if e ∧ f exists;

∅ otherwise.

Therefore,E is a regular biordered set if and only if e∧ f exists for every pair of elements
e, f ∈ E in which case, the biordered set E coincides with the biordered set of Example
3.2. It follows that E is a regular biordered set if and only if E is a semilattice.

Example 3.5: Let E = {e, f , 1} be a biordered set in which ωr = ωl = {(e, 1), ( f , 1)}. In this
case

DE = {(e, 1), (1, e), ( f , 1), (1, f )}

and the products are determined by partial order as in the example above. Now
M(e, 1) = {e} and so, S (e, 1) = {e}. ButM(e, f ) is empty so that S (e, f ) = ∅.

Again, let X = {e, f } ∪ N. Define partial order on X by

n ≤ e, n ≤ f for all n ∈ N

and the restriction of this partial order to N coincides with the natural order on N. In
this case we have M(e, f ) = N and so, it is not empty. However S (e, f ) = ∅.

Example 3.6 (Example 1.1 in Nambooripad [1979]): Consider the following bands
Bi, i = 1, 2 on the same set B = {e, f1, f2, f3} with the multiplication table:

B1 e f1 f2 f3
e e f1 f2 f3
f1 f2 f1 f2 f3
f2 f2 f1 f2 f3
f3 f3 f1 f2 f3

B2 e f1 f2 f3
e e f1 f2 f3
f1 f3 f1 f2 f3
f2 f2 f1 f2 f3
f3 f3 f1 f2 f3

For each i = 1, 2, Bi is a band and hence E(Bi) = Bi is a regular biordered set. It is easy
to see that

ωr(B1) = {(e, e), ( fi, e), ( fi, f j) : i, j = 1, 2, 3} = ωr(B2)

ωl(B1) = 1B ∪ {( f2, e), ( f3, e)} = ωl(B2).
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where ωr(Bi) and ωl(Bi) denote the quasiorders of the biordered set Bi. However, the
basic product f1e = f2 in B1 and f1e = f3 in B2. So B1 , B2. E2 = (E, ◦) is also a biordered
set. Thus B1 and B2 are biordered sets with the same underlying quasiorderes and
differ only in basic product. It follows that the quasiorders of a biordered set does not
completely determine the biordered set.

Example 3.7 (Example 1.2 in Nambooripad [1979]): Let

C = {e, f , h11, h12, h21, h22, 111, 112, 121, 122}

be the band with the following multiplication table.

C e f h11 h12 h21 h22 111 112 121 122

e e h11 h11 h12 h11 h12 121 122 121 122

f h22 f h21 h22 h21 h22 121 122 121 122

h11 h12 h11 h11 h12 h11 h12 121 122 121 122

h12 h12 h11 h11 h12 h11 h12 121 122 121 122

h21 h22 h21 h21 h22 h21 h22 121 122 121 122

h22 h22 h21 h21 h22 h21 h22 121 122 121 122

111 111 112 112 112 112 112 111 112 111 112

112 112 112 112 112 112 112 111 112 111 112

121 121 122 122 122 122 122 121 122 121 122

122 122 122 122 122 122 122 121 122 121 122

C is band consising of singleton subbands (D-classes) (e) and ( f ) and rectangular bands
(

h11 h12
h21 h22

)

and

(

111 112

121 122

)

.

Consider E = C − {h22}. In the partial algebra determined by E, the products which are
not defined are

f e, f h12, h21e, h21h12.

These are not basic products in C since these pairs are not related by ihe quasi orders
ωr or ωl in C. Hence the partial algebra E is a biordered subset of E(C) = C. However,

S (h12, h21) = {h22} in C and S (h12, h21) = {122} in E.

Hence E is not relatively regular in C.

Example 3.8 (Example 1.3 in Nambooripad [1979]): Let Γ = (Γ,≤) be a semilattice
and X be a set such that |X| ≥ 1. Define a partial binary operation on E = X × Γ as
follows:

(x, e)(y, f ) =















(x, e f ) if e ≤ f or f ≤ e;

undefined otherwise.

It is easy to see that E with this partial product is a regular biordered set such that
ωr = ω ⊆ ωl. Let E0 denote the biordered set obtained by adjoining zero 0 to E so that
E0 = E ∪ {0}with basic product extended to E0 by

(x, e)0 = 0(x, e) = 00 = 0 for all (x, e) ∈ E.

Then the natural partial order E0
ω of E0 is a 0-disjoint union of semilattices isomorphic

to Γ0, the semilattice obtained by adjoining 0 to Γ. So E0
ω is a semilattice and hence a

regular biordered set. However, E0 is not a semilattice since |X| ≥ 1. Observe that the
identity map is a bimorphism of E0

ω onto E0 which fail to satisfy axioms (RM1) and
(RM2).
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3.2 properties of biordered sets

Except for reordering, axioms (Bi), i = 1, 2, 3 of Theorem 3.2 are the same as
those in Nambooripad [1979]. However, axiom (B4) here appears as (B4’)
which is a part of Proposition 2.4 of Nambooripad [1979]. Now we proove
that axiom (B4) for biordered sets in the Theorem 3.2 (or axiom (BO4) in
Definition 3.1) can be replaced by an axiom, stated in Theorem 3.11 below as
axiom (B4’), involving the sandwich sets. Notice that this is the same as [axiom
(B4) Nambooripad, 1979]. We need some elementary properties of biordered
sets in the proof of the equivalence. In the following, we use the abbreviation
(Bij) for the axiom (Bi)(j) of Theorem 3.2.

In the first three results below, we assume that E denotes a partial algebra
that satisfies all axioms of a biordered set except axioms (B4) and (B4)∗ of
Theorem 3.2. All these atatements about biordered sets have their dual whose
proof is the dual of the original statements. We shall not usually state or prove
these explicitly. All results in this and thenext sectionsare from[Nambooripad,
1979, Section 2].

Proposition 3.9. If (e, f ) ∈ DE then e f ∈ S ( f , e).

Proof. Since (e, f ) ∈ DE, one of the following is true: eωr f , eωl f , fωre or fωle.
Suppose eωr f . Then e R e f ω f by axiom (B21). So e f ∈ M( f , e). Let
1 ∈ M( f , e). Then 1ωre R e f and 1, e f ∈ωl f . So by axiom (B3)* (ie dual of
(B3)), f1 ωr f (e f ) = e f . Also, 1e ω e = (e f )e. Hence, by Definition 3.2, 1 � e f

and it follows that e f ∈ S (e, f ). Now, let e ωl f . Then clearly, e f = e ∈ M( f , e).
If 1 ∈ M(e, f ) then 1 ωr e and 1, e = e f ∈ ωl(e). Hence, by (B3)*, f1 ωl f e and
1e ω e = ee. This gives 1 � e f and so, e f ∈ S ( f , e). The result follows in the
reaining cases by duality.

Proposition 3.10. If f ωr e then for every 1 ∈ ωr( f ) we have (1 f )e = 1( f e) =
(1e)( f e).

Proof. By axiom (B21) we have f R f e. So ωr( f e) = ωr( f ). Let 1 ∈ ωr( f ). Then
by axiom (B21) we get 1 R 1 f ω f . Since f ωr e we have 1 f ωr e. Also, from
1 f ω f we have 1 f ωl f . Now by axiom (B3) (1 f )e ωl f e. Again from 1 f ω f

we have 1 f ωr f and so by (B21) (1 f )e R 1 f ωr f e. Thus (1 f )e ω f e. Now
applying (B3) we get

(1 f )e = ((1 f )e)( f e) = (1 f )( f e) = 1( f e) = (1e)( f e).

Now we prove the equivalence of the two axioms (B4) and (B4’).
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Theorem 3.11. Let E be an idempotent partial algebra satisfying all the axioms (Bi)
of Theorem 3.2 above except (B4) and its dual. Then the following statements are
equivalent:

(B4) Let e ∈ E and f , 1 ∈ ωr(e) with 1e ωl f e. Then there exist 11 ∈ M( f , e) such
that 11e = 1e.

(B4’) Let e ∈ E. Then for all f , 1 ∈ ωr(e) we have S ( f , 1)e = S ( f e, 1e).

Mreover, when these hold, the element 11 in (B4) is unique.

Proof. Suppose that E satisfies (B4). Let f , 1 ∈ ωr(e) and h ∈ S ( f , 1). Then by
axiom (B21) and (B22) he ∈ ωl( f e) ∩ ωr(1e). Suppose that k′ ∈ ωl( f e) ∩ ωr(1e).
Then k′ ω e and so k′ and f satisfy the hypothesis of axiom (B4). Therefore
there exists k ∈ ωl( f ) ∩ ωr(e) such that ke = k′. Since k R k′ ωr 1e R 1 we have
k ∈ ωl( f ) ∩ ωr(1) and so k � h inM( f , 1). Hence

( f e)k′ = ( f e)(ke)

= ( f k)e by (B3)

ωr ( f h)e by (B21) and since k � h inM( f , 1)

= ( f e)h′ by (B3);

and k′(1e) = (ke)(1e)

= (k1)e by Proposition 3.10

ωl (h1)e by (B22) since k � he inM( f , 1)

= h′(1e) by Proposition 3.10.

Therefore k′ � he ∈ M( f e, 1e). This proves that he ∈ S ( f e, 1e). Consequently,
S ( f , 1)e ⊆ S ( f e, 1e).

To prove the reverse inclusion consider h′ ∈ S ( f e, 1e). Using (B4) we can
show as before there exists h ∈ M( f , 1) such that he = h′. Let k ∈ M( f , 1). Then
using axioms (B21) and (B22) we get that k′ = ke ∈ M( f e, 1e) and since h′ ∈

S ( f e, 1e) we have k′ � h′ inM( f e, 1e). That is, ( f e)k′ωr( f e)h′ and k′(1e)ωlh′(1e).
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Therefore

f k = (( f k)e) f by (B22)

= (( f e)(ke)) f by (B3)

=ωr (( f e)h′) f by (B21) since k′ � h′ inM( f e, 1e)

= (( f h)e) f by (B3) since h′ = he

= ( f h) f by (B22)

= f h since f h � f ;

and k1 = ((k1)e)1 by (B22)

= ((ke)(1e))1 by Proposition 3.10

ωl (h′(1e))1 by (B3)

= ((h1)e)1 by Proposition 3.10

= h1 by (B31).

Thus k � h in M( f , 1) and so h ∈ S ( f , 1). Therefore S ( f e, 1e) ⊆ S ( f , 1)e and
we conclude that S ( f , 1)e = S ( f e, 1e). Thus (B4’) holds.

Conversely suppose that E satisfies (B4’) and let e, 1, h ∈ E satisfy the
hypothesis of (B4). By the dual of Proposition 3.9 1e ∈ S (he, 1e) and so by (B4’)
there exists 11 ∈ S (h, 1) such that 11e = 1e. Clearly 11 ωl h. Hence (B4) holds.

Nowweprove the uniqueness of 11 in the statement (B4). Let 12 also satisfy
(B4) so that 12 ∈ M( f , e) and 12e = 1e. Then 11 R 11e = 1e = 12e R 12 by (B21)
so that 11 R 12. On the other hand

f11 = (( f11)e) f by (B22)

= (( f e)(1e)) f by (B3)

= (( f e)(12)e) f

= f12.

Therefore 11 L f11 = f12 L 12. Hence by (B1), 11 = 12.

For the remainder of this section, we assume that E, E′, etc. denote
biordered sets.

Proposition 3.12. Let e L e′ and f R f ′ where e, e′, f , f ′ ∈ E. Then M(e, f ) =
M(e′, f ′). Consequently S (e, f ) = S (e′, f ′).

Proof. The hypothesis implies that ωl(e) ∩ ωr( f ) = ωl(e) ∩ ωr( f ). Let 1, h ∈
ωl(e)∩ωr( f ) and 1 � 1 inM(e, f ). Then by the definition, e1 ωr eh and 1 f ωl h f .
Hence by the dual of axiom (B22) and (B3), we have

e′1 = e′(e1) ωr e′(eh) = e′h.
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Dually 1 f ′ ωl h f ′. Therefore 1 � h in M(e′, f ′). Interchanging e with e′ and f

with f ′ we infer similarly that 1 � h in M(e′, f ′) implies they are so related in
M(e, f ). Therefore the quasiorders on M(e, f ) and M(e′, f ′) are also the same.
ThusM(e, f ) =M(e′, f ′). The last statement now follows immediately from the
definition of sandwich sets.

Let S be a regular semigroup and x, y ∈ S. In view of the proposition above
we may write S (x, y) for S (e, f ) where e, f ∈ E(S) with e L x and f R y.

If E is a biordered set, it is often necessary to verify whether a subset E′ ⊆ E

is a biordered subset or not. Next proposition simplifies this verification.

Proposition 3.13. Let E′ be a subset of the biordered set E. Then E′ is a biordered
subset of E if and only if E′ satisfies the following conditions and their duals.

(1) For all e′, f ′ ∈ E′, (e′, f ′) ∈ DE implies e′ f ′ ∈ E′.

(2) If e′ ∈ E′, f ′, 1′ ∈ ωr(e′)∩E′ and 1′e′ ωl f ′e′ then there exists1′1 ∈ E
′∩M( f ′, e′)

such that 1′1e
′ = 1′e′.

Moreover, E′ is relatively regular in E if and only if for all e′, f ′ ∈ E′

(3) S ′(e′, f ′) = S (e′, f ′) ∩ E′; and

(4) S ′(e′, f ′) = ∅ implies S (e′, f ′) = ∅

where S ′(e′, f ′) denote the sandwich set in E′.

Proof. Let E′ be a biordered subset of E. Then E′ is a partial subalgebra of
E and so, DE′ = DE ∩ E′ × E′. Hence the condition (1) holds. The condition
(2) is the same as axiom (B4) stated for E′. Conversely let E′ be a subset of E
satisfying (1) and (2). Then by (1) E′ is a subalgebra of E so that the domain
of the partial product on E′ is DE ∩ E′ × E′. It can be verified that axioms (Bi),
i = 1, 2, 3 hold. Statement (2) is precisely axiom (B4) stated for E′. Hence E′ is
a biordered subset of E.

Suppose that E′ ⊆ E is relatively regular so that E
E′
is a regular bimorphism.

Let S ′(e′, f ′) , ∅. By (RM1) S (e′, f ′) ⊆ S (e′, f ′) ∩ E′. Since S (e′, f ′) contain
an element of S ′(e′, f ′), it is follows from Definition 3.3 that S ′(e′, f ′) =
S (e′, f ′) ∩ E′. Thus the statement (3) holds. If S ′(e′, f ′) = ∅, by axiom (RM2)
the statement (4) also holds. Conversely, if statements (3) and (4) holds, then
the map E

E′
satisfies axioms (RM1) and (RM2) of Definition 3.4 and so E

E′
is

a regular bimorphism. Therefore E′ is a relatively regular biordered subset of
E.

As an immediate application, we have:
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biorder!right ideal
biorder!left ideal
biorder!ω-ideal

Corollary 3.14. Let {Ei : i ∈ I} be a family of biordered subsets of E. Then

E′ =
⋂

i∈I

Ei

is a biordered subset of E.

Proof. Let e′, f ′ ∈ E′ and (e′, f ′) ∈ DE. Then e′, f ′ ∈ Ei and since Ei is a biordered
subset, by Proposition 3.13(1), e′ f ′ ∈ Ei for every i ∈ I. Hence e′ f ′ ∈ E′ and
so, E′ satisfies condition (1) of Proposition 3.13. Let e′, f ′ and 1′ satisfy the
hypothesis of the statement (2) of Proposition 3.13. Then by axiom (B4), there
is 11 ∈ M( f ′, e′) such that 11e′ = 1′e′. Since Ei is a biordered subset, by (2),
11 ∈ Ei for every i. Hence 11 ∈ E′. Thus E′ satisfies (2).3.2.1 Biorder ideals
For e ∈ E, the biordered subsets ωr(e) will be called the principal biorder right
ideal, ωl(e) is called the principal left ideal and ω(e), the ω-ideal of E generated
by e. A biorder isomorphism α : ω(e) → ω( f ) is called an ω-isomorphism of
E. Since ω is a partial order, each ω-ideal has unique generator. So, if α is an
ω-isomorphism, there is a unique eα ∈ E such that domα = ω(eα). Similarly
there is a unique fα ∈ Ewith codα = ω( fα).

Proposition 3.15. For every e ∈ E,

ωr(e), ωl(e) and ω(e)

are relatively regular biordered subsets of E and the translations

τr(e) : f 7→ f e and τl(e) : 1 7→ e1

are regular idempotent bimorphisms of ωr(e) and ωl(e) respectively onto ω(e).

Proof. Let f , 1 ∈ ωr(e) and ( f , 1) ∈ DE. Then either

f ωr
1, 1 ωr f , f ωl

1, or 1 ωl f .

In the first case, f R f1 ω 1 ωr e by axiom (B21). Hence f1 ∈ ωr(e). If
1 ωl f , then by (B21)*, f1 ω f ωr e and hence f1 ∈ ωr(e). In the remaining
cases the conclusion f1 ∈ ωr(e) follows from Equation (3.5). Therefore ωr(e)
satisfies condition (1) of Proposition 3.13. Let f , 1, h ∈ ωr(e), 1, h ∈ ±[r]( f ) and
1 f ωl h f . Then by axiom (B4), there exist 11 ∈ M(h, f ) such that 11 f = 1 f .
Then 11 R 11 f = 1 f ω f ωr (e) which implies that 11 ∈ωr (e). Therefore by
Proposition 3.13, ωr(e) is a biordered subset of E. Now, for any 1, h ∈ ωr(e), we
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T∗(E):ordered groupoid of
ω-isomorphisms of E

haveM(1, h) ⊆ ωr(e) and so, S (1, h) ⊆ ωr(e). This proves that ωr(e) is relatively
regular in E. Proofs for ωl(e) and ω(e) are entirely similar.

By definition (see Equation (3.5)) τr(e) : ωr(e)→ ω(e) is an idempotent map.
To probe that τr(e) is a bimorphisms, let f , 1 ∈ ωr(e) and ( f , 1) ∈ DE. If f ωr 1,
by Proposition 3.10, we have

( f1)τr(e) = ( f1)e = ( f e)(1e) = ( fτr(e))(1τr(e)).

If 1 ωr f , then f1 = 1 and 1e ωr f e by axiom (B21). Hence we have ( f1)τr(e) =
( fτr(e))(1τr(e)). If f ωl 1, f1 = f and f e ωl 1e by axiom (B3). Thus ( f1)e =
( f e)(1e). Finally, if 1 ωl f then by (B3), ( f1)e = ( f e)(1e). This proves, by
definition 3.2, that τr(e) is a bimorphism. By condition (B4’) of Theorem 3.11
S ( f , 1)e = S ( f e, 1e) for all f , 1 ∈ ωr(e). Hence τr(e) satisfies (RM1) and (RM2)
and so τr(e) is a regular bimorphism. Proof for τl(e) is dual.

Corollary 3.16. For (e, f ) ∈ L ∪R and 1ωe, define

1τ(e, f ) =















f1 if e L f ;

1 f if e R f .

Then τ(e, f ) : ω(e)→ ω( f ) is a biorder isomorphism.

Proof. Let e R f . Then τ(e, f ) = τr( f )|ω(e) and hence it is a bimorphism. Also,
τ(e, f )−1 = τ( f , e) and so τ(e, f ) is a biorder isomorphism. Dually, τ(e, f ) :
ω(e)→ ω( f ) is a biorder isomorphism when e L f .

Let T∗
E
denote the collection of all ω-isomorphisms of E. It is easy to see

that T∗E is a groupoid under the groupoid composition:

α · β =















αβ the usual composition, if fα = eβ;

undefined if fα , eβ.
(3.10)

(see Examples 1.21 and 1.22.) Also the usual restriction of ω-isomorphisms
defined by:

1 � α = α|ω(1) for all 1 ω eα (3.11)

is a partial order on T∗E. With respect to this order, T∗E satisfies axioms of
Definition 1.6 and hence T∗E is an ordered groupoid.

SinceR is an equivalence relationR is also a groupoid (called the simplecial
groupoid; see Example 1.20) in which vR = E and morphisms are pairs (e, f )
with e R f and composition is defined by

(e, f )( f , 1) = (e, 1) if e R f R 1. (3.12)
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τR:order preserving functor from R
to T∗

E
τL:order preserving functor from L
to T∗

E

Define restriction of (e, f ) ∈ R to 1 ω e as follows:

1 � (e, f ) = (e, f )|1 = (1, 1 f ). (3.13)

With respect to the partial order on R induced by this restriction, R is an
ordered groupoid. Further if e R f R 1, and h ω e, then h ωr 1 ωr f . Hence by
axiom (B22),

hτ(e, f )τ( f , 1) = (h f )1 = h1 = hτ(e, 1).

Hence τ(e, f )τ( f , 1) = τ(e, 1).

Also, for all k ω h, again by (B22),

kτ(h � (e, f )) = kτ(h, h f ) = k(h f ) = (k f )(h f ) = (kh) f = k f = kτ(e, f ).

Thus τ(h � (e, f )) = τ(e, f )|ω(h).

Since τ(e, e) = 1ω(e), the assignments

τR : e 7→ 1ω(e), and (e, f ) 7→ τ(e, f ) (3.14)

is an order pteserving functor τR : R → T∗
E
.

Dually, the simplecial groupoid L is an ordered groupoid in which restric-
tion of (e, f ) ∈ L to 1ωe is

1 � (e, f ) = (e, f )|1 = (1, f1) (3.13∗)

and the assignments

τL : e 7→ 1ω(e), and (e, f ) 7→ τ(e, f ) (3.14∗)

is an order preserving functor functor τL : L → T∗E.
Finally, since τR(e) = τL(e) for all e ∈ E, the following diagram of ordered

groupoids (in the categoryOG) commutes:

R
τR T∗

E

1E l

r

L

τL

(3.15)

Here r : 1E ⊆ R is the inclusion of 1E in R. Observe that 1E is trivially an
ordered groupoid and the inclusion r is an order preserving functor. Dually
l : 1E ⊆ L is an order preserving functor of 1E into L. We summorise these
ideas for convenience of later reference:
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E-array
E-square
E-square!degenerate
E-square!singular!column
E-square!singular!row
E-square!singular

Proposition 3.17. Let E be a biordered set. Then the set T∗
E
of all ω-isomorphisms

of E is an ordered groupoid with respect to the composition and restriction defined by
Equations (3.10) and (3.11). Also simplecial groupoidsR andL are ordered groupoids
with respect to restriction defined by Equations (3.13)and (3.13∗) respectively. Finally,
the assignments of Equations (3.14) and (3.14∗) define order preserving functors
τR : R → T∗E and τL : L → T∗E such that the diagram 3.15 commutes in the category
OG.

By an E-arraywe mean a marix

A = (eiλ)I×Λ over E such that eiλ L e jλ and eiλ R eiσ

for all i, j ∈ I and λ, σ ∈ Λ. The elements eiλ are called vertices of A. If X ⊆ E, A
is an array in X if vertices of A belong to X. An E-subarray B of an E-arrayA is
an E-array whose vertex set is a subsets of that of A. A 2 × 2 E-array is called
an E-square. An E-square of one of the following type

(

e f
e f

)

,

(

e e
f f

)

, or

(

e e
e e

)

is said to be degenerate. If 1, h ∈ ωr(e) and 1 L h, then by axioms (B21) and
(B3), 1 R 1e L he R h. Hence we have the E-square

(

1 1e
h he

)

whenever 1, h ∈ ωr(e), and 1 L h.

Such E-squares are said to be column-singular. Dually, we have the E-square
(

1 h
e1 eh

)

whenever 1, h ∈ ωl(e) and 1 R h.

An E-square of this form is said to be row-singular. A singular E-square is either
clumn-singular, row-singular or degenerate.

An E-square
(

e f
1 h

)

is said to be τ-commutative if the following diagram
commute:

ω(e)
τ(e, f )

τ(e,1)

ω( f )

τ( f ,h)

ω(1)
τ(1,h)

ω(h)

(3.16)

Every degenerate E-square is obviousely τ-commutative. Also, we say that an
E-array A is τ-commutative if every 2 × 2-subsquare of A is τ-commutative.
We have:

Proposition 3.18. Every singular E-square in a biordered set E is τ-commutative.
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Proof. Let 1, h ∈ ωr(e) and 1 L h. To show that
(

1 1e
h he

)

is τ-commutative, let
k ω 1. Then

kτ(1, h)τ(h, he) = (hk)(he) = ((hk)h)e by Proposition 3.10

= (hk)e = (he)(ke) by axiom (B3).

Also kτ(1, 1e)τ(1e, he) = (he)(k(1e))

= (he)((k1)e) = (he)(ke) by Proposition 3.10.

It follows that every column-singularE-square isτ-commutative. Dually every
row-singular E-square is

τ-commutative. The proof is now complete in view of the remark preceed-
ing the statement of the proposition.

The following proposotion derives some important consequences of axiom
(B4) (and/or condition (B4’) of Theorem 3.11).

Proposition 3.19. Let 1, h ∈ ωr(e) and 1e ωl he. Then there exists a unique E-square

G =
(

1 11

12 h′

)

such that

(a) h′ ω h;

(b) 1e = 11e;

(c) 12e = h′e = (he)(1e).

When G satisfies these conditions, then G is commutative and we have

(d) h(k11) = (12k)h for all k ∈ ω(1).

Mpreover, h′ = h if and only if 1e L he.

Proof. Since 1, h and e satisfies the hypothesis of axiom (B4), there is 11 ∈M(h, e)
satisfying the condition (b). Let h′ = h11 so that h′ satisfies (a). Since 1e ωl he,
by proprefpr:3bs, (he)(1e) ∈ S (1e, he) and by Theorem 3.11(B4’), there is 12 ∈
S (1, h) such that 12e = (he)(1e). By axiom (B3), we have h′e = (h1)e = (he)(1e)
and so, 12 and h′ satisfies (c).

We next show that G is an E-square. By axiom (B21) and (b), we have
1 R 1e = 11e R 11. Similarly from (B21) and (c), we see that 12 R h′ and by
the definition of h′ and (B21)*, we have h′ L 11. Since 12 ∈ S (1, h), we have
12 ωl 1 and

112 R (112)e = (1e)(12e) by axiom (B3);

= (1e)
(

(he)(1e)
)

by (c);

= 1e R 1 by axioms (B21) and (B21)*.
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Since 112 ω 1, we have 112 = 1. Therefore 12 L 112 = 1 and this proves that G
is an E-square. To prove the uniquiness, let G′ =

(

1 1′1
1′2 h′′

)

be another E-square
satisfying conditions (a), (b) and (c). From (b) and (B4’) it follows that 11 = 1′1.
Now h′′ L 1′1 = 11 L h′ and by (c), h′′ R h′′e = h′e R h′. Therefore h′′ = h′

and this forces 12 = 1′2. Hence G = G′.
By Proposition 3.18 the column-singular E-squares A =

(

1 1e
12 12e

)

and B =
(

11 11e
h′ h′e

)

are commutative. Since 1e = 11e and 12e = h′e, we obtain

(1, 11)τ(11, h′) = τ(1, 1e)τ(1e, 11)τ(11, h′)

= τ(1, 1e)τ(11e, h′e)τ(h′e, h′) from B;

= τ(1, 1e)τ(1e, 12e)τ(h′e, h′) by (b) and (c);

= τ(1, 12)τ(12, 12e)τ(12e, h′) by (c);

= τ(1, 12)τ(12, h′).

Hence G is commutative. To prove (d) we first verify a particular case:

12h = (12e)h = (h′e)h = h′h = h′ = h11. (d∗)

Let k ∈ ω(1). Then

kτ(1, 11)τ(11, h′) = h′(k11) = (h11)(k11) by the definition of h′;

= h(11(k11)) by Proposition 3.10∗;

= h(k11).

Similarly kτ(1, 12)τ(12, h′) = (12k)h′ = (12k)(12h) by definition of h′ and (d∗);

= ((12k)h)(12h) by (B22);

= (12k)h since (12k)h ω 12h.

This proves (d).
If h′ = h then 11 L h′ = h and so, 1e = 11e L he. On the other hand, if

1e L he, then by (c), h′e = (he)(1e) = he and so, h′ R h. Since h′ ω h by (a), it
follows that h′ = h.

The following is a self-dual form of the proposition above. Part of it
appeared as axiom (B5) in Nambooripad [1972]. Recall that M(e, f ) is the
quasiordered set (ωl(e) ∩ ωr( f ),�) where 1 � h if and only if e1 ωr eh and
1 f ωl h f (see Definition 3.3). Recall also that ≃ which is an equivalence
relation onM(e, f ) (see (3.7)).

Proposition 3.20. Let 1, h ∈M(e, f ) and 1 � h. Then there exists a unique E-square

G =
(

1 11

12 h′

)

in M(e, f ) such that

(a) h′ ω h;
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(b) e1 = e12 R eh′ = e11, 1 f = 11 f L h′ f = 12 f ;

(c) h(k11) = (12k)h for all k ∈ ω(1).

In particular G is commutative and

1 ≃ 11 ≃ h′ ≃ 12.

Moreover, 1 ≃ h if and only if h′ = h.

Proof. The given conditions imply that 1, h and f satisfies the hypothesis of
Proposition 3.19 and 1, h and e satisfy the dual hypothesis. Hence by Proposi-
tion 3.19 and its dual there exists uniqye E-squares G =

(

1 11

12 h′

)

and K =
(

1 k1
k2 k′

)

such thatG satisfies (a), (b) and (c) of Proposition 3.19with respect to 1, h and f

and K satisfies (a)∗, (b)∗ and (c)∗ with respect to 1, h and e. We show that G = K

thereby proving the proposition; we shall prove that G satisfies the conditions
(a)∗=(a),

(b)∗ e12 = e1; and

(c)∗ e11 = eh′ = (e1)(eh).

Since e11 R e1 ωr eh and 11 ωl h, we have e11 ω eh. Hence

eh′ = e(h11) = (eh)(e11) = e11 and so, e12 R eh′ = e11 R e1.

Since 12 L 1, we have e12 = e1. This proves (b)∗. Again eh′ = e(12h) =
(e12)(eh) = (e1)(eh) and so, (c)∗ follows. Thus G satisfies (a)∗, (b)∗ and (c)∗

with respect to 1, h and e and by the uniqueness in Proposition 3.19∗, G = K.
Since 1, h ∈ M(e, f ) 1i ∈ M(e, f ) for i = 1, 2 and so, G is an E-square in M(e, f ).
Commutativity of G follows from Proposition 3.19 and relations 1 ≃ 11 ≃ h′ ≃

12 follow from (b). Finally, if 1 ≃ h, then by the definition of ≃, 1 f L h f and
so, h′ = h by Proposition 3.19.

Corollary 3.21. If e, f ∈ E and S (e, f ) , ∅, then S (e, f ) is a τ-commutative
E-array.

Proof. If 1, h ∈ S (e, f ) then 1 ≃ h. So e1 R e1 and 1 f L h f . By Proposition 3.20
there is a unique commutatyive E-square G =

(

1 11

12 h

)

in M(e, f ) such that 1 ≃
11 ≃ h ≃ 12. It follows that 1, 11, h, 12 ∈ S (e, f ) and hence G is a commutative
E-square contained in S (e, f ). ThereforeS (e, f ) is a commutative E-array.

The following proposition is the biordered set analogue of [Clifford, 1974,
Proposition 2.14] and is a crusial in associativity proofs.
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Proposition 3.22. Let 1 ∈ S (e, f ) and h ωr f . Then

S (1, h) ⊆ S (e, h) and S (1, h) , ∅ ⇐⇒ S (e, h) , ∅.

Proof. Suppose that k ∈ S (1, h) and i ∈M(e, h). Since k ωl 1 ωl e, i, k ∈M(e, h) ⊆
M(e, f ). Hence i � 1 and k � 1 in M(e, f ). Hence there is a unique E-square
I =

(

i i1
i2 1

′

)

inM(e, f ) satisfying the conditions (a), (b) and (c) of Proposition 3.20.
Hence u � 1 for all vertices of G. Now i1 R i ωr h and i1 ωl 1. Hence
i1 ∈ M(1, h) and so i1 � k in M(1, h). Since 1i1 ω 1 ωl e and i1 � 1, we have
1i1 ωl e and ei1 ωr e1. Hence e(1i1) = (e1)(ei1) = ei1. Since k � 1, ek ωr e1 so that
e(1k) = (e1)(ek) = ek. Therefore

ei R ei1 = e(1i1) ωr e(1k) = ek since i1 � k inM(1, h)

and so, 1i1 ωr 1k. Since i ωr h ωr f , using (B22) we obtain

ih = (i f )h = (i1 f )h = i1h ω
l kh since i � k in M(1, h).

Therefore i � k in M(e, h). This proves that k ∈ S (e, h) and that S (1, h) , ∅
implies S (e, h) , ∅.

Now let u ∈ S (e, h). Then u ∈ M(e, h) ⊆ M(e, f ) and so u � 1. By Proposi-
tion 3.20, there exista an E-square H =

(

u u1
u2 1

′

)

satisfying conditions
(a) 1′ ω 1;
(b) eu = eu2 R e1′ = eu1, u f = u1 f L 1′ f = u2 f ;
(c) 1(ku1) = (u2k)1 for all k ∈ ω(u).

Since u R u1, eu R eu1 and uh = (u f )h = (u1 f )h = u1h. So u1 ∈ S (e, h). Since
u1 ωl 1, u1 ∈ M(1, h). If v ∈ M(1, h) then v ∈ M(e, h) and so, v � u1 in M(e, h).
Hence ev ωr eu1 and so, 1v = 1(ev) ωr 1(eu1) = 1u1. Since vh ωl u1h, we
conclude that v � u1 inM(1, h). Therefore u1 ∈ S (1, h). This also shows that if
S (e, h) , ∅, then S (1, h) , ∅.

As an immediate corollary we have the following [see Nambooripad, 1972,
lemma 3.9].

Corollary 3.23. Let e, 1 ∈ E and α : ω( f ) → ω( f ′) be an ω-isomorphism of E. Let
h1 ∈ S (e, f ), h2 ∈ S ( f ′, 1), h′1 = (h1 f )α and h′2 = ( f ′h2)α−1. Then we have

S (h1, h′2) ⊆ S (e, h′2), S (h′1, h2) ⊆ S (e, h′2), and
(

S (h1, h′2) f
)

α = f ′S (h′1, h2).

Proof. Clearly h′2 ω f and h′1 ω f ′. Hence from Proposition 3.22 and its
dual we have S (h1, h′2) ⊆ S (e, h′2) and S (h′1, h2) ⊆ S (e, h′2). By axiom (B4’)
S (h1, h′2) f = S (h1 f , h′2 f ) = S (h1 f , h′2). Since α : ω( f ) → ω( f ′) is a biorder
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order-reflecting
order-reflecting!weakly

isomorphism, it preserves basic products and by Definition 3.3 α induces an
isomorphism of M(h1 f , h′2) ontoM((h1 f ))α, (h′2)α =M(h′1, f

′h2). Therefore

(

S (h1, h′2) f
)

α = S (h′1, f
′h2) = f ′S (h′1, h2).3.2.2 Bimorphisms and biorder 
ongruen
es

Here we propose to discuss cetain properties of bimorphisms. We shall be
mostly concerned with regularity properties. We shall also give an intrinsic
characterization of regular congruences on regular biordered sets.

Let (X, ρ) and (Y, σ) be quasi-ordered sets. Recall that a mapping f : X→ Y

is order-preserving if for all x, y ∈ X with xρy, we have x fσy f . f is said to
reflect the quasiorders if for all x, y ∈ X, xρy if x fσ f ; θ reflect the quasiorders
weakly if for all y, y′ ∈ Y, y′σy and x ∈ X, x f = y, there exists x′ ∈ X with x′ρx

and x′ f = y′.
Next proposition establish some important properties of regular bimor-

phisms and shows that the category B̃ of biordered sets with morphisms as
regular bimorphisms has images.

Proposition 3.24. Let θ : E → E′ be a regular bimorphism. Then satisfies the
following conditions:

(RM31) For all e, f ∈ E, the map θ : M(e, f ) → M1(eθ, fθ) = M(eθ, fθ) ∩ Eθ is
surjective and quasiorder-preserving.

(RM32) Eθ is a biordered subset of E′.

In particular, θ weakly reflects ωr and ωl.

Proof. By Definition 3.2 θ maps M(e, f ) into M(eθ, fθ) and it preserves �. To
show that θ maps M(e, f ) onto M1(eθ, fθ) = M(eθ, fθ) ∩ Eθ, consider 1′ ∈
M1(eθ, fθ). Choose 11 ∈ Ewith 11θ = 1′. Since 1′ ωl eθ, by Proposition 3.9,

h′ = (eθ)1′ = (e11)θ ∈ S (1′, eθ) = S (11θ, eθ).

Hence, by axiom (RM2) of Definition 3.2 S (11, e) , ∅. Let h ∈ S (11, e). Then
by (RM1), hθ ∈ S (11θ, eθ) = S (1′, eθ). Then hθ ωl 1′ ωl eθ and hθ ωr eθ.
Therefore hθ ω eθ so that (he)θ = (hθ)(eθ) = hθ. Thus 1′ L h′ L hθ. By
Proposition 3.12

S ((he)θ, 11θ) = S ((he)θ, 1′) = S (1′, 1′) = {1′}

and by (RM2), S (he, 11) , ∅. If k1 ∈ S (he, 11), than, as above, k1θ = 1′

and k1 ωl he ω e. Dually there exists k2 ∈ ωr( f ) such that k2θ = 1′. Then
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S (k1θ, k2θ) = {1′}, and again by (RM2), S (k1, k2) , ∅. If 1 ∈ S (k1, k2), 1 ∈
M(k1, k2) ⊆M(e, f ) and 1θ = 1′. This proves (RM31).

Before verifying (RM32), we shall show that θweakly reflects ωr and ωl. If
e′, f ′ ∈ Ei = Eθ, and if e′ ωl f ′, then e′ ∈M( f ′, e′). Hence if e, f ∈ Ewith eθ = e′,
fθ = f ′, then there exists e1 ∈ M( f , e) such that e1θ = e′. Therefore θ weakly
reflects ωl. Dually θ weakly reflects ωr.

Let e′, f ′ ∈ E1 = Eθ such that (e′, f ′) ∈ DE′ . Then either e′ ωr f ′, e′ ωl f ′,
f ′ ωr e′ or f ′ ωl e′. In all cases, we can find e, f ∈ E with eθ = e′, fθ = f ′ and
(e, f ) satisfies the same relation as (e′, f ′). Then (e f )θ = e′ f ′ ∈ Ei. Therefore E1

satisfies condition (1) of Proposition 3.13. To prove (2), let 1′, h′, e′ ∈ E1 with
1′, h′ ∈ ωr(e′) and 1′e′ ωl h′e′. Then by Proposition 3.19 there is anE-squareG =
( 1′ 1′1 1′2 h′1 ) such that h′1 ω h′ and h′1e

′ = (h′e)(1′e′). Therefore h′1 = (h′e′)(1′e′)h′

and so, h1′ ∈ E1 by (1). AlsoS (h′1, 1
′) = {1′1} , ∅. Now if e ∈ Ewith eθ = e′, since

θweakly reflectsωr andωl, there exists 1, h1 ∈ ωr(e) such that 1θ = 1′, h1θ = h′1.
By (RM2), S (h1, 1) , ∅. If 11 ∈ S (h1, 1), 11θ ∈ S (h1θ, 1θ) = S (h′1, 1

′) = {1′1}.
Hence 11θ = 1′1 ∈ E1. This proves (2). Since the proof for (2)* is dual, the
statement (RM32) follows from Proposition 3.13.

Corollary 3.25. A bijective bimorphism θ is an isomorphism if and only if θ is
regular.

Proof. If θ is regular, by the proposition above θ reflectsωr and ωl weakly and
since θ is bijective, it reflects the quasiorders. Hence if (e′, f ′) ∈ DE′ there exists
x, y ∈ E such that (x, y) ∈ DE is of the same type as (x′, y′) and (xy)θ = x′y′.
Therefore

(x′θ−1)(y′θ−1) = xy = (x′y′)θ−1.

It follows that θ−1 : E′ → E is the inverse of θ and so, θ is an isomorphism.
Conversely, if θ is an isomorphism, it is clear that θ is regular.

A partial converse of the above statement is also true: if θ is any bimor-
phism that satisfies (RM31) and the following,

(RM33) Eθ is a relativelu regular biordered subset of E′.

then θ satisfies (RM1) [See Nambooripad, 1979, Proposition 2.14 for a proof].
Example 3.9 shows that conditions (RM31), (RM32) and/or (RM33) are

neither necessary nor sufficient for regularity of a bimorphism.
However, if E is regular, conditions (RM31) and (RM32) completely char-

acterises regularity.

Proposition 3.26. Let θ : E → E′ be a bimorphism of the regular biordered set E to
E′. Then θ is regular if and only if it satisfies (RM31) and (RM33).
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κθ:the biorder congruence of the
bimorphism θ

biorder congruence
biorder congruence!regular–

Proof. Assume that θ is regular. Then by Proposition 3.24, θ satisfies (RM31)
and (RM32) so that E1 = Eθ is a biordered subset of E′. Therefore, to prove
(RM33), it is sufficient to show that

S1(eθ, fθ) = S ′(eθ, fθ) ∩ E1 for all e, f ∈ E

where S1 denote the sandwich set in E1 and S ′ denote the sandwhich set
in E′. Let e′, f ′ ∈ E1 and choose e, f ∈ E with e′ = eθ and f ′ = fθ. Since
E is regular, S (e, f ) , ∅. Let h ∈ S (e, f ). The regularity of θ implies that
h′ = hθ ∈ S ′(e′, f ′). Cearly

S ′(eθ, fθ) ∩ E1 ⊆ S1(eθ, fθ)

Therefore h′ ∈ S1(e′, f ′). If 1′ ∈ S1(e′, f ′), we have 1′ ≃ h′ in E1 and so
e′1′ R e′h′ and 1′ f ′ L h′ f ′. Since these relations hold in E′, 1′ ∈ S ′(e′, f ′).
Therefore the desired equality holds.

Conversely assume that θ satisfies (RM31) and (RM33). In particular, θ
satisfies (RM32) and so, by Proposition 3.24, θ satisfies (RM1). Since E is
regular, axiom (RM32) is automatically satisfied. Therefore θ is regular.

Let θ : E→ E′ be a bimorphism. Then

κθ = θ ◦ (θ)−1 = {( f , 1) : fθ = 1θ} (3.17)

is clearly an equivalence relation on E. κθ is called the biorder congruence of the
bimorphism θ. If θ is regular, κφθ is called a regular biorder congruence on E.

Proposition 3.27. Let ρ = κθ be the congruence of a bimorphism θ : E → E′. For
every e ∈ E, eρ is a biordered subset of E. If E is regular then eρ is a regular biordered
subset of E and is relatively regular in E.

Proof. Clearly eρ satisfies condition (1) of Proposition 3.13. To prove (2), let
f , 1, h ∈ eρ, 1, h ∈ ωr( f ) and 1 f ωl h f . Then by (B4), there is 11 ∈ M(h, f ) such
that 11 f = 1 f . Let e′ = eθ. Since 1 f ∈ eρ, we have

(11θ)( fθ) = (11θ)e′ = (11 f )θ = (1 f )θ = e′

and

11θ = ( f11)θ = e′(11θ)

and so, 11θ R e′. Since 11 ωl h, 11θ ωl e′. This gives 11θ = e′ so that 11 ∈ eρ.
Thus eρ satisfies condition (2). By duality (2)∗ also follows and so, eρ is a
biordered subset of E.
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Suppose that θ is regular and f ∈ eρ. Then

S (e, f )θ ⊆ S ′(eθ, fθ) = S ′(e′, e′) = {e′}.

Then S (e, f ) , ∅. Therefore eρ is a regular biordered subset. Also S (e, f ) ⊆ eρ

which implies that eρ is relatively regular in E.

Next theorem characterises regular biorder congroences on a regular bi-
ordered set. Since we will not have occation to deal with the more general
type of congruences, for brevity, we shall call these as biorder congroences (or
simply congruences if no confusion is likely).

Theorem 3.28. Let ρ be an equivalence relation on a regular biordered set E. Then ρ
is a congruence on E if and only if ρ satisfies the following conditions and their duals.
In these statements e, f , 1 . . . etc. denote arbitrary elements of E.

(BC1) eρe′, fρ f ′ and (e, f ), (e′, f ′) ∈ DE ⇒ e fρe′ f ′.

(BC2) e′ ∈ ρ(e) ⇒ S (e′, e) ⊆ ρ(e).

(BC3) 1, h ∈ ωr(e) and ρ(1e) ∩ ωl(he) , ∅ ⇒ there exists 11 ∈ M(h, 1) such
that 111 ∈ ρ(1) and 11e ∈ ρ(1e).

(BC4) 1 ∈M(e, f ), e′ρe and f ′ρ f ⇒ M(e′, f ′) ∩ ρ(1) , ∅.

Proof. We observ that, since axioms for biordered sets and the axioms for
comgruences above are self dual, the duality principle applies in this case. We
shall use this observation in the following proof.

Let E1 = E/ρ where ρ is an equivalence relation on E satisfying the given
conditions. Define a partial binary operation on E1 by

ρ(e)ρ( f ) =















ρ(e′ f ′) if there exist e′ρe, f ′ρ f with (e′, f ′) ∈ DE;
undefined otherwise.

(3.18a)

If eρe′ρe′′ and fρ f ′ρ f ′′, and (e′, f ′), (e′′, f ′′) ∈ DE then by (BC1), ρ(e′ f ′) =
ρ(e′′ f ′′). Hence the equation above defines a single-valued partial binary
operation on E1.

Let ωr
1 and ωl

1 denote the relations on E1 defined by Equation (3.5) with
respect to this partial binary operation. We show that

ρ( f ) ωr
1 ρ(e) ⇐⇒ there exists f ′ ∈ ρ( f ) such that f ′ ωr e; (3.18b)

ρ( f ) ωl
1 ρ(e) ⇐⇒ there exists f ′ ∈ ρ( f ) such that f ′ ωl e. (3.18c)

If f ′ ∈ ρ( f ) with f ′ ωr e, then (e, f ′) ∈ DE and e f ′ = f ′. Hence by Equa-
tion (3.18a), ρ(e)ρ( f ) = ρ(e)ρ( f ′) = ρ( f ′) = ρ( f ). Thus ρ( f ) ωr

1 ρ(e). On the
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other hand if ρ( f ) ωr
1 ρ(e), there exist e′ ∈ ρ(e), f ′ ∈ ρ( f ) with (e′, f ′) ∈ DE and

ρ(e′ f ′) = ρ( f ) so that e′ f ′ ∈ ρ( f ). Since the basic product e′ f ′ exists, by axiom
(B1) of Theorem 3.2, one of the following relation must hold:

e′ ωr f ′, e′ ωl f ′, f ′ ωr e′, f ′ ωl e′.

Let e′ ωr f ′. Then e′ ∈ M(e′, f ) and f ′ρ f . Hence by (BC4), M(e′, f ) ∩ ρ(e′) , ∅.
Let e′′ ∈ M(e′, f ) ∩ ρ(e′). Then ρ(e′′) = ρ(e) and e′′ ωr f so that e′′ f R e′′. Also
ρ(e′′ f ) = ρ(e′ f ′) = ρ( f ). Hence e′′ f ∈ M(e′′, f ) and e′′ρe. Therefore, again by
(BC4), there exist f1 ∈ M( f , e) ∩ ρ(e′′ f ). Then f1 ωr e and f1 ∈ ρ(e′′ f ) = ρ( f )
which proves Equation (3.18b) in this case. If e′ ωl f ′, then e′ f ′ = e′ and so
ρ(e) = ρ(e′) = ρ(e′ f ′) = ρ( f ). Hence Equation (3.18b) holds in this case if we let
f ′ = e. If f ′ ωr e′, then f ′ ∈M( f ′, e′), eρe′ and fρ f ′. Hence by (BC4), there exists
f1 ∈ M( f , e) ∩ ρ( f ′). Therefore Equation (3.18b) holds with f ′ = f1. Finally, let
f ′ ωl e′ so that e′ f ′ ω e′ and ρ(e′ f ′) = ρ( f ). Again, the desired result follows if
we take e′ f ′ as f ′ in Equation (3.18b). Therefore Equation (3.18b) holds in all
cases. Equation (3.18c) follows by duality.

It obvious fromEquations (3.18b) and (3.18c) thatωr
1 andω

l
1 are quasiorders

on E1. Let (ρ(e), ρ( f )) ∈ DE1 . Then by Equation (3.18a) there exist e′ρe, f ′ρ f

such that (e′, f ′) ∈ DE and ρ(e)ρ( f ) = ρ(e′ f ′). We can see using Equation (3.18b)
and Equation (3.18b) that ρ(e) and ρ( f ) are related by ωr

1 and/or ω
l
1 in the same

way e′ and f ′ are related in terms of ωr and ωl. This implies that E1 satisfies
axiom (B1) of Theorem 3.2. It also follows that the quotient map ρ# : e 7→ ρ(e)
of E onto E1 preserve and weakly reflect the quasiorders ωr to ωr

1 and ω
l to ωl

1

respectively. To prove (B21), assume that ρ(e) ωr
1 ρ( f ). By Equation (3.18a)

we may assume that e ωr f and so, e R e fω f by (B21). Since ρ# preserves
quasiorders and their inverses, it follows that ρ(e) R1 ρ(e f )ω1ρ( f ). Similar
arguements can be used to prove axiom (B22) for E1. Let ρ(1), ρ( f ) ∈ ωr

1(ρ(e))
and ρ(1) ωl

1 ρ( f ). By Equation (3.18b) we may assume that 1, f ∈ ωr(e). By
Equation (3.18c), there is 11 ∈ ρ(1) with 11 ωl 1. By (BC2), S (11, 1) ⊆ ρ(1).
Let 1′ ∈ S (11, 1) Then 1′ ∈ M(11, 1) ⊆ M( f , e) and so, 1′, f ∈ ωr(e). Therefore
1′e ωl f e. Further, by Equation (3.18a) and Equation (3.18c) we have

ρ(1)ρ(e) = ρ(1′e) ωl
1 ρ( f e) = ρ( f )ρ(e);

and
(

ρ( f )ρ(e)
) (

ρ(1)ρ(e)
)

= ρ( f e)ρ(1′e) = ρ(( f e)(1′e)) by (3.18a);

= ρ(( f1′)e) = ρ( f1′)ρ(e) by (B3);

=
(

ρ( f )ρ(1)
)

ρ(e).

This proves axiom (BC3). To prove (B4), letρ(1), ρ(h) ∈ ωr
1(ρ(e)) and ρ(1)ρ(e) ω

l
1

ρ(h)ρ(e) where 1, h ∈ ωr(e). Then ρ(1e) ωl ρ(he) and by Equation (3.18c),
ρ(1e) ∩ ωl(he) , ∅. By (BC3) there exists 11 ∈ M(1, h) such that 111 ∈ ρ(1) and
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11e ∈ ρ(1e). This implies that ρ(11)ρ(1) = ρ(111) = ρ(1e) = ρ(1)ρ(e). Since
11 ωl h if follows that ρ(11) ωl

1 ρ(h) and axiom (B4) follows. Since duals of
these axioms follow, we have shown that E1 is a biordered set and ρ# : E→ E1

is a bimorphism.
We proceed to show that ρ# : E → E1 is a regular bimorphism. Since

ρ# is surjective, (RM33) holds. Since ρ# is a bimorphism, ρ# is a map of
M(e, f ) into M(ρ(e), ρ( f )) that preserve the quasiorder �. Now suppose that
G ∈ M(ρ(e), ρ( f )). By Equations (3.18b) and (3.18c) we can find 11, 12 ∈ G

such that 11 ωl e and 12 ∈ωr f . If 1 ∈ S (11, 12) then by (BC2), 1 ∈ G and
so ρ(1) = G. Further 1 ∈ M(11, 12) ⊆ M(e, f ). Hence ρ# maps M(e, f ) onto
M(ρ(e), ρ( f )) and thus ρ# satisfies (RM31). Therefore by Proposition 3.26, ρ# is
a regular bimorphism. In particular, E1 is a regular biordered set.

Comversely, assume that ρ = κθ where θ : E → E′ is a surjective regular
bimorphism of the regular biordered set E. Then by Definition 3.2, (RM1) and
(RM31), ρ satisfies (BC1), (BC2) and (BC4). Let 1, h ∈ ωr(e) and ρ(1e)∩ωl(he) ,
∅. Then 1θ, hθ ∈ ωr(eθ) and 1θeθ = (1e)θ ωl (he)θ = fθeθ. Hence, by
(B4), there exists G ∈ M(hθ, eθ) such that Gρ(e) = ρ(1)ρ(e). Thus G R ρ(1).
Hence G ∈ M(ρ(h), ρ(1)). Then by (RM31), there exist 11 ∈ M(h, 1) such that
G = 11θ = ρ(11). Therefore we have

ρ(111) = ρ(11)ρ(1) = Gρ(1) = ρ(1);

ρ(11e) = Gρ(e) = ρ(1)ρ(e) = ρ(1e).

Therefore ρ satisfies axiom (BC3) also.

If θ : E → E′ is a regular bimorphism of a regular biordered set, then
Eθ = E1 is a relatively regular biordered subset of E′ (by Proposition 3.26). If
ρ = κθ then ρ# : E → E/ρ is a surjective regular bimorphism of E onto the
quotient E/ρ. Also the map ψ : E/ρ → E1; ρ(e) 7→ eθ is a bijection. Now if
ρ(e)ρ( f ) exists in E/ρ, by Equation (3.18a) there exist e′ ∈ ρ(e), f ′ ∈ ρ( f ) such
that (e′, f ′) ∈ DE and ρ(e)ρ( f ) = ρ(e′ f ′). Then

(eθ)( fθ) = (e′ f ′)θ

so that the product (eθ)( fθ) exists and

(ρ(e))ψ(ρ( f ))ψ = (eθ)( fθ) = (e′ f ′)θ = (ρ(e′ f ′))ψ.

Similarly, one can see that if (eθ)( fθ) exists in E1 then (ρ(e))(ρ( f )) exists in
E/ρ and we have the equality above. Therefore ψ : E/ρ → E1 is a biorder
isomorphism. We have the following isomorphism theorem.
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Theorem 3.29. Let E be a regular biordered set and let θ : E → E′ be a regular
bimorphism. Then there exists an isomorphism ψ : E/κθ → Eθ such that the
following diagram commute:

E
κθ#

θ

E/κθ

ψ

E′

(3.19)

where κθ# : E→ E/κθ is the quotient bimorphism.

3.3 embedding of biordered sets in semigroups

We have seen that the set of idempotents of any semigroup is a biordered set
and the map induced by a homomorphism φ : S → S′ on the biordered set
E(S) is a bimorphism E(φ) : E(S)→ E(S′) (see Theorem 3.3). In this section we
consider the converse problemof ebeddinga givenbiordered setE as biordered
set of some semogroup S so that E is isomorphic to E(S) and thus showing that
the original set of axioms for biordered sets [seeNambooripad, 1979, Definition
1.1] are both necessary and sufficient inorder that a biordered set represent
the set of idempotents of a semigroup. It may be noted that this problem
was solved for the particular case of biordered sets of regular semigroups
in Nambooripad [1979] itself using the theory of inductive groupoids which
will be considered elsewhere in this work. Results in this section are due
to Easdown [1985]. In presenting the results we have followed (except for
Easdown’s arrow notations) [Higins, 1992] which provide a good account of
Easdown’s theory.3.3.1 A representation
Webegin by constructing a representationof a given biordered set as biordered
subset of a semigroup of partial transformations. This is the principal tool
Easdown uses to get the desired embbeding [see Easdown, 1985].

Let E be a biordered set and assume that

I◦ = I ∪ {∞} where I = E/R; and

Λ◦ = Λ ∪ {∞} where Λ = E/L
(3.20a)

where ∞ does not represent an element in either I or Λ. For e ∈ E, we write
Re [Le] for the R-class [L-class] of E. Hence for any R ∈ I◦, either R = Re for
some e ∈ E or R = ∞; similar remarks hold for elements of Λ◦. Now, for e ∈ E,
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define ρ(e) as follows. For any L ∈ Λ◦,

Lρ(e) =























L1e if L ∈ Λ and 1 ∈ L ∩ ωr(e);

∞ if L ∈ Λ and L ∩ ωr(e) = ∅;

∞ if L = ∞.

(3.20b)

The map ρ(e) : Λ◦ → Λ◦ is single-valued. For, if L ∈ Λ and if 1, h ∈ L ∩ ωr(e)
then by axiom (B3), L1e = Lhe. ρ(e) is clearly single-valued in other cases.
Notice that Lρ(e) takes values in Λ if and only if L intersects the right ideal
ωr(e). Moreover, ρ(e) is an idempotent in TΛ◦ and so, this gives a map

ρ : E→ E (TΛ◦) , e 7→ ρ(e).

Dually we define λ(e) : I◦ → I◦: For any R ∈ I◦,

Rλ(e) =























Re1 if R ∈ I and 1 ∈ R ∩ ωl(e);

∞ if R ∈ I and R ∩ ωl(e) = ∅;
∞ if R = ∞.

(3.20b◦)

As above, λ(e) : I◦ → I◦ is single-valued and Rλ(e) takes value in I if and only
if R intersects ωl(e). Again λ(e) is an idempotent in T ∗

I◦ , the left-right dual of
TI◦ and we have the map

λ : E→ E
(

T ∗
I◦

)

, e 7→ λ(e).

We now set
ϕE(e) = ϕ(e) = (ρ(e), λ(e)) (3.20c)

which defines a map
ϕ : E→ E

(

TΛ◦ ×T ∗
I◦

)

.

We proceed to show that the mapϕ is a biorder embedding (see Definition 3.2)
of E into E

(

TΛ◦ ×T ∗
I◦

)

. We divide the proof into lemmas some of which will
be of interest later.

Lemma 3.30. For (e, f ) ∈ DE, we have ρ(e f ) = ρ(e)ρ( f ) and λ(e f ) = λ(e)λ( f ).

Proof. By (B12), it is sufficient to prove the following equations. If e ωr f then

ρ(e) = ρ( f e) = ρ( f )ρ(e) (i)

and ρ(e f ) = ρ(e)ρ( f ). (ii)

If e ωl f then

ρ(e) = ρ(e f ) = ρ(e)ρ( f ) (iii)

and ρ( f e) = ρ( f )ρ(e). (iv)
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To prove (i), assume that Lρ(e) , ∞ for L ∈ Λ. Then there is 1 ∈ L ∩ ωr(e) such
that Lρ(e) = L1e. Since 1 ωr e ωr f , 1 f ωr e and we have Lρ( f ) , ∞,

Lρ( f )ρ(e) = L1 fρ(e) = L(1 f )e , ∞.

Since (1 f )e = 1e by (B22), it follows that Lρ( f )ρ(e) = Lρ(e) for all L ∈ Λ such
that L ∩ ωr(e) , ∅. Next assume that Lρ( f )ρ(e) , ∞. Then by Equation (3.20b),
Lρ( f ) , ∞ and so, there is 1 ∈ L ∩ ωr(e) with Lρ( f ) = L1 f and there is h ∈

L1 f ∩ ωr(e) with
(

Lρ( f )
)

ρ(e) = L1 fρ(e) = Lhρ(e) = Lhe.

Now h L 1 f ω f and h ωr e ωr f which gives h ω f . Hence 1, h ∈ ωr( f ) and
h = h f L 1 f and by (B4), there is h1 ∈ L ∩ ωr( f ) such that h1 f = h. By (B22),
(h1 f )e = h1ewhich gives

(

Lρ( f )
)

ρ(e) = Lhe = L(h1 f )e = Lh1e = Lρ(e)

so that Lρ(e) , ∞. Consequently, Lρ(e) = ∞ if and only if Lρ( f )ρ(e) = ∞, so
that equation (i) holds in all cases.

Proof of (ii). Assume that Lρ(e f ) , ∞ so that there exists 1 ∈ L ∩ ωr(e f )
such that Lρ(e f ) = L1(e f ). Then

1 R 1(e f ) ω e f R e and 1e ω e ωr f .

Therefore

(

Lρ(e)
)

ρ( f ) = (L1e)ρ( f ) = L(1e) f , ∞.

On the other hand, if
(

Lρ(e)
)

ρ( f ) , ∞, there is 1 ∈ L ∩ ωr(e) with Lρ(e) = L1e.
Then 1e R e ωr f and so, L1eρ( f ) = L(1e) f . Since 1 ωr e R e f , Lρ(e f ) = L1(e f ). By
Proposition 3.10, 1(e f ) = (1e) f . Therefore Lρ(e f ) , ∞ and Lρ(e f ) =

(

Lρ(e)
)

ρ( f ).
Again we have

(

Lρ(e)
)

ρ( f ) = ∞ if and only if Lρ(e f ) = ∞ and equation (ii)
holds in all cases.

Proof of (iii). If Lρ(e) , ∞ there exists 1 ∈ L ∩ ωr(e) such that Lρ(e) = L1e.
Now we have

1 R 1e ω e ωl f so that 1e L f (1e) ω f .

Therefore

Lρ(e)ρ( f ) = L1eρ( f ) = L f (1e)ρ( f ) = L( f (1e)) f = L f (1e) = L1e = Lρ(e).

If Lρ(e)ρ( f ) , ∞, clearly Lρ(e) , ∞. It follows that equation (iii) holds in all
cases.
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Proof of (iv). Again suppose that Lρ( f e) , ∞ so that there is 1 ∈ L ∩ ωr( f e)
with Lρ( f e) = L1( f e). Then 1 ωr f e ω f and so, 1 f ω f . Then 1 f , e ∈ ωl( f ) and
f (1 f ) = 1 f ωr f e. Hence by (B4*), there exists 11 ∈ ωl( f ) such that 11 ωr e and
f11 = 1 f . Then 11 L 1 f and 11e ω e ωl f . Therefore

f (1e) = ( f11)( f e) by axiom (B3*)

= (1 f )( f e) = 1( f e) by Proposition 3.10.

Therefore (L)ρ( f )ρ(e) = (L1 f )ρ(e) = (L11)ρ(e)

= L11e = L f (11e) = L1( f e)

= (L)ρ( f e).

Let (L)ρ( f )ρ(e) , ∞. Then there exists 1 ∈ L with 1 ωr f and there exists
h ∈ L1 f ∩ ωr(e) with

(L)ρ( f )ρ(e) = (L1 f )ρ(e) = (Lh)ρ(e) = Lhe.

Now h, e ∈ωl ( f ) and h ωr e and so, by (B3*), f h ωr f e. Also f h, 1 ∈ ωr( f ) and
1 f L f h = ( f h) f . Hence by Proposition 3.19, there is h1 ∈ M(1, f ) such that
h1 L 1 and h1 f = ( f h) f = f h. Therefore h1 ωr f e and so, (L)ρ( f e) = Lh1( f e) , ∞.
We conclude that the equation (iv) holds.

We have thus shown that for all (e, f ) ∈ DE, ρ(e f ) = ρ(e)ρ( f ). The statement
that for all (e, f ) ∈ DE, λ(e f ) = λ(e)λ( f ) follows by duality.

Lemma 3.31. For e, f ∈ E, e ωl f if and only if ρ(e)ρ( f ) = ρ(e) and e ωr f if and only
if λ( f )λ(e) = λ(e).

Proof. The ’if’ part of the above statement follows from Lemma 3.30 and so, it
is sufficient to prove the ’only if’ part. So assume that ρ(e)ρ( f ) = ρ(e). Then

Le = (Le)ρ(e) = (Le)ρ(e)ρ( f ) = (Le)ρ( f ).

Hence there exists 1 ∈ Le such that 1 ωr f and

(Le)ρ( f ) = L1 f = Le.

Then e L 1 f ω f so that e ωl f . If λ( f )λ(e) = λ(e) then by dual reasoning, we
have e ωr f .

The following theorem is one of the fundamental results in Easdown’s
theory of biordered sets [see ?].

Theorem 3.32. Let E be a biordered set and ϕ : E → E∗ be the map defined by
Equation (3.20c) where

E∗ = E
(

TΛ◦ ×T ∗
I◦

)

. (⋆)
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ϕE: Fundamental embedding of the
biordered set E

fundamental embedding

Then ϕ is a biorder embedding of E into E∗. Consequently Eϕ is a biordered subset of
E∗ isomorphic to E.

Proof. We first show that ϕ is injective. If ϕ(e) = ϕ(e′), then ρ(e) = ρ(e′) and
λ(e) = λ(e′). Hence ρ(e)ρ(e′) = ρ(e) so that e ωl e′ by Lemma 3.31. Similarly
e′ ωl e and so e L e′. Dually, we have e R e′. Consequently e = e′.

Let (e, f ) ∈ DE. Then by Lemma 3.30, we have

ϕ(e)ϕ( f ) = (ρ(e), λ(e))(ρ( f ), λ( f )) = (ρ(e)ρ( f ), λ(e)λ( f ))

= (ρ(e f ), λ(e f )) = ϕ(e f ).

Hence ϕ : E→ E∗ is a bimorphism. Moreover, (ϕ(e), ϕ( f )) ∈ DE∗ and these are
related in the same way as e and f . On the other hand, if (ϕ(e), ϕ( f )) ∈ DE∗ ,
by Lemma 3.31 (e, f ) ∈ DE and the relation between e and f is the same as
the relation between ϕ(e) and ϕ( f ). It follows that ϕ : E → Eϕ is a biorder
isomorphism.

For convenience, let us write E′ = Eϕ. Since

ϕ(e)ϕ( f ) = ϕ(e f ) for all (e, f ) ∈ DE,

E′ is a partial subalgebra of E∗. Hence E′ satisfies the condition (1) of Propo-
sition 3.13. We now verify condition (2). Let e, f , 1 ∈ E such that ϕ( f ), ϕ(1) ∈
ωr(ϕ(e)) and ϕ(1)ϕ(e) ωl ϕ( f )ϕ(e). By Lemma 3.31, we have f , 1 ∈ ωr(e) and
1e ωl f e. Hence by (B4), there is 11 ∈ M( f , e) such that 11e = 1e. Then by
Lemma 3.30, ϕ(11) ∈ M(ϕ( f ), ϕ(e)) and ϕ(11)ϕ(e) = ϕ(1)ϕ(e). This proves, by
Proposition 3.13, that E is a biordered subset of E∗.

The theorem above gives an embedding ϕ : E → E∗ where E∗ is the
biordered set defined by Equation (⋆) above. We shall call ϕ = ϕE as the
fundamental embedding of the biordered set E. By Lemma 3.30 the projections

ρ : E→ TΛ◦ , e 7→ ê = ρ(e);

and λ : E→ T ∗
I◦ , e 7→ ẽ = λ(e)

are bimorphisms which preserve and reflect basic products. Consequently, as
in the last paragraph of the above proof, we can show that Eρ is a biordered
subset of E(TΛ◦). Dually, Eλ is a biordered subset of E(T ∗

I◦
).3.3.2 Easdown's theorem

According to Easdown the following result is due to Hall [see Easdown, 1985,
?]. The following proof is essentially from Higins [1992].
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〈Eϕ〉:The fundamental semiband of
E

letters
words
cover

Lemma 3.33. Let 〈Eϕ〉 denote the subsemigroup of TΛ◦ × T ∗
I◦
generated by Eϕ. If α

is an idempotent in 〈Eϕ〉 and if ϕ(e) L α R ϕ( f ) in the semigroup 〈Eϕ〉 for e, f ∈ E,
then α ∈ Eϕ.

Proof. The given condition implies by Theorem 2.34 that

ϕ(e) R ϕ(e)ϕ( f ) L ϕ( f )

in the semigroup 〈Eϕ〉. Taking projections intoTΛ◦ , we have ρ(e) R ρ(e)ρ( f ) L

ρ( f ). Since ρ(e) R ρ(e)ρ( f ) these transformations determine the same partition
of Λ◦ (see Example 2.10). Now Leρ(e) = Le , ∞. Hence the set U in the
partition πρ(e) that contain Le does not contain ∞. Since (∞)ρ(e)ρ( f ) = ∞ and
U ∈ πρ(e) = πρ(e)ρ( f ), Leρ(e)ρ( f ) , ∞. Therefore there is 1 ∈ Le such that 1 ωr f

and Leρ( f ) = L1 f . Again since ρ(e)ρ( f ) L ρ( f ) in 〈Eρ〉, we have ρ(1)ρ( f ) ω ρ( f ).
On the other hand, by Theorem 2.34 ρ( f ) L ρ(1)ρ( f ). Hence ρ(1 f ) = ρ( f ) and
so, ρ(e) L ρ(1) R ρ( f ). This implies, by Lemma 3.31, that

ϕ(e) L ϕ(1) R ϕ( f ).

Therefore α H ϕ(1). Since both α and ϕ(1) are idempotents in 〈Eϕ〉, α = ϕ(1).
Thus α ∈ Eϕ.

Suppose that E is a biordered set and let E+ [E∗]denote the free semigroup
[monoid] on the set E. Elements of E are called letters and those of E∗ are
called words. Symbols e, f , 1, h, etc. [u, v,w,etc.] with or without subscripts and
superscripts will denote letters [words]. If h is a letter of the word u, the rank
of h is the position of h in u when we count letters of u from left. The length
l(u) of a word u is the number of letters in u.

Multiplication in E∗ will be denoted by juxtaposition and the basic product
in E will be denoted by ·. Thus if (e, f ) ∈ DE, e f denote a word of length two
while e · f denotes a single letter. We shall say that v is a subword of w if
w = uvu′ for some (possibly empty) u, u′ ∈ E∗. Words w1,w2, . . . ,wn cover a
word w if there are subwords w′

i
of wi, i = 1, 2, . . . , n such that w = w′1w

′
2 . . .w

′
n.

We may identify E with a subset of E+ by identifying every e ∈ E with the
word having the only letter e so that E ⊆ E+. Notice that elements of E are not
idempotents in E+; in particular, E is not a biordered subset of E+.

Define the relation σ on E+ by

σ = {( f1, f · 1) : ( f , 1) ∈ DE}.

Let σ# denote the smallest congruence on E∗ containing σ (see Proposition 2.7).
Let

B0(E) = E+/σ#. (3.21a)

and χE : E→ E(B0(E)), e 7→ σ#(e) (3.21b)
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B0(E): Free semigroup generated by
E

free semigroup!E-free sewmigroup
χE: Universal isomorphism of E
biordered set!universal isomorphism
elementary σ transition
elementary σ transition! of type

The semigroup B0(E) is called the E-free semigroup (or the free semigroup
generated by the biordered set E). Easdown’s theorem asserts that (see the
theorem below) that the map χE is an isomorphism of biordered sets. χE will
be called the universal isomorphism of the biordered set E.

The following statement is equivalent to Easdown’s theorem [see Easdown,
1985, Theorem 3.3]. Except forminor differences in notation and arrangement,
the proof below is the same as the proof from [Easdown, 1985].

Theorem 3.34. Let E be a biordered set and let B0(E) denote the free semigroup
generated by E. Then the universal isomorphism χE : E → E(B0(E)) is a biorder
isomorphism such that, given any simigroup S and bimorphism θ : E → E(S)
there exists a unique homomorphism θ̂ : B0(E) → S making the following diagram
commute:

E
χE

θ

E(B0(E))

E(θ̂)

E(S)

(3.22)

For clarity, we divide the proof into a number of lemmas. Notation estab-
lished in this section so far is taken into account below.

Recall from Proposition 2.7 that (w,w′) ∈ σ# if and only if there exists a
finite sequence wi, i = 0, 1, . . . , n of words in E+ with w0 = w, wn = w′ and for
each i = 1, 2, . . . , n there exist ui, vi ∈ E∗ such that either

wi−1 = ui( f1)vi, wi = ui( f · 1)vi or wi−1 = ui( f · 1)vi, wi = ui( f1)vi.

The passage fromwi−1 to wi is called an elementary σ-transition and is indicated
as T : wi−1 7→ wi. In case when f ωr 1 or f ωl 1, we have f R f · 1 and the
corresponding elementary σ-transition T is called type (1). If either 1 ωr f or
1 ωl f then 1 L f · 1 and T is said to be of type (2). For brevity we shall write

wϕ = ϕ( f1)ϕ( f2) . . . ϕ( fn) (3.23)

for any word w = f1 f2 . . . fn ∈ E+.

Lemma 3.35. Let f1, f2, . . . , fn, 11, 12, . . . , 1m ∈ E and u = f1 . . . fn, v = 11 . . . 1m. If
σ#(u) = σ#(v) then uϕ = vϕ.

Proof. Since ϕ : E→ Eϕ is a border isomorphism, we have ϕ( f )ϕ(1) = ϕ( f · d)
for all ( f , 1) ∈ DE. Consequently if T : w 7→ w′ is an elementary σ-transition,
then wϕ = w′ϕ. It follows from the above remarks that wϕ = w′ϕ whenever
σ#(w) = σ#(w′).
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The following lemma is also due to T. E. Hall.

Lemma 3.36. Suppose that σ#(w) ∈ E(B0(E)) and that σ#(w) D σ#(e) for some letter
e. Then the congruence class σ#(w) contains a letter.

Proof. Letw = e1e2 . . . eN . Since σ#(w) and σ#(e) areD-related idempotents there
exist u = f1 f2 . . . fn and v = 1112 . . .1m such that σ#(u) is an inverse of σ#(v) and

σ#(w) = σ#(u)σ#(v) = σ#( f1 . . . fn11 . . . 1m)

and σ#(e) = σ#(v)σ#(u) = σ#(11 . . . 1n f1 . . . fm).

It follows from Lemma 3.35 that wϕ and ϕ(e) are idempotents in 〈Eϕ〉 and

wϕ = uϕvϕ = (uv)ϕ

and ϕ(e) = vϕuϕ.

Hence ρ(e) = ρ(11)ρ(12) . . . ρ(1m)ρ( f1)ρ( f2) . . . ρ( fn).

Since Leρ(e) = Le , ∞, it follows that

(Le)ρ(11)ρ(12) . . . ρ(1m) , ∞.

By Equation (3.20b), there exist k1, k2, . . . km such that

k1 ∈ Le ∩ ω
r(11)

and ki ∈ Lki−1·1i−1 ∩ ω
r(1i), 1 < i ≤ m.

Then in the semigroup B0(E) we have

σ#(k1 · 11) = σ#(k1)σ#(11) L(B0(E)) σ#(e)σ#(11) = σ#(e11).

Similarly

σ#(k2 · 12) = σ#(k2)σ#(12) L(B0(E)) σ#(k1 · 11)σ#(12)

L(Bo) σ#(e11)σ#(12) = σ#(e1112)

Repeating the process, we finally arrive at

σ#(km · 1m) = σ#(km)σ#(1m) L(B0(E)) σ#(km−1 · 1m−1)σ#(1m)

L(Bo) σ#(e11 . . . 1m−1)σ#(1m) = σ#(e1112 . . .1m)

Since

σ#(e11 . . . 1m) = σ#(e)σ#(11 . . . 1m) = σ#(11 . . . 1m) L(B0(E)) σ#(w),
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we have σ#(km · 1m) L(B0(E)) σ#(w). Since k = km · 1m is a letter, there is a
letter k with σ#(k) L(B0(E)) σ#(w). Dually, there exists a letter l ∈ E such that
σ#(l) R(B0(E)) σ#(w). It follows from Lemma 3.35 that

ϕ(k) L〈Eϕ〉 wϕ R〈Eϕ〉 ϕ(l).

Hence by Lemma 3.33, ϕ(z) = wϕ for some z ∈ E. It now follows from
Theorem 3.32 that

k L z R l

in E. Hence by the definition of σ#, we have σ#(k) L(B0(E)) σ#(z) R(B0(E)) σ#(l).
Therefore σ#(z) and σ#(w) are H-related idempotents in B0(E). Consequently
σ#(z) = σ#(w).

We next show that χE : E → E(B0(E)) is surjective. The lemma above
proves that any idempotent D-related to an idempotent σ#(e), e ∈ E is again
of the same type. Consequently, to prove that χE is surjective, it is sufficient
to show that every idempotent σ#(w), w = e1e2 . . . en in B0(E) is D-related to an
idempotent σ#(z), z ∈ E.

Since σ#(w) is an idempotent, we have σ#(w) = σ#(wn). Hence there exist
words wk, k = 1, 2, . . . ,N with w1 = w, wN = wn and elementary transitions
Tk : wk 7→ wk+1, for 1 ≤ k < N. For each k, 1 ≤ k ≤ N, we shall construct a cover
wi

k
, i = 1, 2, . . . , n of wk such that each σ#(wi

k
) D(B0(E)) σ#( f ) for some f ∈ E.

We define the subwords wi
k
inductively in terms of the position of letters

from 1 to l(wk). For this purpose, we define three finite sequences of positive
integers {αi

k
, βi

k
, γi

k
: 1 ≤ i ≤ n, 1 ≤ k ≤ N} as follows:

αi1 = β
i
1 = γ

i
1 = i for i = 1, 2, . . . , n; (1)

For each i, 1 ≤ i ≤ n, define inductively in k:

βik+1 =























































βi
k

if Tk : u f1v 7→ u f · 1vwhere l(u) ≥ βi
k
− 1;

or Tk : u f · 1v 7→ u f1v where l(u) ≥ βi
k
;

or l(u) = βi
k
− 1 and Tk is of type (1);

βi
k
− 1 if Tk : u f1v 7→ u f · 1vwhere l(u) ≤ βi

k
− 2;

βi
k
+ 1 if Tk : u f · 1v 7→ u f1vwhere l(u) ≤ βi

k
− 2;

or l(u) = βi
k
− 1 and Tk is not of type (1);

(2)
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αik+1 =























































αi
k

if Tk : u f1v 7→ u f · 1vwhere l(u) ≥ αi
k
− 1;

or l(u) = αi
k
− 2, αi

k
< βi

k
, and Tk is not of type (2);

or Tk : u f · 1v 7→ u f1v where l(u) ≥ αi
k
− 1;

αi
k
− 1 if Tk : u f1v 7→ u f · 1vwhere l(u) ≤ αi

k
− 3;

or l(u) = αi
k
− 2 and either αi

k
= βi

k
or Tk is of type (2);

αi
k
+ 1 if Tk : u f · 1v 7→ u f1vwhere l(u) ≤ αi

k
− 2;

(3)

γik+1 =























































γi
k

if Tk : u f1v 7→ u f · 1vwhere l(u) ≥ γi
k
;

or l(u) = γi
k
− 1, and either γi

k
= βi

k
, or Tk is of type (1);

or Tk : u f · 1v 7→ u f1vwhere l(u) ≥ γi
k
;

γi
k
− 1 if Tk : u f1v 7→ u f · 1vwhere l(u) ≤ γi

k
− 2;

or l(u) = γi
k
− 1, βi

k
< γi

k
and Tk is not of type (1);

γi
k
+ 1 if Tk : u f · 1v 7→ u f1v where l(u) ≤ γi

k
− 1;

(4)

For natural numbers i and j with i ≤ j, let [i, j] denote the set of all integers k
with i ≤ k ≤ j. We now show that

Lemma 3.37. Let {αi
k
, βi

k
, γi

k
} be finite sequences defined by Equations (1), (2), (3) and

(4) above. Then for all k ∈ [1,N],

β1k ≤ β
2
k ≤ · · · ≤ β

n
k , (5)

and αik ≤ β
i
k ≤ γ

i
k for all i ∈ [1, n]. (6)

Further, [1, l(wk)] =
n

⋃

i=1

[αik, γ
i
k] for all k ∈ [1,N]. (7)

Proof. Let us say, for brevity that the elementary transition Tk : wk 7→ wk+1

is expanding if it is of the type u( f · 1)v 7→ u( f1)v so that l(wk+1) = l(wk) + 1.
Otherwise, Tk will be called reducing.

To prove (5), notice that, by Equation (1), the desired relations hold for
k = 1. Assume inductively that the relations (5) hold for k < N. We consider
two cases and several subcases under each.

Tk is expanding. If l(u) ≥ βik then by hypothesis, l(u) ≥ βi−1
k

and so,

βik+1 = β
i
k ≥ β

i−1
k = β

i−1
k+1

by Equation (2). Suppose that l(u) = βi
k
−1 and that Tk is of type (1). If βik = β

i−1
k

,
then we have

βik+1 = β
i
k = β

i−1
k = β

i−1
k+1.

If βi
k
> βi−1

k
, then l(u) > βi−1

k
− 1. So l(u) ≥ βi−1

k
. Hence

βik+1 = β
i
k > β

i−1
k = β

i−1
k+1.
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On the other hand, if l(u) = βi
k
− 1 and that Tk is not of type (1), then βik+1 = β

i−1
k+1

if βi
k
= βi−1

k
and if βi

k
> βi−1

k
, l(u) ≥ βi−1

k
and so,

βik+1 = β
i
k + 1 > βi−1k + 1 = βi−1k+1 + 1 > βi−1k+1.

Let l(u) ≤ βi
k
− 2. If l(u) ≤ βi−1

k
, then

βik+1 = β
i
k + 1 ≥ βi−1k + 1 = βi−1k+1.

If l(u) = βi−1
k
− 1, then βi−1

k+1 = β
i−1
k

so that

βik+1 = β
i
k + 1 ≥ βi−1k + 1 = βi−1k+1 + 1 ≥ βi−1k+1

if Tk is of type (1) and if Tk is not of type (1) then

βik+1 = β
i
k + 1 ≥ βi−1k + 1 = βi−1k+1.

Tk is redu
ing. If l(u) ≥ βi
k
− 1 we clearly have l(u) ≥ βi

k
− 1 and so, βi

k+1 ≥ β
i−1
k+1.

If l(u) ≤ βi
k
− 2 then again the desired inequality follows if l(u) ≤ βi−1

k
− 2.

Otherwise, we have βi
k
− 2 ≥ l(u) ≥ βi−1

k
− 1 so that βi

k
− 1 ≥ βi−1

k
. Hence

βik+1 = β
i
k − 1 ≥ βi−1k = β

i−1
k+1.

We have now shown that βi
k+1 ≥ βi−1

k+1 in all cases. Since this holds for all
i = 1, 2, . . . , n the proof of (5) is complete.

To prove (6), we again consider two cases.

Tk is expanding. Let l(u) ≥ βi
k
. By inductive hypothesis, l(u) ≥ αi

k
− 1 and it

follows from Equation (3) that

αik+1 = α
i
k ≤ β

i
k = β

i
k+1.

If we also have l(u) ≥ γi
k
, then by Equation (4)

βik+1 = β
i
k ≤ γ

i
k = γ

i
k+1.

If βi
k
≤ l(u) < γi

k
then l(u) ≤ γi

k
− 1 and so

βik+1 = β
i
k ≤ γ

i
k = γ

i
k+1 − 1 < γik+1.

Next, let l(u) = βi
k
− 1 and Tk be of type (1). Then l(u) ≥ αi

k
− 1 and l(u) ≤ γi

k
− 1.

Hence from Equations (3) and (4) we have

αik+1 = α
i
k ≤ β

i
k = β

i
k+1 ≤ γ

i
k = γ

i
k+1 − 1 < γik+1.
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If l(u) = βi
k
− 1 and Tk is not of type (1) then

αik+1 = α
i
k ≤ β

i
k = β

i
k+1 − 1 < βik+1 ≤ γ

i
k = γ

i
k+1 − 1 < γik+1.

If l(u) ≤ βi
k
− 2 then l(u) ≤ γi

k
− 2. If l(u) ≤ αi

k
− 2 then

αik+1 = α
i
k + 1 ≤ βik + 1 = βik+1 ≤ γ

i
k + 1 < γik+1.

On the other hand, if l(u) ≥ αi
k
− 1, then, as above we have

αik+1 = α
i
k ≤ β

i
k = β

i
k+1 − 1 < βik+1 ≤ γ

i
k = γ

i
k+1 − 1 < γik+1.

Tk is redu
ing. Let l(u) ≥ βik − 1. Then l(u) ≥ αi
k
− 1. If l(u) ≥ γi

k
then from (3) and

(4),
αik+1 = α

i
k ≤ β

i
k = β

i
k+1 ≤ γ

i
k = γ

i
k+1.

If l(u) = γi
k
− 1 and either γi

k
= βi

k
or Tk is of type (1), the equation above remain

valid. Again if l(u) = γi
k
− 1 and either γi

k
> βi

k
or Tk is not of type (1), then

αik+1 = α
i
k ≤ β

i
k = β

i
k+1 ≤ γ

i
k = γ

i
k+1 − 1 < γik+1.

Assume that l(u) ≤ βi
k
− 2 so that l(u) ≤ γi

k
− 2. If l(u) ≥ αi

k
− 1, then βi

k
− 2 ≥

l(u) ≥ αi
k
− 1. Thus βi

k
− 1 ≥ αi

k
. Therefore

αik+1 = α
i
k ≤ β

i
k − 1 = βik+1 ≤ γ

i
k − 1 = γik+1.

If l(u) = αi
k
− 2, αi

k
< βi

k
and Tk is not of type (2) then βik ≥ l(u) = αi

k
− 2

αik+1 = α
i
k ≤ β

i
k − 1 = βik+1 ≤ γ

i
k − 1 = γik+1.

If l(u) = αi
k
− 2 and either αi

k
= βi

k
or Tk is of type (2), then

αik+1 = α
i
k − 1 ≤ βik − 1 = βik+1 ≤ γ

i
k − 1 = γik+1.

Again, if l(u) ≤ αi
k
− 3 the desired inequality holds as in the last case above.

To prove (7), first observe that (7) holds for k = 1. Inductively assume that
(7) holds for k < N. This implies that for all t ∈ [1, l(wk)], there is some i ∈ [1, n]
with αi

k
≤ t ≤ γi

k
; in particular, l(wk) = γ

j

k
for some j.(a) Suppose that Tk : u( f · 1)v 7→ u( f1)v and let s be the rank of h = f · 1 in

wk. Then every letter in wk with rank less than s appears in wk+1 with the same
rank, f and 1 has ranks s and s + 1 respectively in wk+1 and all letters in wk

with rank t > s appears in wk+1 with rank t + 1. Since by inductive hypothesis
αi
k
∈ [1, l(wk)] for all i, and since αi

k+1 is either α
i
k
or αi

k
+ 1, αi

k+1 ∈ [1, l(wk+1)] for
all i. Similarly γi

k+1 ∈ [1, l(wk+1)] for all i. Therefore

[1, l(wk+1)] ⊇
n

⋃

i=1

[αik+1, γ
i
k+1]. (⋆)
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It remains to prove the reverse inclusion. Observe that, for all t ∈ [1, l(wk)],
t ∈ [αi

k
, γi

k
].

i) Let γi
k
< s. Thenwe have l(u) ≥ γi

k
> αi

k
−1 and so, αi

k+1 = α
i
k
and γi

k+1 = γ
i
k

by Equations (3) and (4). Therefore, αi
k+1 = α

i
k
≤ t ≤ γi

k
= γi

k+1.

ii) Let γi
k
= s. Then l(u) = γi

k
− 1 ≥ αi

k
− 1 and so, αi

k+1 = α
i
k
and γi

k+1 = γ
i
k
+ 1.

Therefore αi
k+1 ≤ s < s + 1 ≤ γi

k+1.

iii) Let γi
k
> s. Then l(u) ≤ γi

k
− 2 and so, γi

k+1 = γ
i
k
+ 1. If l(u) ≥ αi

k
− 1, then

αi
k+1 = α

i
k
. Hence if αi

k
≤ t ≤ γi

k
, then αi

k
≤ t+ 1 ≤ γi

k+1. If l(u) ≤ α
i
k
− 2, and

if αi
k
≤ t ≤ γi

k
then αi

k+1 ≤ t + 1 ≤ γi
k+1.

It follows that

[1, l(wk+1)] ⊆
n

⋃

i=1

[αik+1, γ
i
k+1]. (∗∗)

From Equations (⋆) and (∗∗) we see that (7) holds in this case.(b) Suppose that Tk : u( f1)v 7→ u( f · 1)v and let s be the rank of f in wk. Then
letters in wk with rank t < s appears in wk+1 with the same randk, h = f · 1

has rank s in wk+1 and letters in wk with rank t > s + 1 appears in wk+1 with
rank t − 1 so that l(wk+1) = l(wk) − 1. Again, as in the proof of the case (a), we
see that Equation (⋆) holds. Also by inductive hypothesis, for all t ∈ [1, l(wk)],
t ∈ [αi

k
, γi

k
] for some i ∈ [1, n].

i) Let t ∈ [1, s]. If γi
k
≤ s then l(u) ≥ γi

k
− 1 ≥ αi

k
− 1 and so by Equations

(3) and (4), t ∈ [αi
k
, γi

k
] = [αi

k+1, γ
i
k+1]. If γ

i
k
> s, then l(u) ≤ γi

k
− 2 so that

γi
k+1 = γ

i
k
− 1 ≥ s. Since αi

k
≤ s, we have αi

k+1 = α
i
k
. Hence t ∈ [αi

k+1, γ
i
k+1].

ii) Let t > s. By induction hypothesis, t+1 ∈ [αi
k
, γi

k
] for some i ∈ [1, n]. Then

γi
k
≥ t+ 1 ≥ s+ 2 and so, l(u) ≤ γi

k
− 3 < γi

k
− 2. Then by (4), γi

k+1 = γ
i
k
− 1.

We consider the following cases:

1. αi
k
≤ s. In this case, αi

k+1 = α
i
k
and so, t ∈ [αi

k
, γi

k
− 1] = [αi

k+1, γ
i
k+1].

2. αi
k
= s + 1. If this holds, we have t ≥ s + 1. Therefore t ∈ [αi

k+1, γ
i
k+1]

since αi
k+1 = α

i
k
or αi

k
− 1.

3. αi
k
≥ s + 2. If this is the case, αi

k+1 = α
i
k
− 1 γi

k+1 = γ
i
k
− 1 and hence

t ∈ [αi
k+1, γ

i
k+1].

Again we see that Equation (∗∗) holds which proves Equation (7). This com-
pletes the proof of the lemma.

Lemma 3.38. Let w = e1e2 . . . en be a word such that σ#(w) is an idempotent in B0(E).
Then there is e ∈ E such that σ#(w) D(B0(E)) σ#(e).
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Proof. We continue to use all notations established so far in this section. In
particular, wk, k ∈ [1,N] are words in E+ such that w1 = w, wN = wn and
Tk : wk → wk+1 is an elementary σ-transition. Also {αi

k
, βi

k
, γi

k
} denote finite

sequences defined by Equations (1), (2), (3) and (4). Moreover, we will denote
by R, L , D , etc. Green’s relations of the semigroup B0(E) in the following
proof.

For exch k ∈ [1,N] and i ∈ [1, n], let wi
k
denote the subword of wk obtained

by removing all letters in wk to the left of αi
k
-th letter and all letters to the right

of the γi
k
-th letter. By Equation (7), the subwords wi

k
, 1 ≤ i ≤ n cover wk for

each k ∈ [1,N]. In particular, wN is covered by w1
N
,w2

N
, . . .wn

N
. We now claim

that
for some i e1e2 . . . en = w1 is a subword of wi

N. (#)

If this is false,w1 is not a subword ofw1
N
(orw1

N
does not coverw1). Inductively

assume that w1
N,w

2
N, . . .w

i
N does not cover (w1)i. Since wi+1

N does not cover w1,
w1

N, . . .w
i+1
N

does not cover (w1)i+1. By induction w1
N,w

2
N, . . .w

n
N
does not cover

(w1)n = wN. This contradicts the assertion proved in the last paragraph.
Therefore (#) must be true.

Let ei
k
be the βi

k
-th letter in wk. By Equation (6), ei

k
is a letter of wi

k
and so, we

can write wi
k
as

wi
k = uike

i
kv

i
k for some (possibly empty) words uik and vik. (#1)

We now prove that, for all k and i.

σ#(eikv
i
k) R σ#(eik) (#2)

and σ#(uike
i
k) L σ#(eik) (#3)

by induction on k. If k = 1, by Equation (1), wi
1 = ei for each i and so (#2) holds.

Assume that (#2) holds for k < N. To prove (#2) for k + 1, we need only to
verify the assertion in the cases in which the elementary transition

Tk : wk = u′wi
kv
′ 7→ wk+1 = u′wi

k+1v
′

has one of the following forms. In the following, theword shown in the bracket
on the left is wi

k
and on the right is wi

k+1.

(a) u′(u f eikv)v
′ 7→ u′(u f · eikv)v

′;

(b) u′( f eikv)v
′ 7→ u′( f · eikv)v

′;

(c) u′(ueik f v)v
′ 7→ u′(u f eik · f v)v

′;

(d) u′(ueik f )v
′ 7→ u′(ueik · f )v

′;
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(e) u′(ueikv f )1v
′ 7→ u′(ueikv f · 1)v

′ and Tk is of type (1);

7→ u′(ueikv) f · 1v
′ and Tk is not of type (1);

( f ) u′(ueikv)v
′ 7→ u′(u f1v)v′ where eik = f · 1.Cases (a) and (b): For these cases, we have ei

k+1 = f · ei
k
and vi

k+1 = v. Hence (#2)
follows since R is a left congruence.Case (
): We again have ei

k+1 = ei
k
· f and vi

k+1 = v. Hence

σ#(eik+1v
i
k+1) = σ

#(eik f v) R σ#(eik).

Also

σ#(eik) R σ#(eik f ) = σ
#(eik+1)

giving the desired result.Case (d): (#2) follows immediately since vi
k+1 is the empty word in trhis case.Case (e): If Tk is not of type (1),

σ#(eik+1v
i
k+1) = σ

#(eikv) R σ#(eik) = σ
#(eik+1).

If Tk is of type (1) then f R f · 1 and so,

σ#(eik+1v
i
k+1) = σ

#(eikv f · 1) R σ#(eikv f ) R σ#(eik) = σ
#(eik+1).Case (f): If Tk is of type (1) then ei

k+1 = f and ei
k+1 R ei

k
. Therefore

σ#(eik+1v
i
k+1) = σ

#( f · 1v) R σ#(eik) R σ#(eik+1).

If Tk is not of type (1) then ei
k+1 = 1 and ei

k+1 L ei
k
. Hence

σ#(eik+1v
i
k+1) = σ

#(1v) = σ#(1eikv) R σ#(1eik) = σ
#(1) = σ#(eik+1).

This proves (#2) by induction. Proof of (#3) is dual.
By (#) there exists i ∈ [1, n] such that

wi
N = e j . . . en(w1)pw1(w1)qe1 . . . ek

for some integers i, j, p and q. Hence, since σ# is a homomorphism of : E+ to
B0(E)

σ#(wi
N) = σ

#(e j . . . enw1e1 . . . ek) R σ#(e j . . . enw1) L σ#(w1);
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that is,

σ#(wi
N) D σ#(w1).

On the other hand, from (#2) and (#3), we have

σ#(uiNe
i
N) L σ#(eiN) R σ#(eiNv

i
N),

so that σ#(uiNe
i
N) R σ#(uiNe

i
N)σ

#(eiNv
i
N) = σ

#(uiNe
i
Nv

i
N) = σ

#(wi
N);

that is, σ#(wi
N) D σ#(eiN).

Hence σ#(w1) D σ#(eiN)

which proves the lemma.

We can now prove Easdown’s theorem [see Easdown, 1985].

Proof of Theorem 3.34. We first show that χE = σ# | E is a surjective bimorphism
of E onto E(B0(E)). If (e, f ) ∈ DE then (e f , e · f ) ∈ σ and so,

(eχE)( fχE) = σ#(e)σ#( f ) = σ#(e f ) = σ#(e · f ) = (e · f )χE.

It follows that χE preserve basic products in E and so, it is a bimorphism of E
into E(B0(E)). Now if w is a word in E+ such that σ#(w) is an idempotent in
B0(E), then by Lemma 3.38, σ#(w) D σ#(e) for some e ∈ E. If this is the case, by
Lemma 3.37 there is 1 ∈ E such that σ#(w) = σ#(1). Hence every idempotent
in B0(E) is of the form σ#(e) for e ∈ E. Therefore the map χE : e 7→ σ#(e) is a
surjective bimorphism of E onto E(B0(E)).

Now let S be a semigroup and θ : E → E(S) be a bimorphism. Then θ
extends to a homomorphism θ+ of E+ into S such that θ+|E = θ. If (e, f ) ∈ DE

then (e f , e · f ) ∈ σ and so,

(e f )θ+ = (eθ+)( fθ+) = (eθ)( fθ)

= (e · f )θ = (e · f )θ+.

since θ is a bimorphism. Hence σ ⊆ κφ(θ+). Consequently by Theorem 2.5
there is a unique homomorphism θ̂ : B0(E)→ S such that

θ+ = σ# ◦ θ̂.

Therefore

θ = θ+|E = (σ#|E) ◦ (θ̂|E(B0(E))) = χE ◦ E(θ̂)

which shows that the diagram 3.22 commutes.
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In particular, by Theorem 3.32, ϕ is a biorder isomorphism of E onto Eϕ

which is a biordered subset of E
(

〈Eϕ〉
)

. Hence from diagram 3.22 we see that

ϕ = χE ◦ E(ϕ̂).

Since ϕ is injective, so is χE. Since χE is surjective, it is a bijection. Therefore
the equation above shows that E(ϕ̂) : E(B0(E))→ Eϕ is a bijective bimorphism
and since ϕ : E→ Eϕ is a biorder isomorphism,

(χE)−1 = E(ϕ̂) ◦ (ϕ)−1

is a bimorphism. Thus χE : E→ E(B0(E)) is a biorder isomorphism.

Recall (fromTheorem3.3) that the assignments in Equation (3.6) is a functor
from the category S of semigroups to the category B of biordered sets. To
avoid ambiguity regarding the notation for this functor, for the remainder of
this section, we will use the notations E, E′, etc. for arbitrary biordered sets.
Recall also (from Subsection 1.2.3) that a universal arrow from d ∈ vD to the
functor F : C → D is a pair (c, 1) where c ∈ vC and 1 ∈ D (d, F(c)) such that
given any pair (c′, 1′) with 1′ ∈ D (d, F(c′)), c′ ∈ vC, there is a unique f ∈ C(c, c′)
such that 1′ = 1 ◦ F( f ). The last statement of Theorem 3.34 can be interpreted
as follows.

Corollary 3.39. Let E be a biordered set. Then χE : E → E(B0(E)) is a universal
arrow from E to the functor E.

Suppose that θ : E → E′ be a bimorphism. Then θ′ = θ ◦ χE′ : E → B0(E′)
is a bimorphism. Hence, by Theorem 3.34, there is a unique homomorphism
φ : B0(E) → B0(E)(E′) such that the diagram 3.22 commutes. Since φ is
uniquely determined by θ, we may denote φ as B0(E)(θ). Then 3.22 becomes

E
θ

χE

E′

χE′

E(B0(E))
E(B0(θ))

E(B0(E′))

(3.24)

The uniqueness of the homomorphism B0(θ) in Theorem 3.34 implies that

B0(1E) = 1B0(E) and that B0(θ ◦ θ′) = B0(θ) ◦ B0(θ′)

for composable bimorphisms θ : E → E′ and θ′ : E′ → E′′. Thus the assign-
ments

E 7→ B0(E), and θ 7→ B0(θ) (3.25a)
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semiband is a functor B0 : B→ S. The diagram 3.24 above shows that

χ : E 7→ χE; 1B
n
→ B0(E) ◦ E (3.25b)

is a natural isomorphism. Thus from Corollary 3.39 and Theorem 1.6 (ii) we
have the following which shows that the construction represented by B0 satis-
fies the fundamental property of the construction of free objects in a category.
Again [see Nambooripad, 1979, Theorem 6.10] for the particular case of this
result for regular biordered sets.

Theorem 3.40. The assignments in Equation (3.25a) defines a functor B0 : B→ S

which is a left adjoint of the functor E : S → B given by the assignments 3.6.
Moreover, χ defined by Equation (3.25b) is a natural isomorphism which is the unit
of the adjunction.3.3.3 The fundamental semiband
Following fairlywidespreadusewe shall say that a semigroup S is a semiband if
S is idempotent generated. Given any biordered set E we have constructed
two semibands B0(E) and 〈Eϕ〉. The semiband B0(E) is uniquely determined
by E as the free semiband generated by E (see Theorem 3.34) having E as its
biordered set. Wewish to obtain a similar characterization of 〈Eϕ〉 also. Notice
that, in general E is only (isomorphic to) a biordered subset of E(〈Eϕ〉) and the
embedding may be proper (see Example 3.10). However, if E is regular, then
by Theorem 3.42 below, 〈Eϕ〉 is a semiband with E(〈Eϕ〉) isomorphic to E.

So we now consider regular biordered sets. We need the following result
due to Easdown [1985]. Recall that S1(e, f ) = {h ∈ M(e, f ) : eh f = e f } (see
Proposition 3.4).

Lemma 3.41. Let e, f ∈ E and h ∈ S (e, f ). Then

ϕ(e)ϕ(h)ϕ( f ) = ϕ(e)ϕ( f ).

in 〈Eϕ〉.

Proof. We shall show that ρ(e)ρ(h)ρ( f ) = ρ(e)ρ( f ). Suppose that Lρ(e)ρ( f ) , ∞.
Then for some a ∈ L∩ωr(e), Lρ(e) = Lae and for 1 ∈ Lae ∩ωr( f ), Lρ(e)ρ( f ) = L1 f .
Then 1 ∈ M(ae, f ) ⊆ M(e, f ) so that 1 � h. Hence by Proposition 3.20 there is
a commutative E-square

(

1 11

12 h′

)

in M(e, f ) such that h′ ω h, h11 = 12h = h′ and
12 f = h′ f . Then

(L)ρ(e)ρ( f ) = (L1)ρ( f ) = L1 f

= L12 f = Lh′ f = L12h f

= (L)ρ(e)ρ(h)ρ( f ) , ∞.
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On the other hand, if (L)ρ(e)ρ(h)ρ( f ) , ∞, then for some a ∈ L ∩ ωr(e) and
1 ∈ Lae ∩ ωr(h), 1 ∈ L1 ∩ ωr( f ) ⊆ M(e, f ). Then 1 f = (1 f )(h f ) = (1h) f by axiom
(B3) since 1 � h and so, 1 f ωl h f . Therefore

(L)ρ(e)ρ( f ) = (Lae)ρ( f ) = L1 f = L(1 f )(h f ) = L(1h) f = (L)ρ(e)ρ(h)ρ( f )

which implies that (L)ρ(e)ρ( f ) , ∞. This also shows that (L)ρ(e)ρ( f ) = ∞
if and only if (L)ρ(e)ρ(h)ρ( f ) , ∞. Thus ρ(e)ρ(h)ρ( f ) = ρ(e)ρ( f ). Dually
λ(e)λ(h)λ( f ) = λ(e)λ( f ) and hence ϕ(e)ϕ(h)ϕ( f ) = ϕ(e)ϕ( f ).

Theorem 3.5 shows that the biordered set of a regular semigroup is regular.
The following result shows that every regular biordered set arises in that way.

Theorem 3.42. Let E be a regular biordered set. Then 〈Eϕ〉 is a regular semigroup
such that ϕ : E→ E(〈Eϕ〉) is a biorder isomorphism.

Proof. Let S = 〈Eϕ〉 so that, by Theorem 3.32, Eϕ = Ē is a regular biordered
subset of E(S) isomorphic to E. If e, f ∈ E and h ∈ S (e, f ), then by Lemma 3.41
and Proposition 3.4 ϕ(h) ∈ S1(ϕ(e), ϕ( f )). Therefore Ē is a regular biordered
subset of E(S) which is relatively regular in E(S) and such that S1(ϕ(e), ϕ( f )) ,
∅ for all e, f ∈ E. Hence, by Proposition 3.8 there is a regular subsemigroup
S′ ⊆ S such that E(S′) = Ē. Since S is generated by Ē, we must have S′ = S.
Therefore S is a regular idempotent generated semigroup and ϕ : E→ E(S) is
a biorder isomorphism.

The result above shows that when E is a regular biordered set, Eϕ =
E(〈Eϕ〉); that is, ϕ does not create any new idempotents in 〈Eϕ〉. If E is any
finite biordered set, the sets I◦ and Λ◦ are also finite. Therefore the semigroup
〈Eϕ〉 must be finite. Consequently if Eϕ = E(〈Eϕ〉) then E is the biordered set
of a finite semigroup. In particular, bythe theorem above, this holds if E is a
finite regular biordered set.

Corollary 3.43. Every finite regular biordered set is the biordered set of a finite
regular semigroup.

The equality Eϕ = E(〈Eϕ〉) may not true if E is not regular (see Exam-
ple 3.10). We can also see from the theorem above that 〈Eϕ〉 is a regular
semigroup when E is a regular biordered set. Example 3.10 shows that B0(E)
need not be regular even if 〈Eϕ〉 is regular. However, when E is regular, an ap-
plication of Proposition 3.8 shows that B0(E) is indeed regular. Consequently
the restriction of the functor B0 to the category RB of regular biordered sets
is a functor to the category RS of regular semigroup. By Theorem 3.5 E(S) is
a regular biordered set for all regular semigroup S and so the restriction of the
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functor E to the category RS is a functor to the category of regular biordered
sets. Thus, as a corollary to Theorem 3.42, we have [see Nambooripad, 1979,
Theorem 6.10].

Corollary 3.44. LetB0 and E be functors of Equations (3.25a) and (3.6) respectively.
Then B0 | RB is a functor to the category RS of regular semigroups and E | RS is
a functor to the category RB of regular biordered sets. Moreover, B0 | RB is a left
adjoint of the functor E | RS.

Let S be a semigroup with E = E(S) , ∅. If Λ◦ denote the sets defined by
Equation (3.20a) then each L ∈ Λ gives a unique regular L -class L· of S such
that L· ∩ E = L. Let Λr denote the set of all regular L -classes in S so that
· : L 7→ L· is a bijection of Λ onto Λr. There is an obvious identification of
Λ◦ = Λ∪{∞}withΛ· = Λr∪{∞}. For e ∈ E let ρ· be the map defined as follows:
for L· ∈ Λr

(L·)ρ·(e) =















L·xe if L· = L·x ∈ Λr and x R xe;
∞ otherwise; and

(3.20b∗)

(∞)ρ·(e) = ∞.

Dually there is a bijection · : R 7→ R· sending each R ∈ I to the unique R-
class in S containing R. We define the set I· = Ir ∪ {∞} where Ir denote the
set of all regular R-classes in S and for each e ∈ E, the map λ·(e) ∈ T ∗

I· as in
Equation (3.20b).

Lemma 3.45. For each L ∈ Λ◦ and R ∈ I◦, we have

(L·)ρ·(e) = (Lρ(e))· and (R·)λ·(e) = (Rλ(e))·

for all e ∈ E.

Proof. We prove the first statement. The second follows by duality. Suppose
that Lρ(e) , ∞. Then by Equation (3.20b) there is 1 ∈ L with 1 ωr e and so,
1 R 1e by axiom (B21). Then 1 R 1e in S and so,

(L·)ρ·(e) = (L·1)ρ
·(e) = L·1e = (Lρ(e))·.

Hence, if Lρ(e) , ∞, then (L·)ρ·(e) , ∞. On the other hand if (L·)ρ·(e) , ∞,
L· ∈ Λr, then x R xe for some x ∈ L·. Let f ∈ L = L· ∩ E. Since x R xe and since
x ∈ L·, x is regular and so, xe is regular. Therefore S ( f , e) , ∅. Let 1 ∈ S ( f , e).
Then xe L f e = ( f1)(1e) L 1e and f R f e R f1 ω f which implies that f1 = f .
Therefore f L 1 ωr e and so, Lρ(e) = L1e , ∞ and

(Lρ(e))· = L·1e = (L·)ρ·(e).

This completes the proof.
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semigroup!fundamentalThe result above shows that we may replace the maps ρ(e), λ(e) and ϕ(e)
respectively by ρ·(e), λ·(e) and ϕ·(e) and vice-versa when E = E(S) for some
semigroup S. The advantage of this replacement is that themapρ·(e) is induced
by the right translation ρe of S whereas ρ(e) is completely determined by the
biordered set. The lemma above ensures that these identifications only amount
to a change in notation. Consequently, henceforth, it will be convenient to
identifyΛ· andΛ◦ by the bijection ·which will identify the map ρ·(e) with ρ(e).
Dually we identify λ·(e) with λ(e).

Let S be a semiband with E = E(S). Extend the map ρ : E → E (TΛ◦) to
ρ : S→ TΛ◦ by setting

(L)ρ(w) = (L)ρ(e1)ρ(e2) . . . ρ(en) (3.26)

for all w = e1e2 . . . en ∈ S, and L ∈ Λ◦. Let us write Li = (L)ρ(e1) . . . ρ(ei) =
(L)ρ(wi), i = 1, 2, . . . , n, for L ∈ Λ. If x ∈ L, then by (3.20b∗) and Theorem 2.26,
the map ρei+1 : y 7→ yei+1 is an isomorphism of the leftideal L(xwi) generated
by Li onto the leftideal L(xwi+1) such that y R yei+1. Hence by the above, ρw is
an isomorphism of the left ideal L(x) generated by L = Lx onto L(xw). So, by
Theorem 2.25, we have x R xw for all x ∈ L. Consequently, for any L ∈ Λ◦, we
have

(L)ρ(w) =















Lxw if L ∈ Λ and x R xw for some x ∈ L; and
∞ otherwise.

(3.27)

This implies that ρ : S→ TΛ◦ is a homomorphism. Dually themapλ : e 7→ λ(e)
extends to a homomrphism λ : S→ T ∗

I· . Therefore

ϕS : w 7→ (ρ(w), λ(w)) for all w ∈ S (3.20c∗)

is a homomorphism (representation) of S to 〈Eϕ〉 ⊆ TΛ◦×T ∗
I◦ which extends the

biorder embedding ϕE of Theorem 3.32. Since S is a semiband, ϕS : S→ 〈Eϕ〉
is surjective.

A semigroup S is called fundamental if the congruence H(c) = 1S (see Propo-
sition 2.7(b)).

Proposition 3.46. For any semigroup S, let

µ(S) =H(c).

Then S/µ(S) is fundamental.

Proof. Let S′ = S/µ where µ = µ(S) and let φ = µ# denote the quotient ho-
momorphism of S onto S′. If x R y, x, y ∈ S then clearly xφ R yφ in S′. On
the other hand, if yφ ∈ (xφ)(S′)1 then yφ = (xφ)(rφ) for some r ∈ S1. Hence
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congruence! idempotent separating µ(y) = µ(xr) which implies (y, xr) ∈ µ ⊆ H. It follows that y ∈ xS1. Similarly
xφ ∈ (yφ)(S′)1 implies x ∈ yS1. Therefore x R y if and only if xφ R yφ. Dually
x L y if and only if xφ L yφ and so, x H y if and only if xφ H yφ.

Suppose that µ′ =H S′

(c) where H S′ denote the H-relation on S′. Suppose
a, b ∈ S with aφµ′bφ. Then by Proposition 2.7(b), (xay)φ H (xby)φ for all
x, y ∈ S1. Therefore, by the above remarks, xay H xby for all x, y ∈ S1 and so
aµb. This proves that µ′ = 1S′ .

A congruence σ on a semigroup S is idempotent separating if each congruence
class of σ contain atmost one idempotent. This is equivalent to requiring that
the quotient homomorphism σ# : S → S/σ is injective on E(S); that is the
bimorphism E(σ#) is injective.

Some authors define a fundamental semigroup S as those for which, the
only idempotent separating congruence is 1S. The following result shows that
the two definitions agree on a regular semigroup.

Proposition 3.47. Let S be a regular semigroup. A congruence σ on S is idmpotent
separating if and only if σ ⊆ H. In particular, the congruence µ(S) is idempotent
separating. Moreover, a regular semigroup S is fundamental if and only if the only
idempotent separating congruence on S is the trivial (identity) congruence.

Proof. If σ ⊆ H then σ(x) ⊆ Hx for all x ∈ S and since no H can contain more
than one idempotent (see Proposition 2.40) σ is idempotent separating.

Conversely, assume that σ is idempotent separating. Let φ : S → S/σ = S′

be the quotient homomorphism. Then by Theorem 3.5 θ = E(φ) is a regular
bimorphism of E = E(S) onto E′ = E(S′). Since σ is idempotent separating,
by Corollary 3.25, θ is an isomorphism. Let (x, y) ∈ σ. If x′ ∈ V(x) then
e = xx′σyx′ = u. Let f , 1 ∈ E = E(S) with f L u R 1 and let h ∈ S ( f , 1). Then
hθ ∈ S ( fθ, 1θ) = {eθ} since fθ L eθ R 1θ. So hθ = eθ which gives h = e

since θ is an isomorphism. Then f e ω f and so, ( f e)θ = ( fθ)(eθ) = fθ which
gives f e = f . Hence f L e and similarly, e R 1. Therefore e H u. Now by
Theorem 2.26, ρx : L(e) → L(x) is an isomorphism of left ideals and hence, by
Theorem 2.25, x H ux = yx′x. Hence x ∈ yS. Interchanging x and y, we get
y ∈ xS and so, x R y. Dually x L y. Therefore x H y.

Since µ(S) ⊆H by definition (see Proposition 3.46), µ(S) is idempotent
separating. The last statement follows from Proposition 3.46.

Theorem 3.48. Let S be a regular semiband with E = E(S). Then

µ(S) = {(w,w′) ∈ S × S : ϕS(w) = ϕS(w′)}.

Consequently, 〈Eϕ〉 is a fundamental semiband.
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fundamental representation
fundamental image

Proof. We have observed that ϕ = ϕS is a surjective homomorphism of S

onto 〈Eϕ〉 which extends the biorder embedding ϕE of Theorem 3.32. Hence,
by definition, σ = κϕ is idempotent separating and so, σ ⊆ µ = µ(S) by
Proposition 3.47. Let τ be a congruence on S with τ ⊆ H. We show that
τ ⊆ σ. Since the quotient homomorphism ψ = τ# : S→ S′ = S/τ is idempotent
separating, E(ψ) = E → E′ = E(S′) is an isomorphism. Hence, identifying E

and E′ by ψ, we have ϕS(e) = ϕS′(τ(e)) for all e ∈ E. Hence if a = e1e2 . . . en then
by Equation (3.20c∗)

ϕS(a) = ϕS(e1)ϕS(e2) . . . ϕS(en)

= ϕS′ (τ(e1))ϕS′(τ(e2)) . . . ϕS′ (τ(en))

= ϕS′ (τ(a)).

Therefore, if (a, b) ∈ τ, then τ(a) = τ(b) and so,

ϕS(a) = ϕS′ (τ(a)) = ϕS′(τ(b)) = ϕS(b).

Hence (a, b) ∈ κϕ = σ and thus τ ⊆ σ. Therefore σ is the largest idempotent
separating congruence on S so that σ = µ(S) by Proposition 3.47. Since 〈Eϕ〉 =
ImϕS, 〈Eϕ〉 is a semiband isomorphic to S/µ(S) and so, 〈Eϕ〉 is fundamental
semiband by Proposition 3.46.

When E is a regular biordered set, we shall use the notation Bτ(E) to denote
the fundamental semiband of E so that Bτ(E) is ismorphic to 〈Eϕ〉.

By a fundamental representation of a semigroup is a homomorphism φ : S→
T such that κφ = H(c); the semigroup Imφ = φ(S) is called the fundamental

image of S. Clearly the fundametal image of S is unique up to isomorphism and
so, wemay refer to the fundamental imageof S. Also the fundamental imageof
a semiband S is uniquely determined by its biordered set E = E(S); in this case,
the fundamental image of S will be referred to as the fundamental semiband
of E. The theorem above shows that ϕS is a fundamental representation of a
regular semiband S. In particular, if E is any regular biordered set then ϕB0(E)

is the fundal representation of B0(E) onto Bτ(E). Therefore

Corollary 3.49. For any regular biordered set E, Bτ(E) is the fundamental regular
semiband of E.

We shall return to fundamental regular semigroups again in the chapter
on inductive groupoids where we will discuss Munn’s theory and various
fundamental representations.
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biorder property
P-biordered set
biorder property!strict –
strict P-biordered set
semigroup!completely regular –

3.4 biorder classification of semigroups

Since biordered sets are nontrivial invariants of semigroups it is natural to
consider classification of semigroups in terms of their biordered set of idem-
potents. Several classes of semigroups can be characterised in this way [see
Higins, 1992]. Such classification of the class of regular semigroups will be of
particular interest since structure of regular semigroups are closely related to
their biordered sets of idempotents [see Nambooripad, 1979, §7, page 103–114]

Suppose that P is a property of a class of semigroups. If there is a property
P∗ for biordered sets such that, whenever a biordered set E has P∗ there exists a
semigroup SwithE(S) = EhavingP, thenP∗will be called a biorder property and
E will be called a P-biordered set. We shall say that the biorder property P is
strict and E a strict P-biordered set if whenever a biordered set E has P∗ every
semigroup S with E(S) = E has P.3.4.1 Completely semisimple biordered sets
Let E be a biordered set and

δ0 = (L ∪R)t. (3.28)

If there exists a completely semisimple semigroup (see Subsection 2.8.2) with
E(S) = E, then for e, f ∈ E, it follows from Theorem 2.87 that

(e, f ) ∈ δ0 and e ω f ⇒ e = f . (P1)

Conversely, if E satisfiies the condition above, then any semiband S with
E(S) = E is completely semisimple. For any semiband S we have

δ0 = D ∩ (E × E)

and so, the desired result again follows fromTheorem 2.87. Thus if we define a
completely semisimple biordered set as one that satisies condition (P1) above,
then we see that completely semi-simplicity is a biorder property.

Theorem 3.50. A biordered set is completely semisimple if and only if there is a
compleletly semisimple semigroup S with E(S) = E.3.4.2 Solid and orthodox biordered sets
Recall [see ?] that a semigroup is completely regular if it is a union of groups.
If S is completely regular then every H-class of S is a group and so, S is a
disjoint union of its group-H-classes. To characterise the biordered sets of this
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biordered set!solid –class of semiroups, we introduce the following definition. A biordered set E is
solid[see ?] if E is regular and

L ◦R = R ◦L. (3.29)

Then δ0 = L ◦R. This condition is equivalent to the fact that if e L f R 1 in
E, there is h ∈ E so that A =

(

e h
f 1

)

is an E-square. We have [see Nambooripad,
1979, Theorem 7.2]

Theorem 3.51. The following conditions are equivalent for a biordered set E.

(1) E is solid.

(2) Each δ0-class is an E-array.

(3) There exists a completely regular semigrop S such that E(S) = E.

Proof. (1)⇒ (2): By (1),L andR are commuting equivalences and soL◦R

is an equivalence relation which implies by Equation (3.28) that δ0 = L ◦R =

R ◦L. Hence if (e, f ) ∈ δ0 there exists 1, h ∈ E such that e L h R f L 1 R e

which means that
( e 1
1 f

)

is an E-square. It fllows that δ0(e) is an E-array for all
e ∈ E.

(2)⇒ (3): Assume that S is a regular semiband with E(S) = E. By Theo-
rem 3.34 S exists (for example we may choose S = B0(E)). Inductively assume
that everyproduct of fewer than n idempotents in S belongs to a group and let
a = e1e2 . . . en. Suppose that b = e1e2 . . . en−1 and k ∈ Ewith b L k. If h ∈ S (k, en)
then h ωl en−1 and so h̄ = en−1h is a basic product and hence h̄ ∈ E. Therefore

c = bh = e1e2 . . . en−2h̄

is a product of n − 1 idempotents in S. Hence by induction hypothesis there
is a 1 ∈ E such that 1 H c. Now c = bh L h and so, 1 L h R hen. Hence
(1, hen) ∈ δ0 and so, by (2), there exists l ∈ Ewith 1 R l L hen so that l H 1(hen).
Then c(hen) = (bh)(hen) H l. It follows by Theorem 3.7 that a = ben H l. The
induction hypothesis clearly holds for n = 2. Therefore every finite product
of idempotents in S belongs to a subgroup of S. Since S is a semiband it is
completely regular.

(3)⇒ (1): If S is completely regular with E(S) = E and if e L f R 1, then
here is h ∈ E such that h H e1 and so, A =

(

e h
f 1

)

is an E-square. Hence E is
solid.

Amore detailed account of completely regular seigroupswill be given later
in the next chapter (see Subsection 4.3.2).
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biordered set!orthodox –
band!left regular –
band!right unipotent –

Recall that an E-square A is τ-commutative if

τ(e, f )τ( f , 1) = τ(e, h)τ(h, 1)

(see Diagram 3.15) where τ(e, f ) : ω(e) → ω( f ) is the ω-isomorphism defined
in Corollary 3.16. It is readily verified that A is τ-commutative if and only if
A is a 2 × 2-rectangular subband of any fundamental semigroup S for which
E(S) = E. Again S exists since, by Theorem 3.48, we may take S = Bτ(E). We
say that a biordered set E is orthodox if the fundamental semiband Bτ(E) is a
band.

Corollary 3.52. A biordered set E is orthodox if and only if E is solid and every
E-square in E is τ-commutative.

Proof. If E = E(B) where B is a band, and if e L f R 1, then e1 = h ∈ E and
so, A =

(

e h
f 1

)

is an E-square in E. By the remarks preceeding the statement
of the corollary, A is τ-commutative. On the other hand, assume that E is
solid in which every E-square is τ-commutative. By Theorem 3.48 Bτ(E) is
a fundamental semiband with E(Bτ(E)) = E. If e, f ∈ E and h ∈ S (e, f ),
eh L h R h f . Since E is solid, there is k ∈ E such that A =

(

eh k
h h f

)

is an
E-square. Since A is τ-commutative, we have

(eh)(h f ) = k in Bτ(E) so that e f = k

in Bτ(E) by Theorem 3.7. Therefore product any two idempotents in Bτ(E) is
an idempotent. It follows that Bτ(E) is a band with E(Bτ(E)) = E.

The biordered set E6 of Example 3.15 is solid but not orthdox.
Several properties of bands may be described in terms of their biordered

sets. For example, define a band B to be left regular if f e f = f e for all e, f ∈ B

[see ???]. The condition for left reularity of B clearly implies that, if e, f ∈ B and
e R f then e = f ; thus every R-class of B contain exactly one idempotent. A
left regular band is also said to be right unipotent. The later condition is clearly
a biorder condition. Consequently, we may define a biordered set E to be left
regular or right unipotent if Bτ(E) is a left regular band. A regular semigroup
S is right unipotent if E(S) is right unipotent.

Theorem 3.53. The following conditions are equivalent for a regular biordered set E.

(1) E is right unipotent;

(2) ωr⊆ωl;

(3) If S is any regular semigroup with E(S) = E, then S is right unipotent.
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pseudo-semilatticeIn particular if S is any semiband with E(S) = E, then S is isomorphic to Bτ(E).

Proof. Condition (1) implies that the relation R= 1E which implies that ωr=ω.
Hence (2) holds.

Now suppose that E satisfies (2) and that S is a regular semigroup with
E(S) = E. If e, f ∈ E, and e R f then e R f and e ωl f and so, e = f . Hence S is
right unipotent; thus (2) implies (3).

If S is right unipotent, then by definition E(S) = E has this property and so,
(3) implies (1).

Finally assume that S is any semiband with E(S) = E. If e, f ∈ E and
h ∈ S (e, f ) then h ω f and so h f = h. By Theorem 3.7, the product e f in S is

e f = (eh)(h f ) = (he)h = he.

It follows that S is a band and hence fundamental. Therefore S is isomorphic
to Bτ(E).3.4.3 Pseudo-semilatti
es
Similar to the concept of a biordered set, Schein [1972] defined a pseudo-

semilattice E = (E, ωl, ωr) as an order structure determined by two quasiorders
ωl and ωr on the set E such that for all e, f ∈ E there is unique element h ∈ E

satisfying

ωl(e) ∩ ωr( f ) =M(e, f ) = ω(h) where ω = ωl ∩ ωr. (3.30)

The uniqueness of h implies that ω is a partial order and that the map

(e, f ) 7→ h = f ∧ e (3.31)

is a binary operation on E. The binary algebra E = (E,∧) obtained in this
way is also called a pseudo-semilattice. Given the binary algebra, define the
relations ωl

1 and ω
r
1 as follows:

eωl
1 f ⇐⇒ e ∧ f = e and eωr

1 f ⇐⇒ f ∧ e = e. (3.32)

Then ωl
1 and ω

r
1 are again quasiorders satisfying Equation (3.30) and it can be

shown [see Schein, 1972] that the binary operation defined by Equation (3.31)
with respect to (E, ωl, ωr) and (E, ωl

1, ω
r
1) coincide. We shall therefore assume

that in all pseudo-semilattices under consideration, the quasiorders and the
binary operation∧ are relatedby Equation (3.32). Schein [1972] has shown that
pseudo-semilattices form a class binary algebras defined by a set of equations
(identities). [see Nambooripad, 1981, Schein, 1972] for relevant definitions
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local semilattices and results. Some authors call pseudo-semilattices as local semilattices. The
statement (d) of the following theoremshows the relevance of this terminology.

If E is a semilattice with the partial order ω, then ωl(e) ∪ ωl( f ) = ω( f ∧ e)
for all e, f ∈ E and so, (E, ω, ω) is a pseudo-semilattice in which the binary
operation of Equation (3.31) coincides with the meet∧ of the semilattice. Thus
every semilattice is a pseudo-semilattice. It is easy to see that the biordered
set of any completely 0-simple semigrup is a pseud-semilattice which is not
a semilattice. However, not all pseudo-semilattices are biordered sets (see
Example 3.16). The reader should refer to Nambooripad [1981, 1982a,b] for
characterisation of the varieties of pseudosemilattices, structure of various
classes of pseudo-inverse semigroups, etc.

We proceed to discuss the exact relations between biordered sets and
pseudo-semilattices. We shall say that a pseudo-semilattice E is a biordered
set if the restriction of the binary operation ∧ to the relation

DE = (ωl ∪ ωr) ∩ (ωl ∪ ωr)−1

is the basic product of a biordered set. Conversely a biordered set E =<
E, ωl, ωr,Tl,Tr > (see Definition 3.1)is a pseudo-semilattice if the quasiorders
ωl andωr satisfy Equation (3.30). If this is the case, it follows fromDefinition 3.3
that

S (e, f ) = { f ∧ e} for all e, f ∈ E. (3.33)

The following theorem characterizes those biordered sets that are psedo-
semilattices [see Nambooripad, 1979, Theorem 7.6].

Theorem 3.54. The following conditions are equivalent for a biordered set E.

(a) (E, ωl, ωr) is a pseudo-semilattice.

(b) For all e, f ∈ E, S (e, f ) contains exactly one element.

(c) For all e ∈ E, ωl(e) is left regular and ωr(e) is right regular.

(d) For all e ∈ E, ω(e) is a semilattice.

Proof. (a)⇒ (b): Follows from Equation (3.33).
(b)⇒ (c): Let e ∈ E. To show that ωl(e) is left regular, by Theorem 3.53(2),

it is sufficient to show that the relation R | ωl(e) is identity on ωl(e). So, let
f , 1 ∈ ωl(e) and f R 1. By Proposition 3.9, f e = f ∈ S (e, f ) and 1 ∈ S (e, 1). By
Proposition 3.12, S (e, f ) = S (e, 1) and so, f = 1 by (b). Dually ωr(e) is right
regular.

(c)⇒ (d): By (c) the relations L and R are identity on ω(e). Hence, by
Proposition 3.15 ω(e) is a biordered subset of E on which the relations ωl and
ωr coincide. Hence ω(e) is a semilattice (see Example 3.2).
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(d)⇒ (a): Let e, f ∈ E and h ∈ S + (e, f ). If 1 ∈ M(e, f ), then 1 � h. Then
e1 ωr eh and since ω(e) is a semilattice, we have e1 ω eh. Hence 1 L e1 ω

eh L h and so, 1 ωl h. Dually, 1 ωr h and so, 1 ω h. Therefore Equation (3.30)
holds.

Next theorem characterises those pseudo-semilattices that are biordered
sets [see Nambooripad, 1981, Theorem 2].

Theorem 3.55. Let E = (E, ωr, ωl) be a pseudo-semilattice. Then E is a biordered set
if and only if E satisfies the following conditions and their duals: for all f , 1 ∈ ωr(e),

(PA1) (1 ∧ e) ∧ f = 1 ∧ f ;

(PA2) ( f ∧ e) ∧ (1 ∧ e) = f ∧ (1 ∧ e) = ( f ∧ 1) ∧ e.

Proof. First assume that E is a biordered set. Then by Theorem 3.54(c), ωr(e)
is right regular for all e ∈ E. Then by the definition of right regular biordered
sets, the basic products in ωr(e) can be extended in such a way that ωr(e) be
comes a right regular band Be. Then for any f , 1 ∈ Be, from Proposition 3.4 that
the product f1 in Be belongs to S (1, f ). By Equation (3.33), S (1, f ) = { f ∧ 1}.
Hence f1 = f ∧ 1 for all f , 1 ∈ Be. Identities (PA1) and (PA2) now follows from
the associativity of ∧ in Be. Duals of these identities are proved similarly.

Conversely let E be a pseudo-semilattice satisfying (PA1), (PA2) and their
duals. Define basic product in E as the restriction of ∧ to DE. Axioms (B11)
and (B12) are clearly satisfied. If f ωr e then by Equation (3.32), e ∧ f = f and

e ∧ ( f ∧ e) = (e ∧ f ) ∧ e = f ∧ e;

( f ∧ e) ∧ e = f ∧ (e ∧ e) = f ∧ e; and

f ∧ ( f ∧ e) = ( f ∧ f ) ∧ e = f ∧ e

by (PA2). Again, by (PA1), we have

( f ∧ e) ∧ f = f ∧ f = f .

This proves axxiom (B21). (B22) follows from (PA1). To prove (B3) let f , 1 ∈

ωr(e) and 1 ωl f . Then by (PA2) we have

(1 ∧ e) ∧ ( f ∧ e) = 1 ∧ ( f ∧ e) = (1 ∧ f ) ∧ e = 1 ∧ e;

(1 ∧ f ) ∧ e = (1 ∧ e) ∧ ( f ∧ e)

which gives (B3). Again assume that f , 1 ∈ ωr(e) and 1∧e ωl f∧e. Let 11 = 1∧ f .
Then 11 ωl f (by Equation (3.30)) and

11 ∧ e = (1 ∧ f ) ∧ e = (1 ∧ e) ∧ ( f ∧ e) = 1 ∧ e.

Hence axiom (B4) follows and the proof is cmplete.
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band!normal –
normal biordered set

If E is a semilattice, the binary operatin specified by the associated pseudo-
semilatticeE is themeet∧which is associative. Schein observed that the binary
operation ∗ on E need not be associative. [In Nambooripad, 1981] a pseudo-
semilattice E is said to be partially associative if E satisfies (PA1) and (PA2).
Example 3.16 gives a pseudo-semilattice which is not partially associative.
Example 3.17 is a pseudo-semilattice which is partially associative, but not
associative. Schein [1972] shows that a pseudo-semilattice E is associative if
and only if (E,∧) is a normal band; that is, E is a band with respect to ∧ and
satisfies the identity

x ∧ y ∧ z ∧ u = x ∧ z ∧ y ∧ u for all x, y, z, u ∈ E. (3.34)

As above, we shall say that a biordered set E is normal biordered set if Bτ(E) is a
normal band.

Corollary 3.56. A biordered set E is normal if and only if it is an orthodox pseudo-
semilattice.

Proof. Let E be an orthdox pseudo-semilattice. Since E is orthodox, B = Bτ(E)
is a band. Hence for all e, f ∈ E, the product f e in B belongs to S (e, f ). Hence
by Theorem3.54,S (e, f ) = { f e}. If f R 1, by Proposition 3.12,S (e, f ) = S (e, 1)
and so f e = 1e. Dually, if f L 1, we have e f = e1. Now let e, f , 1, h ∈ E. Then
1 f ωr 1 and so, 1 f1 R 1 f . Hence (1 f1)h = (1 f )h and dually, e( f1) = e(1 f1).
Therefore

e f1h = (e( f1))h = (e(1 f1))h

= e((1 f )h) = e1 f h.

Hence B is normal.
Conversely assume that E is normal so that B = Bτ(E) is a normal band.

Then for e, f ∈ B, f e ∈ S (e, f ). If 1 ∈M(e, f ) then

1 = f1e = f f1e = f1 f e = 1 f e and 1 = f1ee = f e1

and so, 1 ω f e. Thus M(e, f ) = ω( f e) and so, E is a pseudo-semilattice.

Succeeding chapters we will characterise a number of additional classes of
regular semigroups in terms of biorder properties.3.4.4 Examples
Here we list a number of examples and counter exaples. Most of these are due
to Easdown [see ?] which appreared in ?.



3.4. biorder classification of semigroups 227

N:system of natural numbersExample 3.9: LetE = {e, f }∪NwhereN = {0, 1, 2, . . . } denote the set of natural numbers
(with usual order) and let ≤ be a partial order on E with

x ≤ x, and 0 ≤ x for all x ∈ E;

n ≤ e and n ≤ f for all n ∈ N

and the usual order between natural numbers. We shall denote by E the biordered set
determined by the partial ordered set (E,≤) as in Example 3.4. Let θ : E→ E be defined
by

eθ = e, fθ = f , and nθ = 0 for all n ∈ N.

Then θ : E → E is a regular bimorphism such that Eθ = E1 = {e, f , 0}. The surjective
bimorphism θ◦ : E → E1 determined by θ and the inclusion  : E1 ⊆ E are not regular
even though θ = θ◦ . Thus θ satisfies (RM31) and (RM32) but not (RM33). Also θ◦

satisfies (RM31) and (RM32) but not regular.

Example 3.10 ( ?): Let E0 = {e, f : e2 = e, f 2 = f }. This is a biordered set with
DE0 = {(e, e), ( f , f )}. The free idempotent generated semigroup B0 = B0(E0) consists of
words of the form (e f )n, ( f e)n, f (e f )n and (e f )ne where n = 1, 2, . . . . Also E(B0) = {e, f }.
In this case, we can identifyΛ◦ and I◦ with the set {e, f ,∞}. The maps ρ(e) and λ(e) send
e 7→ e and x 7→ ∞ for x , e. ρ( f ) = λ( f ) is defined similarly and the map

ρ( f )ρ(e) = ρ(e)ρ( f ) = λ(e)λ( f ) = λ( f )λ(e)

is the constant map, denoted by 0, with value ∞. Then S0 = 〈E0ϕ〉 = {ϕ(e), ϕ( f ), 0}
which is a semilattice having three elements so that E0ϕ , E(S0).

Example 3.11 ( ?): Let E = {e, f , 1, h, k} be a set and define quasiorders ωr and ωl on X
by:

ωr = ({e} × E − { f }) ∪ ({ f } × E − {e}) ∪ ({1, h, k} × {1, h, k});

ωl = {(e, 1), (e, k), ( f , h), ( f , 1)} ∪ 1E.

Suppose that DE is the relation on E defined by Equation (3.2). A partial binary
operation ·with domainDE satisfying Equation (3.4) is specified if we specifly products
h · e and k · f . Let E1 = (E,DE, ·) be the partial algebra where · is obtained as specified
above by setting

h · e = 1 = k · f .

Verify that E1 is a biordered set. Completion of the partial binary operation · on E1 to a
binary operation by setting e f = f e = 1 gives a band B1 with E(B1) = E1. Hence, E1 is, in
particular, a regular biordered set. Also the representation ϕ of Theorem 3.32 extends
to an isomorphism of B1 to S1 = 〈E1ϕ〉.

Example 3.12 ( ?): Let E and DE be as in Example 3.10. Let let · be the partial binary
operation specified as in Example 3.10 with

h · e = k; and k · f = h.

Verify that E2 = (E,DE, ·) is a biordered set which is not regular (show that S (e, f ) = ∅).
Let B0

0 be the semigroup B0 of Example 3.9 with 0 adjoined. Let B2 denote the ideal
extension of B0

0 by the right-zero semigroup R = {h, 1, k} (see Subsection 2.10.1). Then
E2 = E(B2). Since B0 is an infinite semigroup, so is B2. In fact E2 is not the biordered
set of a finite semigroup. For if it is, a = e f has finite order and there exist an integer n
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such that u = an is an idempotent. It is clear that f , u , e since u = ewould imply that
e f = e which is impossible. Similarly u , f . If u = k, then h = k f = u f = u = k which is
not possible. If u = 1, then

1 = h1 = h(e f )n = (he) f (e f n−1) = h(e f )n−1 = · · · = h

and if u = h, we similarly have

h = 1h = 1(e f )n = 1

and both these are false. Thus E2 is a finite biordered set which is not embeddable as
the biordered set of a finite semigroup. However, verify that

S2 = 〈E2ϕ〉 = E2 ∪ {e f , f e}

where (e f )e = f e and ( f e) f = e f is a finite band containing E2ϕ as a biordered subset,
but E2ϕ , E(S2). (Here we identify ϕ(e) with e for brevity.)

Example 3.13 ( ?): Again let E and DE be as in Example 3.10 and assume that · is the
partial binary operation specified as in Example 3.10 with

h · e = 1; and k · f = h. (3∗)

Verify that E3 = (E,DE, ·) is a non-regular biordered set. Letϕ denote the representation
of E3 of Theorem 3.32 and B3 = 〈(E3)ϕ〉. Since E3 is finite it is immediate from the
definition that B3 is a finite semigroup. All products of elements in (E3)ϕ except for
ϕ(e)ϕ( f ) belong to (E3)ϕ. Hence B3 is a semigroup with six elements in which five
elements are idempotents and ϕ(e)ϕ( f ) is not regular. Notice that in this case we have
Eϕ = E(〈Eϕ〉). Also, E3 cannot be embedded as a biordered subset of a band. For if
E3 ⊆ E where E is a band then e f ∈ E and so

1 = 1 f = (he) f = h(e f ) = (k f )(e f ) = k(e f )(e f ) = k(e f ) = h

which is not possible. Also E3 is the smallest non-regular biordered set which is the
biordered set of a finite semigroup.

Example 3.14 ( ?): Let

E5 = {e, f , 1, 0 : e L f R 1; x0 = 0x = 0 for all x = e, f , h}.

Then E5 is a regular biordered set such that Bτ(E5) is a completely 0-simple semigroup
with the non-zeroD-class containing four elements including the non-identity element
a = e1 with e R a L 1. Show that E5 is the smallest regular biordered set which is not
the biordered set of a union of groups.

Example 3.15 (Easdown): Let E6 = δ1 ∪ δ2 be the biordered with two δ0-classes δ1 =
{e, f , 1, h} and δ2 = {ei : 1 ≤ i ≤ 8}. The relations in E6 are shown in the figure below; the
horizondal arrows denote R-relations, vertical arrows denote L-relations and doted
arrows shows ω-relatins. Notice that every element in δ1 has two elments in δ2 which
is ω-related to it. Basic products are specified by the relatins shown in the diagram and
the following equatins:

ee4 = e5, ee8 = e1, e3h = e4, e7h = e8,

e1 f = e2, e5 f = e6, 1e2 = e3, 1e6 = e7.



3.4. biorder classification of semigroups 229

It is easy to verify that E6 is a biordered set which is clearly solid. However Bτ(E6) is
not a band. For if ē, f̄ , etc. denote idempotents in 〈E6ϕ〉 corresponding to e, f etc. in E6,
then we see that f̄ h̄ ∈ Hē in 〈E6ϕ〉 but ē , f̄ h̄. In fact, we have Hē = {ē, f̄ h̄} and so Hē is a
group of order 2. It follows that 〈E6ϕ〉 and hence Bτ(E6) is not a band. Thus E6 is solid
but not orthodox. E6 is the smallest biordered set with this property.

e5 e1 e2 e6

e f

h 1

e4 e8 e3 e7

Example 3.16: Let E = {a, b, c, d}. Define ωr and ωl on E by

ωr(a) = ωl(a) = {a};

ωr(b) = ωl(b) = {a, b};

ωr(c) = ωl(c) = {a, b, c};

and ωr(d) = {a, b, d}; ωl(d) = {a, d}.

Then ωr and ωl are quasiorderes on E and (E, ωr, ωl) is a pseudo-semilattice. Let ∧
denote the binary operation on E determined by the pseudo-semilattice. Then

(b ∧ d) ∧ b = a andb ∧ (d ∧ b) = b.

Hence ωr(d) is not associative. Hence by Theorem 3.54, E cannot be a biordered set.

Example 3.17 ( ?): Let N = {0, 1, . . . } denote the set all non-negative integers and let
Esp = {en : n ∈ N}. Define relations R, L and ω on Esp as follows:

L = {(en, en) : n ∈ N} ∪ {(en, em) : m = n + (−1)n+1, for all n > 0};

R = {(en, en) : n ∈ N} ∪ {(en, em) : m = n + (−1)n, for all n ∈ N};

and ω = {(en, em) : n ≥ m and n = m (mod 4).

Moreover, let ωr = R ◦ ω and ωl = L ◦ ω.

Then show that Esp = (Esp, ωr, ωl) is a pseudo-semilattice and a biordered set (see
the figure below where horizondal arrows dente R-relations, vertical arrows denote
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lrs-relations and doted arrows denote the ω relations.

e8 e9

e4 e5

e0 e1

e3 e2

e7 e6

Compute the semigroupBτ(Esp) and show that it is bisimple. Moreover if a = e1e3, then
an does not belong to a subgroup of semigroup Bτ(Esp) for any n > 0 so that it is not
group-bound.
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chapter4

Regular Semigroups

In Chapter Chapter 2 we had given a general discussion of properties of semi-
groups. In this chapter, our aim is to discuss certain properties of regular
semigroups that are of interest in the later development of ‘>the theory of
regular semigroups. We begin with a study of a partial order on semigroups
which is called, following Mitsch Mitsch [1986], the natural partial order. This
relation has particular relevance for regular semigroups andwe pay particular
attention to this case. We then proceed to a discussion of certain properties
of congruences on regular semigroups and decompositions of regular semi-
groups. These naturally lead to the classical theorem of Clifford on semilattice

union of groups. Many of the results givenhere are quite classical or refinements
of classical results. Wherever proofs can be simplified or results can be refined
using biordered set and other advanced technique, we have not hesitated to
use the same, even though, often, proofs with out using themmay be available
in literature.

4.1 the natural partial order on a semigroup

Let ≤ be a partial order on a semigroup S. We shall say that ≤ is compatible if

a ≤ b, c ≤ d⇒ ac ≤ bd. (4.1)

If ≤ is compatible, we say (S,≤) is an ordered semigroup or that S is an ordered
semigroup with respect to ≤.

Remark 4.1: Every semigroup S can be endowed with a partial order so that
S becomes an ordered semigroup. For, if ρ is any partial order on S, then the
relation

ρ(c) = {(x, y) : (axb, ayb) ∈ ρ ∀ a, b ∈ S1}.

can be seen to be the largest compatible partial order contained in ρ. Further, as
observed in Remark 2.8, S1 is a faithful left S-set and so, the representation of S
by right translations of S1 is faithful. Hence the semigroup S can be embedded

231



232 4. regular semigroups

as a subsemigroup of BS. Since inclusion is a compatible partial order on BS,
(see Example Subsection 2.1.3) it induces a compatible partial order on S (via
the embedding).

A systematic account of ordered semigroups is not in the scope of this
book. However, there are partial orders on semigroups (which may not be
compatible) whose study throw considerable light on the structure of the
semigroups. Our aim here is to study one such partial order, called the natural
partial order.

The natural partial order was first studied for the class of inverse semi-
groups by Vagner Vagner [1953a]. It has proved to be of great importance in
every area of the theory of inverse semigroups. Later Nambooripad [1980]
extended it to the class of regular semigroups. Finally Mitsch [1986] extended
the concept to arbitrary semigroups ([see also Bingjun]). While the natural
partial order on an inverse semigroup is compatible, this is not the case for
arbitrary semigroups. Even so, the natural partial order is related closely to
the structure of regular semigroups (see Theorem 4.10 below). Our treatment
here is based mainly on Nambooripad [1980] and will emphasize regular case
since we shall find the concept extremely useful in what follows.4.1.1 De�nition and properties
Most of the results in this section is due to Mitsch and Yu Bingjun Bingjun,
Mitsch [1986].

Lemma 4.1. Let ≤ be the relation on a semigroup S defined as follows: for a, b ∈ S

a ≤ b ⇐⇒ a ≤r b and for some x ∈ S1 a = xa = xb (4.2)

where ≤r is the quasiorder on S defined by Equation (2.36a). Then ≤ is a partial order
on S whose restriction to E(S) coincides with the natural partial order ω of E(S).

Proof. The relation ≤ is clearly reflexive. Suppose that a ≤ b and b ≤ c. Then
there exists x, y ∈ S1 such that

a = xa = xb, b = yb = yc.

Since a ≤r b, there is s ∈ S1 with a = bs. This gives

xyc = xb = a xya = xybs = xbs = xa = a.

Since ≤r is transitive, this shows that ≤ is transitive. Now assume that a ≤ b

and b ≤ a. As before there is x, y, s ∈ S1 with a = xa = xb, b = yb = ya and
a = bs. Hence

b = ya = ybs = bs = a.
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partial order!natural –
≤S: The natural partial order on S

Therefore ≤ is anti-symmetric.
Let e, f ∈ E(S). If e ω f , then Equation (4.2) clearly holds with x = e.

Conversely if e ≤ f , then, by the definition, e ωr f and e = xe = x f for some
x ∈ S1. Then e f = x f 2 = x f = e and so e ωl f and so e ω f .

The partial order ≤ on S defined in the lemma above is called the natural

partial order on the semigroup S. In the following ≤S (or just ≤ if there is no
ambiguity) will denote the natural partial order on the semigroup S.

The definition of natural partial order above is one-sided; but we show
below that the dual definition also gives rise to the same relation.

Proposition 4.2. Let ≤ denote the natural partial order on a semigroup S. The
following statements are equivalent for all a, b ∈ S.

(1) a ≤ b;

(2) a ≤l b and a = ay = by for some y ∈ S1;

(3) a = xa = xb = ay = by for some x, y ∈ S1.

Proof. By Lemma 4.1, (1) implies that there is x, s ∈ S1 such that a = bs and
a = xa = xb. Then a = xb ∈ Sb and so, a ≤l b. Also a = xa = xbs = as. Thus (2)
holds.

The proof of (2) implies (1) is dual; thus (1) and (2) are equivalent. Therefore
it is clear that if (1) holds, then (3) also holds. On the other hand, if (3) holds,
then from a = by we have that a ≤r b and so (1) holds.

If b is a regular element of a semigroupS, byProposition 2.39, bothE(Rb) and
E(Lb) contains idempotents. We use this fact in the following characterization
of natural partial order on regular elements. Clearly, the following proposition
is valid, in particular, for natural partial order on regular semigroups.

Proposition 4.3. Suppose that b is a regular element of a semigroup S and a ∈ S.
Then following statements are equivalent.

(1) a ≤ b;

(2) for any f ∈ E(Rb) there is e ∈ E(Ra) such that e ω f and a = eb;

(3) for any f ′ ∈ E(Lb) there is e′ ∈ E(La) such that e′ ω f ′ and a = be′;

(4) a ≤h b and a = ab′a for some [for all] b′ ∈ V(b);

(5) a = be = f b for some e, f ∈ E(S).
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Proof. We shall prove the following:

(1)⇒ (2)⇒ (4) for all b′ ∈ V(b);

(4) for some b′ ∈ V(b)⇒ (5)⇒ (1).

Since the proof of the implications

(1)⇒ (3)⇒ (4) for all b′ ∈ V(b)

are dual to the implications in the first line above, it will follow that all state-
ments above are equivalent.(1) ⇒ (2): Let f ∈ E(Rb). Since f b = b, by Corollary 2.27 and Lemma 2.36,
ρb|L( f ) = S f is an isomorphism onto Sb; let ρt : Sb→ S f be its inverse. If a ≤ b,
then by Proposition 4.2, there exist x, y ∈ S1 with a = xa = xb = ay = by. Hence
a ∈ Sb. Let e = aρt = at. Then by Theorem 2.25,

e R a and e2 = atat = xbtbyt = xbyt = xat = at = e.

Since

e R a ≤r b R f and e f = atbt = at = e,

e is an idempotent with e ω f . Also eb = atb = a. This proves (2).(2)⇒ (4) for all b′ ∈ V(b): Let b′ ∈ V(b) and f = bb′. Then by Lemma 2.38, f ∈
E(Rb). Also, by Corollary 2.27, ρb|L( f ) : L( f )→ L(b) is the unique isomorphism
sending f to b and ρb′ is its inverse. By (2), there is e ∈ E(Ra) such that e ω f

and a = eb = eρb. Hence

ab′ = aρb′ = eρbρb′ = e.

Therefore ab′a = ea = a. Since a R e ≤r f R b and a = eb ∈ Sb, a ≤h b. Thus (4)
holds for all b′ ∈ V(b).(4) for some b′ ∈ V(b) ⇒ (5): Assume (4) for some b′ ∈ V(b). By Lemma 2.38,
f = bb′ ∈ E(Rb) and 1 = b′b ∈ E(Lb). From a ≤h b, we get a ∈ f S ∩ S1. Also
e = ab′ and h = b′a are idempotents such that

a = f a = b(b′a) = bh and a = a1 = (ab′)b = eb

which shows that (5) holds.



4.1. the natural partial order on a semigroup 235(5) ⇒ (1): By (5), there exists e, f ∈ E(S) with a = be = f b. Then we have

a = ae = be = f a = f b.

Hence the statement Proposition 4.2(3) holds for a and b. Hence by Proposi-
tion 4.2 we have a ≤ b.

The following are some of the consequences of the proposition above fre-
quently needed in the sequel.

Corollary 4.4. For semigroups S and T, we have:

(a) Let φ : S→ T be a homomorphism. If x ≤S y, then xφ ≤T yφ.

(b) Let T be a subsemigroup of S. For x, y ∈ T, if x ≤ y in T then x ≤ y in S; the
converse holds if y is a regular element of T.

In particular, the natural partial order on a regular subsemigroup T of a semigroup S
is the restriction of the natural partial order of S to T.

Proof. Since the natural partial order on a semigroup is defined in terms equa-
tions, it is clear that it is preserved under homomorphisms. Thus (a) holds.
The direct part of (b) follows from the fact that the inclusion is a homomor-
phism of T into S. To prove the converse assume that x ≤ y in S and that
y ∈ RegT. Then y has an inverse y′ in T. Since y′ is an inverse of y in S, by
Proposition 4.3(4), x = xy′x. Hence, again by the same result, we conclude that
x ≤ y in T.

If S is an inverse semigroup, by Theorem 2.44, conditions in Proposition 4.3
can be simplifies considerably. For example, we have the following which is
useful in applications.

Corollary 4.5. Let S be an inverse semigroup. The following statement are equivalent
for x, y ∈ S:

(1) x ≤ y;

(2) x = ey for some e ∈ E(S);

(3) x = y f for some f ∈ E(S);

(4) x ≤h y and x = xy−1y.

Proof. By Proposition 4.3(2), the statement (1) implies (2). If (2) holds, then
x = eeyy and by Theorem 2.44, eey ∈ E(S) and eey ≤ ey. Hence (2) implies (1)
by Proposition 4.3. By left-right symmetry (1) and (3) are equivalent. The
statement (3) above is equivalent to the atatement Proposition 4.3(4) in an
inverse semigroup and so the proof is complete.
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Proposition 4.6. Let b be an element of a semigroup S and let e ∈ E(S). Then

e ≤r b⇒ e R eb ≤ b. (4.3)

Moreover, if a is a regular element of S such that a ≤ b if and only if there is a
idempotent e ∈ E(Ra) such that e ≤r b and a = eb.

Proof. If e ≤r b, then e = bu for some u ∈ S1 so that e = e2 = bubu ∈ bubS = ebS.
Since eb ∈ eS, we have e R eb. Hence eb ≤r b. Also, if a = eb, a = ea = eb and so,
by the definition of natural partial order, eb = a ≤ b.

The ‘if’ part of the remaining statement follows from the above. Conversely,
assume that a is regular such that a ≤ b. Let a′ ∈ V(a). Then h = aa′ ∈ E(Ra)
and so h ≤r b. Since a ≤ b, there exists x ∈ S1 such that a = xa = xb. Then
xh = xaa′ = aa′ = h and so e = hx is an idempotent such that he = e and
eh = hxh = h. Hence e R h R a and eb = hxb = ha = a.

Recall Equation (1.11b) that a subset Y of a partially ordered set X is an
order ideal if for all y ∈ Y, every z ≤ y also belongs to Y.

Proposition 4.7. The natural partial order on semigroup S has the following proper-
ties:

(a) The set RegS of regular elements and the set E(S) of idempotents of S are order
ideals with respect to the natural partial order on S.

(b) Let a, b ∈ S with a ≤ b. If either a R b or a L b, then a = b.

(c) Let b ∈ S and ai ≤ b, i = 1, 2. If a1 ≤h a2 then a1 ≤ a2. In particular, if a ≤h b
there exist utmost one c ∈ Ha such that c ≤ b.

Proof. If a ≤ b and if b is regular, by Proposition 4.3 a is also regular. Hence
RegS is an order ideal. If f is an idempotent and if x ≤ f , it follows from
Proposition 4.3(2) that x is also an idempotent; this implies that E(S) is an
order ideal.

To prove (b), suppose that a ≤ b and a R b. Then by definition of the
natural partial order, there is x, s ∈ S1 such that a = xa = xb and b = as. Then
b = as = xas = xb = a. If a L b, dually, we have a = b.

The conditions given in the statement (c) implies that there exist xi, yi ∈ S,
i = 1, 2 such that

ai = xiai = xib = aiyi = byi, i = 1, 2

and since a1 ≤h a2, there is s ∈ S1 with a1 = sa2. Hence

x1a2 = x1by2 = a1y2 = sa2y2 = sa2 = a1 = x1a1.
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Since a ≤r b, it follows that a1 ≤ a2. In particular, if a1 H a2, then a1 ≤h a2 and
a2 ≤h a1 and so, by the above a1 ≤ a2 and a2 ≤ a1; by antisymmetry of natural
partial order, we conclude that a1 = a2. This completes the proof of (c).

Notice that every [left, right, two-sided] ideal of a semigroup S is an order
ideal with respect to the natural partial order on S. If a ∈ S, we denote by
S(a) the principal order ideal of S (with respect to the natural partial order)
generated by a. Clearly, S(a) ⊆ L(a) ∩ R(a). Recall (Subsection 2.6.1) also that a
morphism σ : L→ L′ of left ideals is an inner right translation of S1 restricted
to L; that is σ = ρt|L for t ∈ S1.

Proposition 4.8. Let σ = ρt|L(a) → L(b) be an isomorphism. Then σ is an order
isomorphism of L(a) onto L(b). Dually an isomorphism of principal right ideals is
an order isomorphism. Consequently, if a D b, then there is an order isomorphism
θ : S(a)→ S(b) such that for all x ≤ a, x D xθ.

Proof. Let c, d ∈ L(a) and c ≤ d. By Theorem 2.25, cσ = ct R c and dσ = dt R d.
Since c ≤r d, we have cσ ≤r dσ. Also, there exists x ∈ S1 with c = xc = cd and
so cσ = ct = xct = xdt = x(dσ). Hence cσ ≤ dσ. This proves that σ preserves
natural partial order. Similarly, σ−1 also preserves natural partial order and so
σ is an order isomorphism. Clearly this induces an order isomorphism of S(a)
onto S(aσ). The proof for right ideals is dual.

If a D b, then by Proposition 2.28, there is c ∈ S with a L c R b. Also, by
Green’s lemma (Theorem 2.26) there is an isomorphism σ : L(a) → L(c) with
aσ = c and so an order isomorphism of S(a) onto S(c) by the observation in
the previous paragraph. Further by Theorem 2.25, x R xσ for all x ∈ L(a) and
hence for all x ∈ S(a) in particular. Dually there exists an order isomorphism
τ : S(c) → S(b) such that y L yτ for all y ∈ S(c). Hence if θ = σ ◦ τ, then
θ : S(a)→ S(b) is an order isomorphism such that x D xθ for all x ∈ S(a).

Let f ∈ E(Rb). Recall from Proposition 2.40 that L f contains an inverse of b.
We use this below.

Proposition 4.9. Let e ω f , e, f ∈ E(S). Then for each (b, b′) ∈ R f × L f with
b′ ∈ V(b), there is a unique pair (a, a′) ∈ Re × Le with a′ ∈ V(a) such that a′a = b′eb,
a ≤ b and a′ ≤ b′.

Proof. Assume that (b, b′) ∈ R f × L f with b′ ∈ V(b). Then clearly e R eb and
e L b′e. Also

(eb)(b′e)(eb) = e(bb′)eb = e f eb = eb, (b′e)(eb)(b′e) = b′e f e = b′e

and so, b′e ∈ V(eb). By Proposition 4.3(2) and (3), eb ≤ b and b′e ≤ b′ and clearly
(b′e)(eb) = b′eb. Thus the pair (eb, b′e) satisfies the requirements. To prove the
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uniqueness, let (a, a′) be any pair satisfying the given conditions. Then by
Lemma 2.38,

aa′ = e = (eb)(b′e), a′a = b′eb = (b′e)(eb)

and so a H eb and ba′ H b′e. Since a ≤ b and eb ≤ b by Proposition 4.7(c),
a = eb. Similarly (dually), a′ = b′e.

Remark 4.2: Thedefinitionof the natural partial order ona semigroupS implies
certain properties for the categoriesL(S) andR(S) 2.1 of principal left and right
ideals of S. If a ≤ b, then by Proposition 4.2(3), there exists x, y ∈ S1 with
a = xa = xb = ay = by. Then τx = λx|R(b) is clearly a retraction of R(b) onto
R(a) such that a = τxb (see Subsection 1.3.2). Thus in this case the inclusion
R(a) ⊆ R(b) splits. Similarly σy = ρy is a retraction of L(b) onto L(a) with
a = bσy and the inclusion L(a) ⊆ L(b) splits. Conversely if τ : R(b) → R(a) is a
refraction, it is easy to see that τb ≤ b and dually for left ideals. Note that, in
case R(a) has an idempotent generator e, then τe : R(b) → R(a) is a retraction.
By Proposition 4.6 every retraction of R(b) onto R(a) is induced in this way by
an idempotent generator of R(a). Therefore if S is regular, then every inclusion
in R(S) and every inclusion in L(S) splits.

Example 4.1: Let S = TX be the semigroup of all transformations on a set X (see
Subsection 2.1.3). Then f ≤ 1 in TX (≤, being the natural partial order on TX) if and
only if π1 ⊆ π f and for some cross-section Y of π f , f |Y = 1|Y. Similarly f ≤ 1 in
S = L T (V) if and only if N(1) ⊆ N( f ) and f |U = 1|U for some complement U of N( f )
in V. It is easy to see that the natural partial order is not compatible on TX or L T (V).

Example 4.2: Let S be an inverse semigroup. Then S is regular and the conditions of
Proposition 4.3 simplifies considerably in this case. For example, one of the equations
in Proposition 4.3(5) is sufficient to characterize natural partial order on S. For, let
a, b ∈ S. If a = eb for some e ∈ E(S) then since idempotents in S commute, a = ebb−1b =
bb−1eb = a = b f where f = b−1eb ∈ E(S). Similarly, if a = b f there is an idempotent e
with a = eb. Hence by Proposition 4.3(5),

a ≤ b ⇐⇒ either a = eb, e ∈ E(S), or a = b f , f ∈ E(S). (∗)

It follows as a consequence of (∗) that the natural partial order is compatible (which is
also a consequence of Theorem 4.23 below).

Example 4.3: If S is a semigroup with involution (see Subsection 2.1.2) a 7→ a∗, then it
follows from Proposition 4.2(3) that a ≤ b if and only if a∗ ≤ b∗; that is the involution is
an order isomorphism. In particular, if S is an inverse semigroup, then the map a 7→ a−1

is an involution (which is a consequence of the fact that idempotents in S commute)
and so a ≤ b if and only if a−1 ≤ b−1.

Example 4.4: If S is the additive semigroup of positive real numbers then the usual
order on S is compatible; however, it is not the natural partial order on S (which is,
in fact, the identity relation). Similarly, the inclusion is a compatible partial order on
the semigroup BX of relations on the set X which is not the natural partial order. On
the other hand, the inclusion is the natural partial order on the symmetric inverse
semigroup IX of all one-to-one partial transformations on X and it is compatible.
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Example 4.5: The natural partial order on the free semigroup X+ or the free monoid
X∗ on a set X is the identity relation. Note that X+ contains no regular element and
identity (empty word) is the only regular element of X∗.4.1.2 Tra
e produ
ts and natural partial order
Recall that the trace product x ∗ y Equation (2.48a) of two elements x and y

of a semigroup S is defined if and only if Lx ∩ Ry contains an idempotent
or equivalently, xy ∈ Rx ∩ Ly. This definition can be extended to the trace
product x0 ∗ · · · ∗ xn of a finite sequence x0, x1, . . . , xn ∈ S if the trace product
xi−1 ∗ xi exists for all i = 1, 2, . . . , n. By Lemma 2.77, D0

x0 is a semigroup with
respect to the product defined by Equation (2.48b). Therefore the extended
trace product exists and is independent of the grouping of elements. Observe
that trace products exist only for regular elements so that a statement that the
trace product x0 ∗ · · · ∗ xn exists would imply in particular that xi is a regular
element in S for all i.

The following theorem generalizes Theorem 3.7 of Chapter Chapter 3 as
well as Theorem 1.6 of Nambooripad [1980]. It also shows how one can use
the natural partial order to reduce an arbitrary product in a regular semigroup
S to the trace product in S(∗).

Theorem 4.10. Let x0, x1, . . . , xn be elements of a semigroup S auch that their product
u = x0x1 . . .xx is regular. Then there exist regular elements yi ∈ S, i = 0, 1, . . . , n
such that

yi ≤ xi, i = 0, 1, . . . , n; and (1)

u = x0x1 . . .xn = y0 ∗ y1 ∗ · · · ∗ yn. (2)

Further if the trace product x0 ∗ · · · ∗ xn exists in S(∗) and if y0, . . . , yn are elements in
S satisfying (1) and (2), then xi = yi for all i = 0, 1, . . . , n.

Proof. The proof is by induction on n. We first prove the case for n = 2.
Let u = x0x1 be regular. Then by Proposition 2.39 there exists idempotents
e, f ∈ E(S) with e R u L f . Then e ∈ uS ⊆ x0S and so e ≤r x0. Hence by
Proposition 4.6. u R e R ex0 ≤ x0. Dually u L f L x1 f ≤ x1. Hence

u ∈ Rex0 ∩ Lx1 f and (ex0)(x1 f ) = e(x0x1) f = u.

Therefore, if y0 = ex0 and y1 = x1 f , we have

y0 ≤ x0, y1 ≤ x1 and u = y0 ∗ y1.

If the trace product x0 ∗ x1 exists and if y0 and y1 satisfy the above relations,
then y0 R u x0 and so, y0 = x0 by Proposition 4.7(b). Similarly y1 = x1.
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≤σ:quotient of ≤ by σ
relation!quotient –

Now assume, inductively, that the theorem holds for all r ≤ n and that
u = x0 . . . xn is regular. Let z = x1x2 . . . xn. Then by the above there is y0 ≤ x0
and z0 ≤ z such that u = y0 ∗ z0. By Proposition 4.6, there exists 1 ∈ E(S) with
1 R z0 = 1z. Then 1 ≤r z ≤r x1 so that 1 R 1x1 ≤ x1. Let y1 = 1x1. Then
z0 = 1z = y1x2 . . . xn is a regular element which is a product of n elements in S.
Then by induction hypothesis,

z0 = y′1 ∗ y2 ∗ · · · ∗ yn where y′1 ≤ y1, yi ≤ xi, 1 < i ≤ n.

Since y′1 R z0 R 1 y1, by Proposition 4.7, y′1 = y1. Hence z0 = y1 ∗ y2 ∗ · · · ∗ yn
and so

u = y0 ∗ z0 = y0 ∗ y1 ∗ · · · ∗ yn, where yi ≤ xi i = 0, 1, . . . , n.

Assume that the trace product x0 ∗ x1 ∗ · · · ∗ xn exists in S(∗) and that y0, . . . , yn
satisfies conditions (1) and (2) of the statement. From (2), we have

x0 R x0 ∗ x1 ∗ · · · ∗ xn = y0 ∗ y1 ∗ · · · ∗ yn R y0.

Since y0 ≤ x0 by (1), we have y0 = x0 by Proposition 4.7. Assume that
yk−1 = xk−1 for k ≥ 2. Let ek−1 and fk−1 be idempotents such that xk−1 L

ek−1 R xk and yk−1 L fk−1 R yk. Then ek−1 L fk−1. Since yk ≤ xk we have
fk−1 R yk ≤r xk R ek−1. Hence fk−1 ωr ek−1 and so, ek−1 = ek−1 fk−1 = fk−1. This
implies that yk R xk. Therefore by Proposition 4.7, xk = yk.4.1.3 Green's relations, 
ongruen
es and natural partial order
Let X be a partially ordered set. An equivalence relation σ is said to reflect the
partial order ≤ on X (or simply, σ is reflective, if ≤ is clear from the context) if
for all x, y, ∈ X,

x ≤ y σ z⇒ x σ y′ ≤ z for some y′ ∈ X; (4.4a)

or equivalently, ≤ ◦σ ⊆ σ◦ ≤ .

This is again equivalent to the statement that given x ≤ y there exists a map
θ : σ(y)→ σ(x) with θ(z) ≤ z for all z ∈ σ(y).

Given the equivalence relation σ on X, let

≤σ= {(σ(x), σ(y)) : for some x′, y′ ∈ X, xσx′ ≤ y′σy}. (4.4b)

Then ≤σ is a relation on the quotient setX/σ; ≤σ is called the quotient relation of
≤ by σ. Note that the relation ≤σ is the image of ≤ by the quotient map
σ# : X → X/σ. Recall that an order preserving map f : X → Y of partially
ordered sets weakly reflects the partial order on Y in the sense of Chapter
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Chapter 3 if y′ ≤ y in Y and x ∈ X with x f = y, there exist x′ ≤ x in X with
x′ f = y′. It is easy to see that σ reflects ≤ if and only if σ# : X → X/σ weakly
reflects the relation ≤σ ; if this is the case, then ≤σ is clearly a quasi-order on
X/σ. Again a reflective equivalence relation σ is said to convexwith respect to
the partial order ≤ if ≤σ is a partial order on X/σ. Thus σ is convex if and only
if it satisfies the following.

x ≤ y, and xσy⇒ [x, y] ⊆ σ(y) (4.4c)

where [x, y] = {u ∈ X : x ≤ u ≤ y} is the interval with endpoints x and y (see
Equation (1.11a)). We shall say that σ is disjoint (from ≤) if it is reflective and
every element x ∈ X is minimal in its σ-class σ(x); that is,

∀ x, y ∈ X, x ≤ y, and xσy⇒ x = y. (4.4d)

Note that if σ is disjoint, then it is convex.

Lemma 4.11. Let X be a partially ordered set and let σ be a reflective equivalence
relation on X. Then the relation

σ̄ = {(x, y) : there exist x′, y′ ∈ X with xσx′ ≤ y, yσy′ ≤ x}

is the finest convex equivalence relation on X containing σ.

Proof. It is clear that σ̄ is a reflexive and symmetric relation containing σ. Let
xσ̄y and yσ̄z. Then there exist x′ and y′ such that

xσx′ ≤ yσy′ ≤ z.

Since σ is reflective there exists x′′ with

xσx′σx′′ ≤ y′ ≤ z.

Similarly, here is z′′ with zσz′′ ≤ x. Therefore xσ̄z and so, σ̄ is an equivalence
relation.

Suppose that x ≤ yσ̄z. Then, by definition, there exist z′ such that x ≤
yσz′ ≤ z. Since σ is reflective, there is x′ with xσx′ ≤ z′ ≤ z. Hence xσ̄x′ ≤ z

and so, σ̄ is reflective. To prove that σ̄ is convex, let x ≤ u ≤ y and xσ̄y. Then
u ≤ yσ̄x and so uσ̄u′ ≤ x for some u′ ∈ X. Since x ≤ u, it follows that xσ̄u.

Finally, let ρ be a convex equivalence relation containing σ. If xσ̄y, there
exist x′with xσx′ ≤ y and so x′σ̄y. Hence there exists y′ such that yσy′ ≤ x′ ≤ y.
Since ρ is convex, ρ# : X→ X/ρ is an order preservingmap of partially ordered
sets. Therefore, since σ ⊆ ρ, we have

ρ#(y) = ρ#(y′) ≤ ρ#(x′) = ρ#(x) ≤ ρ#(y).

Consequently, ρ#(x) = ρ#(y); that is, xρy.
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Let S be a semigroup. An equivalence relation σ on S is said to be reflective,
convex or disjoint if σ has the corresponding propertywith respect to the natural
partial order ≤ on S. In the following, we write x < y if x ≤ y and x , y.

Proposition 4.12. LetK denote one of the relations L , R or D . Then for x, y, z ∈ S,

x < y K z⇒ x K y′ < z for some y′ ∈ S. (4.5)

Consequently, L R and D are reflective equivalence relations on S.

Proof. Assume that x < y K z. It follows from Proposition 4.8 that there is
an order isomorphism θ : S(y) → S(z) so that for all c ∈ S(y), c K cθ ∈ S(z).
Hence x K xθ < z. The last statement is clear from the definition of reflective
relations.

From the proposition above and Proposition 4.7, we have the following.

Corollary 4.13. The Green’s relations L and R are disjoint.

Recall (from Subsection 1.1.2) that an element x in a subset X of S (with
respect to the natural partial order) is minimal in X if y ∈ X and y ≤ x implies
y = x.

Corollary 4.14. Let D be a D-class of a semigroup S. If D contains a minimal
element, then every element of D is minimal.

Proof. Let x, y ∈ D and x < y. If z is an arbitrary element of D, then by
Equation (4.5), there is z′ ∈ D with z′ < z. Hence z is not minimal in D and so
D does not contain minimal elements.

For regular semigroups we have the following relation between Green’s
relations D and J .

Theorem 4.15. Let S be a regular semigroup and x, y ∈ S. Then

x ∈ J(y) ⇐⇒ x D y′ ≤ y for some y′ ∈ S.

Consequently D̄ =J .

Proof. If x ∈ J(y) then there exists u, v ∈ S1 such that x = uyv. By Theorem 4.10,
there exist u1 ≤ u, y1 ≤ y and v1 ≤ v such that x = u1 ∗ y1 ∗ v1. By the definition
of trace product, the element y1 belongs to Dx. Hence x D y1 ≤ y. Conversely
if y′ exists with x D y′ ≤ y, then x J y′ ≤ j y and so, x ∈ J(y).

Now x J y if and only if x ∈ J(y) and y ∈ J(x). By the above, this is true if
and only if there exist x′, y′ ∈ S with

x D y′ ≤ y and y D x′ ≤ x.
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By Lemma 4.11, the statement above holds if and only if xD̄y. Hence D̄ =J .

The result above may not hold if S is not regular. For example let S = A

where A is the semigroup of Example 2.13. Then on A D= 1A and so D̄ =D .
Since A is simple J is the universal relation (A × A). Thus D̄ ,J on A.
However, it is always true that D̄ ⊆J .

It follows from Lemma 4.11 and Theorem 4.15 that D is convex if and only
if D=J ; thus:

Corollary 4.16. For a regular semigroup S, the equality D=J holds if and only if
D is convex.

Corollary 4.17. LetD be aD-class of a regular semigroup S. If D contains aminimal
element x, then D = Jx and every element of Jx is minimal.

Proof. Let y J x. By Theorem 4.15, for some x′ ∈ S, y D x′ ≤ x. Then x′ J x

and so there is x′′ ∈ S with x D x′′ ≤ x′. Hence x′′ ≤ x′ ≤ x. By Corollary 4.14,
every element of D is minimal and so, x′′ = x′ = x. Therefore y ∈ D and so,
Jx ⊆ D. Hence D = Jx.

Recall that a semigroup S is [0-]simple if and only if the set of all [non-zero]
elements form a J -class of S. Hence from Theorem 4.15 we have:

Corollary 4.18. A regular semigroup S is [0-]simple if and only if for any x, y ∈ S
[x, y ∈ S − {0}] there is x′ ∈ S [x′ ∈ S − {0}] such that x D x′ ≤ y.

Recall from Equation (2.53) and Lemma 2.86, a semigroup satisfies the
condition M∗

E
if and only if every idempotent e ∈ E(S) is minimal in E(De)

with respect to the partial order ω on E. By Lemma 4.1, this is true if and
only if e is minimal in De with respect to the natural partial order. Hence
by Corollary 4.14, every element of De is minimal with respect to the natural
partial order. If S is regular, by Proposition 2.39 every D-class of S contain
idempotents and so a regular semigroup S satisfies M∗

E
if and only if every

element in S is minimal in its D-class or equivalently, the Green’s relation D is
disjoint. Therefore, by Theorem 2.87 we have:

Theorem 4.19. A regular semigroup S is completely semisimple if and only if the
Green’s relation D is disjoint.

We next consider the relation between congruences and natural partial
order on regular semigroups.

By Corollary 4.4(a), homomorphisms of semigroups preserve natural par-
tial orders. If S is also regular we have:
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Theorem 4.20. Ahomomorphismφ : S→ T of a regular semigroup S into T preserves
and weakly reflect natural partial orders.

Proof. In view of Corollary 4.4(a), it is sufficient to verify that φweakly reflects
natural partial orders. Since Imφ is a regular subsemigroup of T by Theo-
rem 3.5 and since, by Corollary 4.4(b), the natural partial order of Imφ is the
restriction of the natural partial order of T to Imφ, we may assume with out
loss of generality that φ is surjective. Let u, v ∈ T and u ≤ v. Choose y ∈ Swith
yφ = v. If f ∈ E(Ry), then f ′ = fφ ∈ E(Rv). By Proposition 4.3(2), there exists
e′ ∈ E(Ru) with e′ ω f ′ and u = e′v. By Proposition 3.24, E(φ) weakly reflects
ωr. Hence we can find e ∈ E(S) with e ω f and eφ = e′. If x = ey, then, again by
Proposition 4.3(2), x ≤ y and we have xφ = (eφ)(yφ) = e′v = u.

Reformulating the result above in terms of congruences, we have:

Corollary 4.21. Every congruence on a regular semigroup S is convex.

Proof. Let σ be a congruence on S and let φ = σ# : S → S/σ be the quotient
homomorphism. If x ≤ yσz in S, then xφ ≤ yφ = zφ. Hence by the theorem
above, there is z′ ∈ S with z′ ≤ z and xφ = z′φ ≤ zφ = xφ. Then xσz′ ≤ z.
Hence σ is reflective. If xσy and x ≤ u ≤ y, then xφ ≤ uφ ≤ yφ and xφ = yφ.
These imply that xφ = uφ = yφ and so, xσuσy. Thus σ is convex.

The theorem above and the corollary may not hold for semigroups that are
not regular. For by Corollary 2.19 any semigroup S is a homomorphic image
of a free semigroup X+ for a suitable set X and by Example 4.5, the natural
partial order is the identity relation on a free semigroup. It is therefore clear
that if y′ < y in S, it is not possible to find x, x′ ∈ X+ with x′ < x which is
mapped to y and y′ respectively. The corollary above also shows that, if σ
is any congruence on S, the natural partial order on S/σ coincides with the
quotient order ≤σ defined by Equation (4.4b).

Those congruences on regular semigroups that are disjoint can be charac-
terized as follows.

Theorem 4.22. A congruence σ on the regular semigroup S satisfies the condition

x ≤ y and x σ y⇒ x = y

(that is, σ is disjoint) if and only if, for all e ∈ E(S), σ(e) is a completely simple
subsemigroup of S.

Proof. First suppose that σ is disjoint and let φ = σ# : S → S/σ = T be the
quotient homomorphism. Let e ∈ E(S) and x ∈ σ(e). If f ∈ E(Rx) and 1 ∈ E(Lx),
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then fθ R xφ = eθ L 1θ. Hence by Proposition 3.12

S (1θ, fθ) = S (eθ, eθ) = {eθ}.

Since by Theorem 3.5 θ = φ|E(S) : E(S) → E(T) is a regular bimorphism (see
Definition 3.4), we have

S (1, f )θ ⊆ S (1θ, fθ) = {eθ}

and so, S (1, f ) ⊆ σ(e). Hence if h ∈ S (1, f ), then hx, xh ∈ σ(e) since σ(e) is a
subsemigroup of S. By Proposition 4.3(2) and (3), h R hx ≤ x and h L xh ≤ x.
Sinceσ is disjoint, wehave xh = x = hx and so x ∈ Hh. Thereforeσ(e) completely
simple.

Conversely assume that σ(e) is completely simple for each e ∈ E(S). By
Theorem 2.65 σ(e) bisimple, regular and every idempotent in σ(e) is minimal in
σ(e) with respect to the natural partial order of σ(e). Hence by Corollary 4.14,
every element of σ(e) is minimal. Since, by Corollary 4.4, the natural partial
order of σ(e) is the restriction of the natural partial order of S to σ(e) every
element in σ(e) is minimal in σ(e) with respect to the natural partial order of S.
Therefore σ is disjoint.4.1.4 Compatibility on the natural partial order
We have noted that the natural partial order is not, in general compatible with
the multiplication in the semigroup. We proceed to characterize the class of
regular semigroups for which the natural partial order is compatible.

Recall that a pseudonverse (locally inverse) semigroup is a regular semi-
group S such that E(S) = E is a pseudo-semilattice. If this holds, by Theo-
rem 3.54,ω(e) is a semilattice for all e ∈ E. Since E(eSe) = ω(e), by Theorem2.44,
ω(e) is a semilattice if and only if eSe is an inverse subsemi group of S. By The-
orem 3.54, this is equivalent to the fact that S (e, f ) contains a unique element
for all e, f ∈ E(S). Recall also that for x, y ∈ S, S (x, y) denotes S (e, f ) for some
[for all] e ∈ E(Lx) and f ∈ E(Rx) (see Proposition 3.12).

Theorem 4.23. The following statements are equivalent for a regular semigroup S.

(a) S is locally inverse.

(b) If x, y, u, v ∈ S, x ≤ u and y ≤ v, then xy ≤ uv.

(c) If x, y ∈ S, y′ ∈ V(y) and x ≤ y, then there is a unique x′ ∈ V(x) such that
x′ ≤ y′.

Proof. (a)⇒ (b): Let f ∈ E(Lu) and e ∈ E(Rv). Since x ≤ u, by Proposition 4.3,
there is f ′ ω f such that x = u f ′. Similarly there exists e′ ω e with y = e′v. By
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primitive!– element (a), we have S (u, v) = {h} and S (x, y) = {1} for some h, 1 ∈ E(S). Then by (), ref ch3
1 ∈ M( f , e) = ω(h) and so, 1 ω h. Also, by (a), ω( f ) is a biordered subset of
E(S) which is a semilattice. Hence the relations L and R coincide with the
identity on ω( f ). Now, f ′1 L 1 L f1 and f ′1, f1 ∈ ω( f ). Therefore f ′1 = f1

and so, x1 = u f ′1 = u f1 = u1. Dually, 1y = 1v. By Proposition 2.40 we can
find u′ ∈ V(u) ∩ R f so that u′u = f . Then uhu′ ∈ E(Ruv) and u1u′ ω uhu′. Also
by Theorem 3.7

xy = (x1)(1y) = (u1)(1v) = (u1u′)uv ≤ uv

by statement (2) of Proposition 4.3.(b) ⇒ (
): Let x ≤ y and y′ ∈ V(y). Then by Proposition 4.3(2), there is
e ω f = yy′ such that x = ey. Since y′ ∈ L f , by Proposition 4.9, there is
x′ = y′e ∈ V(x) such that x′ ≤ y′. If x′′ ∈ V(x) with x′′ ≤ y′, then by (b),

e = xx′ ≤ yy′ = f , and e′ = xx′′ ≤ yy′ = f .

Since e, e′ ∈ ω( f ) ∩ E(Rx), it follows by (b) that

e′ = ee′ ≤ e f = e and similarly,e′ ≤ e.

Hence e = e′ and so x′ L x′′. Dually x′ R x′′. Hence by Proposition 2.40,
x′ = x′′. This proves the uniqueness of x′.(
)⇒ (a): It is sufficient to show that for every e ∈ E(S), the biordered subset
ω(e) is a semilattice (see Theorem 2.44); this will follow if we show that the
relationsL andR coincidewith the identity onω(e). Let f , 1 ∈ ω(e) and f R 1.
Then f , 1 ∈ V( f ), f ≤ e and 1 ≤ e. Then by (c), we have f = 1. Similarly, if
f L 1, then also f = 1 by (c). Hence ω(e) is a semilattice.

Remark 4.3: Compatibility of natural partial order on arbitrary semigroups
have been considered in literature Bingjun, Blyth and Gomes [1983], Mitsch
[1986]. Also some generalizations of the concept of compatibility has also been
discussed by Bingjun.

Example 4.6: Recall that a band B is normal if and only if the biordered set of B is a
local semilattice (see Corollary 3.56). Theorem 4.23 gives another characterization of
normal bands: the band B is a normal if and only if the natural partial order (in this
case, the relation ω) on B is compatible.4.1.5 Primitive semigroups
An element x in a semigroup S is said to be primitive if x is a minimal element
in the set of non-zero elements of S. If S has no zero, this means that primitive
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semigroup!primitive –elements of S are minimal elements of S. Since the restriction of the natural
partial order to E(S) coincides with the relation ω, this agrees with the earlier
definition of primitive idempotents (see Subsection 2.7.1); that is, an idempo-
tent which is a primitive element according to this definition if and only if it is
a primitive idempotent as defined earlier. A semigroup S is said to be primitive

if every non-zero element of S is primitive.
A semigroup S is called a 0-disjoint union of semigroups Sα, α ∈ Ω, if S is

obtained by taking the disjoint union of all semigroups Sα and identifying all
zeros. That is, we take S to be the set given by

S =















∗
⋃

α∈Ω

(Sα − {0})















∪ {0} (4.6a)

where
∗
∪ denote disjoint union, and define binary operation in S by

xy =















xy, the product in Sα if x, y ∈ Sα for some α ∈ Ω;

0, otherwise.
(4.6b)

It is easy to varify that the set S,with the binary operation above is a semigroup.
Observe that in the semigroup S, each Sα is an ideal.

If S is completely 0-simple, by Theorem 2.64 it contains primitive idem-
potents. These are minimal in the D-class of non-zero elements of S. Then
by Corollary 4.14, every non-zero element in S is minimal in the D-class of
non-zero elements. This implies that every non-zero element in S is prim-
itive. Hence every completely 0-simple semigroup S is a primitive regular
semigroup. More generally we have:

Theorem 4.24. A regular semigroup S is primitive if and only if S is either a completely
simple semigroup or a 0-disjoint union of completely 0-simple semigroups.

Proof. Suppose that S does not have zero and let x, y ∈ S. If S is completely
simple, then it follows from Theorem 2.65 (as in the remarks preceeding the
statement of the theorem), that S is primitive. Conversely assume that S is
primitive. Now by Theorem 4.10, xy = x1 ∗ y1 where x1 ≤ x and since S

is primitive, x = x1 and y = y1. Hence the trace product x ∗ y exists in S.
Therefore x D y and Lx ∩ Ry contains an idempotent. Consequently, S is
completely simple.

Let S = S0. If S is a 0 disjoint union of completely simple semigroups
{Sα : α ∈ Ω}, then by Equations (4.6a) and (4.6b), each Sα is a maximal ideal in
S. Hence if x ≤ y in S, then x, y ∈ Sα for some α ∈ Ω. Also by Corollary 4.4(b),
the natural partial order on Sα is the restriction of the natural partial order on
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subsemigroup!naturally embedded –
semigroup!regular-free –
extension!primitive –

S to Sα. Since every element in Sα is primitive in Sα by the remarks preceeding
the statement, it follows that every element in S is primitive.

Conversely, assume that S = S0 is primitive and that x, y ∈ S − {0}. If
xy , 0, it follows from Theorem 4.10, as in the first paragraph of the proof,
that xy = x ∗ y; in particular, x D y. If D is a non-zero D-class of S, then it
follows from Theorem 2.64 and this remark that D0 is a completely 0-simple
subsemigroup of S and that S is the 0-disjoint union the semigroups D0 as D
varies over non-zero D-classes of S.

Let T be a subsemigroup of a semigroup S. Then we say that T is naturally
embedded in S if the natural partial order on T is the restriction of the natural
partial order of S to T. Note that, by Corollary 4.4, every regular subsemigroup
T of S is naturally embedded in S.

A semigroupN is said tobe regular-free ifNhasnonon-zero regular element.
A primitive extension S of a primitive regular-free semigroup N by a primitive
regular semigroup T is an ideal extension of N by T such that N is naturally
embedded in S.

Lemma 4.25. A primitive extension S of a primitive regular-free semigroup N by a
primitive regular semigroup T is primitive.

Proof. Let x ≤ y in S, and x , 0. Assume that y ∈ T. By Proposition 4.7(a), x
is also regular. Since N is an ideal in S, any element u ∈ N which is regular in
S must be regular in N and so u = 0. Hence x < N. Since T = (S − N) ∪ {0}, it
follows that x is a non-zero element of T. Since T is primitive, we have x = y.
If y ∈ N, since N is an ideal, x ∈ N. Hence x, y ∈ N and x ≤ y in S. Since N is
naturally embedded in S, x ≤ y inN. SinceN is primitive, we have x = y. Since
S = (T − {0}) ∪N, it follows that every non-zero element in S is primitive.

We now proceed to give a classification of primitive semigroups. The
following theorem is due to Bingjun.

Theorem 4.26. A semigroup S is primitive if and only if S is one of the following
types of semigroups:

(a) a primitive regular semigroup;

(b) a primitive regular-free semigroup;

(c) a primitive extension of a regular-free semigroup by a primitive regular semi-
group.

Proof. If S is one of the type (a), (b) or (c), by definitions and Lemma 4.25, S is
primitive. Hence it is sufficient to show that, if S is primitive and if S is not
primitive regular or primitive regular-free, then it is of type (c).
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Accordingly assume that S is primitive and that S is not regular, but RegS
contains non-zero elements. Let

N =















S − RegS, if S has no zero;
(S − RegS) ∪ {0}, the 0 of S, if S = S0.

Suppose that a ∈ N and b ∈ S. If ab ∈ S − N, then ab is a non-zero regular
element of S and so, by Theorem 4.10 there exist regular elements a′, b′ ∈ S

with a′ ≤ a, b′ ≤ b and ab = a′ ∗ b′. Since a ∈ N this implies that a′ = 0 and so,
ab = 0 which contradicts the hypothesis. Hence ab ∈ N and so, N is a right
ideal. Similarly, N is a left ideal and hence N is an ideal. Since S is primitive,
N is primitive regular-free subsemigroup and is naturally embedded in S. Let
T = S/N be the Rees quotient. Then, it follows from the definition of Rees
congruences (and Rees quotients)Subsection 2.2.1 that T−{0} can be identified
with Reg S − {0}. Since every non-zero element in RegS is regular in S, it is
regular element of T and so T is a regular semigroup. If a, b ∈ T− {0} and a ≤ b,
it it follows from statement (3) of Proposition 4.2, that a = xa = xb = ay = by

for some x, y ∈ T − {0}. These elements satisfy the same equations in S also.
Since S is primitive, a = b. This implies that T is a primitive regular semigroup.
Therefore S is of type (c).

Example 4.7: Let X be a set. Then it is clear that the free semigroup X+ is a primitive
regular-free semigroup and is a naturally embedded ideal in the monoid X∗. Also the
Rees quotient X∗/X+ = H the trivial (one-element) group with 0 adjoined. H is clearly
a primitive regular semigroup. Hence X∗ is a primitive extension of the primitive
regular-free semigroup X+ by the primitive regular semigroupH.

Example 4.8: We give an example, due to Bingjun, to show that an ideal extension
of a primitive regular-free semigroup by a primitive regular semigroup need not be
a primitive extension. Let A = 〈a〉 and B = 〈b〉 be infinite cyclic semigroups and let
C = 〈c; c2 = 1〉 be a cyclic group of order 2. Let S = A ∪ B ∪ C be the disjoint union.
Define product in S as follows:

ckam = amck = ckbm = bmck = am, and ambn = bnam = am+n

where k = 1, 2, m ≥ 1 and n ≥ 1. It is easy to verify that S is a semigroup and that
T = A ∪ B is an ideal in S. Now for any x ∈ T, xy = x for y ∈ T1 if and only if
y = 1. Hence it follows from the definition of natural partial order that T is primitive.
It is clearly regular-free and S/T is isomorphic to the group with zero, C0. Since C0

is a primitive regular semigroup, S is an ideal extension of a primitive regular-free
semigroup by a primitive regular semigroup. But, since a = ca = ac = cb = bc, a < b
in S by Proposition 4.2(3). Hence S not primitive. Notice that T is an ideal of S which
is not naturally embedded in S. This also gives an example of a subsemigroup of a
semigroup which is not naturally embedded in it.
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admissible family 4.2 congruences on regular semigroups

In this section we discuss some properties of congruences that applies mainly
to regular semigroups as well as certain basic representations of regular semi-
groups (see Subsection 2.2.1 and Subsection 2.5.1 for general definitions).
These results are of interest in their own right. Furthermore they are also
needed in our development structure theory of regular semigroups.4.2.1 Admissible and normal families
Let A = {Ai : i ∈ I} be a family of pairwise disjoint subsets of a semigroup S.
We say that A is an admissible family of subsets of S if there is a congruence ρ
on S such that for each i ∈ I, Ai is a ρ-class of S; that is, for each i ∈ I, there is
si ∈ S with Ai = ρ(si); in this case we also say that the congruence ρ admitsA.

Lemma 4.27. Let A be an admissible family of subsets of S. Then the set of all
congruences that admitsA is an interval in the lattice L of all congruences on S.

Proof. As in Proposition 2.7, let R(c) denote the smallest congruence on S con-
taining the relation R. Consider the relation

Θ =
⋃

{Ai × Ai : i ∈ I}; and let α = Θ(c).

By definition, for any Ai ∈ A and x ∈ Ai Ai ⊆ α(x). Since A is admissible,
there is a congruence ρ which admits A and so Θ ⊆ ρ. Then α ⊆ ρ and
so α(x) ⊆ ρ(x) = Ai. Hence α admits A and so is the smallest congruence
admittingA.

Let C denote the set of all congruences that admits A and let β = ∨C, the
join of C in L. Then it follows from Proposition 2.6 that

β =

















⋃

ρ∈C

ρ

















(t)

.

Clearly, Ai ⊆ β(x) for any Ai ∈ A and x ∈ Ai. If y ∈ β(x), by definition, there
exists n ∈ N, ρ j ∈ C for j = 1, 2, . . . , n and u j ∈ S for j = 0, 1, 2, . . . , nwith u0 = x,
un = y such that (u j−1, u j) ∈ ρ j, j = 1, . . . , n. Since ρ1 admits A, u1 ∈ Ai. If
u j−1 ∈ Ai, we similarly have u j ∈ Ai, j = 1, . . . , n. By induction, it follows that
y ∈ Ai and so β(x) = Ai. Hence β admitsA and is clearly the largest congruence
that admits A. If ρ is any congruence on S such that α ⊆ ρ ⊆ β then for any
x ∈ Ai, we have

Ai = α(x) ⊆ ρ(x) ⊆ β(x) = Ai.

Thus ρ also admitsA. Therefore C = [α, β].
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normal
idempotent!– ρ-class

We say that a family A of subsets of S is normal in S if there is a unique
congruence ρ that admitsA. In this case, the interval [α, β] of congruences that
admitsA reduces to a single congruence so that α = ρ = β. For example, if ρ
is a congruence on a group G, so that ρ is the coset decomposition of G with
respect to a normal subgroup of G — see Example 2.2. Then any congruence
class of ρ is normal.

In the following, we use the following notation: if T is a subsemigroup of
S, RegT denotes the set of elements of T that are regular in T; that is, u ∈ RegT
if and only if T contains at least one inverse of u. Note that RegT need not be
a subsemigroup of T. If ρ is a congruence on S we will refer to those ρ-classes
that are idempotents in S/ρ as idempotent ρ-classes. Note that any idempotent
ρ-class is a subsemigroup of S. The following lemma shows that these are
precisely ρ-classes of the form ρ(e) for e ∈ E(S) (see also (Theorem 3.5). We
need the following lemma.

Lemma 4.28. Assume that ρ is a congruence on the regular semigroup S and let A be
an idempotent ρ-class. If x ∈ A, x′ ∈ V(x) and h ∈ S (x′x, xx′), then h, hxh ∈ RegA.

Proof. Let φ = ρ# : S→ S/ρ be the quotient homomorphism, and let Aφ = e′ ∈

E(S/ρ) be the idempotent represented by the idempotent ρ-class A. If f = x′x

and 1 = xx′ clearly,

f ′ = fφ L xφ = e′ R 1φ = 1′

and so, by Theorem 3.5, hφ ∈ S ( f ′, 1′) = {e′}. Hence h ∈ A and since h is an
idempotent, h ∈ RegA. Also, (hxh)φ = e′ and so hxh ∈ A. Let k ∈ S (x′hx, h).
Now,

(x′hx)φ = (x′φ)(hxφ) = (x′φ)(xφ) = (x′x)φ = fφ = f ′.

Hence we have kφ ∈ S ( f ′, e′) = {e′} by Proposition 3.9 since f ′ L e′. Also,
since h is an inverse of itself and hx′ is an inverse of xh, by Theorem 3.7,
u = hx′kh is an inverse of hk(xh) = hxh. Since

uφ = (hφ)(x′φ)(khφ) = (e′)(x′φ)(e′),

by Proposition 2.40(a), uφ is an inverse of e′ in He′ . Since e′ is an idempotent,
it is an inverse of itself. Hence by Proposition 2.40(b), uφ = e′ and so u ∈ A.
This proves that hxh is a regular element of A.

Theorem 4.29. Let ρ be a congruence on the regular semigroup S and let A be an
idempotent ρ-class of S. Then RegA is a regular subsemigroup of A.

Proof. As above wewrite φ = ρ#. Let e′ = Aφ and T = RegA. If x, y ∈ T, then T

contains inverses x′ and y′ of x and y respectively. Let h ∈ S ( f , 1)where f = x′x
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and 1 = yy′. Then by Theorem 3.5 θ = E(φ) is a regular bimorphism so that θ
satisfies (RM1). Since f ′ = fφ =L xφ = e′ R 1φ = 1′, by Proposition 3.12, we
have

hφ ∈ S ( f ′, 1′) = S (e′, e′) = {e′}.

Hence hφ = e′ and by so y′hx′ ∈ A. By Theorem 3.7, y′hx′ is an inverse of xy
and so xy ∈ T. Hence T is a subsemigroup of A.

For many interesting classes of congruences on a regular semigroup S

the congruence classes containing idempotents are regular subsemigroups.
For example, idempotent separating congruences (see the § Subsection 4.2.2
below), Rees congruences, etc have this property. Also, many subclasses of the
class of regular semigroups have the property that for any congruence ρ on a
regular semigroup S belonging to one of these class, all idempotent ρ-classes
are regular. For example, we have:

Corollary 4.30. Let ρ be a congruence on the regular semigroup S.

(a) If S is primitive then a non-zero idempotent ρ-class is completely simple and
the 0 ρ-class is an ideal in S.

(b) If S/ρ is an inverse semigroup, then any idempotentρ-class is a regular subsemi-
group of S. In particular, if S is an inverse semigroup, then every idempotent
ρ-class is an inverse subsemigroup of S.

Proof. Again, we write φ = ρ# in the following.
Assume that S is primitive and let A be an idempotent ρ-class. If 0 ∈ A, it

is clear that A is an ideal in S. So, assume that 0 < A. Let x ∈ A, x′ ∈ V(x) and
h ∈ S ( f , 1) where f = x′x and 1 = xx′. Then by Lemma 4.28, h ∈ A and so,
h , 0. Since S is primitive and h ωL f , we have h L f . Similarly h R 1 and so,
h H x. Let x′ be the inverse of x in Hh. Then x′φ is the inverse of xφ = hφ in
the H -classHhφ in S/ρ and hence, by Proposition 2.40(b), x′φ = hφ. Therefore
x′ ∈ A. This implies that A is a primitive regular semigroup with out zero and
hence A is completely simple. This proves (a).

To prove (b), assume that A is an idempotent ρ-class in the regular semi-
group S and x ∈ A. If x′ ∈ V(x), since xφ is an idempotent, xφ and (x′)φ are
inverses of xφ in S/ρ. Since, S/ρ is an inverse semigroup, we have xφ = x′φ.
Hence x′ ∈ A and soA is regular. If S is an inverse semigroup, by Theorem2.44,
S/ρ is an inverse semigroup and so, by the above,A is a regular subsemigroup
of an inverse semigroup. Therefore A is an inverse subsemigroup of S.

Example at the end of this section shows that shows that idempotent con-
gruence classes may not be regular for congruences on arbitrary regular semi-
groups.
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Next theorem show that any congruence ρ on a regular semigroup S is
uniquely determined by the set {Regρ(e) : e ∈ E(S)} of regular subsemigroups
of idempotent congruence classes of ρ; in particular, the set of all idempotent
congruence classes of ρ form a normal family of subsets in S.

Theorem 4.31. Let ρ and σ be congruences on a regular semigroup S. The follow
statements are equivalent.

(a) For all e ∈ E(S), Regρ(e) = Reg σ(e).

(b) For all e ∈ E(S), ρ(e) = σ(e).

(c) ρ = σ.

Consequently, given any congruence ρ on S, the set

Aρ = {ρ(e) : e ∈ E(S)}

is a normal family of subsets of S.

Proof. Observe that implications (b)⇒ (a) and (c)⇒ (b) are obvious. So it is
sufficient to prove the implications: (a)⇒ (b)⇒ (c).(a) ⇒ (b) For convenience, let φ = ρ# and ψ = σ#. Choose e ∈ E(S) and
x ∈ ρ(e). Also let h ∈ S ( f , 1) where f ∈ E(Lx) and 1 ∈ E(Rx). Then, by
Lemma 4.28, h, hxh ∈ Reg ρ(e). Then by (a), h, hxh ∈ σ(e). Now, (a) implies that
ρ and σ induces the same biorder congruence on E = E(S). Therefore

fφ L xφ = eφ R 1φ⇒ fψ L eψ R 1ψ.

Since fψ L xψ R 1ψ by the choice of f and 1, it follows that eψ H xψ. Hence

(exe)ψ = (eψ)(xψ)(eψ) = xψ

and so exe σ x. Since h and hxh are regular elements of ρ(e), we have h σ e and
hxh σ e by (a). Therefore

x σ exe σ hxh σ e

which implies that x ∈ σ(e). Hence ρ(e) ⊆ σ(e). Interchanging ρ and σ we
obtain σ(e) ⊆ ρ(e) and hence ρ(e) = σ(e).(b) ⇒ (
) Let xρy. Suppose that a ∈ V(x) and b ∈ V(y). Then, using the fact
that ρ is right compatible, we get xaρya. Since xa ∈ E(S), by (b), we have xaσya.
Similarly, bxσby. Using these and the fact that σ is a congruence, we have

x = xax σ yax = ybyax σ ybxax

= ybx σ yby = y.
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kernel normal system
Aρ: Kernel normal system of ρ

Thus (x, y) ∈ σ so that ρ ⊆ σ. The arguements can be repeated with ρ and σ
interchanged giving σ ⊆ ρ. Hence (c) follows.

The last statement is a consequence of the definition of normal families.
Whence the theorem.

Aa inClifford andPreston [1967],normal familyA = {Aλ : λ ∈ Λ}of subsets
of the regular semigroup S is called a kernel normal system (a KN-systemor even
KNS for short) on S if there is a congruence ρ on S such that

A = Aρ = {ρ(e) : e ∈ E(S)}. (4.7a)

Given the congruence ρ, the familyAρ = {ρ(e)}will be called the kernel normal
system of ρ. The kernel normal systemAφ of any homomorphism φ : S → T

is the kernel system of the congruence κφ of φ. Thus

Aφ = {
(

(φ ◦ φ−1)(e)
)

: e ∈ E(S)}. (4.7b)

We shall consider the problem of characterization of KN-systems of inverse
semigroups in the next chapter. The characterizationof KN-systems on regular
semigrous will be considered later later in the chapter on inductive groupoids
(Chapter 6).

Remark 4.4: The last statement (as well as the statement (b)) of the theorem
above is classical ([see Clifford and Preston, 1967, Theorem 7.38]). However,
the statement (a) is considerably stronger. An alternate approach for its proof
is using inductive groupoids; in fact, it is a consequence of the equivalence
of the category RS of regular semigroups and the category IG of inductive
groupoids (see Chapter 6).

In this context, there is considerable variation in terminologies used by
various authors. In Clifford and Preston [1967] the term kernel normal system
is used to denote to denote a family of subsemigroups satisfying the conditions
in Equation (4.7a), especially in the case when S is an inverse semigroup.
However, the KNS of a congruence ρ on S is called the kernel of ρ in Clifford
and Preston [1967]. On the other hand ? and Pastijn and Petrich [1985,
1986] uses the term kernel for the union of all congruence classes that contain
idempotents. We will not use these here. We shall define kernels later so that
they are functors on an appropriate domain category (See Equation (4.8b) for
definition of kernels of idempotent separating congruences.)
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congruence!idempotent separatingExample 4.9: Consider the regular semi-
group

S = {h11, h12, h21, a, 111, 112, 121, 122}

indicated by the D-class diagram on the
right in which all elements, except a, are
idempotents. In the diagram slanted ar-
rows (↔) represent L -relation, horizontal
arrows representR-relation and the dotted
(vertical) arrows represent the natural par-
tial order. It is easy to see that

ρ = {(x, y) : x ≤ y or y ≤ x}

where ≤ denote the natural partial order, is
a congruence on S such that S/ρ is a rect-
angular band. Here the congruence class
ρ(122) = {122, a} is not a regular subsemi-
group of S.

h11 h12

h21 a

111 112

121 1224.2.2 Idempotent separating 
ongruen
es
A congruence ρ on a semigroup S is said to be idempotent separating if any
ρ-class contain utmost one idempotent.

Theorem 4.32. The following statements are equivalent for a congruence ρ on a
regular semigroup S.

(1) ρ is idempotent separating;

(2) ρ ⊆H ;

(3) for each e ∈ E(S), ρ(e) is a subgroup of He;

(4) the bimorphism E(ρ#) : E(S)→ E(S/ρ) is a biorder isomorphism.

When ρ satisfies these equivalent conditions, then for all x ∈ S we have

ρ(x) =















ρ(e)x, if e ∈ E(Rx);

xρ( f ), if f ∈ E(Lx).

Proof. (1) ⇒ (2). This follows by Proposition 3.47.(2)⇒ (3). If e ∈ E(S), (2) implies that ρ(e) is a subsemigroup of He. If u ∈ ρ(e)
and if u′ is the inverse of u in He, then u′φ is the inverse of uφ = eφ in Heφ,
where φ = ρ#. Hence u′φ = eφ which implies that u′ ∈ ρ(e). Therefore ρ(e) is a
subgroup of He.
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ω-partial functor
Fe:ω-partial functor of F on ω(e)

(3) ⇒ (4). Since φ = ρ# is a homomorphism of regular semigroups, by The-
orem 3.5, the bimorphism θ = E(φ) is regular. Statement (3) implies that any
ρ-class containing an idempotent is a subgroup and hence contains only one
idempotent. It follows that θ is injective. By Theorem 2.41, it is surjective.
Thus θ is a bijective regular bimorphism and so, by Corollary 3.25, θ is an
isomorphism.(4)⇒ (1). Statement (4) clearly implies that no ρ-class contain more than one
idempotent.

Let e ∈ E(Rx). If u ∈ ρ(e), then (e, u) ∈ ρ and so, (x, ux) = (ex, ux) ∈ ρ. Hence
ρ(e)x ⊆ ρ(x). If y ∈ ρ(x), and if x′ ∈ V(x) with xx′ = e, then yx′ ∈ ρ(e). Also,
since x H y, y L x′x and so, y = yx′x ∈ ρ(e)x. Thus ρ(x) = ρ(e)x. Dually
ρ(x) = xρ( f ) for any f ∈ E(Lx).

Idempotent separating congruences on semigroups that are not regular,
may not satisfy condition (2), (3) or (4) above (see Example 4.10).

Recall that (see Subsection 3.3.3) a regular semigroup S is fundamental if
there is no non-trivial idempotent separating congruence on S (see Proposi-
tion 3.47). By Proposition 3.46 and Proposition 3.46 µ(S) =H(c) is the maimum
idempotent congruence on a regular semigroup S and the semigrup S/µ(S) is
fundamental.

Let ρ be an idempotent separating congruence on the regular semigroup S.
By Theorem 4.32(4), E(S) is isomorphic to E(S/ρ) and hence we may identify
these biordered sets (idetifying e ∈ E(S) with eρ#). Therefore the KN-system
Aρ (Equation (4.7b)) of ρmay be regarded as a function on E(S) taking values
in the set of all subgroups of S. In this case, more is true: they are group-valued
functors on the preorder (E, ω).

Given a biordered set E, let Eω denote the preorder (E, ω) (see Subsec-
tion 1.3.1 for more details). Suppose that F : Eω → C be a functor to a category
C. For e ∈ E, the ω-partial functor of F on ω(e) is the restriction

Fe = F | ω(e) (4.8a)

of F to the preorder on the biordered subset ω(e) ⊆ E.
Let ρ be an idempotent separating congruence on the regular semigroup

S. For all e ∈ E and f ≤ e, define

G(e) = ρ(e) and uG( f , e) = u f , u ∈ G(e) (4.8b)

Since ρ is idempotent separating, G(e) = ρ(e) is a subgroup of He for all
e ∈ E. Also, if f ω e and u ∈ G(e), the fact that ρ is a congruence gives
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f u, u f ∈ G( f ) and f u, u f ≤ u in the natural partial order. Hence, f u = u f by
Proposition 4.7(c). It follows that

a(u, u−1) = 1ω(e) for all u ∈ G(e).

Also if u, v ∈ G(e), then we have

(uG( f , e))(vG( f , e)) = ( f u)( f v)

= f (uv) = (uv)G(e, f )

so that G( f , e) : G(e)→ G( f ) is a homomorphism such that

f u = uG(e, f ) ≤ u.

Again, for 1 ω f ω e, we haveG( f , e)G(1, f ) = G(1, e); alsoG(e, e) = 1ω(e) for all
e ∈ E. Since, for each f ω e, ( f , e) is the unique morphism from f to e in the
preorder Eω , it follows that G : Eω → Grp is a contravariant functor.

Let x ∈ S and x′ ∈ V(x). Recall from Lemma 2.67 that a(x, x′) : h 7→ x′hx is
an order isomorphism of ω(xx′) onto ω(x′x) so that a(x, x′) is an isomorphism
of the preorder on ω(xx′) onto the preorder ω(x′x). Again, the fact that ρ is
a congruence gives that the map c

ρ
1 : u 7→ x′ux is an isomorphism of G(1) to

G(x′1x) = G(1a(x, x′)) for all 1 ω xx′. Moreover, if h ω 1 ω e, the following
diagram commute:

G(1)
c
ρ
1

G(h,1)

G
(

1a(x, x′)
)

G(ha(x,x′),1a(x,x′))

G(h)
c
ρ

h

G (ha(x, x′))

(d.gkr)

For, if u ∈ G(1), we have

uc
ρ
1G

(

ha(x, x′), 1a(x, x′)
)

= (x′hx)(x′ux) = x′h(xx′)ux = x′hux

= (uG(h, 1))cρ
h

It follows that to each x ∈ S and x′ ∈ V(x), there corresponds a transformation
(see § Subsection 1.2.2)cρ(x, x′) : Gxx′ → Gx′x of the partial functor Gxx′ of
G = Gρ to Gx′x such that

vcρ(x, x′) = a(x, x′), (4.8c)

and the component of the natural transformation cρ(x, x′) at 1 ω xx′ is given
by

uc
ρ
1(x, x

′) = x′ux for all u ∈ G(1). (4.8d)

We have thus proved the direct part of the following theorem:
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Theorem 4.33. Let ρ be an idempotent separating congruence on a regular semigroup
S. Then Equation (4.8b) defines a contravariant functor G = Gρ : Eω → Grp
satisfying the following conditions:

(Gkr1) For all e ∈ E, G(e) is a subgroup of He such that

G(e) ⊆ {u ∈ He : a(u, u−1) = 1ω(e)}.

(Gkr2) For 1 ω e, we have uG(1, e) ≤ u for all u ∈ G(e).

(Gkr3) For x ∈ S and x′ ∈ V(x), there is a unique a transformation cρ(x, x′) : Gxx′ →

Gx′x satisfying Equation (4.8c) and Equation (4.8d).

Conversely, if G is a contravariant group-valued functor on Eω(S) satisfying the
conditions above, then

ρ = {(x, y) : for some e ∈ E(Rx) ∃ u ∈ G(e) with y = ux} (4.9)

is an idempotent separating congruence on S such thatGρ = G.

Proof. Since we have already proved the direct part, it is sufficient to verify the
converse. Suppose that G is a contravariant group-valued functor on Eω (S)
satisfying conditions (Gkri), i = 1, 2, 3 and let ρ be defined by Equation (4.9).
First, we note that ρ ⊆H . For, let (x, y) ∈ ρ. By the definition there is
some e ∈ E(Rx) and u ∈ G(e) ⊆ He such that y = ux. Now, Corollary 2.27,
the translation ρx : L(e) → L(x) is an isomorphism of left ideals and so, by
Theorem 2.25, ρx is a bijection of He onto Hx. Hence y = ux ∈ Hx. Moreover,

ρ = {(x, y) : for all e ∈ E(Rx) ∃ u ∈ G(e) with y = ux};

= {(x, y) : for all f ∈ E(Lx) ∃ v ∈ G( f ) with y = xv}.
(4.9∗)

Let σ be the relation defined by the first equation above and let (x, y) ∈ ρ. Then
y = ux for some u ∈ G(e) with e ∈ E(Rx). For any e′ ∈ E(Rx), e ∈ V(e′) and so by
(Gkr3), there exist a transformation cρ(e′, e) : Ge → Ge′ whose component cρe is
the isomorphism u 7→ ue′ ofG(e) toG(e′). Since y = ux, we have ue′ ∈ G(e′) and
(ue′)x = u(e′x) = ux = y. This implies that ρ ⊆ σ. The reverse inclusion clearly
hold and so, ρ = σ. Again, let τ be the relation defined by the second equality
in Equation (4.9∗). If f ∈ E(Lx) and if x′ is the inverse of x in Le∩R f , then y = ux

if and only if y = x(x′ux). By axiom (Gkr 3), u 7→ x′ux is an isomorphism of the
group G(xx′) = G(e) onto G(x′x) = G( f ) and so, x′ux ∈ G( f ). Thus ρ ⊆ τ. The
reverse inclusion follows by duality. Therefore ρ satisfies Equation (4.9∗).

Clearly ρ is reflexive. If (x, y) ∈ ρ, then from y = ux, u ∈ G(e), we have
x = u−1y. By (Gkr1), u−1 ∈ G(e) and so, (y, x) ∈ ρ and so ρ is symmetric.
Transitivity can be proved in a similar way. Thus ρ is an equivalence relation.
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kernel!group –
Gρ: kernel of ρ

If u ∈ G(e) and f ω e, then from (Gkr1), fa(u, u−1) = f and so f u = u f .
Since f u R f L u f , it follows that f u ∈ He and f u ≤ u. Since by (Gkr2),
uG(e, f ) ≤ u, it follows by Proposition 4.7(c) that f u = u f = uG(e, f ).

Now suppose that (x, y) ∈ ρ and z ∈ S. Let x′ ∈ Vx. By Equation (4.9∗),
y = ux for some u ∈ G(e) with e = xx′. Let f = x′x, 1 ∈ E(Rz) and h ∈ S ( f , 1).
Then h′ = xhx′ ω e and so uh′ = h′u = uG(e, h′) ≤ u by axioms (Gkr1) and
(Gkr2). By Theorem 3.7,

xz = (xh) ∗ (hz), yz = (yh) ∗ (hz), and h′ ∈ E(Rxz).

It follows from Corollary 2.27 that the translation ρx : L(e) → L(x) = L( f ) is
an isomorphism of left ideals and so, by Theorem 2.25, ρx is a bijection of Hh′

onto (Hh′)ρx = Hh′x. Hence, since uh′ H h′, we have h′x H uh′x = h′ux = h′y.
Therefore

yh = uxh = uxhx′x = uh′x H h′x = xh and so, xz H yz.

Since yz = uh′(xz) and uh′ ∈ G(h′), (xz, yz) ∈ ρ by Equation (4.9).
By Equation (4.9∗), the definition of ρ is selfdual. Hence dualizing the

arguements above, we conclude that (zx, zy) ∈ ρ. Thus ρ is a congruence. It
follows from Theorem 4.32(3) and axiom (Gkr1) that ρ is idempotent separat-
ing. By the definition of ρ, it is clear that Gρ(e) = ρ(e) = G(e) for all e ∈ E(S).
Similarly for all f ω e and u ∈ G(e) we have

uGρ(e, f ) = f u = uG(e, f ).

ThereforeGρ = G.

The contravariant group-valued functor G : Eω (S) → Grp satisfying the
conditions (Gkri), i = 1, 2, 3 will be called a group kernel on S. If ρ is an
idempotent separating congruence on S, the group kernel Gρ is called the
kernel of ρ. Notice that the KN-system Aρ Remark 4.4 of ρ is, in this case, a
set of subgroups of S and is the image of the vertex-map of the functor Gρ.
Consequently, the map vG : e 7→ G(e) completely determine the functor G.

Proposition 4.34. Let µ = µ(S) denote the largest idempotent separating congruence
on the regular semigroup S and let Gµ denote its kernel. Then for each e ∈ E(S),

Gµ(e) = {u ∈ He : a(u, u−1) = 1ω(e)}. (4.10)

Proof. For each e ∈ E = E(S), letCe denote the set on the right of Equation (4.10).
Then by Lemma 2.67,

Ce = {u ∈ He : u1 = 1u for all 1 ω e}.



260 4. regular semigroups

It is clear that, if u, v ∈ Ce, then uv ∈ Ce. If u ∈ Ce and 1 ω e, then from
u1 = 1u, we have 1u−1 = u−11; hence u−1 ∈ Ce. Thus Ce is a subgroup of He.
Furthermore, if f ω e, then the map

C(e, f ) : u ∈ Ce 7→ f u

is a homomorphism of Ce to C f . We proceed to show that

G : e 7→ Ce, ( f , e) 7→ C(e, f )

is a group kernel on S in the sense defined above (that is, satisfies conditions
(Gkri), i = 1, 2, 3).

By the remarks above,G satisfies (Gkr1). For 1 ω e, and u ∈ He, 1u R 1 and
u1 L 1. Hence u1 = 1u implies that u1 L 1 R 1u and so, v = u1 = 1u ∈ H1.
It is clear that v commutes with every h ω 1 and so, v ∈ C1. Also v = 1u ≤ u.
Hence C(e,1) : u 7→ 1u is a homomorphism of Ce to C1 that satisfies (Gkr2).

To prove (Gkr3), let x ∈ S and x′ ∈ V(x). If e = xx′ and f = x′x, by
Lemma 2.67 a(x, x′) : h 7→ x′hx is an order isomorphism from ω(e) onto ω( f ).
Now v ∈ Ce if and only if hv = vh for all h ω e. This is true if and only if

(x′hx)(x′vx) = x′hvx = x′vhx = (x′vx)(x′hx) for allh ω e.

It follows that v ∈ Ce if and only if x′vx ∈ C f . Let 1 ω e and u, v ∈ C1. Since

x′(uv)x = (x′ux)(x′vx) for allu, v ∈ C1

the map γ1 : u 7→ x′ux is an isomorphism of C1 onto Cx′1x. A routine verifoica-
tion shows that for all h ω 1, the following diagram commutes.

C1
γ1

C(1,h)

C(x′1x)

C(x′1x,x′hx)

C(h) γh
C(x′hx)

(d1.gkr)

It follows that there is a transformation cρ(x, x′) of the partial functor : Ge of G
to G

f
such that

vcρ = a(x, x′)

and the natural transformation cρ is the map

1 ∈ ω(e) 7→ γ1.

Therefore (Gkr3) holds. Consequently, by Theorem 4.33, G is a group ker-
nel and there is a unique idempotent separating congruence σ defined by
Equation (4.9) with G = Gσ.
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Since µ is an idempotent separating congruence, by axiom (Gkr1), µ(e) ⊆
Ce = σ(e). This implies, by Equation (4.32) that µ ⊆ σ. Since µ is the largest
idempotent separating congruence on S, we have µ = σ and so G = Gµ.

Clearly, every group kernelG of S is a subfunctor ofGµ in the sense defined
by Equations (1.51) and (1.52) and so, Gµ is the maximum group kernel on S

and is closely related to the structure of S. The following theorem list a number
of equivalent descriptions of themaximum idempotent separating congruence
µ = µ(S) on a regular semigroup S. The statement (2) below is due to Hall
Hall [1973] and is a straightforward generalization of Howie’s description
Howie [1964] of µ(S) on an inverse semigroup S ([Clifford and Preston, 1967,
see also]). Statements (3) and (4) are due to Nambooripad [1979] and Grillet
[1974a] respectively and are related to the fundamental representations of
regular semigroups. We shall come back to this later in this chapter.

Theorem 4.35. Let S be a regular semigroup. The following statements are equivalent
for (x, y) ∈H .

(1) (x, y) ∈ µ(S);

(2) for all x′ ∈ V(x) and 1 ω e = xx′, there exist a unique y′ ∈ V(y) such that
x′1x = y′1y.

(3) there exists x′ ∈ V(x) and y′ ∈ V(y) such that a(x, x′) = a(y, y′);

(4) for each z ∈ S, Lzx = Lzy and Rxz = Ryz;

Proof. (1)⇒ (2). Let x′ ∈ V(x) and 1 ω e = xx′. (1) implies by Equation (4.9)
that y = ux where u1 = 1u for all 1 ω e. Now the translation λx′ : R(x) =
R(e) → R(x′) is an isomorphism of right ideals. Since u−1 H e, x′u−1 H x′.
Now y′ = x′u−1 is an inverse of y = ux in Hx′ and

y′1y = x′u−1(1u)x = x′u−1(u1)x = x′(u−1u)1x = x′1x

for all 1 ω e. If y′′ ∈ V(y) also satisfies this, taking 1 = e = xx′, we have
x′x = y′′y. Hence

x′ = y′′yx′ = y′′uxx′ = y′′ue = y′′u and so, y′′ = x′u−1 = y′.

This proves the uniqueness of y′ ∈ V(y).(2) ⇒ (3). This is an immediate consequence of the definition of the map
a(x, x′) (see Equation (2.44)).



262 4. regular semigroups(3) ⇒ (4). Let z ∈ S. By (3), there exist x′ ∈ V(x), y′ ∈ V(y) such that
a(x, x′) = a(y, y′). Since x H y, S (z, x) = S (z, y) (see Proposition 3.12).
If h ∈ S (z, x), e = xx′ and f = x′x, then he ω e and so, by (3), we have
x′hx = x′hex = y′hey = y′hy. Now

(hx)(x′h)(hx) = h(xx′)hhx = hx, (x′h)(hx)(x′h) = x′hh(xx′)h = x′h

and so x′h is the inverse of hx in Lh ∩ Rx′hx. Similarly, y′h is the inverse of hy in
Lh ∩ Ry′hy. Therefore the equality x′hx = y′hy implies that hx H hy. Hence

zx = (zh) ∗ (hx) H (zh) ∗ (hy) = zy

which gives Lzx = Lzy. Similarly, Rxz = Ryz.(4) ⇒ (1). This is a consequence of the following proposition.

Proposition 4.36. Let S be a regular semigroup. Then

µl(S) = {(x, y) : Lzx = Lzy ∀ z ∈ S} (4.11a)

is the largest congruence on S contained in L . Dually,

µr(S) = {(x, y) : Rxz = Ryz ∀ z ∈ S} (4.11b)

is the largest congruence on S contained in R. Moreover, µ(S) = µl(S) ∩ µr(S).

Proof. Clearly, µl = µl(S) is an equivalence relation. Let (x, y) ∈ µl and u ∈ S.
Then for any z ∈ S,

zx L zy⇒ z(xu) L z(yu), and

z(ux) = (zu)x L (zu)y = z(uy)

and so (xu, yu), (ux, uy) ∈ µl. So µl is a congruence. Also for (x, y) ∈ µl, x L ey

where e ∈ E(Rx). Hence x ∈ Sy. Similarly y ∈ Sx and so x L y. Therefore
µl ⊆L . If ρ is any congruence contained in L , then for any (x, y) ∈ ρ and z ∈ S,
(xz, yz) ∈ ρ which implies that Lzx = Lzy. Thus ρ ⊆ µl.

Dually µr = µr(S) is the largest congruence contained in R. Now, since
µ = µ(S) ⊆H ⊆L , µ ⊆ µl and similarly, µ ⊆ µr. Hence µ ⊆ µl ∩ µr. Since
µl ∩ µr ⊆L ∩ R=H , by Theorem 4.32, µl ∩ µr is an idempotent separating
congruence on S. Hence we conclude, by Proposition 3.47, that µ = µl ∩µr is a
congruence contained in H and so µ ⊆ µ(S). On the other hand, it is clear that
µ(S) ⊆ µl and µ(S) ⊆ µr and so, µ(S) ⊆ µ. Hence µ = µ(S).
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By Proposition 3.47 a congruence ρ on S is idempotent separating if and
only if ρ ⊆ µ = µ(S). Hence the set of all idempotent separating congruences
on S is the order ideal L(µ) of the lattice L = LS. Hence the lattice L(µ) of
all idempotent separating congruences on S is a complete lattice. Further for
ρ ∈ L(µ) and each e ∈ E(S), Gρ(e) = ρ(e) is the kernel of the homomorphism
ρ#|He of He. Hence for every e ∈ E(S), Gρ(e) is a normal subgroup of He.
HenceGρ(e) is a member of the latticeN(He) of all normal subgroup ofHe (see
Example 1.2). Therefore the map Gρ : e 7→ Gρ(e) is a member of the product
lattice

N =
∏

e∈E(S)

N(He).

By Theorem 4.33, the map ρ 7→ Gρ is a bijection of the lattice L(µ) and the set
all group kernels on S. By Theorem 4.32, the vertex map

vG : e 7→ G(e) = ρ(e)

of a group kernel G = Gρ completely dertermine it. These functions are inN .
Hence there is a bijection

vG : ρ 7→ vGρ

between idempotent separating congruences on S and functions in N that
are vertex maps of group kernels. Now the order in the product lattice N is
defined componentwise; that is if α, β ∈ N , then

α ≤ β ⇐⇒ αe ⊆ βe

for all e ∈ E(S). Also for ρ, σ ∈ L(µ)

ρ ⊆ σ ⇐⇒ Gρ(e) ⊆ Gσ(e)

⇐⇒ Gρ ⊆ Gσ.

Hence vG is an order embedding of L(µ) into N . Since the ∧ operation is the
intersection in both L(µ) and N(He) (for every e ∈ E(S)), it is clear that vG
preserves ∧. To see that vG also preserves ∨, let Ω ⊆ L(µ) and let σ = ∨Ω. By
Proposition 2.6,

σ = (∪Ω)(t) .

Hence if e ∈ E(S) and u ∈ Gσ(e) = σ(e), then there exists ρi ∈ Ω, i = 1, 2, . . . , r
such that

u ∈ (ρ1 ∨ ρ2 ∨ · · · ∨ ρr)(e)

∈ ρ1(e) · . . . ρr(e)
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by Example 1.2

= u1u2 . . .ur

where ui ∈ ρi(e), i = 1, 2, . . . , r. This shows, by the definition of ∨ inN(He), that
u ∈ ∨{ρ(e) : ρ ∈ Ω}where the right-hand side denotes the join inN(He). Hence

σ(e) = ∨{ρ(e) : ρ ∈ Ω}

for all e ∈ E(S). Therefore

G∨Ω = Gσ = ∨
{

Gρ : ρ ∈ Ω
}

.

This shows thatG : L(µ)→N is a lattice embedding. Since each latticeN(He)
is modular by Example 1.2, N is a product of modular lattices and so, since
L(µ) is isomorphic to a sublattice ofN ,L(µ) is modular (see § Subsection 1.1.3).
We thus have

Theorem 4.37. Let S be a regular semigroup. Then the lattice (under inclusion) of all
idempotent separating congruences on S is a complete modular sublattice of the lattice
LS of all congruences on S with 1 = µ(S).

Example 4.10: LetM = X∗. Then M is a semigroup with only one idempotent and so,
any congruence on M is idempotent separating. Since any monoid is a homomorphic
image of a free monoid, there are non-trivial congruences onM. But the H relation on
M is the identity relation and so, no non-trivial congruence onM satisfies condition (2)
of Theorem 4.32.

Example 4.11: Let S = TX be the semigroup of all transformations of a setX. Then S is
regular (see Examples 2.10 and 2.15). Suppose that e ∈ E(S). If α ∈ µ(e), then α H e and
so Imα = Im e = Y and πα = πe = π (say). By Proposition 4.34, 1α = α1 for all 1 ω e.
Now, 1 ω e if and only if Im 1 ⊆ Y and π1 ⊇ πe. So, for any x ∈ Im 1, x1α = xα = xα1
which implies that xα ∈ Im 1 for all x ∈ Im 1. Now let x ∈ Y and let cx be the constant
transformation with value x. Then cx is an idempotent with cx ω e and Im cx = {x}. It
follows from the remarks above that xα = x. This is true for all x ∈ Y and so α = e.
Hence µ(e) = {e} and so µ is the identity congruence on S; that is, S is fundamental.

Example 4.12: Let S = L T (V) be the semigroup of all linear transformations of a
vector space V over a field k. Then S is regular (see Examples 2.11 and 2.15). Suppose
that e ∈ E(S). If α ∈ µ(e), then α H e and so Imα = Im e = U and N(α) = N(e) = N
(say). By Proposition 4.34, 1α = α1 for all 1 ω e. Suppose that e , 0 and let v ∈ U, v , 0.
Then for any 1 ω e, 1 , 0 and v , 0 ∈ Im 1, (v)1α = (v)α = (v)α1 and so, vα ∈ Im 1 for all
v ∈ Im 1. If dimU = 1, so that U = 〈v〉 for some v ∈ V, there is k ∈ k∗ with vα = kv since
vα ∈ U and α is a linear isomorphism of U onto itself. Then for all w ∈ U, w = k′v and
so, wα = k′(vα) = k′kv = k(k′v) = kw. Thus α = ke. Here k∗ denote the set of all non-zero
elements of k. If dimU > 1 we can see similarly that for any v , 0 ∈ U there is kv ∈ k∗

such that vα = (kv)v. Hence if v,w ∈ U are linearly independent, we have

(v +w)α = vα + wα = (kv)v + (kw)w = kv+w(v + w)



4.2. congruences on regular semigroups 265

congruence!primitive –
semigroup!–, categorical at 0
ideal!categorical –

and the linear independence gives kv = kv+w = kw. Thus there is k ∈ k∗ such that α = ke.
It follows that for all eE(S) with e , 0, µ(e) = k∗e. By Equation (4.32), if x ∈ S and
e ∈ E(Rx), we have

µ(x) = k∗ex = k∗x.

This completely determine the congruence µ on S. This equality has a nice geometric
interpretation. Note that S = L T (V) is a vector space over k. Then the congruence
class µ(x) can be identified with the projective point of x (or line joining x and 0 in S).4.2.3 Primitive 
ongruen
es on regular semigroups
In this subsection, to avoid repeating, by a primitive regular semigroup, we
mean a primitive regular semigroup with zero. Note that by Theorem 4.24,
primitive regular semigroup with out zero is completely simple. Therefore
a primitive regular semigroup with out zero will be referred to explicitly as
completely simple semigroup. Also, recall from § Subsection 2.1.1 that, given
a semigroup S, we write S = S0 to mean that the semigroup S has zero 0.

A congruence ρ on a semigroup S is called a primitive congruence if S/ρ is
a primitive semigroup; ρ is a completely simple congruence if S/ρ is completely
simple. Recall § Subsection 2.7.2 that a congruence ρ on a semigroup S = S0 is
0-restricted if ρ(0) = {0}.

We say that a semigroup S = S0 is categorical at 0 if S satisfy the condition

xyz = 0⇒ either xy = 0 or yz = 0 (4.12a)

for x, y, z ∈ S. An ideal I in S (not necessarily having 0) is called a categorical

ideal if I satisfies the condition

xyz ∈ I⇒ either xy ∈ I or yz ∈ I (4.12b)

for x, y, z ∈ S. It is clear that I is a categorical ideal in S if and only if the Rees
quotient S/I is categorical at 0.

Recall that given a surjective homomorphism f : S → T there is a ∨-
homomorphism f ∗ : LS → LT and a lattice isomorphism f∗ : LT → [κ f , 1]
(defined by Equation (2.19)) such that f∗ ◦ f ∗ = 1LT

(see Proposition 2.8). We
use these in the following statement.

Theorem 4.38. Let σ be a primitive congruence on the semigroup S. Then I = σ(0) is
a categorical ideal in S and q∗

I
(σ) is a 0-restricted primitive congruence on S/I, where

qI : S → S/I is the quotient homomorphism. Conversely if I is a categorical ideal
in S and ρ is a 0-restricted primitive congruence on S/I, then (qI)∗(ρ) is a primitive
congruence on S such that (qI)∗(ρ)(0) = I.

Proof. Let φ = σ# : S → S/σ = T be the quotient homomorphism. If σ is
a primitive congruence, then T is a primitive semigroup. Let u ∈ S and
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a ∈ I = σ(0). Then (ua)φ = uφaφ = uφ0 = 0 since aφ = σ(0) is the zero of
S/σ. Hence ua ∈ σ(0) = I. Similarly au ∈ I and so I is an ideal. Suppose
that a, b, c ∈ S and ab, bc < I. Then abφ = aφbφ is a non-zero element of a
primitive semigroup and so, by Theorem 4.24, aφ and bφ are elements of the
non-zero D-class of a completely 0-simple semigroup whose product is not
zero. Hence by Theorem 2.66(1) and Equation (2.48a), the trace product aφ ∗bφ
exists. Similarly, trace product bφ ∗ cφ also exists and so the trace product
aφ ∗ bφcφ = (abc)φ exists and is not zero. Therefore abc < I. Hence I is a
categorical ideal. Let ρ = q∗

I
(σ). Since the Rees congruence (§ Subsection 2.2.1)

ρI ⊆ σ, by Proposition 2.8(c), S/σ and (S/I)/ρ are isomorphic and so, ρ is a
primitive congruence on S/I. To show that ρ is 0-restricted, let u ∈ ρ(0) and let
a ∈ S with aqI = u. Again by Proposition 2.8(c), aφ = 0 since uσ′# = 0. Thus
a ∈ I and so u = aqI = 0. Therefore ρ is 0-restricted.

Conversely, let I be a categorical ideal and ρ be a 0-restricted primitive
congruence on S/I. If σ = qI∗(ρ), then, it follows from Proposition 2.8(c) as
above, that σ is a primitive congruence on Swith σ(0) = I.

The theorem above shows that primitive congruences on a semigroups are
determinedby categorical ideals inS and0-restrictedprimitive congruences on
semigroups that are categorical at 0. We proceed to study the later congruences
on regular semigroups.

Recall from Proposition 2.7(a) that, given any relation ρ on a semigroup
S, ρ(c) denotes the smallest congruence containing ρ (that is, the congruence
generated by the relation ρ).

Theorem 4.39. Let S = S0 be a regular semigroup which is categorical at 0 and let

β(S) = {(x, y) : for some z ∈ S − {0}, z ≤ x, z ≤ y} ∪ {(0, 0)} (4.13)

and let

β0(S) = β(S)
(c).

Then β0(S) is the finest 0-restricted primitive congruence on S.

Proof. For brevity, let β = β(S) and β0 = β0(S). We first show that β0 is a 0-
restricted primitive congruence on S. Letφ = β#0 : S→ S/β0 = T be the quotient
homomorphism. Suppose that x̄ ≤ ȳ, x̄ , 0 in T. Then by Theorem 4.20, for
each y ∈ S with yφ = ȳ we can find x ≤ y, x , 0 such that xφ = x̄. Then
(x, y) ∈ β and so, x̄ = xφ = yφ = ȳ. Hence T is a primitive semigroup. To show
that β0 is 0-restricted, we must show that, if (u, 0) ∈ β0, then u = 0. Now, since
β is reflexive and symmetric, β0 = β(c) is the transitive closure of the smallest
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directed subsetcompatible relation

βc = {(axb, ayb) : a, b ∈ S1 and (x, y) ∈ β}. (4.14)

containing β (see the proof of Proposition 2.7). Hence (u, 0) ∈ β0 implies there
is a finite sequence u0 = u, u1, . . . , un = 0 in S such that (ui−1, ui) ∈ βc for
i = 1, . . . , n. Hence, by induction, the desired conclusion will follow if we
show that (u, 0) ∈ βc implies u = 0. By Equation (4.14), if (u, 0) ∈ βc, then there
exist (x, y) ∈ β and a, b ∈ S1 such that u = axb and 0 = ayb. If (x, y) = (0, 0), then
clearly, u = 0. Otherwise, there is z , 0 such that z ≤ x and z ≤ y. Since S is
categorical at 0, ayb = 0 implies either ay = 0 or yb = 0. Assume that ay = 0.
Since z ≤ x, z ≤ y, by Proposition 4.3, there exists f , 1 ∈ E(Lz) with z = x f = y1.
Then ax f = az = ay1 = 0 and since S is categorical at 0 and x f = z , 0, we have
ax = 0. Therefore u = axb = 0. If yb = 0, we can similarly show that u = 0. We
have thus shown that β0 is a 0-restricted primitive congruence on S.

Now let σ be any 0-restricted primitive congruence on S and let (x, y) ∈ β.
If (x, y) = (0, 0), clearly (x, y) ∈ σ. Otherwise there is z , 0 with z ≤ x and z ≤ y.
Let ψ = σ# : S → S/σ be the quotient homomorphism. Since σ is 0-restricted,
zψ , 0, zψ ≤ xψ and zψ ≤ yψ. Since S/σ is primitive, this implies xψ = yψ and
so (x, y) ∈ σ. Hence β ⊆ σ. Since β0 is the smallest congruence containing β, we
have, β0 ⊆ σ.

Many authors have noted that the relation β(S) is the finest 0-restricted
primitive congruence on an inverse semigroup which is categorical at 0 (see
for example,Hall [1968],McAlister [1968]). This is not true for arbitrary regular
semigroups. We show below that under a mild restriction on the biordered set
E(S) of a regular semigroupS = S0 which is categorical at 0, β(S) is a congruence
and the classical result mentioned above follows as a consequence.

In what follows by a directed subset of a partially ordered set X we mean a
subset Y of X with the property that for all x, y ∈ Y, there is z ∈ Y with z ≤ x

and z ≤ y. A directed subset of a semigroup is a subset which is directed with
respect to the natural partial order. Again, for brevity, we write β for β(S) and
β0 for β0(S), if there is no ambiguity.

Proposition 4.40. For a regular semigroup S = S0 which is categorical at 0, the
following statements are equivalent.

(a) For every e ∈ E(S) − {0}, ω(e) − {0} is directed.

(b) β is an equivalence relation.

(c) β = β0.
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Proof. (a) ⇒ (b): Clearly β is reflexive and symmetric. To prove transitivity
assume that (x, y), (y, z) ∈ β. Then either x = y = z = 0 or none of them
is 0. In the former case, clearly, (x, z) ∈ β. In the latter case, there exist
u1,U2 ∈ S − {0} with u1 ≤ x, u1 ≤ y, u2 ≤ y and u2 ≤ z. Choose f ∈ E(Ry).
Then, by Proposition 4.3, there exist ei ∈ E(Rui ) ∩ ω( f ) such that ui = eiy. Since
ei R ui , 0, ei , 0 for i = 1, 2. By (a), there exists 1 ∈ ω( f ) − {0} such that 1 ω ei,
i = 1, 2. Then 1 R 1y , 0 and 1y = 1e1y = 1u1 ≤ u1 ≤ x. Similarly, 1y ≤ u2 ≤ z.
Hence by the definition of β, (x, z) ∈ β.(b) ⇒ (
): We must show that β is compatible. Let x, y, c ∈ S with x ≤ y and
x , 0. Choose y′ ∈ V(y) and let f = yy′, f ′ = y′y. Then by Proposition 4.3(2),
there is e ∈ ω( f ) with x R e and x = ey = ye′ where e′ = y′ey ω f ′. If cy = 0,
then cx = c f x = (cy)y′x = 0. Conversely, if cx = 0, then cye′ = 0. Since S is
categorical at 0 and ye′ = x , 0, cy = 0. Therefore when either cx or cy is zero,
the other is zero and (cx, cy) ∈ β. Next assume that cx , 0 , cy. Let 1 ∈ E(Lc),
h ∈ S (1, f ) and k ∈ S (1, e). Then, by (Theorem 3.7), cy = (ch) ∗ (hy) and it is
easy to see that h′ = y′hy ∈ E(Lcy) ∩ ω( f ′). Similarly, k′ = y′ky ∈ E(Lcx) ∩ω( f ′).
By Equation (4.13), every non-zero idempotent inω( f ′) is β-related to f ′. Since
e′, h′, k′ ∈ ω( f ′) − {0}, we have e′βh′βk′ by (b). It follows from Equation (4.13)
that the set F = ω(e′) ∩ ω(h′) ∩ ω(k′) − {0} , ∅. Choose t ∈ F. Then z = cyt ≤ cy

and z = cyt = cye′t = cxt ≤ cx by Proposition 4.3(3). Since z L k , 0, z , 0.
Hence by Equation (4.13), (cx, cy) ∈ β.

Let (u, v) ∈ β and c ∈ S. If u = v = 0 then clearly (cu, cv) ∈ β. Otherwise,
there is z , 0 such that z ≤ u and z ≤ v. Then by the above (cz, cu), (cz, cv) ∈ β.
Since β is an equivalence relationwe have (cu, cv) ∈ β. In a similar way, we can
prove that (uc, vc) ∈ β. Hence β is a congruence and so β = β0.(
)⇒ (a): Let e ∈ E(S)−{0}, f , 1 ∈ ω(e)−{0}. Then we have ( f , e), (1, e) ∈ β and
since β is a congruence ( f , 1) ∈ β. Then by Equation (4.13), there is z ∈ S such
that z , 0, z ≤ f and z ≤ 1. Then by Proposition 4.7(a), z ∈ E(S). This implies
that ω(e) − {0} is directed.

The fact that on an inverse semigroup S = S0 which is categorical at 0, β is
the finest 0-restricted primitive congruence is a consequence of the following
more general result.

Corollary 4.41. Let S = S0 be a locally inverse semigroup which is categorical at 0.
Then β is the finest 0-restricted primitive congruence on S.

Proof. Let e ∈ E(S)−{0}, f , 1 ∈ ω(e)−{0}. Since S is categorical at 0, 0 = f1 = f e1

implies either f e = f = 0 or e1 = 1 = 0. Hence f1 , 0. Since ω(e) is a
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semilattice, f1 ω f and f1 ω 1. Hence ω(e) is directed and the result follows
from the theorem above.

Theorem 4.39 applies to regular semigroups S = S0 which is categorical
at 0. For regular semigroups not necessarily having 0, we have the following
weaker form of this result.

Theorem 4.42. Let I be a categorical ideal in the regular semigroup S and let qI : S→
S/I denote the quotient map. Let

βI(S) = (qI)∗
(

β0(S/I)
)

(4.15)

where (qI)∗ is the lattice isomorphism of Equation (2.19) determined by qI. Then
βI = βI(S) is the finest primitive congruence on S such that βI(0) = I.

Proof. By Theorem 4.38, βI is a primitive congruence on S such that βI(0) =
I. Let σ be any other primitive congruence on S with σ(0) = I. Then by
Theorem 4.38, σ′ = (qI)∗(σ) is a 0-restricted primitive congruence on T = S/I

and so β0(T) ⊆ σ′. Hence, using Proposition 2.8(b), we have

βI = (qI)∗
(

β0(T)
)

⊆ (qI)∗ (σ′)) = σ.

Finally, we apply Theorem 4.39 to obtain the finest completely simple
congruence on a regular semigroup S. Notice that the congruence ρ below is
trivial if S has 0.

Theorem 4.43. Let S be a regular semigroup with out 0. Let

ρ = ρ(S) = {(x, y) ∈ S × S : z ≤ x, z ≤ y for some z ∈ S}. (4.16)

Then ρ(S)(c) is the finest congruence on S such that S/ρ(S)(c) is completely simple.

ρ(S) = ρ(S)(c) if and only if every ω-ideal in E(S) is directed. In particular, for a

locally inverse semigroup S with out 0, we have ρ(S) = ρ(S)(c).

Proof. Since S does not have 0, S0 is a regular semigroupwhich is categorical at
0 and so β0(S0) is the finest 0-restricted primitive congruence on S0. Then T =

S0/β0(S0) is a primitive regular semigroup whose non-zero elements T′ form
a subsemigroup. Now the natural partial order on T′ is the restriction of the
natural partial order of T to T′ by Corollary 4.4. Since T is primitive, it follows
that T′ is a primitive semigroup with out 0 and hence, by Theorem 4.24, T′ is
completely simple. Now ρ = ρ(S) is the restriction of the relation β(S0) defined
by Equation (4.13) to S. Since β0(S0) is 0-restricted, it is clear that ρ′ = ρ(c) is the
restriction of β0(S0) to S and T′ = S/ρ′. Hence ρ′ is a congruence on S such that
S/ρ′ is completely simple. Moreover if σ is any congruence on S such that S/σ
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universal group homomorphism on
S

is completely simple, then σ′ = σ∪{(0, 0)} is a 0-restrictedprimitive congruence
on S0 and hence β0(S0) ⊆ σ′. Hence ρ′ ⊆ σ. The remaining statements readily
follow from Proposition 4.40 and Corollary 4.41.

If ρ is any group congruence on a regular semigroup S, then the identity
ρ-class contain E(S). Therefore intersection of any set of group congruences
on S is a group congruence. Therefore S has the finest group congruence
κγ(S) = κγ and let

γ(S) : S→ G(S) = S/κγ (4.17)

denote the quotient homomorphism. The minimality of the congruence κγ
implies that the homomorphism γ(S) = γ has the following universal prop-
erty: Given any homomorphism θ : S → H to a group H, there is a unique
homomorphism θ̄ : G(S)→ H such that the following diagram commute:

H

−θ̄

S

θ

−γ(S)
G(S)

(4.18)

This is an immediate consequence of the third isomorphism theorem (see
Theorem 2.5). The homomorphism γ(S) will be called the universal group
homomorphism on S. Furthermore, since by Theorem 2.43, homomorphic
image of an inverse semigroup is inverse and since a completely simple inverse
semigroup is a group, the relation ρ(S) on an inverse semigroup S is the finest
group congruence on S. Thus, from the remarks above and properties of
natural partial order on inverse semigroups (Theorem 4.24), we have:

Proposition 4.44. Every regular semigroup S has the finest group congruence κγ.
Let γ(S) : S→ G(S) be the quotient homomorphism. Then γ = γ(S) has the universal
property that given any homomorphism θ : S → H to a group H there is a unique
homomorphism θ̄ : G(S)→ H making the diagram 4.18 commute. Further, if S is an
inverse semigroup then

κγ(S) = ρ(S) = {(x, y) ∈ S × S : ex = ey for some e ∈ E(S)} (4.19)

where ρ(S) is the relation defined by Equation (4.16).

Example 4.13: We give an example to show that a regular semigroup S may not have
the finest primitive congruence; in particular, the congruence β0 is not the smallest. For
let E = {e, f , 1} be the semilattice with e f = 1 and F = E0 = {e, f , 1, 0} be the semilattice
obtained by adjoining a zero to E. Then β = β0 is the relation with the partition {E, {0}}.
Also I = {1, 0} is a categorical ideal in F and the Rees congruence ρI is a primitive
congruence on F (so that ρI = βI). Clearly, in this case, β0 and ρI are not comparable.
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4.3 decompositions of semigroups

Decomposing a given semigroup S into semigroups of knowm type, say T, is
veryuseful ingetting an insight into the structure of the semigroupS. Often it is
also an effective method of determining the structure of a semigroup S relative
to the structure of semigroups of typeT. For example, if S is completely simple,
then by Theorem2.65S has a decomposition into groups and byCorollary 2.80,
it structure is determined relative to groups. In this section we consider two
such decompositions: the band decomposition and semilattice decomposition of
semigroups.4.3.1 Band and semilatti
e de
ompositions
Let S be a semigroup and let

B = {Sα : α ∈ B} where Sα ∩ Sβ = ∅ if α , β (4.20)

be a decomposition of S into subsets Sα (see Equation (1.9b)). It is called
a band decomposition if and only if B is the decomposition associated with a
band congruence Equation (1.9b); that is, a congruence ρ such that B = S/ρ is a
band (idempotent semigroup). If this is the case it is clear that the partition
class Sα is a subsemigtoup of S for each α ∈ B. Similarly, the decomposition
Y is a semilattice decomposition if it is the decomposition associated with a
semilattice congruence. In general, we shall say that S is a band [semilattice] B
of semigroups Sα if there is a congruence σ on S such that S/σ is isomorphic to
B and for each α ∈ B, the σ-class

α(σ#)−1 = {x ∈ S : xσ# = α}

is isomorphic to Sα.

Theorem 4.45. The decomposition B = {Sα : α ∈ B} of the semigroup S is a band
decomposition if and only if

(A) Sα is a subsemigroup of S for each α ∈ B;

(B) for α, β ∈ B, there is a unique γ ∈ B such that

SαSβ ⊆ Sγ.

Proof. Let B satisfy the given conditions (A) and (B). Since the subsets of S in
M are pairwiase disjoint, the relation

ρ = ρB = {(x, y) : x, y ∈ Sα; α ∈ B}
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is an equivalence relation on S. Let (x, y) ∈ ρ and z ∈ S. Then there exists
α, β ∈ B such that x, y ∈ Sα and z ∈ Sβ. By (B), there exists γ ∈ Bwith xz, yz ∈ Sγ
which implies that (xz, yz) ∈ ρ. Similarly, (zx, zy) ∈ ρ. Hence ρ is a congruence
on S. The condition (A) implies that every element inB = S/ρ is an idempotent.
Therefore B is a band and so B is a band decomposition. Conversely, if B is
a band decomposition, and if ρ = ρB is the associated band congruence on
S, then every element in B = S/ρ is an idempotent and so (A) holds. Given
α, β ∈ B, let γ = αβ. Since φ = ρ# : S → B is a homomorphism, for any x ∈ Sα
and y ∈ Sβ,

αβ = (xφ)(yφ) = (xy)φ.

Since xy ∈ Sαβ = Sγ, we have

SαSβ ⊆ Sαβ = Sγ.

Hence (B) also holds.

Notice that the condition (B) implies that for α, β ∈ B, there is γ, δ ∈ B such
that

SαSβ ⊆ Sγ and SβSα ⊆ Sδ.

It is clear that the band B will be commutative if and only if we always have
γ = δ. Since a semilattice is a commutative band, we have the following:

Corollary 4.46. The decompositionB of S is a semilattice decomposition if and only
if B satisfies condition (A) of the theorem above and the following:

(C) for α, β ∈ B, there is a unique γ ∈ B such that

SαSβ ⊆ Sγ and SβSα ⊆ Sγ.

It may be noted that a decomposition of a semigroup S into subsemigroups
need not be a band decomposition (see Example 4.14 below). Also, any semi-
group has at least one band decomposition since the universal congruence
is trivially a band congruence. If {ρi} is any set of band congruences on S,
then σ = ∩i{ρi} is a band congruence. For, if x ∈ S, then σ(x) = ∩i{ρi(x)} is a
subsemigroup of S since each ρi(x) is a subsemigroup. It follows that every
element of S/σ is an idempotent and so, σ is a band congruence. In particular
every semigroup has a finest band decomposition. Similarly, given any set of
semilattice congruences {σi} on S, then σ = ∩i{σi} is a semilattice congruence
on S. For if x, y ∈ S, then xy, yx ∈ σi(xy) for every i since each σi is a semilattice
congruence. Hence

xy, yx ∈ ∩i{σi(xy)} = σ(xy)

and so, σ is a semilattice congruence. It follows that every semigroup has the
finest semilattice decomposition. Thus we have:
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Theorem 4.47. Every semigroup S has the finest band decomposition as well as the
finest semilattice decomposition.

The theorem above gives the existance of the finest band decomposition
and the finest semilattice decomposition of a semigroup. Note that these may
turn out to be trivial; thus for example, the finest semilattice decomposition of a
simple semigroup is trivial. However, inparticular cases, suchdecompositions
turn out to be very useful— see Example 4.15 below. Next section discuss
another important example.

Example 4.14: Let S = Z2 ∪ {e, f } where Z2 = {1,u} is the group of order 2. Define
multiplication in S so that 1 is the identity, e and f are R-related idempotents and

eu = f , f u = e, ue = e and u f = f .

Then S can be shown to be a semigroup in which every H -class is a group and so S
has a decomposition into groups. However,

Z2 ·He = {e, f }

and so does not satisfy the condition (B) of Theorem 4.45. Hence the decomposition of
S into groups does not give a band of groups.

Example 4.15: Let S be a commutative semigroup. Given a, b ∈ S, we shall say that a
divides b, written a | b, if ax = b for some x ∈ S1. Define the relation η on S by:

x η y ⇐⇒ for some m,n ≥ 1, a | bm, b | an. (4.21)

Clearly, η is a reflexive and transitive relation. If a | bm and b | cp, then ax = bm and
by = cp for x, y ∈ S1 and so, axym = (by)m = cmp and so, a | cmp. It follows that η
is an equivalence relation. Further, if ax = bm, then for any z ∈ S1, (az)u = (bz)m if
u = xzm−1. Hence if (a, b) ∈ η, then for all z ∈ S1, (az, bz) ∈ η; thus η is a congruence on S.
Evidently a η a2 for any a ∈ S. Since S is commutative, this implies that η is a semilattice
congruence on S. If ρ is any semilattice congruence on S, and if a | bn, then we must
have bρ# = (bn)ρ# ≤ aρ#. It follows that if (a, b) ∈ η, then (a, b) ∈ ρ. Therefore η is the
smallest semilattice congruence on S; consequently, S/η is the maximum semilattice
homomorphic image of S.

A commutative semigroup S is said to be archimedean if for any a, b ∈ S, there ex-
ists integers m,n ≥ 1 such that a | bm and b | an; that is the congruence η on S is the
universal congruence. Thus the congruence η on S gives a decomposition of S into
maximal archimedeam subsemigroups. These subsemigroups are called archimedean
components of S. Therefore any commutative semigroup S has a unique decompo-
sition into archimedean components and this decomposition is the finest semilattice
congruence on S.4.3.2 Completely regular semigroups
A semigroup S is said to be completely regular if S is a union of groups. If S
is completely regular, then each x ∈ S is contained in a subgroup of S and
so Hx is a group. Therefore in a completely regular semigroup every H -
class of S is a group and it is a disjoint union of groups. Thus a completely
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regular semigroup has a decomposition into groups. In particular, if e and
f are D-related idempotents in S, then both Le ∩ R f and Re ∩ L f contains
idempotents. Hence it follows from the definition of solid biordered sets (see
Subsection 3.4.2) that the biordered set of a completely regular semigroup S is
solid.

Moreover, it is clear that every completely regular S semigroup is regular;
in fact, every x ∈ S has a unique group inverse x∗ (see Equation (2.40)). The
converse also holds; that is, a semigroup S is completely regular if every
element x ∈ S has a group inverse in the sense of Subsection 2.6.2. For
convenience of later reference, we summerise the discussion as:

Proposition 4.48. The following statements are equivalent for a semigroup S.

(a) S is completely regular;

(b) every H -class of S is a group;

(c) S is a disjoint union of groups;

(d) every x ∈ S has a group inverse.

In particular, when S is completely regular, E(S) is a solid biordered set.

The equivalent conditions above are simple consequences of definition of
completely regular semigroups and they do not yield any significant insight
into the structure of these semigroups. The next theorem provide some illu-
mination in this direction. Recall that J = JS (see Subsection 2.1.1) denote the
partially ordered set of all principal ideals of S under inclusion.

Theorem 4.49. The following statements concerning a semigroup S are mutually
equivalent.

(a) S is completely regular.

(b) S is completely semisimple and every D-class of S is a subsemigroup of S.

(c) S is completely semisimple and the Green’s relation D is a congruence.

(d) The partially ordered set J is a semilattice with respect to intersection and S is
a semilattice J of completely simple semigroups.

Proof. (a) ⇐⇒ (b): Suppose thatD is a D-class of S and a, b ∈ D. Then La ∩Rb

is an H -class in S. So if (a) holds, by Proposition 4.48(b), La ∩ Rb contains
an idempotent. Therefore, by Equation (2.48a), the trace product a ∗ b = ab

exists. This implies that ab ∈ D and so, D is a subsemigroup of S. Suppose
that e, f ∈ E(D) and e ω f . Then by (a), Le ∩R f contains an idempotent 1. Since
e ω f , e ωr 1; also e L 1. Hence e ω 1 which implies e = 1. Similarly, from
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e R f and e ω f , we have e = f . This proves by Lemma 2.86 that S satisfies the
conditionM∗

E
and so, by Theorem 2.87S is completely semisimple. Conversely

if (b) holds, then by Theorem 2.87 each D-class D is a regular semigroup in
which every element is minimal with respect to the natural partial order and
so D is a primitive regular semigroup with out 0. Hence, by Theorem 4.24, D
is completely simple and so, S satisfies (a).(a) ⇐⇒ (
): Suppose that S satisfies (a). By (b), S is completely semisimple
and so, to prove (c), it is sufficient to show that D is a congruence. Let a D b,
c ∈ S and h ∈ S (e, f ) where e ∈ E(Lc) and f ∈ E(Ra). Then by Theorem 3.7,
h, ch, ha ∈ Dab, ch ≤ c and ha ≤ a. Then by Proposition 4.12, there exists b1 ∈ S

with ha D b≤b. By (a), the H -class Lch ∩ Rb1 contains an idempotent, say k. If
1 ∈ E(Rb), then, by Proposition 4.3(2), there exists 1′ ∈ E(Rb1) such that 1′ ω 1
and b1 = 1

′b. Hence k ωr 1. Similarly, k ωl e. Therefore k ∈ M(e, 1) and so,
it follows from Theorem 3.7 that ckb D k D cb. Since ckb = (ckc′)(cb) for any
c′ ∈ V(c), we have

J(ca) = J(ckb) ⊆ J(cb). Similarly, J(cb) ⊆ J(ca).

Hence ca J cb. Since S is completely semisimple, ca D cb by Corollary 2.88.
It can be shown, in a similar way, that ac D bc. ThereforeD is a congruence on
S. Conversely if S satisfies (c) the fact that S is completely semisimple implies
that the congruence D satisfies the condition

x ≤ y and x D y⇒ x = y.

So, by Theorem 4.22, every D-class of S is a completely simiple subsemigroup
of S. Thus S satisfies (a).(a) ⇐⇒ (d): Trivially (d) ⇒ (a). Suppose that (a) holds. Then by (c) D

is a congruence on S. Now let x, y ∈ S and h ∈ S (e, f ) where e ∈ E(Lx) and
f ∈ E(Ry). By (a), there is an idempotent k ∈ Rxh ∩ Lhy. Since xh ≤ x and
hy ≤ y, as in the last paragraph, we see that k ∈ M( f ′, e′) where e′ ∈ E(Rx) and
f ′ ∈ E(Ly). Then again by Theorem 3.7, we have

J(xy) = J(ykx) ⊆ J(yx). Similarly, J(yx) ⊆ J(xy).

Thus xy J yx and by (b), xy D yx. Hence by Theorem 4.45, D is a semilattice
congruence on S. Since S is completely semisimple, by Corollary 2.88 the map
φ : Dx → J(x) is a bijection of S/ D onto J (see Subsection 2.6.1). To prove (d), it
is sufficient to show that φ is an order isomorphism. If Dx ≤ Dy in S/ D , then
Dx = DxDy and since the map a 7→ Da is a homomorphism, we haveDx = Dxy.
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Hence J(x) = J(xy) ⊆ J(y). Conversely, if J(x) ⊆ J(y), then x = uyv for u, v ∈ S1

and so,
Dx = DuDyDv ≤ Dy

in the semilattice S/ D . This proves (d)

Recall that a semigroup S is a rectangular band if and only if it is a com-
pletely simple semigroup over the trivial group (seeExample Subsection 2.1.3).
Therefore as a corollary of the theorem above, we have:

Corollary 4.50. AsemigroupB is a band if and only if it is a semilattice of rectangular
bands.

Similarly, from the observation that a completely simple inverse semigroup
is a group, we obtain:

Corollary 4.51. A semigroup S is a semilattice of groups if and only if S is a
completely regular, inverse semigroup.

The structure of completely simple semigroups are known by Ress Theo-
rem (see Corollary 2.80) relative to groups. By Theorem 4.49(d), a completely
regular semigroup is a semilattice Y of completely simple semigroups Sα,
α ∈ Y. This, therefore, enables us to obtain an isight into the structure of
completely regular semigroups relative to groups and semilattices. However,
given a semilattice Y and completely simple semigroups {Sα : α ∈ Y}, it is
possible to have more than one binary operation on the set S = ∪{Sα : α ∈ Y}
that make S, a completely regular semigroup that indues the given semilattice
decomposition on S. Thus Theorem 4.49 does not determine the structure
of completely regular semigroups relative to groups and semilattices. Note
that, by Corollary 4.50, a structure theorem for completely regular semigroups
must yield, as a special case, a structure theorem for bands. However, most
of the existing structure theorems valid for arbitrary completely regular semi-
groups are quite complicated and does not provide anymore insight into their
structure than can be obtained from the theorem above.

On the other hand, quite illuminating strutheorems for some subclasses
of the class of completely regular semigroups exists. The classical theorem
Clifford [1941] due to Clifford on the structure of semilattices of groups is an
especially simple example of this type. We need the following lemma.

Lemma 4.52. Let S be a semilattice Y of groups Gα and let E = E(S). Then E is a
semilattice isomorphic toY. Moreover, µ(S) =D and E ⊆ Z(S) where

Z(S) = {z ∈ S : zs = sz for all s ∈ S}

is the center of S.
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Proof. Since S is a semilattice of groups, by Theorem 4.49 and Corollary 4.51,
eachD-class of S is a completely simple inverse semigroup and hence a group.
Therefore D=H and so, by Theorem 4.49(c), H is a congruence on S. Hence,
by Proposition 3.46, µ(S) =H =D .

Since S is an inverse semigroup, by Theorem 2.44, E is a commutative
subsenigroup of S and so φ =D# is a homomorphism of E onto Y; since D is
idempotent separating, φ is an isomorphism of E onto Y.

To show that E ⊆ Z(S), let 1 ∈ E and a ∈ S. Then a ∈ H f for some f ∈ E. Since
E is commutative, e = 1 f = f1 ω f and since µ(S) =H , by Equation (4.10),
1a = 1 f a = ea = ae = a f1 = a1. Therefore 1 ∈ Z(S).

Recall Subsection 1.3.1 that any partially ordered set can be regarded as a
category having utmost onemorphism between any two vertices. In particular
a semilattice Y is a category. If this is the case, the category Yop is also a
semilattice; in fact, an upper semilattice if Y is a lover semilattice . Also,
if θ : Y → Y′ is any semilattice homomorphism, then θ is a functor of the
category (preorder) Y to Y′ (see Example Subsection 2.1.3). We use these in
the following statement.

Theorem 4.53. Let Y be a semilattice and let Φ : Yop → Grp be a functor from Yop

to the category Grp of groups. Let
S = {(α, a) : α ∈ Y, a ∈ Φ(α)}. (4.22a)

Define product in S by

(α, a)(β, b) = (αβ, c) where c =
(

aΦ(α, αβ)
) (

bΦ(β, αβ)
)

. (4.22b)

This defines a single valued binary operation in S and Swith this product is a semigroup
S(Φ) which is a semilatticeY of groups Φ(α).

Conversely, let S be a semilattice of groups and E = E(S). Then

ΦS(e) = He for e ∈ E, and ΦS(e, f ) : a 7→ f a

for all f ≤ e and a ∈ He, defines a functor ΦS of E
op to Grp such that the map

ξS : a 7→ (e, a) a ∈ He

is an isomorphism of the semigroup S onto S(ΦS).

Proof. SinceY is a semilattice, αβ is awell-defined element ofY for all α, β ∈ Y.
Since αβ ≤ α, (α, αβ) is a unique morphism of the calegory Yop from α to αβ.
SinceΦ is a functor ofYop to Grp,Φ(α, αβ) : Φ(α)→ Φ(αβ) is a homomorphism
of groups. Hence for all a ∈ Φ(α), aΦ(α, αβ) is an element of Φ(αβ). Similarly
bΦ(β, αβ) is an element of Φ(αβ). Since Φ(αβ) is a group, it follows that

c =
(

aΦ(α, αβ)
) (

bΦ(β, αβ)
)
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is a unique element in Φ(αβ) for all a ∈ Φ(α) and b ∈ Φ(β). Hence Equa-
tion (4.22b) gives a well-defined binary operation in the set S defined by
Equation (4.22a). Let (α, a), (β, b) and (γ, c) be in S. Then

(αβ)γ = α(βγ) ≤ αβ ≤ α and since Φ is a functor,

aΦ(α, αβγ) = aΦ(α, αβ)Φ(αβ, αβγ)

Using Equation (4.22b) and results similar to those above, we obtain

(

(α, a)(β, b)
)

(γ, c) = (αβγ, d)

where

d =
((

(α, a)(β, b)
)

Φ(αβ, αβγ)
) (

(γ, c)Φ(γ, αβγ)
)

=
((

aΦ(α, αβ)
) (

bΦ(β, αβ)
))

Φ(αβ, αβγ)
(

cΦ(γ, αβγ)
)

=
((

aΦ(α, αβ)Φ(αβ, αβγ)
) (

bΦ(β, αβ)Φ(αβ, αβγ)
)) (

cΦ(γ, αβγ)
)

=
((

aΦ(α, αβγ)
) (

bΦ(β, αβγ)
)) (

cΦ(γ, αβγ)
)

.

Similarly if

d′ =
(

aΦ(α, αβγ)
) ((

bΦ(β, αβγ)
) (

cΦ(γ, αβγ)
))

we have

(α, a)
(

(β, b)(γ, c)
)

= (αβγ, d′).

Since the binary operation in Φ(αβγ) is associative, it follows that d = d′.
Therefore the binary operation in S defined by Equation (4.22b) is associative
and so, S is a semigroup. Also, it is clear from Equation (4.22b) that the
projection π : (α, a) 7→ α is a homomorphism of the semigroup S onto the
semilatticeY and for each α ∈ Y, απ−1 = {α} ×Φ(α) which is isomorphic to the
group Φ(α). Therefore S is a semilattice Y of groups Φ(α).

Conversely, let S be a semilattice of groups. Since S is an inverse semigroup
(by Corollary 4.51), E = E(S) is a semilattice and by Lemma 4.52, E is contained
in the center of S. Hence for e, f ∈ Ewith e ≤ f , the map

ΦS( f , e) : a 7→ ea for all a ∈ H f

is a homomorphism of H f into He. It is clear that

ΦS(e, e) = 1He
for all e ∈ E; ΦS(1, f ) ◦ΦS( f , e) = ΦS(1, e) for all e ≤ f ≤ 1.

Hence the assignments

RΦS : e 7→ He, ( f , e) 7→ ΦS( f , e) for e ≤ f ,
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is a a functor ΦS : Eop → Grp. Let T = S(ΦS) be the semigroup constructed
by Equations (4.22a) and (4.22b) above. By the first part T is a semilattice of
groups. Let (e, a), ( f , b) ∈ T. Then by Equation (4.22b) and the definition of ΦS

we get
(e, a)( f , b) = (e f , c)

where

c =
(

aΦS(e, e f )
) (

bΦS( f , e f )
)

by Equation (4.22b)

= (e f a)(e f b) = (e f )ab e f ∈ E.

Hence it follows that the T = S(ΦS) is a semilattice of groups isomorphic to S.
By Equation (4.22a), T = {(e, a) : e ∈ E a ∈ He}. Cearly, a 7→ (e, a) (a ∈ He) is a
bijection of S onto T which by the above, is an isomorphism of S onto T.

Remark 4.5: It is easy to see that the set of all contravariant group-valued func-
tors on semilattices form a subcategoryYg ⊆ [−,Grp] of all group-valued small
functors (see § Subsection 1.2.2). The theorem above shows that each functor
φ ∈ vYg determines a semilattice of groups S(φ). It can be shown that each
morphism (transformation) t : φ1 → φ2 determine a unique homomorphism
S(t) : S(φ1)→ S(φ2) and viceversa. In fact the assignments

S : φ 7→ S(φ); t : 7→ S(t)

is a category equivalence S of the category of contravariant group valued
functors on semilattices on to the category of semilattice of groups.
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Inverse semigroups

Recall, from Subsection 2.6.2, that an inverse semigroup is a regular semigroup
such that every x ∈ S has exactly one inverse. The study of this class of
semigroups was started with the publication of the papers Vagner [1953a,b]
Vagner. Later Preston [Preston, 1954a,b, see] also discovered this class of
semigroups, as well as the now famous Vagner - Preston representation of
an inverse semigroup, independently. Since then large number of important
contributions have appearedabout inverse semigroups and it has now become
an important branch of both the theory of semigroups as well as the theory of
groupoids. We do not propose to give a systematic eccount of the theory of
inverse semigroups here; the reader may refer to, [for example, Munn, 1970,
?] for such a treatment. However, given the fact that, most of the present
day structure theory for arbitrary regular semigroups is a stright-forward
generalization of the structure theory for inverse semigroups, a discussion of
the later will provide a good model for the more general theory to be given in
the next chapter.

In the first section we define the Schein’s concept of an inductive groupoid
[see Schein, 1966] and show that its category is equivalent to the category of
inverse semigroups. Part of ourmotivation here is the fact that Schein’s theory
of inductive groupoids provide a simple introduction to the more general
concept of inductive groupoids which will be considered in the next chapter.
Inductive groupoids affords a neat separation of the global and local structure
of an inverse semigroup. This is of considerable help in formulating results
about of regular semigroups and proving them. The remaining part of the
chapter discusses some illustration of the tenique of inductive groupoids.

Recall that Theorem 2.44 provides some equivalent characterizations of
inverse semigroups. In particular, if φ : S→ T is any homomorphism, Imφ =

φ(S) is an inverse subsemigroup of T. Since inclusion clearly provide a choice
of subobjects for the category IS of inverse semigroups, it follows that the
category IS has images.

281
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G(S):Inductive groupoid of S Throughout this chapter, unless otherwise explicitly specified, S will de-
note an inverse semigroup and E = E(S), its semilattice (biordered set) of
idempotents.

5.1 inductive groupoids of inverse semigroups

Recall from Section 1.4 that a groupoid is a small category in which every
morphism is an isomorphism. Here we shall discuss B. M. Schein’s theory of
inductive groupoids Schein [1966]. Schein’s far reaching contribution showed
that the theory of inverse semigroup is equivalent to the theory of ordered
groupoids (see Subsection 1.4.2) that satisfyies the condition that the vertex set
is a semilattice under the induced order.

Suppose that S(∗) is the trace of an inverse semigroup S (see Subsec-
tion 2.7.3). By Equation (2.48a) the trace product x ∗ y of x, y ∈ S exists if
and only if Lx ∩ Ry contains an idempotent. Since S is inverse, by Theo-
rem 2.44, this is true if and only if x−1x = fx = ey = yy−1. Also, if e ∈ E and
x ∈ S the trace product e ∗ x exists if and only if e = ex and x ∗ e exists if and
only if e = fx. We can verify the following (see axioms for categories on page
9 of MacLane [1971]):

Theorem 5.1. Let S be an inverse semigroup. Then the trace S(∗) is a groupoid
with objects (identities) E(S), morphism set S with composition as the trace product.
Moreover, the natural partial order on S gives a partial order on this groupoid and

G(S) = (S(∗),≤)

is an ordered groupoid such that vG(S) = E(S) is a semilattice.

Proof. Since S is inverse, as noted above, the trace product x ∗ y exists if and
only if the right identity fx of x is the same as the left identity ey of y. Also, in
this case, x ∗ y = xy ∈ Rx ∩ Ly by Theorem 2.34. Suppose that the pairs (x, y)
and (xy, z) are composable. Then Lx ∩ Ry contain an idempotent, say, e and
Lxy ∩ Rz contain the idempotent 1. Since

z R 1 L xy L y and x L e R y R yz

it follows that the pairs (y, z) and (x, yz) are composable. It follows that S(∗) is
a category. Moreover, for any x ∈ S, we have

x ∗ x−1 = xx−1 = ex, and x−1 ∗ x = fx

which shows that every morphism in S(∗) is an isomorphism. Hence S(∗) is a
groupoid.
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We now verify that G(S) satisfies the axioms of Definition 1.6. Let xi, yi ∈ S
with yi ≤ xi and suppose that (x1, x2) and (y1, y2) are composable. If e ∈ Lx1∩Rx2

and 1 ∈ Ly1 ∩ Ry2 are idempotents, using Proposition 4.3 and the fact that S is
inverse, we deduce that 1 ≤ e and y1 = x11, y2 = 1x2. Hence y1y2 = x11x

−1
1 x1x2.

Since

x11x
−1
1 ≤ x1ex

−1
1 = x1x

−1
1 = ex1x2

it follows that y1y2 ≤ x1x2. This proves axiom (1) of Definition 1.6. If y ≤ x,
then ey ≤ ex and y = eyx. Hence y−1 = x−1ey and so, axion (2) also hoplds.
To verify axiom (3) of Definition 1.6, let x|1 = 1x for all x ∈ S and 1 ≤ ex.
Since 1x ≤ x and e1x = 1, axiom (3) is verified. Therefore G(S) is an ordered
groupoid.

We have noted that the set V = vG of vertices of an ordered groupoid G
is an order ideal under the induced partial order on V. Schein [1966] defined
an inductive groupoid as an ordered groupoid G in which the orderideal V of
vertices of G is a semilattice. The theorem above says that the trace of an
inverse semigroup S is an inductive groupoid G(S) in the sense above with
respect to the natural partial order. An order-preserving functor f : G → H
of inductive groupoids is called an inductive functor. Thus we have category
SIGwhose oblects are Schein’s inductive groupoids andmorphisms are order
preserving functors. Thus SIG is a full subcategory of the category OG of all
ordered groupoids. We observe that, even though, the partially ordered set of
morphisms of the inductive groupoidG(S) may not be a semilattice, the order
strcture is closely related to semilattices. In fact, as observed above, its vertex
set E is a semilattice and by Proposition 4.8, every principal order ideal is a
semilattice.

A more general concept of inductive groupoids will be introduced in the
next chapter. We shall see that these are essentially ordered groupoids whose
vertex sets carry the structure of biordered sets. This will reduce to Schein’s
inductive groupoids when the vertex biordered set is a semilattice so that the
former concept is a non-trivial generalization of Schein’s inductive groupoid.
To avoid ambiguity and for brevity we shall call Schein’s inductive groupoid
as Schein’s groupoid.

We proceed to prove the basic result due to Schein [1966] ([see also ?])
that every Schein’s groupoid G arises as the Schein’s groupoid G(S), defined
in Theorem 5.1, for a suitable inverse semigrp S. Here, as for our definition
of Schein’s groupoid, we formulate the result in terms of ordered groupoids.
In the following, except for those explicitly specified, we use notations of
Subsection 1.4.2.
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Theorem 5.2. Let G be a Schein’s groupoid with the vertex-semilattice E. Suppose
that ∗ denote the composition in G. For x, y ∈ G let

xy = (x � 1) ∗ (1 � y) where 1 = fxey (5.1)

where x � 1 [1 � y]denote the corestriction [restriction] of x [y] to 1 (see Definition 1.6
and Equation(1.62)). This defines a binary operation on the set of morphisms of G
making G an inverse semigroup S(G) such that

G (S(G)) = G. Moreover, we also have S (G(S)) = S.

for any inverse semigroup S.

Proof. Since 1 ≤ fx, by Proposition 1.18, x � 1 is a unique element og G such
that fx�1 = 1. Similarly, since 1 ≤ ey, by Definition 1.6, 1 � y ≤ y and e1�y = 1.
Therefore (x � 1, 1 � y) is a composable pair in G. Hence Equation (5.1) gives
a well-defined binary operation in the set G. We now show that the product
defined by Equation (5.1) is associative. Consider x, y, z ∈ G. Then

(xy)z =
((

(x � 1) ∗ (1 � y)
)

� h′
)

∗ (h′ � z)

where 1 = fxey and h′ = f1�yez

= (x � h′′) ∗ ((1 � y) � h′) ∗ (h′ � z)

by Proposition 1.19 where

h′′ = e(1�y)�h′

Since (1 � y) � h′ ≤ 1 � y ≤ y and e(1�y)�h′ = h′, by Proposition 1.18, the element
(1 � y) � h′ is the corestriction of y to h′. Hence (1 � y) � h′ = y � h′ and so

(xy)z = (x � h′′) ∗ (y � h′) ∗ (h′ � z).

Similarly if h = fyez, 1′ = ey�h fx, then 1′ � (y � h) = 1′ � y and

x(yz) = (x � 1′) ∗ (1′ � y) ∗ (1′′ � z)

where 1′′ = f1′�y. Now y � h′ ≤ 1 � y ≤ y implies h′ ≤ fy. Since h′ ≤ ez by
definition, we have h′ ≤ h. Hence h′′ = ey�h′ ≤ ey�h. Also since h′ ≤ f1�y, by
Proposition 1.20, h′′ = ey�h′ ≤ e1�y = 1 ≤ fx. Therefore h′′ ≤ 1′. It can be shown
dually that 1′′ ≤ h′. This implies that 1′ ≤ h′′ by Proposition 1.20. Thus 1′ = h′′

and similarly, 1′′ = h′. Hence 1′ � y = y � h′, and

(xy)z = (x � 1′) ∗ (y � h′) ∗ (h′ � z)

= (x � 1′) ∗ (1′ � y) ∗ (h′ � z)

= x(yz).
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Therefore G is a semigroup S(G) with respect to the product defined by Equa-
tion (5.1). If (x, y) is a composable pair in G then fx = ey = 1 (say) and by
Equation (5.1),

xy = (x � 1) ∗ (1 � y) = x ∗ y.

Also exx = ex ∗ x = x and xx1 = x ∗ x−1 = ex. Hence ex R x in S(G). Similarly
fx L x in S(G). If e, f ∈ vG it is easy to see that the product e f defined by
Equation (5.1) coincides with their product in the semilattice vG. Therefore
S(G) is an inverse semigroup with E = vG as the semilattice of idempotents.
The arguement above also implies that (x, y) is composable in G if and only if
the trace product of x and y exists in S(G). Furthermore, y ≤ x in the ordered
groupoid G if and only if ey ≤ ex and y = ey � x. By Equation (5.1), this is true
if and only if y = eyx. Therefore y ≤ x in G if and only if y ≤ x with respect to
the natural partial order on S(G). It follows from Theorem 5.1 that

G (S(G)) = G.

Let S be an inverse semogroup and let G = G(S) be the inductive groupoid of
Theorem 5.1. For x, y ∈ G, let x ·y denote the product defined by Equation (5.1).
If 1 = fxey, by Equation (5.1), we have

x · y = (x � 1) ∗ (1 � y)

By the definition of restriction and corestriction in G, x � 1 = x1 and 1 � y = 1y.
Since ∗ on the right of the equation above denote trace product in S, we yhave

x · y = (x1) ∗ (1y) = (x1)(1y) = x1y = x fxeyy = xy.

Therefore S = S (G(S)).

The constructions of the Schein’s groupoidG(S) from an inverse semigroup
S (cf. Theorem 5.1) and the inverse semigroup S(G) from the Schein’s groupoid
G (cf. Theorem 5.2) are functorial in the sense that S 7→ G(S) andG 7→ S(G) are
objectmapsof functorsG : IS→ SIG from the categoryof inverse semigroups
to the category of Schein’s groupoids and S : SIG→ IS from the category of
Schein’s groupoids to the category of inverse semigroups. For let φ : S → S′

be a homomorphism of inverse semigroups. It is clear that φ preserves trace
products and natural partial order and so, it is an order preserving functor
of G(S). Thus φ determine a unique inductive functor of G(S) to G(S′) which
we denote by G(φ). Notice that, set-theoretically, φ andG(φ) denote the same
map of the set S to the set S′. The functorial property of this assignment is
obvious. Similarly, if γ : G → H is an inductive fumctor, then

γ(x ∗ y) = γ(x) ∗ γ(y)
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for every composable pair (x, y) of morphisms in G. Further, for x ∈ G and
1 ≤ ex, h ≤ fx, we have

γ(1 � x) = γ(1) � γ(x), γ(x � h) = γ(x) � γ(h).

Hence for any x, y ∈ G, by Equation (5.1),

γ(xy) = γ(x � 1) ∗ γ(1 � y)

=
(

γ(x) � γ(1)
)

∗
(

γ(1) � γ(y)
)

= γ(x)γ(y).

Thus γ induces a unique homomorphism S(γ) : S(G)→ S(H ). The assignment
S is also functorial. We have thus proved the following.

Theorem 5.3. For every homomorphism φ : S→ S′ of inverse semigroups there is a
unique inductive functor G(φ) : G(S)→ G(S′) such that the assignments

S 7→ G(S) and φ 7→ G(φ)

is a functorG : IS→ SIG. Similarly, each inductive functor γ : G → H determines
a unique homomorphism S(γ) : S(G)→ S(H ) such that the assignments

G 7→ S(G) and γ 7→ S(γ)

is a functor S : SIG→ IS. Furthermore, the functorsG and S are mutually inverse.

The theorems above shows that inverse semigroups and Schein’s groupoids

are equivalent mathematical structures. Schein’s groupoid G(S) of an inverse
semogroup S afford the separation of the structure of S into the lacal structure
of S represented by the trace groupoid S(∗) and the global structure of S

represented by the natural partial order on S.
We illustrate theuse of the inductive groupoid techniquebelowbyapplying

to some important constructions.

5.2 fundamental inverse semigroups

Many examples of ordered groupoids given in Subsection 1.4.2 (see Exam-
ple 1.24) are inductive groupoids and hence represent inverse semigroups.
Thus IX is an ordered groupoid with respect to groupoid composition and
“the usual inclusion” (see Example 1.21). Identities in IX are identity maps
on subsets of X and so vIX may be identified with the set of all subsets of
X which is a semilattice with respect to intersection. Hence by Theorem 5.2,
IX is an inverse semigroup with the semilattice of idempotents as the set of
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all subsets of X under intersection. The binary operation in IX is defined by
Equation (5.1):

αβ = (α � 1) ∗ (1 � β) where 1 = fαeβ and α, β ∈ IX.

The identity 1 denotes 1codα∩domβ. So, α � 1 denote the range restriction of α
to dom 1 = codα ∩ dom β. Similarly 1 � β denote the domain restriction of β
to dom 1. It follows that, in this case αβ is the “usual composition” of partial
transformations.

Similarly, if X is a partially ordered set, and if I is any set of order-ideals
in X such that intersection of any two order ideals in I is an order ideal
in I, then, the set I∗ of all order-isomorpisms of ideals in I is an ordered
subgroupoid OII of IX. Also the set vOII is orderisomorphic with I which is a
semilattice under intersection. HenceOII is an inductive groupoid. Therefore
byTeorem 5.2,T(I) = S(OII) is an inverse semigroup inwhich the semilattice of
idempotents E(T(I)) is isomorphic to I. As above it follows from Equation (5.1)
that the binary product in T(I) is the composition of partial isomorphisms of
semilattices.

In particular if E is a semilattice, then

E(e f ) = E(e) ∩ E( f ) for all e ∈ E

where E(e) = {1 ∈ E : 1 ≤ e} denote the orderideal of E generated by e ∈

E. Hence the set of all principal order ideals {E(e) : e ∈ E} is closed with
respect to intersection. By the remarks above, the ordered groupoid T∗(E) of
all isomorphisms of principal ideals of E is an inductive groupoid in which
the semilattice (under intersection)of identities is {E(e) : e ∈ E}. Since e 7→ E(e)
is a semilattice isomorphism of E onto {E(e) : e ∈ E} we shall identify vT∗(E)
with E. Therefore, by 5.2,

T(E) = S (T∗(E))

is an inverse semigroup with E(T∗(E)) = E. T∗(E) is called the Munn semigroup

of the semilattice E. The following result is a particular case of 6.28 in Chapter
6 and is equivalent to Munn’s theorem on fundamental inverse semigroups
[Munn, 1970, see].

Theorem 5.4. Let G be an inductive groupid with vG = E. For x ∈ G and e ∈ ω(ex)
let

ea(x) = fe�x. (5.2)

Then we have the following:

(1) The map a(x) : ω(ex)→ ω( fx:) is an ω-isomorphism.
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T∗(G):Fundamental image of
inductive groupoid G

T∗(φ):Fundamental image of the
inductive functor φ
Aρ:The kernel normal system of ρ

(2) There is an inductive functor aG : G→ T∗
E
with vaG = 1e and whose morphism

map is x 7→ a(x).

(3) If G is a v-full inductive subgroupoid of T∗
E
then aG is the inclusion of G in T∗

E
.

In particular, aT∗
E
= 1T∗

E
.

(4) Let T∗(G) = Im aG. If φ : G → G′ is an inductive functor which is a v-
surjection, then

T∗(φ) (aG(x)) = aG′
(

φ(x)
)

(5.3)

defines an inductive functor T∗(φ) : T∗(G)→ T∗(G′). Furthermore, if φ and φ′

are inductive v-surjections for which φφ′ exists, then

T∗(φφ′) = T∗(φ)T∗(φ′).

(5) If φ is a v-isomorphism, then T∗(φ) is an injection. In particular, if vφ = 1E,
then T∗(φ) is the inclusion T∗(G) ⊆ T∗(G′).

Theorem 5.5. Let E be a semilattice. Then the set T(E) of all isomorphisms of principal
ideals of E is an inverse subsemigroup of IE . FurthermoreT(E) is a fundamental inverse
semigroup with semilattice of idempotents isomorphic to E. If S is any fundamental
inverse semigroupwith semilattice of idempotents isomorphic to E then S is isomorphic
to a full subsemigroup of T(E).

5.3 congruences on inverse semigroups

If ρ is any congruence on an inverse semigroup S, by Corollary 4.30(b), any
idempotent congruence class of ρ is an inverse subsemigroup of S and by
Theorem 4.31, the set

Aρ = {A(e) : e ∈ E = E(S)}

of these inverse subsemigroups forms a kernel normal system of S (see Equa-
tion (4.7a)). In the case of inverse semigroups, it is posible to characterize the
kernel normal systems abstractly (see Clifford and Preston [1967], § 7.4). Here
we provide a characterization in terms of Schein’s groupoid G(S).

To simplify statement of the desired result we meed the following simple
consequence of the fact that E is a commutative subsemigroup of the inverse
semigroup S (see Theorem 2.44).

Lemma 5.6. Let S be an inverse semigroup. For each a ∈ S and e ∈ E let

eC(a) = a−1ea

Then C(a) : e 7→ eC(a) is an endomorphism of E and C : a 7→ C(a) is a representation
of S in the semigroup EndE of enomorphisms of E.
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Theorem 5.7. Let ρ be a congruence on the inverse semigroup S. Then the set

Aρ = {ρ(e) : e ∈ E}

satisfies the following:

(K1) e ∈ ρ(e).

(K2) If, for e, f ∈ E, ρ(e) ∩ ρ( f ) , ∅, then ρ(e) = ρ( f ).

(K3) For each a ∈ S and e ∈ E, a−1(ρ(e))a ⊆ ρ(eC(a)).

(K4) If a, ab, bb−1 ∈ ρ(e) then b ∈ ρ(e).

Converasely, if A = {A(e) : e ∈ E(S)} is any family of inverse subsemigroup of S
satisfying the conditions above, then the relation

ρA = {(a, b) ∈ S × S : aa−1, bb−1, ab−1 ∈ A(e) for some e ∈ E} (5.4)

is a congruence on S whose kernel normal system isA. Moreover the correspondances

ρ 7→ Aρ and A 7→ ρA

are mutually inverse bijections of the set of all congruences on S with the set of all
kernal normal systems on S.

To simplify the proof, we shall prove some preliminary lemmas. In the fol-
lowing, we assume thatA = {A(e) : e ∈ E(S)} is a set of inverse subsemigroups
of S satisfying conditions (K1) . . . (K4).

Lemma 5.8. Suppose that ab−1 ∈ A(e) for a, b ∈ S and e ∈ E. Then A(eC(a)) =
A(eC(b)).

Proof. Let f = eC(a) = a−1ea, 1 = eC(b) and u = ab−1. Since A(e) is an inverse
subsemigroup, u−1 = ba−1 ∈ A(e) and so,

(ab−1)(ba−1) = uu−1, (ba−1)(ab−1) = u−1u ∈ A(e).

Therefore

(a−1a)(b−1b) = (a−1a)(b−1b)(a−1a) = a−1
(

(ab−1)(ba−1)
)

a ∈ A( f );

and

(b−1b)(a−1a) = (b−1b)(a−1a)(b−1b) = b−1
(

(ba−1)(ab−1)
)

b ∈ A(1)

Since E is commutative, we have

(a−1a)(b−1b) ∈ A( f ) ∩A(1).

By (K2), it follows thatA( f ) = A(1).
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Lemma 5.9. If aa−1, bb−1, ab−1 ∈ A(e) then a−1a, b−1b, a−1b ∈ A(eC(a)). In particular,
(a, b) ∈ ρA implies (a−1, b−1) ∈ ρA.

Proof. Let f = cC(a) and 1 = eC(b). The given conditions imply by Lemma 5.8
thatA( f ) = A(1). Hence, by (K3),

a−1a = (aa−1)C(a), b−1b = (bb−1)C(b) ∈ A( f ).

To show that v = a−1b ∈ A( f ), we observe that

uv = b−1(ba−1)b ∈ b−1A(e)b ⊆ A(1) =A( f ),

where u = b−1b and

vv−1 = a−1(bb−1)a ∈ a−1A(e)a ⊆ A( f ).

Therefore, u, uv, vv−1 ∈ A( f ) and so, v ∈ A( f ) by the condition (K4). The last
statement now follows from the definition of the relation ρA.

Lemma 5.10. If aa−1 ∈ A(e) thenA(eC(aa−1)) = A(e).

Proof. By Lemma 5.6, we have

C(aa−1) = C(a)C(a−1).

Hence (aa−1)A(e)(aa−1) ⊆ A(eC(aa−1)).

But sinceA(e) is an inverse semigroup containing aa−1, (aa−1)A(e)(aa−1) ⊆ A(e).
Hence, by (K2), we haveA(e) =A(eC(aa−1)).

Proof of Theorem 5.7. Suppose that A = Aρ. Conditions (K1) and (K2) are
consequences of the fact that ρ(e) is the congruence class containing e ∈ E. If
a ∈ S, e ∈ E and u ∈ ρ(e), then

a−1ua ρ a−1ea = eC(a) which implies a−1ua ∈ ρ(eC(a)).

Therefore (K3) holds. Let a, ab, bb−1 ∈ ρ(e). Then

bb−1 ρ a⇒ b = bb−1b ρ ab ρ e.

HenceAρ satisfies (K4).
Conversely let A = {A(e) : e ∈ E(S)} be a collection of inverse subsemi-

groupps satisfying the conditions (K1) . . . (K4) and let ρ = ρA be the relation
defined by Equation (5.4).
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ρ is an equivalen
e relation: If a ∈ S, then by the definition of ρ (Equation (5.4))
and (K1), (a, a) ∈ ρ and so, ρ is reflexive. To prove symmetry, let (a, b) ∈ ρ. Then
by Equation (5.4), aa−1, bb−1, ab−1 ∈ A(e) for some e ∈ E(S) and so, A(aa−1) =
A(bb−1) =A(e) by (K2). SinceA(e) is an inverse subsemigroup of S, we have

aa−1, bb−1, ba−1 = (ab−1)−1 ∈ A(e).

Thus (b, a) ∈ ρ and hence ρ is symmetric.Transitivity: Let (a, b), (b.c) ∈ ρ. Then, by Equation (5.4) and (K2), we have

aa−1, bb−1, cc−1, ab−1, bc−1 ∈ A(e).

Then if f = eC(a), 1 = eC(b) and h = eC(c), by Lemma 5.8,

A( f ) =A(1) = A(h).

Hence to prove transitivity, it is sufficient to show that ac−1 ∈ A(e). Let u = ab−1

and v = ca−1. Since bc−1 ∈ A(e), by Lemma 5.9, b−1c ∈ A(eC(a)) = A( f ).
Therefore

uv = (ab−1)(ca−1) = a(b−1c)a−1 ∈ aA( f )a−1

By (K3) and Lemma 5.10,

aA( f )a−1 ⊆ A( fC(a−1)) = A(e).

Similarly, by (K3),

vv−1 = (ca−1)(ac−1) = c(a−1a)c−1.

Since

a−1a = (aa−1)C(a) ∈ A( f ) =A(h),

by Lemma 5.10, we have

vv−1 = c(a−1a)c−1 ∈ A(hC(c−1)) = A(e)

Thus we have shown that u, uv, vv−1 ∈ A(e) and so, v ∈ A(e) by the condition
(K4). Therefore v−1 = ac−1 ∈ A(e) which proves that ρ is transitive.



292 5. inverse semigroups

ρ is a 
ongruen
e: Consider (a, b) ∈ ρ and c ∈ S. Then we shall show that

(1) (ca, cb) ∈ ρ, (2) (ac, bc) ∈ ρ.

For, since aa−1, bb−1, ab−1 ∈ A(e), by (K3), we have

(ca)(ca)−1 = c(aa−1)c−1 ∈ A(eC(c−1));

(cb)(cb)−1 = c(bb−1)c−1 ∈ A(eC(c−1));

(ca)(cb)−1 = c(ab−1)c−1 ∈ A(eC(c−1)).

By Equation (5.4), this gives (1). Now the hypothesis gives, by Lemma 5.9 that,

(a−1, b−1) ∈ ρ. Hence
(

(ac)−1, (bc)−1
)

= (c−1a−1, c−1b−1) ∈ ρ

by the proof above. Again, using Lemma 5.9, we conclude that (ac, bc) ∈ ρ.
Thus ρ is a congruence.The kernel of ρ is A: Suppose that e ∈ E. If u ∈ ρ(e) then (e, u) ∈ ρ. By
Equation (5.4), e, uu−1, eu−1 ∈ A(e). Hence by (K4), u ∈ A(e). Conversely, let
u ∈ A(e). Then A(e) is an inverse subsemigroup of S which contain u. By
(K1), e ∈ A(e). Hence e, uu−1, eu−1 ∈ A(e) and so u ∈ ρ(e) by Equation (5.4).
Therefore ρ(e) =A(e) for all e ∈ E so thatA =Aρ.

Finally, consider the maps

θ : ρ 7→ Aρ

from the set of all congruences on S to the set of kernel normal systems of S
and

φ :A 7→ ρA

from the set of all kernjel normal systems to the set of all congruences on S.
The proof above shows that

AρA =A that is φ ◦ θ(A) = A

and hence φ ◦ θ is identity on the set of all kernel normal systems of S. Now
if ρ is any congruence on S and if ρ′ = ρAρ , then ρ and ρ′ are congruences
having the same congruence classes containing idempotents. Therefore ρ = ρ′

by Theorem 4.31. This gives that θ ◦φ is identity on the set of all congruences
on S.

The theorem above gives a direct characterizationof kernal normal systems
independent of the congruence it determines on S. This allowas us to study
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unitary!left –
unitary!right –
unitary!E-unitary

congruences in terms kernel normal systems The description of congruences
by their kernal normal systems can be simplified condiserably in the case of
idempotent separarting ongruences (see Subsection 4.2.2). A characterization
of idempotent separating kernels is provided by Theorem 4.33which holds for
all regular semigroups. Some further notational simplifications are possible in
the case of inverse semigroups. In this case, the biordered setE(S) is completely
determined by the partial order ω of the semilattice and so the group kernel
G on S (cf. Theorem 4.33) are contravariant group-valued functors on E

satisfying axioms (Gkr1), (Gkr2) and (Gkr3). The uniquiness of the inverse
implies that the transformation cρ(x, x′) of axiom (Gkr3) depends only on x ∈ S.
As observed in Subsection 4.2.2, any group kernel G on S is a subfunctor of
Gµ, the group kernel associated with the maximum idempotent separating
congruence µ(S). Also Gµ is closely related to the structure of S.

5.4 conjugate extensions

Composition of transformations σ : F → G and τ : G → H can be defined as
the transformation σ ◦ τ with

v(σ ◦ τ) = (vσ) ◦ (vτ) (5.5a)

and for any c ∈ vdomF,

(σ ◦ τ)c = σc ◦ τc̄ (5.5b)

where c̄ = vσ(c). It is easy to vereify that σ ◦ τ is a transformation from F to H.

5.5 e-unitary inverse semigroups

A subset U of a semigroup S is left [right] unitary if u ∈ U and ux ∈ U [xu ∈ U]
for x ∈ S together implies x ∈ U. U is [two-sided] unitary if U is both left and
right unitary. We say that the semigroup S is [left, right, twosided] E-unitary if
E(S) is a [left, right, twosided] unitary subset of S.

Lemma 5.11. Let S be a regular semigroup which is left [right or two-sided] E-unitary.
Then S satisfies the following condition:

(EU) If x ∈ S and 1 ≤ x for 1 ∈ E then x ∈ E.

For an inverse semigroup S, the consdition above is also sufficient for S to be E-unitary.

Proof. If S is left E-unitary. If 1 ≤ x for 1 ∈ E and x ∈ S, then by Corollary 4.3,
1 = ex for some e ∈ E. Since S is left unitary, we have x ∈ E. So, S satisfies (EU).
Similarly S satisfies (EU) if S is rignt unitary or unitary.
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Now suppose that S is inverse and satisfies (EU). Let x ∈ S and e, ex ∈ E.
Then ex ≤ x by Corollary 4.3 and so x ∈ E by (EU). Therefore S is left unitary.
Similarly, S is right unitary. Consequently S is unitary.

Auseful characterizationof anE-unitary inverse semigroups S is is in terms
of the universal group homomorphism γ(S) on S (see Proposition 4.44).

Proposition 5.12. For an inverse semigroup S the following statements are equiva-
lent.

(a) S is E-unitary;

(b) E is a congruence class of a congruence on S;

(c) For each x ∈ S, the universal group homomorphism γ(S) is injective on Lx [Rx].

Proof. (a)⇒ (b): Notice that E is contained in a single congruence class C of
ρ = κγ(S) where γ(S) is the universal group homomorphism. Hence xρe for
any x ∈ C and e ∈ E. By Equation (4.19), 1x = 1e for some 1 ∈ E. Then 1x ∈ E

and 1x ≤ x. Hence it follows from (a) that x ∈ E. Therefore C = E.
(b)⇒ (c): Suppose that x L y and xρy. Then

fx = x−1x = y−1y = fy and ex = xx−1 L yx−1.

Since yx−1ρxx−1 = ex and ex L yx−1 ∈ E, by (b), ex = yx−1. Therefore

y = yy−1y = yx−1x = xx−1x = x.

This shows that γ(S) is injective on every L-class. Similarly γ(S) is injective
on every R-class.
(c) ⇒ (a): Let x ∈ S, e ∈ E and ex ∈ E. If 1 = ex, then 1 ≤ x and so xγ(S)1
by Equation (4.19). Also, 1 fx = 1 and so, 1 ≤ fx which implies again by
Equation (4.19) that 1γ(S) fx. Therefore xγ(S) fx and since x L fx, x = fx ∈ E by
(c). Similarly it can be shown that if xe ∈ E, then x ∈ E. Thus S is E-unitary.
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Inductive groupoids

In this chapter we discuss one approach to the structure theory of regular
semigroups using inductive groupoids defined in Section 6.1. We refer the
reader to the introduction of Chapter 3 for a discussion of development of
structure theory of regular semigroups.

In Chapter 5 we discusses inductive groupoids of inverse semigroups due
to Schein [1966]. Notice that inverse semigroups may be classified in terms of
biordered sets as those regular semigroups whose biordered sets are semilat-
tices (see Chapter 3). This is the starting point of our discussion of inductive
groupoids. We can see that inductive groupoids of regular semigroups is a
far-reaching generalization of Schein’s theory. We show that the category of
inductive groupoids is naturally equivalent to the category of regular semi-
groups. Consequently, one can replace regular semigroups by their inductive
groupoids or vice-versa. The inherent symmetry of the groupoids could be
exploited to simplify formulation as well as proof of results. In particular, this
technique enable one to formulate and prove many results for general regular
semigroups that are available for inverse semigroups.

In section 3, we apply the theory of inductive groupoids to discuss the fun-
damental regular semigroups. This leads to a generalization of Munn’s theo-
rem for fundamental inverse semigroups. In section 3, is devoted to regular
semibands. We determine all regular semibands generated by a given regular
biordered set. We also obtain an alternate constructions of the free semiband
B0(E) and fundamental semiband Bτ(E) generated by a regular biordered set
E in terms of their inductive groupoids. The last section discuss some special
classes of semigroups and their inductive groupoids.

In this chapter S will denote a regular semigroup and E will be a regular
biordered set unless otherwise made explicit.

295
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6.1 definition and basic properties

We noted in Chapter 5 (see Theorem 5.1) that, given an inverse semigroup S,
G(S), the algebra on the set S with trace product (see )and the natural partial
order, is an ordered groupoid (see Theorem 6.28). However, for a regular
semigroup S the partial algebra S(∗) (see (??) and (??)) is not, in general, a
groupoid. To overcome this problem, we consider the relation

G(S) = {(x, x′) :∈ S, x′ ∈ V(x){(x, x′) :∈ S, x′ ∈ V(x)}.}. (6.1)

Several authors, among them [Schein, 1966], considered this relation. Schein
observed that G(S) is a semigroup under the multiplication

(x, x′)(y, y′) = (xy, y′x′)

if the semigroup is orthodox (see Theorem 2.43). However, this clearly does
not work for arbitrary regular semigroups.

On the other hand, when S is inverse, the relation defined above can be
identified with S(∗) by identifying (x, x−1) ↔ x which is an isomorphism of
groupoids. Nambooripad [1979] showed that it is possible to extend this
definition of G(S) for inverse semigroups to arbitrary regular semigroups.
Our aim in this section is to present the definition of inductive groupoids,
its morphisms and certain basic properties. We begin with some auxiliary
definitions and results needed for the definition of inductive groupoids.6.1.1 The groupoid of E-
hains
Let E be a (regular) biordered set. By Equation (3.1), the relations LE = L

and RE = R are equivalence relations on E and hence represents simplecial
groupoids with vertex set E (see Example 1.20). Observe that in L the com-
posite (e, f )(1, h) exist if and only if f = 1; in particular (e, e) is the unique left
identity of (e, f ) and ( f , f ) is the unique right identity so that we may identify
the set of vertexes of L with E. Similar observations are valid for R also (see
Example 1.20).

Lemma 6.1. Let E be a biordered set. For (e, f ), (1, h) ∈ L define

(e, f ) ≤ (1, h) ⇐⇒ e ω 1, and h = f1.

This defines a partial order on L and L is an ordered groupoid. If θ : E → E′ is a
bimorphism, then

Lθ : (e, f ) 7→ (eθ, fθ)

is an order-preserving functor Lθ : LE → LE′ . Furthermore, the assignments

L : E 7→ LE and θ 7→ Lθ

is a functor L : RB→ OG.
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graph
free category
path

Proof. First consider L. Since ω is a partial order and since f1 is the basic
product, it is clear that the relation ≤ is reflexive and antisymmetric. If (k, l) ≤
(1, h) ≤ (e, f ), then kω1ωe and l = hk = ( f1)k = f (1k) = f k. Hence (k, l) ≤ (e, f )
and so ≤ is a partial order on L.

We now verify axioms (OGi), i = 1, 2, 3. Suppose that (e, f ), ( f , 1), (e′, f ′)
and ( f ′, 1′) are morphisms in L such that (e′, f ′) ≤ (e, f ) and ( f ′, 1′) ≤ ( f , 1).
Then

1
′ = 1 f ′ = 1( f e′) = (1 f )e′ = 1e′.

which implies that (e′, f ′)( f ′, 1′) = (e′, 1′) ≤ (e, 1) = (e, f )( f , 1). HenceL satisfies
axiom (OG1) of Definition 1.6. If (1, h) ≤ (e, f ) then it is clear from the definition
of ≤ above and axiom (B2) for biordered sets that h ω f . Also eh = e( f1) = e1 =

1. Hence (h, 1) ≤ ( f , e) and so, axiom (OG2) holds. If we set restriction in L as

1 � (e, f ) = (e, f ) | 1 = (1, f1), (6.2)

then 1 � (e, f ) is a unique morphism in L such that 1 � (e, f ) ≤ (e, f ) and the
left identity of 1 � (e, f ) is (1, 1). Hence axiom (OG3) also holds. Thus LE is an
ordered groupoid. If θ : E→ E′ is a bimorphism, it is clear that the assignment
(e, f ) 7→ (eθ, fθ) is functor. Also, since θ is a bimorphism, we have

(1 � (e, f ))θ = (1θ, ( f1)θ) = (1θ, ( fθ)(1θ)) = (1θ) � (eθ, fθ).

Therefore, the functor Lθ : LE → LE′ is order preserving. Finally, it is routine
to check that the given assignment is a functor.

It is clear that the dual of the above lemma also holds. Thus for each
biordered set E, the relation ≤ defined by the equation dual to Equation (6.2)
is a partial order on RE = R and R is an ordered groupid with respect to ≤.
Further, for each bimorphism θ : E→ E′, the map

Rθ : (e, f ) 7→ (eθ, fθ)

an order preserving functor Rθ : RE → RE′ such that the assignments

R : E 7→ RE and θ 7→ Rθ

is a functor R : RB→ OG.
In the following discussion, we followMacLane [1971] for concepts such as

a graph, free category generated by a graph, etc. Suppose that G = (E,LE ∪RE)
be the graphwith vertex set vG = E and edge set EG = LE∪RE [seeMacLane,
1971, Page 10]. Notice that any edge in G may be represented uniquely as a
pair (e, f ) ∈ LE ∪RE since LE and RE are simplecial groupoids. We say that
two edges (e, f ) and (1, h) in G are composable if and only if f = 1. A path in G
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vertex!inessential
category!congruence on –

is a finite sequence s = (α1, α2, . . . , αn) of edges in which adjacent edges αi, αi+1
are composable; that is codαi = domαi+1 for i = 1, 2, . . . , n.

Let F = FE be the free category generated by G [see MacLane, 1971, Page
50]; that is F is the category with vF = E and for e, f ∈ E, the home-set F(e, f ) is
the set of all paths in G from e to f . Since edges in G are represented as pairs
of vertexes, a path in G from e to f can be represented as a finite sequences of
vertexes

s = (e = e0, e1, . . . , en = f ) = (e, e1)(e1, e2) . . . (en−1, f )

where (ei−1, ei) ∈ LE∪RE for all i = 1, 2 . . . , n. Here the vertexes ei, i = 0, 1, . . . , n
will be called the vertexes of the path s. We shall say that a vertex ei of s is
inessential if both edges (ei−1, ei) and (ei, ei+1) belongs to LE or both belong to
RE. If ei is inessential, the sequence

s′ = (e = e0, e1, . . . , ei−1, ei+1, . . . , en = f ) where 0 < i < n,

is also a path in G from e to f . We shall write s ↔ s′ to mean that the path
s′ is obtained by removing from s or introducing into s an inessential vertex.
This clearly defines a symmetric relation on the morphism set of F. Let σ
denote the transitive closure of this relation. The symmetry of ↔ implies
that σ is an equivalence relation (see the discussion of equivalence relations in
Subsection 1.1.1). Then by Equation (1.8a) we have

s σ s′ ⇐⇒























s = s′ or

∃si ∈ F such that s0 = s, sn = s′

and si−1 ↔ si, 0 < i < n.

(6.3)

Notice that when s and s′ are related in this way, then s ∈ F(e, f ) if and only
if s′ ∈ F(e, f ). It follows that the restriction of σ to F(e, f ) is an equivalence
relation for every e, f ∈ F. Moreover, for u, v ∈ F if the product usv exists in F,
then

s σ s′ ⇒ usv σ us′v.

Consequently σ is a congruence on the category F in the sense of [MacLane,
1971, Page 52]. It is easy to see that F/σ is the morphism set of a category for
which composition is defined by

σ(s)σ(s′) = σ(ss′) (6.4)

for all s, s′ ∈ F such that ss′ exists in F. Now identities in F are trivial paths
of the form s(e, e) so that identities in F/σ are σ(s(e, e)), e ∈ E. Consequently,
we have a small category C(E) in which morphisms set is F/σ and vC(E) = E.
Since σ is a congruence, the quotient map σ# preserves composition and hence
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E-chain
groupoid of E-chains

there is a functor from F to C(E), also denoted by σ# with vσ# = 1E. Now if
s = (e, e1) . . . (en−1, f ) is a path in F(e, f ), it is clear that s∗ = ( f , en−1) . . . (e1, e) is a
path in F( f , e) such that ss∗ σ s(e, e) and s∗s σ s( f , f ). Hence, by Equation (6.4),
σ(s)σ(s∗) = σ(s(e, e)) and σ(s∗)σ(s) = σ(s( f , f )). Therefore σ(s∗) = (σ(s))−1 in C(E)
and so, C(E) is a groupoid. We have thus proved the following.

Lemma 6.2. F/σ is the morphism set of a (small) category C(E) such that vC(E) =
vF = E. The composition in C(E) is defined by

σ(s)σ(s′) = σ(ss′)

for all s, s′ ∈ F such that the composite ss′ exists in F. Also there is a functor
σ# : F → C(E) which sends each s ∈ F to σ(s) and vσ# = 1E. Moreover C(E) is a
groupoid.

For any s = s(e0, e1, . . . , en) ∈ F, we write

σ(s(e0, e1, . . . , en)) = c(e0, e1, . . . , en).

σ(s) is called an E-chain in E and the groupoid C(E) is called the groupoid of E-

chains of the biordered set E. Since we have identified vertexes and identities
(see Subsection 1.3.1), each e ∈ Ewill also stand for the corresponding identity
c(e, e). In particular, for any c ∈ C(E), ec = e0 will stand for the domain of
c = c(e0, . . . , en) in C(E) as well as the left identity; similarly, fc = en will
denote the co-domain as well as the right identity of c. Recall also that for
each (e, f ) ∈ L, τ(e, f ) (see Corollary 3.16) is an ω-isomorphism of ω(e) onto
ω( f ) such that the assignments of Equation (3.14) is a functor of L to the
the ordered groupoid T∗

E
of ω-isomorphisms of E. Dually the assignments of

Equation (3.14∗) gives a functor of R into T∗E.
We now show that we can define restriction in C(E) which makes it an

ordered groupoid. Equations (6.5a) and (6.5b) below define operations that
are more general than necessary for the present purpose. However, they will
be needed in the sequel for discussing inductive groupoids and associated
semigroups.

Lemma 6.3. Let c = c(e0, e1, . . . , en) ∈ C(E). If h ωr e0 then

h � c = c(h, h0, h1, . . . , hn) where h0 = he0

and for i = 1, 2, . . . , n, hi = hi−1τ(ei−1, ei).
(6.5a)

is a well-defined E-chain. Dually, if k ωl f , then

c � k = c(k0, k1, . . . , kn, k) where kn = enk

and for i = 0, 1, . . . , n − 1, ki = ki+1τ(ei+1, ei).
(6.5b)
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C(E):The groupoid of E-chains is a well-defined E-chain. Now define

c ≤ c′ ⇐⇒ ec ω ec′ and c = ec � c
′. (6.5c)

Then ≤ is a partial order on C(E) such that C(E) is an ordered groupoid.

Proof. By axiom (B2), h R he0 = h0 ω e0. Since for i = 1, . . . , n, if (ei−1, ei) ∈ L

then by Corollary 3.16, (hi−1, hi) ∈ L and dually, if (ei−1, ei) ∈ L then (hi−1, hi) ∈
L. Hence h � c is an E-sequence. To show that h � c is a well-defined E-chain we
must show that when c(s) = c(s′), h � c(s) = h � c(s′). Suppose that ei is inessential
in c so that ei−1 R ei R ei+1 (or ei−1 L ei L ei+1). Then by Equation (3.14) (or
Equation (3.14∗)),

hi+1 = hiτ(ei, ei+1) = hi−1τ(ei−1, ei)τ(ei, ei+1) = hi−1τ(ei−1, ei+1).

It follows that hi is inessential in h�c. Consequently if s↔ s′, then h�c(s) = h�c(s′).
By finite induction we conclude that h � c(s) = h � c(s′) if sσs′. It follows that the
E-chain h � c is well-defined. Dually, for k ωl en, c � k is a well-defined E-chain.

The relation ≤ defined by Equation (6.5c) is clearly reflexive and anti-
symmetric. Suppose that 1 ω h ω ec where c = c(e0, e1, . . . , en). Then by
Equation (6.5a), h � c has the form c(h = h0, h1, . . . , hn) and h � c ≤ c. Let
1 � c = c(1 = 10, . . . , 1n) and 1 � (h � c) = c(1′0, 1

′
1, . . . , 1

′
n). If ei−1 R ei then

1
′
i = 1

′
i−1hi = 1

′
i−1(hi−1ei) = (1′i−1hi−1)ei = 1

′
i−1e +i .

If ei−1 L ei, we similarly have 1′
i
= ei1

′
i−1. Since 1′0 = 10 = 1, it follows by

induction from the above that 1′
i
= 1i for all i = 1, 2, . . . , n. Therefore

1 � c = 1 � (h � c) for all c ∈ C(E) and 1 ω h ω ec. (6.6)

This in particular shows that ≤ is transitive and so, a partial order on C(E).
Suppose that ci ≤ di, i = 1, 2 and assume that products c1c2 and d1d2 exists

in C(E). Then fc1 = h = ec2 and fd1 = h′ = ed2 . Since c2 ≤ d2, by definition,
h = ec2ω fd2 = h′. Also since c1 ≤ d1, we gave 1 = ec1 ω ed1 = 1

′. Let

1 � d1 = c(1 = 10, . . . , 1n = h), h � d2 = c(h = h0, . . . , hm) and

1 � d1d2 = c(1 = k0, . . . , kn, kn+1, . . . , kn+m).

Then by Equation (6.5a), we have

ki =















1τ(e0, e1)τ(e1, e2) . . . τ(ei−1, ei) = 1i if 1 ≤ i ≤ n;

hτ(en, f1) . . . τ( fi−n−1, fi−n) = hi−n if n < i ≤ m + n.

Therefore
1 � d1d2 = (1 � d1)(h � d2) (6.7)
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It follows that C(E) satisfies axiom (OG1). Again let 1 ω ec, 1 � c = c(1 =
10, . . .1n = h) and if h � c−1 = c(h = h0, . . . , hn) where c = c(e0, . . . , en), then by
Equation (6.5a), we have

hi = hτ(en, en−1) . . . τ(en−i+1, en−i)

= 1τ(e0, e1) . . . τ(en−1, en)τ(en, en−1) . . . τ(en−i+1, en−i)

= 1τ(e0, e1) . . . τ(en−i−1, en−i) = 1n−i.

It follows that

h � c−1 = (1 � c)−1. (6.8)

By Equation (6.5c) axiom (OG2) holds. Axiom (OG3) also follows if we define
restriction of c ∈ C(E) to 1 ω ec as 1 � c. Therefore C(E) is an ordered groupoid
with respect to the partial order defined by Equation (6.5c).

Notice that if 1 ω ec then the left restriction 1 � c is the restriction in the
ordered groupoid C(E) (see 1.6, axiom (OG3)) and so, there is no ambiguity in
the notation defined in the lemma above. Similarly, if h ω fc then c � h is the
co-restriction or the co-domain restriction in C(E) (see Subsection 1.4.2).

The groupoid of E-chains can be characterized as a push out in the category
OG (see Example 1.6).

Proposition 6.4. Let E be a biordered set and let

r : 1E ⊆ RE and l : 1E ⊆ LE.

Then there exists order preserving functors LE : LE → C(E) and RE : RE → C(E)
such that the following diagram is a push-out in OG.

1E
r

l

RE

RE

LE
LE

C(E)

(6.9)

Consequently C(E) = LE

∐

1E RE.

Proof. Since vLE = E = vRE, and 1E is trivially an ordered groupoid with
v1E = E, the inclusions r and l are order preserving functors with v r = 1E =
vrt l. Let RE be defined by the assignments

RE : (e, f ) ∈ RE 7→ c(e, f ), e 7→ e.
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By Equation (6.2) and Equation (6.5c), RE : RE → C(E) is an order preserving
functor with vRE = 1E. Dually the assignments

LE : (e, f ) ∈ LE 7→ c(e, f ), e 7→ e.

is an order preserving functor LE : LE → C(E) with vLE = 1E. It is clear from
the definitions that the given diagram commutes.

To prove that the diagram above is a pushout, consider order preserving
functors Fr : RE → G and Fl : LE → G such that

r ◦ Fr = l ◦ Fl or equivalently, vFr = vFl.

Define F : C(E)→ G by

vF = vFr = vFl, and F(c) = F1(e0, e1)F2(e1, e2) . . .Fn(en−1, en)

for all c = c(e0, e1, . . . , en) ∈ C(E), where

Fi(ei−1, ei) =















Fr(ei−1, ei) if ei−1 R ei;

Fl(ei−1, ei) if ei−1 L ei.

Since vFr = vFl, the compositions in the expression for F(c) exists in G. If ei is
inessential, Fi(ei−1, ei) and Fi+1(ei, ei+1) are images of composable morphisms in
RE or LE and hence

Fi(ei−1, ei)Fi+1(ei, ei+1) = Fi+1(ei−1, ei+1).

Consequently F(c) is well-defined. It is clear that

RE ◦ F = Fr and LE ◦ F = Fr.

These equations also shows that F is the unique functor satisfying these equa-
tions.

Let c = c(e0, e1, . . . , en) ∈ C(E) and h ω e0. Then by Lemma 6.3 h � c =

c(h0, h1, . . . , hn) ≤ c. Also, since hi ω ei for all i, by the dual of Lemma 6.1,
(hi−1, hi) = hi−1 � (ei−1, ei) ≤ (ei−1, ei) in RE if (ei−1, ei) ∈ R and similarly for L.
Then

Fi(hi−1, hi) = Fi(hi−1 � (ei−1, ei)) = Fi(hi−1) � Fi(ei−1, ei) = F(hi−1) � F(ei−1, ei)

since both Fr and Fl are order preserving and since vFr = vFl = vF. Therefore

F(h � c) = (F(h0) � F(e0, e1)) . . . (F(hn−1) � F(en−1, en))

= F(h0) � (F(e0, e1) . . .F(en−1, en)) by Proposition 1.19(2)

= F(h) � F(c).

Thus F is order preserving.
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The proposition above constructs the ordered groupoid C(E) for every
biordered set E. Let θ : E → E′ be a bimorphism. Then by the dual of
Lemma 6.1,Rθ : RE → RE′ is an order preserving functor. Hence by the above
Rθ ◦RE′ is an order preserving functor of RE to C(E′). Dually, Lθ ◦ LE′ : LE →

C(E′) is an order preserving functor. Also since v(Rθ ◦ RE′) = v(Lθ ◦ LE′) = θ,
we have

r ◦Rθ ◦ RE′ = l ◦Lθ ◦ LE′ .

Since the diagram 6.9 is pushout, there is a unique order preserving functor
C(θ) : C(E)→ C(E′) such that

Rθ ◦ RE′ = RE ◦ C(θ) and Lθ ◦ LE′ = LE ◦ C(θ).

These equations imply that

C(θ)(c) = c(e0θ, e1θ, . . . , enθ) (6.10)

for all c = c(e0, . . . , en) ∈ C(E).

Proposition 6.5. The assignments

C : E 7→ C(E) and θ 7→ C(θ) (6.11)

is functor C : RB→ OG.

Proof. The vertex map of C is well-defined by Proposition 6.4 and for each
θ : E → E′, C(θ), defined above, is a unique order preserving functor of C(E)
to C(E′). It is clear from Equation (6.10) that C(1E) = 1C(E). If θ : E → E′ and
θ′ : E′ → E′′ are bimorphisms, using Equation (6.10), we have

C(θ ◦ θ′)(c) = c ((e0)θθ′, . . . , (en)θθ′)

= C(θ′) (c(e0θ, . . . , enθ))

= C(θ′) (C(θ)(c)) = C(θ) ◦ C(θ′)(c)

for all c ∈ C(E). Hence

C(θθ′) = C(θ) ◦ C(θ′)

Therefore C : RB→ OG is a functor.6.1.2 De�nition and basi
 properties of indu
tive groupoids
The ordered groupoidG(S) is the inductive groupoid of Swhen S is an inverse
semigroup so that we can reconstruct S from G(S) (see Theorem 5.2). In
general the local structure of the regular semigroup S is represented by a
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ǫ-commutative
groupoid!inductive –
εG:Evaluation of the inductive
groupoid G

inductive groupid!biordered set of –
inductive groupoid!evaluation ot
the –

suitably constructed ordered groupoid G(S) (see Subsection 6.2.1) while the
the global structure of S is not adequately reflected in it. In particular, the
relation between the the biordered set E(S) = E andG(S) is not strong enough
to be able to recover the biordered set of S fromG(S). We therefore add a new
layer of structure to the ordered groupoidG(S) by defining an evaluation of the
groupoid C(E) in G(S).

Recall that an E-square in a biordered set E is a 2 × 2-matrix A =
(

e f
1 h

)

(see
Section 3.2) where e R f L h R 1 L e. Moreover if 1, h ∈ ωr(e) and 1 L h or
if 1, h and e satisfy the dual conditions, then we have an E-squares

(

1 1e
h he

)

and
(

1 h
1e he

)

respectively; these are called singular E-squares (see Section 3.2).
Recall also that a v-isomorphism of ordered groupoids is an order preserv-

ing functor that induces an order isomorphism of the set of vertexes (see Sub-
section 1.4.2). Let E be a biordered set and ǫ : C(E) → G be a v-isomorphism
of C(E) to an ordered groupoid G. We say that an E-square A =

(

e f
1 h

)

is
ǫ-commutative if the following equality holds in G:

ǫ(e, f )ǫ( f , h) = ǫ(e, 1)ǫ(1, h).

Here, for brevity, we havewritten ǫ(e, f ), (e, f ) ∈ LE∪RE for ǫ(c(e, f )). We shall
use such simplifications whenever it is convenient.

Definition 6.1. Let E be a biordered set and εG : C(E)→ G be a v-isomorphism
of C(E) to an ordered groupoid G. We say that the pair (G, εG) is an inductive
groupoid if the following axioms hold:

(IG1) Let x ∈ G and ei, fi ∈ E such that εG(ei) ≤ ex and εG( fi) = fεG(ei)�x for
i = 1, 2.

(a) If e1 ωr e2 then f1 ωr f2 and

εG(e1, e1e2) (εG(e1e2) � x) = (εG(e1) � x) εG( f1, f1 f2).

(b) If e1 ωl e2 then f1 ωl f2 and

εG(e1, e2e1) (εG(e2e1) � x) = (εG(e1) � x) εG( f1, f2 f1).

(IG2) All singular E-squares in E are εG-commutative.

E is called the biordered set of the inductive groupoid (G, εG) and εG is called
the evaluation of C(E) in G (or the evaluation of (G, εG)).

To simplify the notation we shall avoid the pair notation for inductive
groupoids if no ambiguity is likely. WewriteG,G′, etc. for inductive groupoids
with biordered sets E, E′, etc. and evaluations ε, ε′ etc. Since εG = ε is a v-
isomorphism, it naturally induces a biorder structure on vG which makes it a
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inductive functor
IG:The category of inductive
groupoids

inductive subgroupoid
v − full inductive subgroupoid
inductive groupoid!isomorphism of
–

biordered set isomorphic to E. We shall identify vG with E by ε and consider
vG itself as the biordered set of G; moreover, vε = 1E. From now on, we shall
follow these conventions (if no ambiguity is likely).

Definition 6.2. Let G and G′ be inductive groupoids. An inductive functor φ :
G→ G′ is an order preserving functor such that

C(vG)
εG

C(vφ)

G

φ

C(vG′)
εG′

G′

(6.12)

vφ : vG → vG′ is a regular bimorphism making the diagram 6.12 is commu-
tative.

It is clear that for every inductive groupoid G, the identity 1G : G →

G is an inductive functor. Further, if φ : G → G′ and σ : G′ → G′′ are
inductive functors, then an easy verification with the diagram 6.12 above
shows that φ ◦ ψ : G → G′′ is inductive. It follows that inductive groupoids
with inductive functors as morphisms form a category IG. An inductive
groupoid G′ is an inductive subgroupoid of an inductive groupoid G if G′ is an
ordered subgroupoid of G and the inclusion G′ ⊆ G is inductive; that is G′ is a
subobject ofG in IG. AlsoG′ is a v− full inductive subgroupoid ofG if vG′ = vG.
An inductive functor φ : G → G′ is an isomorphism of inductive groupoids if
φ is an isomorphism of ordered groupoids and vφ is a biorder isomorphism.
It is easy to see from Diagram 6.12 that, in this case, φ−1 : G′ → G is also an
inductive functor and hence an isomorphism in IG. Our aim in this chapter
is to prove that the category IG is naturally equivalent to the category RS of
regular semigroups.

Remark 6.1: Clearly there exists a forgetful functorUε : IG→ OG (that forgets
evaluation) to the category of ordered groupoids. Again the assignments

v : G 7→ vG, and φ 7→ vφ

is a functor v : IG → RB. Therefore, if C : RB→ OG is the functor defined
in Proposition 6.5, v ◦ C : IG→ OG is a functor. The diagram 6.12 shows that
the evaluations are components of a natural transformation ε : Uε

n
→ v ◦ C.

The following facts about inductive groupoids are immediate consequences
of the definitions.

Proposition 6.6. For an inductive groupoid G we have the following.
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h � x:Left restriction
x � h:Right restriction
restriction!left –
restriction!right –

(1) An inductive groupoid G′ is an inductive subgroupoid of G if and only if G′ is
an ordered subgroupoid of G such that

εG′ = εG | C(vG′).

(2) Im εG is an inductive subgroupoid of G with respect to the evaluation εG.
Furthermore, a v-full ordered subgroupoid G′ of G (so that vG′ = vG) is an
inductive subgroupoid if and only if

Im εG ⊆ G′.

(3) The lattice of all v-full inductive subgroupoid of G is a complete lattice with
Im εG as the 0-element.

LetG be an inductive groupoid, x ∈ G, h ωr ex and 1 ωl fx. As in the ordered
groupoid C(E) (see Lemma 6.3), we define the morphisms h � x and x � 1 in G as
follows:

h � x =ε(h, hex)(hex � x) = ε(h, hex)(x|hex) (6.13)

where hex � x = x|hex denote the restriction of x to hex ω ex in the ordered group
of G; and

x � 1 = (x � fx1)ε( fx1, 1) (6.13∗)

where x � fx1 denote the co-restriction of x to fx1 ω fx.
For h ωr ex [h ωl fx] the morphism h � x [x � h] defined by Equation (6.13)

[by Equation (6.13)∗] is called the left restriction[the right restriction] of x to
h. Clearly, if h ω ex then the left restriction h � x is the usual or the domain
restriction of x to h and if 1 ω fx then x � 1 is the co-restriction or the co-domain
restriction of x to 1 (see Subsection 1.4.2).

Proposition 6.7. Let φ : G→ G′ be an inductive functor and vφ = θ.

(1) Let x ∈ G. If h ωr ex then

φ(h � x) = hθ � φ(x)

and if 1 ωl fx, then

φ(x � 1) = φ(x) � (1θ).

(2) Imφ = H is an inductive subgroupoid of G′.

(3) If φ is v-bijective, then it is a v-isomorphism agnd if φ is a bijection, then φ is
an isomorphism.
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Proof. (1) Since φ is an order preserving functor such that vφ = θ : E→ E′

is a regular bimorphism, by Equation (6.13),

φ(h � x) = φ(ε(h, hex))
(

(hex)θ � φ(x)
)

,

= ε′(C(E)(θ)(h, hex))
(

hθexθ � φ(x)
)

since φ is inductive,

= ε′(hθ, hθexφ)
(

hθexφ � φ(x)
)

since exθ = exφ = exφ

= hθ � φ(x).

The remaining part of (1) follows by duality.
(2) Let x′, y′ ∈ H and that x′y′ exists in G′ so that fx′ = ey′ . Let x, y ∈ Gwith

φ(x) = x′, φ(y) = y′ and h ∈ S ( fx, ey). Since θ is a regular bimorphism, we
have

hθ ∈ S ( fxθ, eyθ) = S ( fφ(x), eφ(y)) = S ( fx′ , ey′)

and so, hθ = fx′ = ey′ . Therefore by Equation (6.13), its dual and (1), we have

φ
(

(x � h)(h � y)
)

=
(

φ(x � h)
)

(

(h � y)
)

=
(

φ(x) � hθ
) (

hθ � φ(y)
)

= (x′ � fx′ )(ey′ � y′) = x′y′.

Therefore x′y′ ∈ H. Since u−1 ∈ H for all u ∈ H, H is a subgroupoid of G′. Let
x′ ∈ H and let h ω ex′ where h ∈ E1 = vH. Let x ∈ G with φ(x) = x′ so that
exθ = ex′ . Since θ is a regular bimorphism E1 = Imθ is a regular biordered
subset of E′ = vG′. It follows from Proposition 3.24 that there is 1 ∈ E with
1 ω ex and 1θ = h. Sinceφ is order preserving, we have h�x′ = 1θ�φ(x) = φ(1�x)
and so, h � x′ ∈ H. ThereforeH is an ordered subgroupoid of G′.
Since vH = E1, to prove that H is inductive, by Proposition 6.6, it is sufficient
to prove that ε1 = ε′ | C(E1) maps C(E1) into H. If c ∈ C(E1) we have by 6.12,

ε (C(θ)(c)) = φ(ε(c)).

Hence we must show that every E-chain c′ ∈ C(E1) there is c ∈ C(E) such that
C(θ)(c) = c′. Assume inductively that every E-chain in E1 with n vertexes
satisfy this and let c′ = c(e′0, e

′
1, . . . , e

′
n) be an E-chain with n + 1 vertexes. Then

by hypothesis there is a chain

c = c(e1, . . . , en) ∈ C(E) with C(θ)(c) = c(e′1, . . . , en′)

so that e′
i
= eiθ for i = 1, 2, . . . , n. Let e′0 R e′1. Then, by Proposition 3.24,

there exists h ωr e1 such that hθ = e′0. Then, by Equation (6.5a), h � c = c(h =
h0, h1, . . . , hn) is the left restriction of c to h and by Equation (6.10),

C(θ)(h � c) = c(h′0, h
′
1, . . . , h

′
n) where h′i = hiθ, i = 0, 1, . . . , n.
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Now by the choice of h = h0,

h0θ = h0′ = e′0, h′1 = (he1)θ = e′0e
′
1 = e′1

and for each i = 2, . . . , n, by Equation (6.5a)

h′i = hiθ = (hi−1τ(ei−1, ei))θ

= (hi−1θ)τ(ei−1θ, eiθ) = h′i−1τ(e
′
i−1, e

′
i ).

Inductively, h′
i
= e′

i
for all i = 0, 1, . . . , n. Therefore C(θ)(h � c) = c′. If e′0 L e′1,

again by Proposition 3.24, there is k ωl e1 such that kθ = e′0. Then (e1k)θ =
e′1e+

′
0 = e′1 and, as before, we can show that

C(θ) (c(k, e1k)(e1k � c)) = c′.

(3) If φ is a v-bijection by Corollary 3.25, vφ = θ is a biorder isomorphism.
If φ : G → G′ is a bijection, it is clearly an isomorphism of groupoids. By the
above, vφ = θ is a biorder isomorphism. Let x′ ≤ y′ for x′, y′ ∈ G′. Then
φ(x) = x′ and φ(y) = y′ for x, y ∈ G. Since x′ ≤ y′, exθ = ex′ ω ey′ = eyθ.
Therefore ex ω ey. Also we have

φ(x) = exθ � φ(y) = φ(ex � y)

and so, x = ex � y. Therefore x ≤ y and hence φ is an order isomorphism.
Therefore, by definition, φ is an isomorphism of inductive groupoids.

6.2 the inductive groupoid of a regular semigroup

Weproceed to show thatwe canassociate a unique inductive groupoidwith ev-
ery regular semigroups. This is similar to the situation for inverse semigroups
even though the relation between a regular semigroup S and its inductive
groupoid G(S) considerably subtler.

We begin by constructing the ordered group of G(S).6.2.1 The ordered groupoid G(S)

Lemma 6.8. LetG(S){(x, x′) :∈ S, x′ ∈ V(x)} (see Equation (6.1)). For (x, x′), (y, y′) ∈
G(S) define

(x, x′)(y, y′) = (x ∗ y, y′ ∗ x′) if x′x = yy′. (6.14)

Then G(S) is a groupoid with respect to the composition defined above. For (x, x′) ∈
G(S), e(x,x′) = (xx′, xx′) is the left identity, f(x,x′) = (x′x, x′x) is the right identity and
(x′, x) is the inverse.
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Proof. First observe that when the condition x′x = yy′ is satisfied, the trace
products x ∗ y and y′ ∗ x′ exist and (x, x′)(y, y′) ∈ G(S) by Theorem 3.7. Suppose
that (u, u′) is a left identity of (x, x′). Then we must have

u′u = xx′, ux = x and x′u′ = x′.

These give u = uu′u = uxx′ = xx′, and u′ = xx′u′ = xx′.

Hence (xx′, xx′) is the unique left identity of (x, x′). Similarly (x′x, x′x) is the
unique right identity of (x, x′). Associativity of the composition defined by
Equation (6.14) is a consequence of the associativity of trace products. Hence
G(S) is a groupoid in which the inverse of the morphism (x, x′) is (x′, x).

In what follows, we denote by G(S) the groupoid in which morphisms
are pairs (x, x′) with x ∈ S and x′ ∈ V(x) and with composition defined by
Equation (6.14). It is clear that the map 1 7→ (1, 1) is a bijection of E(S) onto
vG(S). Therefore, in the following, we shall regard G(S) as a groupoid with
vG(S) = E(S).

Lemma 6.9. Let G(S) be the groupoid defined in Lemma 6.8. Then

(x, x′) ≤ (y, y′) if x = (xx′)y, x′ = y′(xx′) and xx′ωyy′. (6.15)

defines a partial order onG(S)with respect to whichG(S) is an ordered groupoid such
that vG(S) is order isomorphic with (E(S), ω).

Proof. The relation ≤ defined by Equation (6.15) is clearly reflexive and anti-
symmetric. If (x, x′) ≤ (y, y′) ≤ (z, z′) then xx′ωzz′ and

x = (xx′)y = (xx′)(yy′)z = (xx′)z and x′ = z′(xx′).

Therefore (x, x′) ≤ (z, z′). Thus ≤ is a partial order on G(S). From Equa-
tion (6.14)we see that the partial order induced by this order≤ onvG(S) = E(S)
coincide with ω.

Let (x, x′) ≤ (y, y′). Then we have

x′x = y′(xx′)(xx′)y = y′(xx′)y ω y′y.

Therefore x = (xx′)y = (yy′)(xx′)y = y(y′(xx′)y) = y(x′x)

and x′ = (x′x)y′.

Consequently, (x, x′)−1 = (x′, x) ≤ (y′, y) = (y, y′)−1. Hence axiom (OG2) of
Definition 1.6 hold. Axiom (OG3) hold if we define restriction in G(S) as
follows.

e � (x, x′) = (x, x′)|e = (ex, x′e) for all (x, x′) ∈ G(S) and e ω xx′. (6.15∗)
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Now let (u, u′) ≤ (x, x′) and (v, v′) ≤ (y, y′). If products (u, u′)(v, v′) and
(x, x′)(y, y′) exists in G(S), then

(uv)(v′u′) = u(vv′)u′ = u(u′u)u′ = uu′

ω xx′ = (xy)(y′x′);

(uv)(v′u′)xy = (uu′)xy = uy = u(vv′)y = uv;

and similarly, (y′x′)(uv)(v′u′) = v′u′.

Therefore (u, u′)(v, v′) = (uv, v′u′) ≤ (xy, y′x′) = (x, x′)(y, y′).

Therefore axiom (OG1) also holds.6.2.2 The indu
tive groupoid
We now define an evaluation (see Definition 6.1) of C(E(S)) inG(S) so thatG(S)
becomes an inductive groupoid.

Lemma 6.10. There is an order preserving functor εS : C(E)→ G(S) with vεS = 1E
and morphism map defined as follows: For each c = c(e0, e1, . . . , en) ∈ C(E)

εS(c) = (wc,wc−1) (6.16)

where wc = e0e1 . . . en−1en.

Proof. First notice that wc−1 ∈ V(wc). For either ei−1 R ei so that ei−1ei = ei or
ei−1 L ei so that ei−1ei = ei−1. Hence

wcwc−1 = e0e1 . . . enenen−1 . . . e0 = e0 and

wc−1wc = enen−1 . . . e0e0e1 . . . en = en.

It follows thatwcwc−1wc = wc andwc−1wcwc−1 = wc−1 . This proves that (wc,wc−1) ∈
G(S). Also,

wc R e0 = ec L wc−1 R en = fc L wc.

Suppose that c, d ∈ C(E) and that cd exists. Then fc = ed and so, wc−1wc = fc =

ed = wdwd−1 . Therefore, by Equation (6.14) the composite (wc,wc−1)(wd,wd−1)
exists in G(S). Moreover wcd = wcwd and w(cd)−1 = wd−1wc−1 . Therefore

εS(s)εS(d) = (wc,wc−1)(wd,wd−1)

= (wcwd,wd−1wc−1) = (wcd,w(cd)−1)

= εS(sd)

by the definition of εS. Since εS(c(e, e)) = (e, e), εS : C(E) → G(S) is a functor
such that vεS = 1E. Let c = c(e0, e1, . . . , en) ∈ C(E) and h ω e0. If

h � c = c(h, h1, . . . , hn) then hi = eihi−1ei for all i = 1, . . . , n.
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This gives

hh1h2 . . . hn = h(e1e0he0e1) . . . (enen−1 . . . e0he0e1 . . . hn)

= he0e1 . . . en and similarly,

hnhn−1 . . . h1h = enen−1 . . . e0h.

Therefore

εS(h � c) = (hh1h2 . . . hn, hnhn−1 . . . h1h)

= (he0e1 . . . en, enen−1 . . . e0h)

= h � (e0e1 . . . en, enen−1 . . . e0)

= h � εS(c).

Thus εS : C(E)→ G(S) is an order preserving functor.

Theorem 6.11. Let S be a regular semigroup and let E = E(S).

(a) Let G(S) be the ordered groupoid of S and εS be the order preserving v-
isomorphism defined in the lemma above. Then (G(S), εS) is an inductive
groupoid.

(b) Let φ : S → S′ be a homomorphism of regular semigroups. Then there exists
an inductive functor G(φ) : G(S)→ G(S′) such that

vG(φ) = E(φ) and

G(φ)(x, x′) = (xφ, x′φ) for all (x, x′) ∈ G(S).
(6.17)

(c) The assignments
G : S 7→ G(S) and φ 7→ G(φ)

is a functor G : RS→ IG

Proof. (a) By Lemmas 6.8 and 6.9, G(S) is an ordered groupoid. Lemma
6.10 constructs an evaluation ε = εS : C(E)→ G(S) (see Equation (6.16)) where
E = E(S). So, to show thatG(S) is an inductive groupoid, it is sufficient to verify
axioms (IG1) and (IG2). So, let (x, x′) ∈ G(S), e1, e2 ∈ ω(e(x,x′)). If fi = fei�(x,x′),
then by Equation (6.15∗)

fi = f(eix,x′ei) = (x′ei)(eix) = x′(ei)x

so that f1 ωr f2 if and only if e1 ωr e2. Similarly f1 ωl f2 if and only if e1 ωl e2.
Also, if e1 ωr e2, then

ε(e1, e1e2) (e1e2 � (x, x′)) = (e1e2, e1)(e1e2x, x′e1e2)

= (e1e2x, x′e1);
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and

(e1 � (x, x′)) ε( f1, f1 f2) = (e1x, x′e1)( f1 f2, f1) = (e1x f1 f2, f1x′e1)

= (e1(xx′)e1(xx′)e2x, x′e1(xx′)e1)

= (e1e2x, x′e1).

This proves axiom (IG1)(a). (IG1)(b) is proved dually. Now suppose that
(

1 1e
h he

)

be a column singular E-square so that 1, h ∈ ωr(e) and 1 L h. Then

ε(1, h)ε(h, he) = (1, h)(he, h) = (1e, h)

ε(1, 1e)ε(1e, he) = (1e, 1)(1e, he) = (1e, h).

Dually all row singular E-squares also commute.
(b) Equation (6.17) shows that G(φ) maps G(S) to G(S′). If (x, x′)(y, y′)

exists in G(S), then x′x = yy′ and so

(x′)φ(x)φ = (x′x)φ = (yy′)φ = (y)φ(y′)φ.

Therefore the product
(

(x, x′)G(φ)
) (

(y, y′)G(φ)
)

= (xφ, x′φ)(yφ, y′φ)

exists in G(S′) and

(

(x, x′)G(φ)
) (

(y, y′)G(φ)
)

= (xφyφ, y′φx′φ) =
(

(xy)φ, (y′x′)φ
)

=
(

(x, x′)(y, y′)
)

G(φ)

Thus G(φ) : G(S)→ G(S′) is a functor. Also, for any 1ωe(x,x′), (x, x′) ∈ G(S),

(

1 � (x, x′)
)

G(φ) = (1x, x′1)G(φ)

=
(

(1x)φ, (x′1)φ
)

=
(

1θ)(xφ), (x′φ)(1θ)
)

where θ = E(φ)

= (1θ) � (x, x′)G(φ).

This shows that G(φ) is order preserving. If c = c(e0, e1, . . . , en) ∈ C(E) then

wcφ = wcθ.

Therefore

(εS(c))G(φ) = (wc,wc−1)G(φ)

= (wcφ, (wc−1)φ) = (wcθ,w(cθ)−1)

= εS′ (cθ).

This proves that G(φ) : G(S)→ G(S′) is an inductive functor.
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(c) By (a) and (b), given assignments are single valued. Suppose that
φ : S → S′ and ψ : S′ → S′′ be homomorphisms of regular semigroups. Then
for any (x, x′) ∈ G(S) we have

(x, x′)G(φψ) = (xφψ, x′φψ) =
(

(x, x′)G(φ)
)

G(ψ).

Hence G(φψ) = G(φ) ◦G(ψ) and so G is a functor as desired.

By the convention established above, we have E(S) = vG(S) for every
regular semigroup S and E(φ) = vG(φ) for all homomorphism φ : S → S′ of
regular semigroups. Thus the following diagram of categories and functors
commute:

RS
G

E

IG

v

RB

(6.18)

6.2.3 Exer
ise
Exercise 6.1: Determine the inductive groupoidG(S) in the fallowing cases.

1. S = TX where X is a set.

2. S = L T (V) where V is a vector space over a field k.

Exercise 6.2: LetG be an ordered groupoid. Show that it is possible to have more than
one biorder structure on E = vG which makes G an inductive groupoid.

Exercise 6.3: Let S be an orthodox semigroup (see ??). Show that G(S) be comes an
orthodox semigroup S̃ if we extend the composition in G(S) by:

(x, x′)(y, y′) = (xy, y′x′).

Find the biordered set E(S̃). Can you characterize all those orthodox semigroups that
arise as S̃ for some orthodox semigroup S ?

6.3 struture of regular semigroups

In Section 6.2 we have associated an inductive groupoid with every regular
semigroups. Herewe shall show thatwe an construct a regular semigroupS(G)
from an inductive groupoid G and a hmomorphism S(φ) from an inductive
functorφ such that these assignments gives a functor S : IG→ RS. Moreover,
S is the adjoint inverse of the funcctor G of Theorem 6.11 so that G is an
equivalence of the category RS of regular semigroups with the category IG

of inductive groupoids.
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In the following G denotes an indutive groupoid with vertex biordered set
E and evaluation ε. By convension established for cateories in Section 1.2,
Chapter 1, G itself denote the set of morphisms of the groupoid G (see also
Section 1.3).

On G define the relation p as follows:

x p y ⇐⇒ ex R ey, fx L fy and xε( fx, fy) = ε(ex, ey)y. (6.19)

In view of the conditions ex R ey and fx L fy the last equality is equivalent to

x � fy = ex � y. (6.19∗)

It is easy to see that the relatin p is reflexive and symmetric. Also, if x p y p z,
it follows from Equation (6.13) and Lemma 6.14 that

x � fz = (x � fy) � fz = ex � (y � fz) = ex � (ey � z) = ex � z.

Hence x p z. Thus p is an equivalence relation. It is clear that no two dustinct
morphisms in a home-set G(e, f ) can be p equivalent. In particular, no two
identities are p equivalent.

Lemma 6.12. The relation p on (the morphism set) of an inductive groupoid G defined
by Equation (6.19) is an equivalence relation such that x, y ∈ G(e, f ) and x p y implies
x = y. In particular, no two identites are p-equivalent.

Next theorem gives the basic cconstruction of a regular semigroup from
inductive groupoids.

Theorem 6.13. Let G be an inductive groupoid and let S(G) = G/ p. For each x ∈ G,
let x̄ denote the p-lass containing x. For x, y ∈ G and h ∈ S ( fx, ey) let

x̄ȳ = (x ◦ y)h. (6.20)

This defines a binary operation on S(G) and S(G) is a regular semigroup with respet to
this operation. Furthermore, the map χG : e 7→ ē is a biorder isomrphism of vG = E
onto E(S(G)).

We shall divide the proof into a number of preliminary lemmas. Recall
for all x ∈ G, the map a(x) : ω(ex) → ω( fx) defined by Equation (6.27) is an
ω-isomorphism and that the map aG : x 7→ a(x) is a v-isomorphism of G to T∗E
(see Theorem 6.28).

Lemma 6.14. Let x ∈ G and suppose that h ωr ex and k ωl fx such that fh�x = fxk.
Then

(h � x) � k = h � (x � k)
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where h � x and x � k are left and right restrictions of x defined in Equation (6.13) and
its dual.

Proof. It is clear from Equation (6.13) and its dual that the codomain of h � x

and hex � x are the same. Hence

fh�x = fhex�x = (hex)a(x) = fxk

by Equation (6.27). Similarly

ex�k = ex� fxk = f fxk�(x)−1 = ( fxk)a(x−1) = hex.

Therefore fh�x L k and ex�k R h. Thus the expressions (h � x) � k and h � (x � k) are
defined by Equations 6.13 and its dual. Again it follows from these that

(h � x) � k =
(

(h � x) � ( fh�xk)
)

ε( fh�xk, k)

=
(

(h � x) � fh�x
)

ε( fh�x, k)

= (h � x)ε( fxk, k)

= ε(h, hex) (hex � x) ε( fxk, k).

Similarly h � (x � k) = ε(h, hex)
(

x � fxk
)

ε( fxk, k).

Now hex �x ≤ x, x � fxk ≤ x. Also, by the given condition, the codomains of he �x
is fxk so that

cod(hex � x) = fxk = cod(x � fxk).

Hence by the dual of axiom (OG3), we have hex � x = x � fxk. This proves the
lemma.

If h and k satisfy the conditions of Lemma 6.3 then the common value of
the expressions (h � x) � k and h � (x � k) will be denoted by h � x � k.

Lemma 6.15. Let x ∈ G and 1, h ∈ E. If 1 ωr h ωr ex and 1ex ω hex, then
1 � (h � x) = 1 � x. If 1 ωl h ωl fx and fx1 ω fxh, then (x � h) � 1 = x � 1

Proof. By Equation (6.13) and Proposition 1.19(2), we have

1 � (h � x) = ε(1, 1h)
(

1h � ε(h, hex)
)

(k � x)

where k = f1h�ε(h,hex). Since ε is order preserving, and h R hex by Equation (6.2),
we have

1h � ε(h, hex) = ε(1h � (h, hex)) = ε(1h, (1h)(hex))

so that
k = (1h)(hex) = 1(hex) = (1ex)(hex) = 1ex.
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(x ◦ y)h :Defined by Eqrefeq:18ind Since 1 R 1h R 1ex, we have

1 � (h � x) = ε(1, 1h)ε(1h, 1ex)(1ex � x) = ε(1, 1ex)(1ex � x) = 1 � x.

The second statement follows by duality.

Lemma 6.16. For x, y ∈ G and h ∈ S ( fx, ey), define

(x ◦ y)h = (x � h)(h � y). (6.21)

Then we have

k � (x ◦ y)h = (k � x � 1)(1 � y) if 1 ∈M( fx, h), k ωr ex�h and fk�x = fx1

and (x ◦ y)h � k = (x � 1)(1 � x � k) if 1 ∈M(h, ey), k ωl fh�y amd ey�k = 1ey.

Proof. By Equations (6.21) and the dual of (6.13), we have ex� fxh = ex�h = e(x◦y)h .
Then by Proposition 1.19, we have

k � (x ◦ y)h = ε(k, kh1) (kh1 � (x � h))
(

11 � (h � y)
)

.

where h1 = ex� fxh and 11 = fkh1�(x�h). By Proposition 1.19, h1 � x = x � fxh and so,
by Equation (6.27) fxh = (h1)a(x). Again, by Theorem 6.28 aG : G → T∗

E
is an

inductive functor and so, we have

11 = (kh1)a(x � h) by Equation (6.27)

= (kh1)a(x � fxh)a(ε( fxh, h)) by Equation (6.13)∗

= (kh1)a(h1 � x)τ( fxh, h) since diagram 6.30 commutes

= (kh1)a(x)τ( fxh, h)

= (k)a(x)(h1)a(x)τ( fxh, h)

= h( fx1)( fxh) by the given conditions

= h( fx(1h)) = 1h.

By Proposition 1.19(1) kh1 �(x �h) = (x �h) �11. Since 11 ω h ωl fx and 11 ω h ωr ey,
by Lemma 6.14

(x � h) � 11 = x � 11 and 11 � (h � y) = 11 � y.

Therefore k � (x ◦ y)h = ε(k, kh1)(x � 11)(11 � y)

= (k � x � 11)(11 � y)
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using Equation (6.13).Again, since 1 R 11, by Equation (6.13) we have

1 � y = ε(1, 11)(11 � y)

and k � x � 1 = (k � x � fx1)ε( fx1, 1)

= (k � x � fx11)ε( fx11, fx1)ε( fx1, 1)

= (k � x � fx11)ε( fx11, 11)ε(11, 1) by axiom (IG2)

= (k � x � 11)ε(11, 1).

Hence k � (x ◦ y)h = (k � x � 1)ε(1, 11)ε(11, 1)(1 � y)

= (k � x � 1)(1 � y).

The second statement follows by dualiity.

Lemma 6.17. Let x, y, z ∈ G, h1 ∈ S ( fx, ey) and h2 ∈ S ( fy, ez). Write h′1 = fh1�y and
h′2 = ey�h2 . Then there exist h ∈ S ( fx, h′2) and h

′ ∈ S (h′1, ez) such that

((x ◦ y)h1 ◦ z)h′ = (x ◦ (y ◦ z)h2)h.

Proof. Since h′1 = fh1�y = fh1ey�y, and h′2 = ey� fyh2 by Equation (6.27),

h′1 = (h1ey)a(y) and h′2 = ( fyh2)a(y−1)

By Corollary 3.23 there is h ∈ S (h1, h′2) ⊆ S ( fx, h′2) and h′ ∈ S (h′1, h2) ⊆
S (h′1, ez) such that (hey)a(y) = fyh

′. Then we have fh�y = fyh
′. Since h′ ∈

M( fy, h2), by Lemma 6.17,

h � (y ◦ z)h2 = (h � y � h′)(h′ � z).

Therefore
(x ◦ (y ◦ z)h2)h = (x � h)(h � y � h′)(h′ � z).

Since h1, h′1, h and h′ satisfy the dual hypothesis, we obtain by dual arguements
that

((x ◦ y)h1 ◦ z)h′ = (x � h)(h � y � h′)(h′ � z).

This proves the lemma.

Lemma 6.18. Let x p y in G. Tnen

h � x p h � y for all h ωr ex

and dually, x � 1 p y � 1 for all 1 ωl fx.

Proof. By Equation (6.13) h � x = ε(h, hex)(hex � x). Let h1 = fhex�x. Then by
Proposition 1.19,

hex �
(

xε( fx, fy)
)

= (hex � x)
(

h1 � ε( fx, fy)
)

= (hex � x)ε(h1, fyh1);

hex �
(

ε(ex, ey)y
)

= ε(hex, hey)(hey � y).
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Since xε( fx, fy) = ε(ex, ey)y, we have

(h � x)ε(h1, fyh1) = ε(h, hex)(hex � x)ε(h1, fyh1)

= ε(h, hex)ε(hex, hey)(hey � y)

= ε(h, hey)(hey � y) = h � y.

Clearly h1 L fyh1 and so, h � x p h � y. The second statement is the dual of the
first.

Lemma 6.19. Let x p x′, y p y′ in G and h ∈ S ( fx, ey) in E. Then (x◦ y)h p (x′◦ y′)h.

Proof. Given conditions imply that fx L fx′ and ex R ey. Hence by Proposi-
tion 3.12, S ( fx, ey) = S ( fx′ , ey′ ). Hence the expression (x′ ◦ y′)h is defined by
Equation (6.21). By Lemma 6.18, x � h p x′ � h. Since the codomains of there are
the same, by Equation (6.19), we have

x′ � h = ε(h′1, h1)(x � h)

where h1 and h′1 are domains of x � h and x′ � h respectively. Dually, if h2 and h′2
are codomains of h � y and h � y′ respectively,

h � y′ = (h � y)ε(h2, h′2).

Therefore

(x′ ◦ y′)h = (x′ � h)(h � y′)

= ε(h′1, h1)(x � h)(h � y)ε(h2, h
′
2)

= ε(h′1, h1)(x ◦ y)hε(h2, h
′
2).

Since h′1 R h1 and h′2 L h2, the lemma follows from Equation (6.19).

Lemma 6.20. Let x, y ∈ G and h, h′ ∈ S ( fx, ey). Then (x ◦ y)h = (x ◦ y)h′ .

Proof. Let h1 = ex�h and h2 = fh�y. Then by Equation (6.27) h1 = ( fxh)a(x−1) and
h2 = (hey)a(y). Similarly let h′1 = ex�h′ = ( fxh′)a(x−1) and h′2 = (h′ey)a(y).

First suppose that h R h′. Then hey = h′ey and so, h1 = h′1. Moreover, by
Lemma 6.15,

h′ � y = h′ � h � y

= ε(h′, h)ε(h, hey)(hey � y) = ε(h′, h)(h � y).
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Now, by Proposition 1.19, h1 � x = x � fxh and h′1 � x = x � fxh
′ and so,

x � h′ = (x � fxh′)ε( fxh′, h′)

= (h′1 � x)ε( fxh
′, h′)

= ε(h′1, h1)(h1 � x)ε( fxh, fxh
′)ε( fxh′, h′) by axiom (IG1)

= ε(h′1, h1)(x � fxh)ε( fxh, h)ε(h, h
′) by axiom (IG2)

= ε(h′1, h1)(x � h)ε(h, h
′).

Therefore

(x ◦ y)h′ = (x � h′)(h′ � y)

= ε(h′1, h1)(x � h)ε(h, h
′)ε(h′, h)(h � y)

= ε(h′1, h1)(x � h)(h � y)

= ε(h′‘1, h1)(x ◦ y)h.

Since h′1 R h1 and h′2 = h2, it follows that (x ◦ y)h p (x ◦ y)h′ in this case. In
the case when h L h′, the same conclusion follows dually. If h, h′ ∈ S ( f ′xey)
are arbitrary, by Corollary 3.21, there is h1 ∈ S ( fx, ey) auch that h R h1 L h′.
Consequently the desired equality holds in all cases.

Proof of Theorem 6.13. Lemmas 6.19 and6.20, show that Equation (6.20)defines
asingle valued binary operation on S(G). Let x, y, z ∈ G, h1 ∈ S ( fx, ey) and h2 ∈

S ( fy, ez). Then by Lemma 6.17 there is h ∈ S ( f ′xe(y◦z)h2 ) and h′ ∈ S ( f(x◦y)h1 , ez)
such that

((x ◦ y)h1 ◦ z)h′ = (x ◦ (y ◦ z)h2)h.

Now by Equation (6.20),

(x̄ȳ)z̄ = ((x ◦ y)h1 ◦ z)h′ ;

x̄(ȳz̄) = (x ◦ (y ◦ z)h2)h.

It follows that S = S(G) is a semigroup. If the product xy exists in G, then
fx = ey and so, S ( fx, ey) = { fx}. Therefore x̄ȳ = (x ◦ y) fx = xy. In particular,
taking y = x−1 we have

x̄ ¯x−1x̄ = xx−1x = x̄ and similarly ¯x−1x̄ ¯x−1 = ¯x−1.

Therefore S is regular.
We now verify that χ : vG = E → E(S) is a biorder isomorphism. By

Lemma 6.12 each p-class of G ontain utmost one identity and so the map χ is
injective. If h ωr e by Proposition 3.9, h ∈ S (h, e) and he ∈ S (e, h). Then

ε(h, he) p he and ε(he, h) p h.



320 6. inductive groupoids

Hence by Equation (6.20)

ēh̄ = (e ◦ h)he = (e � he)(he � h)

= ε(he, h) = h̄;

h̄ē = (h ◦ e)hε(h, he) = h̄e.

If h ωl e, dually we have

ēh̄ = ēh and h̄ē = h̄

It follows that χ is a bimorphism. If h ∈ S (e, f ), then

ē f̄ = (e � h)(h � f )

= (ε(eh, h))
(

ε(h, h f )
)

= ehh f since ε(eh, h) p eh and ε(h, h f ) p h f

= (ēh̄)(h̄ f̄ ) = ēh̄ f̄ by the abve

By Proposition 3.4 h̄ ∈ S (ē, f̄ ) in E(S). Therefore χ is an injecctive regular
bimorphism. Finally we show that χ : E → E(S) is surjective. Suppose that
x ∈ G such that x̄ ∈ E(S). If h ∈ S ( fx, ex) then (x ◦ x)h p x. Hence

ex R e(x◦x)h = ex�h = ( fxh)a(x−1).

Therefore (ex)a(x) fx R fxh ω fx which implies that fx = fxh. Thus fx L h.
Dually ex R h. Since χ is a bimorphism, ēx R h̄ L f̄x in S. Further x̄ ¯x−1 = ēx,
ēxx̄ = x̄ and so, ēx R x̄ in S. Similarly f̄x L x̄. Consequently, the hypothesis
that x̄ is an idempotent implies that x̄ and h̄ are H -equivalent idempotents in
the semigrup S. Therefore x̄ = h̄ and so χ is surjective. By Corollary 3.25 χ is
a biorder isomorphism.

We proceed to show that the construction of Theorem 6.13 can be extended
to a functor S : IG → RS. The following theorem constructs the morphism
map of the desired functor S.

Theorem 6.21. For an inductive functor φ : G→ G′, define

(x̄)S(φ) = φ(x) for all x̄ ∈ S(G). (6.22)

Then S(φ) : S(G)→ S(G′) is a homomorphism of the semigroupS(G) to the semigroup
S(G′) such that the following diagram commute:

vG
χG

θ

E(S(G))

E(S(φ))

vG′ χG′
E(S(G′))

(6.23)
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where χG : vG → E(S(G)) and χG′ : vG′ → E(S(G′)) are biorder isomorpisms of
Theorem 6.13 and θ = vφ.

Moreover S(φ) is injective [surjective] if and only if φ has the corresponding
property.

Proof. We first show that S(φ) : S(G) → S(G′) is a single valued mapping. To
this end, assume that x, y ∈ G and x p y. Then by Equation (6.19) xε( fx, fy) =
ε(ex, ey)y where ex R ey and fx L fy. Now vφ = θ : E → E′ is a regular
bimorphism and so, exθ = exφ R eyθ and fxθ L fyθ. Since φ is inductive,

(φ(x))ε( fxθ, fyθ) = (φ(x))φ(ε( fx, fy)) = φ
(

xε( fx, fy)
)

= φ
(

ε(ex, ey)y
)

= ε(exθ, eyθ)(φ(y))

Therefore φ(x) p φ(y). Hence S(φ) is single valued. Again, let x, y ∈ G

and h ∈ S ( fx, ey). Since θ is a regular bimorphism hθ ∈ S ( fxθ, yyθ). By
Proposition 6.7(1) φ(x � h) = φ(x) � hθ and φ(h � y) = hθ � φ(y). Hence

φ((x ◦ y)h) = (φ(x) ◦ φ(y))hθ.

Therefore

(x̄ȳ)S(φ) = φ
(

(x ◦ y)h
)

= (φ(x) ◦ φ(y))hθ

= φ(x) φ(y) = (x̄)S(φ)((̄y))S(φ).

It follws that S(φ) is a homomrphism. The definition of S(φ) immediately
imply commutativity of 6.23.

Suppose that φ : G → G′ is injective and that x̄S(φ) = ȳS(φ). Then, by
the definition of S(φ), φ(x) p φ(y) and so exθ R eyθ and fxθ L fyθ where
θ = vφ. Sincce θ is a regular injective bimorphism, it is an isomorphism onto
Eθ by Proposition 3.24 and Corollary 3.25. Therefore ex R ey and fx L fy. If
z = ε(ex, ey)yε( fy, fx) then z p y and so, φ(z) p φ(y) p φ(x). Since eφ(x) = eφ(z) and
fφ(z) = fφ(x), we have φ(x) = φ(z). Since φ is ono-to-one, x = z. Therefore x p y

and so x̄ = ȳ. Conversely suppose that S(φ) is one-to-one and let φ(x) = φ(y).
Then

(x̄)S(φ) = φ(x) = φ(y) = (ȳ)S(φ)

which implies that x̄ = ȳ. Also E(S(φ)) is injective and so, by ??, θ = vφ is
injective. Since eφ(x) = exθ = eφ(y) = eyθ, we have ex = ey. Similarly fx = fy.
Since x̄ = ȳ, it follows from Lemma 6.12 that x = y.

If φ is surjective, it is clear from Equation (6.22) that S(φ) is surjective. So
assume that S(φ) is surjective. By Proposition 6.7, G1 = Imφ is an inductive
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subgroupoid ofG′. Since S(φ) is surjective, by Theorem 3.5E(S(φ)) is surjective
and hence by 6.23, θ = vφ is surjective. Hence if ε′ denotes the evaluation of
G′, Im ε′ ⊆ G1. Let x′ ∈ G′. Then x̄′ ∈ S(G′) and since S(φ) is surjective, there
exists x ∈ Gwith (x̄)S(φ) = x̄′. By the definition of S(φ), φ(x) p x′. Therefore

x′ = ε′(ex′ , eφ(x))φ(x)ε′( fφ(x), fx′).

Since ε′(ex′ , eφ(x)), ε′( fφ(x), fx′) ∈ Im ε′ ⊆ G1 and φ(x) ∈ G1 it follows that x′ ∈ G1.
Hence G1 = G′. This completes the proof.

Equation (6.22) shows that S(1G) = 1S(G). Moreover, if φ : G → G′ and
ψ : G′ → G′′ are composable inductive functors, then for all x ∈ G

(x̄)S(φψ) = ψ(φ(x))

=
(

(x̄)S(φ)
)

S(ψ).

by Equation (6.22). Thus we have the following:

Theorem 6.22. For each inductive groupoid, let S(G) denote the regular semigroup
constructed in Theorem 6.13 and for each inductive functor φ : G → G′, let S(φ) :
S(G)→ S(G′) be the homomrphism of Theorem 6.21. Then the assignments

S : G 7→ S(G), φ 7→ S(φ)

is a functor S : IG→ RS.

Notice that the diagram ?? shows that the map

χ : G 7→ χG is a natural isomorphism χ : v
n
→ S ◦ E.

As for the functor G (see Theorem 6.11), here also it may be convenient to
identify vG = E(S(G)) for all inductive groupoid G by identifying e ∈ vG

with ē = eχ. It follows from Equation (6.22) that this identification forces
the identification vφ = E(S(φ)) for all inductive functor φ. Consequently the
following diagram commute:

IG
S

v

RS

E

RB

(6.24)

Remark 6.2: Given any inductive groupoid G, Theorem 6.13 constructs a regu-
lar semigroup S(G) with vG is isomorphic to E(S). Given any biordered set E,
by Proposition 6.27 the set of allω-isomorphisms of E is an inductive groupoid
T∗E with vT∗E is isomorphic to E. Therefore, by Theorem 6.13, S(T∗E) = T(E) is a
regular semigroup with biordered set isomorphic to E. This gives an alternate
proof of the fact that any regular biordered set is the biordered set of a regular
semigroup (see also Theorem 3.42).
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e of IG and RS

Suppose that G is an inductive groupoid and x, y ∈ G. If xy exists in G, clearly
y−1x−1 also exists. It is immediate from Equation (6.20) that

x̄ȳ = xy, and y−1 x−1 = y−1x−1.

In particular, xx−1 = ēx, x̄ f̄x = x̄ = ēxx̄. Hence

ex R x̄ L fx

and x−1 is an inverse of x̄ in S(G). When xy exists in G, the above equalities
show that trace products x̄ ∗ ȳ and y−1 ∗x−1 exists in S(G) (see Equation (2.48a)).
Conversely, if x̄, ȳ ∈ S(G) and if trace products x̄ ∗ ȳ and y−1 ∗ x−1 exist then
there exist 1, h ∈ E(S(G)) such that

x̄ L 1 R ȳ and y−1 L h R x−1

Then fx L 1 R ey and fy L h R ex. Hence if

u = ε(h, ex)xε( fx, 1) and v = ε(1, ey)yε( fy, h)

then by Equation (6.19) x p u, y p v and uv exists in G. To prove uniqueness,
assume that u p u′, v p v′ and that products uv and u′v′ exists in G. Then
ev = fu L fu′ = ev′ . Since v p v′, ev R ev′ which implies that fu = ev = ev′ = fu′ .
Similarly we have fv = eu = eu′ = fv′ . Therefore u, u′ ∈ G(eu, fu) and v, v′ ∈

G(ev, fv). By Lemma 6.12, u = u′ and v = v′.
For convenience of later reference, summarize the discussion above as:

Lemma 6.23. For x, y ∈ G if the product xy exists in G then the trace products x ∗ y

and y−1 ∗ x−1 exists in S(G). If this is the case, we have

x ∗ y = xy, and y−1 ∗ x−1 = y−1x−1.

Conversely, if the trace products x ∗ y and y−1 ∗ x−1 exists in S(G), then there exists
unique u, v ∈ G such that ū = x̄, v̄ = ȳ and uv exists in G. In particular,

xx−1 = ex, x−1x = fx,

x̄ fx = x̄ = exx̄

for all x ∈ G. Consequently x−1 ∈ V(x̄) for all x̄ ∈ S(G).

Theorems 6.11 and 6.22 constructs functors G : RS → IG and S : IG →
RS respectively. These constructions shows, in particular that, we can con-
struct an inductive groupoid from a regular semigroup and conversely a reg-
ular semigroup can be constructed from any inductive groupoid. We proceed
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to show that every inductive groupoid is isomorphic to an inductive groupid
of the from G(S) constructed from a regular semigroup S and every regu-
lar semigroup S is, upto isomorphism, a regular semigroup of the form S(G)
constructed from an inductive groupoid G. Thus the mathematical structures
inductive groupoids and regular semigroups are structurely equivalent (not equal).
Here we prove this by showing that the functor S is the adjoint inverse of the
functor G (see Subsection 1.2.4). It may be noted that our functorial approch
gives a result considerably stronger than the structural equivalence of induc-
tive groupoids and regular semigroups; in fact our result also includes the
equivalence of inductive funtors and homomrphisms of regular semigroups.
We shall illustrate some of the consequences of these equivalences later in this
section.

We divide the proof of the equivalence of categories IG and RS into the
following two propositions.

Proposition 6.24. For any indutive groupoid G, there is an inductive isomorphism
νG : G→ G(S(G)) defined as follows:

νG(x) = (x, x−1) for all morphism x ∈ G

and vνG = χ.

Furthermore
ν : 1IG

n
→ S ◦G; G 7→ νG

is a natural isomorphism.

Proof. For brevity, let us write S = S(G). We first observe that the morphism
map of the functor νG given in the statement is single valued. Indeed, if x p y

then it follows from Equation (6.19) that y−‘1 p x−1. By Lemma 6.23, x−1 ∈ V(x̄)
and so, by Equation (6.1), (x, x−1) is a morphism in G(S). Hence νG is a well
defined map of the morphism set of G to the morphism set of G(S(G)). If xy
exists in G, by Lemma 6.23,

x−1x = fx = ey = yy−1

and so, νG(x)νG(y) exists in G(S) by Equation (6.14). Moreover,

νG(x)νG(y) = (x, x−1)(y, y−1)

= (x ∗ y, y−1 ∗ x−1) by Equation (6.14)

= (xy, y−1x−1) = (xy, (xy)−1) by Lemma 6.23

Therefore νG(x)νG(y) = νG(xy).

If e ∈ G is an identity, (that is e ∈ vG) we have e−1 = e and so,

νG(e) = (ē, ē).
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This shows that νG preserves identities and hence νG : G → G(S) is a functor.
Moreover by Theorem 6.13 the map χ : e 7→ ē is a biorder isomorphism and
the map e 7→ (ē, ē) induced by νG on the set of identities of G is a biorder
isomorphism of vG onto vG(S). In view of the identification vG(S) = E(S) we
may choose vνG = χ.

To show that ν1 is order preserving, consider x ∈ G, and 1 ω ex. Then by
Proposition 3.9, 1 ∈ S (1, ex) ∩S (ex, 1). Hence by Equation (6.21)

(1 ◦ x)h = 1 � x and (x−1 ◦ 1)1 = x−1 � 1 = (1 � x)−1.

Therefore by Equation (6.20)

1̄x̄ = 1 � x and x−11 = (1 � x)−1

Consequently, for all x ∈ G and 1 ω ex,

νG(1 � x) = (1 � x, (1 � x)−1)

= (1x, x−11)

= 1 � (x, x−1) by Equation (6.15∗)

= 1 � νG(x).

We next verify that νG is inductive. Thus we must show that the diagram 6.12
commutes when we take νG = φ. Since vνG = χ = vC(E)(φ), the diagram
of vertex maps in 6.12 commutes. To show that the diagram commutes also
for morphism maps, it is sufficient to verify the commutativity for generating
chains of C(E)(E) = C(E)(vG); that is chains of the type c(e, f ) with either e R f

or e L f . Let e R f . Then

νG(ε(e, f )) =
(

ε(e, f ), ε( f , e)
)

= ( f , e) since ε(e, f ) p f and ε( f , e) p e

= ( fχ, eχ) since vνG = χ

= εS(c(eχ, fχ)) by Equation (6.16)

= εS(C(E)(c(e, f ))).

This proves the ommutativity in the case when the chain is c(e, f ) with e R f .
The proof for the case e L f is dual.

This completes the proof that νG : G→ G(S(G)) is an inductive homomor-
phism. To prove that νG is injective, assume that νG(x) = νG(y) where x, y ∈ G.
Then x p y and x−1 p y−1 so that ex R ey and ex = fx−1 L fy−1 = ey which gives
ex = ey. Similarly fx = fy. Hence x and y are p-related morphism in the same
home-set of G and so, by Lemma 6.12 x = y. To prove that νG is surjective, let
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(u, u′) ∈ G(S) where S = G/ p (see Theorem 6.13). Since the map x 7→ x̄ is sur-
jective from themorphism set ofG onto S, there is x ∈ Gwith u = x̄. Let ē = uu′

and f̄ = u′u. Tnen by Lemma 6.23 ex R e and fx L f . So if y = ε(e, ex)xε( fx, f )
then ȳ = u and y−1 = ε( f , fx)x−1ε(ex, e). Again, by Lemma 6.23, it follows
that ¯y−1 is an inverse of ȳ = u in the H -class R f̄ ∩ Lē. Thus ¯y−1 and u′ are
H -equivalent inverses of u and so, u′ = ¯y−1. Consequently νG(y) = (u, u′).
This proves, by Proposition 6.7 that νG is an inductive isomorphism.

Finally we show that ν : G 7→ νG is a natural isomorphism. Thus we
must show that the following diagram commutes for all inductive functors
φ : G→ G′:

G
νG

φ

S ◦G(G)

S◦G(φ)

G′ νG′
S ◦G(G′)

(6.25)

Let x ∈ G. Then

(

νG ◦ (S ◦G)(φ)
)

(x) = (S ◦G(φ))(x, x−1)

=
(

G(S(φ))
)

(x, x−1)

=
(

(x)S(φ), (x−1)S(φ)
)

by Equation (6.17)

=
(

xφ, (xφ)−1
)

by Equation (6.22)

=
(

φ ◦ νG′
)

(x).

This complete the proof of the proposition.

Proposition 6.25. For each regular semigroup S, define the mapping ηS : S →
(G ◦ S)(S) by

xηS = (x, x′)

for all x ∈ G and x′ ∈ V(x). Then ηS is an isomorphism of regular semigroups and

η : S 7→ ηS : 1RS

n
→ G ◦ S

is a natural isomorphism.

Proof. We first show that ηS is single valued; that is, for any x′, x′′ ∈ V(x), we
have (x, x′) p (x, x′′). It follows from Proposition 2.40 that e = xx′ R e′ = xx′′

and f = x′x L x′′x = f ′. Hence e(x,x′) = e R e′ = e(x,x′′) and f(x,x′) = f L f ′ =

f(x,x′′) in G(S). Also, by Equations (6.14) and (6.16), we have

εS(e′, e)(x, x′)εS( f , f ′) = (e, e′)(x, x′)( f , f ′) = (x, f ′x′e′) = (x, x′′)
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using Proposition 2.40. Therefore (x, x′) p (x, x′′) in G(S) and so ηS is single
valued. If ηS(x) = ηS(y), then (x, x′) p (y, y′) in G(S) and so xx′ R yy′, x′x L

y′y. Hene by Proposition 2.40, there is y′′ ∈ V(y) such that y′′ H x′. Then
(x, x′) p (y, y′) p (y, y′′). Since y′′ H x′ it is easy to see that (x, x′) and
(y, y′′) are morphisms in the home-set G(S)(xx′, x′x) and hence (x, x′) = (y, y′′)
in G(S). Therefore x = y. This shows that ηS is injective. If u ∈ S(G(S)).
By Theorem 6.13, there is (x, x′) ∈ G(S) such that u = (x, x′) = ηS(x) and so
ηS is surjective. Hence ηS is an isomorphism. Suppose that x, y ∈ S. Let
x′ ∈ V(x), y′ ∈ V(y) and h ∈ S (x′x, yy′). Then by the definition of restriction
and evaluation in G(S) (see Equations (6.15∗) and (6.16)) we have

h � (y, y′) = εS(h, hey)
(

(hey) � (y, y′)
)

by Equation (6.21)

= (hey, h)(heyy, y′hey = (hy, y′h).

Dually (x, x′) � h = (xh, hx′).

Hence (xηS)(yηS) = (x, x′) (y, y′)

= ((x, x′) ◦ (y, y′))h by Equation (6.20)

= ((x, x′) � h)
(

h � (y, y′)
)

by Equation (6.21)

= (xh, hx′)(hy, y′h)

= (xy, y′hx′) = ηS(xy) by Theorem 3.7.

Therefore ηS is an isomorphism.
Finally, to prove that the map S 7→ ηS is a natural isomorphism we must

prove that the following diagram commutex for all homomorphism φ : S→ S′

of regular semigroups:

S
ηS

φ

(G ◦ S)(S)

(G◦S)(φ)

S′ ηS′
(G ◦ S)(S′)

(6.26)

Suppose that x ∈ S. Then

(x)
(

ηS ◦ (G ◦ S)(φ)
)

= ((x, x′))(G ◦ S)(φ) for some x′ ∈ V(x)

= ((x, x′))
(

S
(

G(φ)
))

= G(φ)(x, x′) by Equation (6.22)

= (xφ, x′φ) by Equation (6.17)

= (xφ)ηS = (x)(φ ◦ ηS).
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Recall from Subsection 1.2.4 that an equivalence < F,G, η, ν >: C
·
⇋ D of

categories consist of a pair of functors F : C → D and G : D → C and natural
isomorphsms η : 1C

n
→ F ◦ G and ν : 1D

n
→ G ◦ F. The Propositions 6.24 and

6.25 proves the following.

Theorem 6.26. Let G, S, η and ν be as above. Then

< G, S; η, ν > : RS
·
⇋ IG

is an equivalence of the categoriesRS and IG.

Remark 6.3: As already noted, the equivalence proved above enables one to
replace regular semigrups by its inductive groupoids and vice versa according
to the contest. Since functors G and S are equivalences they preserves all
conceptsdefined categorically. However, since the categorieswe are concerned
with are set-based and concrete, often we need preservation of properties such
as injectiveness whose definition is set-theoretic rather than categoric. In the
present context many such properties are also preserved. Thus if φ : G → G′

is an inductive functor, Theorem 6.21 shows that φ is injective or surjective if
and only if S(φ) has the corresponding property. The reverse implication is
also true. Thus if σ : S→ S′ is a homomorphism of regular semigroup, G(σ) is
injective or surjective according as σ is injective or surjective. For by diagram
6.26, σ is injective or surjective if and only if S(G(σ)) is injective or surjective.
By Theorem 6.21 this is true if and only if G(σ) is injective or surjective. This
in particular, enables us to define the concept of a congruence on an inductive
groupoids (treating inductive grouoids as partial algebras).6.3.3 Exer
ise
Exercise 6.4: Prove the following preservation properties of the functors G and S:
Given any homomorphism ψ : S → S′ of regular semigroups, the morphism map of
the inductive functor G(ψ) : G(S)→ G(S′) is injetive [surjective] if and only if ψ has the
corresponding property.

6.4 the fundamental representation

Recall that a semigroup S is fundamental if H(c) = 1S; that is, the only con-
gruence contained in the relation H is the identity on S (see Proposition 3.46).
Suppose that S is a regular semifroup. By Proposition 3.47 S is fundamental if
and only if the only idempotent separating congruence on S is 1S. Therefore
S is fundamental if and only if every idempotent separating homomorphism
h : S → S′ (that is homomorphism h : S → S′ such that κφh is idempotent
separating) is injective.

Let E denote a regular biordered set. Recall that an ω-isomorphism is a
biorder isomorphisms of ω-ideals (see Subsection 3.2.1). By Proposition 3.17,
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the set T∗
E
of all ω-isomorphisms of E is an ordered groupoid. Moreover, we

have the commutative diagram 3.15 in the categoryOG of ordered groupoids.
By Proposition 6.4 the diagram 6.9 is a push-out in the category OG. Hence
there exists a unique order preserving functor τ = τE : C(E)→ T∗

E
such that

RE ◦ τ = τR and LE ◦ τ = τL.

Furthermore, we have:

Proposition 6.27. The groupoid T∗
E
of all ω-isomorphisms of the biordered set E is

an inductive groupoid with evaluation τ = τE.

Proof. Since vRE = vτR = 1E by definition, vτ = 1E. Hence to show that (T∗E, τ)
is an inductive groupoid, it is sufficient to verify axioms (IG1) and (IG2) of
Definition 6.1. To verify axiom (IG1)(a), let α ∈ T∗

E
and e1, e2 ∈ ω(eα) with

e1 ωr e2. By Equation (3.11) we have fi = (ei)α = fei�α, i = 1, 2. Since α is a
biorder isomorphism, f1 ωr f2 and for 1 ω e1

1τ(e1, e1e2)(e1e2 � α) =
(

1(e1e2)
)

α

= (1α) f1 f2 = 1(α|ω(e1))τ( f1, f1 f2)

= 1(e1 � α)τ( f1, f1 f2).

This proves that (IG1)(a) holds. (IG1)(b) is proved dually. Thus T∗E satisfies
axiom (IG1). Axiom (IG2) holds by Proposition 3.18. Therefore T∗

E
is an

inductive groupoid with evaluation τE.

Recall that OIX is an ordered groupid of all isomorphisms of order ide-
als of a partially ordered set X with vOIX as the partially ordered set of all
order ideals of X under inclusion (see Example 1.24). Now there is an order
isomorphism of the set of principal order ideals of X with X so that the set
OI∗X of all isomorphisms of principal order-ideals is an ordered subgroupoid
of OIX whose vertex set can be identifies with X. In particular, if E is a regu-
lar biordered set T∗E is an ordered subgroupoid of OI∗E. If G is any inductive
groupid with vG = E, and x ∈ G, by Proposition 1.20 there is an order iso-
morphism a(x) : ω(ex) → ω( fx) and the map x 7→ a(x) is an order preserving
v-isomorphism ofG intoOIE. The next theorem shows that aG is an important
representation of G in T∗E.

Theorem 6.28. Let G be an inductive groupid with vG = E. For x ∈ G and e ∈ ω(ex)
let

ea(x) = fe�x. (6.27)

Then we have the following:
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T∗(G):Fundamental image of
inductive groupoid G

T∗(φ):Fundamental image of the
inductive functor φ

(1) The map a(x) : ω(ex)→ ω( fx:) is an ω-isomorphism.

(2) There is an inductive functor aG : G→ T∗
E
with vaG = 1e and whose morphism

map is x 7→ a(x).

(3) If G is a v-full inductive subgroupoid of T∗E then aG is the inclusion of G in T∗E.
In particular, aT∗

E
= 1T∗

E
.

(4) Let T∗(G) = Im aG. If φ : G → G′ is an inductive functor which is a v-
surjection, then

T∗(φ) (aG(x)) = aG′
(

φ(x)
)

(6.28)

defines an inductive functor T∗(φ) : T∗(G) → T∗(G′) such that the following
diagram commutes:

T∗(G)
T∗(φ)

T∗(G′)

G
φ

a◦
G

G′

a◦
G′

(6.29)

Here a◦
G
[a◦

G′
] denote the epimorphic compunent of aG [aG′]. Furthermore, if φ

and φ′ are inductive v-surjections for which φφ′ exists, then

T∗(φφ′) = T∗(φ)T∗(φ′).

(5) If φ is a v-isomorphism, then T∗(φ) is an injection. In particular, if vφ = 1E,
then T∗(φ) is the inclusion T∗(G) ⊆ T∗(G′).

Proof. (1) By Proposition 1.20(2), the map a(x) is an order isomorphism of
ω(ex) onto ω( fx). Let e1, e2 ∈ ω(ex) and e1 ωr e2. Let f1 = e1a(x) and f2 = a(x).
Then by (IG1)(a),

f1 = fe1�x ω
r fe2�x = f2 and

(e1e2)a(x) = fe1e2�x = f1 f2.

Similarly, by axiom (IG1)(b), the map a(x) preserves ωl and the associated
basic product. Therefore a(x) is a bimorphism. Similarly a(x−1) is a bijective
bimorphism of ω( fx) onto ω(ex). Since a(x−1) = (a(x))−1, a(x) is a biorder
isomorphism of ω(ex) onto fx.

(2) By Proposition 1.20(3), a : G→ OIE is a v-isomorphism. In view of (1),
the map x 7→ a(x) takes values in T∗E. Hence the given assignments gives an
order preserving v-isomorphism aG : G → T∗

E
with vaG = 1E. We now show



6.4. the fundamental representation 331

that the following diagram commutes.

C(E)
εG]

τE

G

aG

T∗
E

(6.30)

Let c ∈ C(E) and e ∈ ω(ec). By Equation (6.5a), fe�c = eτE(c) and since the
evaluation ε = εG is order preserving, we have

(ε ◦ aG)(c) = aG (ε(c))

= fe�ε(c) = fε(e�c) = fe�c = eτE(c).

Therefore

ε ◦ aG = τE

which proves that 6.30 commutes. SinevaG = 1E, it follows that aG is inductive.
(3) Suppose that G be a v-full subgroupoid of T∗

E
. Then for α ∈ G and

e ∈ ω(eα), e � α = α|ω(e). Therefore, for all α ∈ G and e ∈ ω(eα), we have
eaG(α) = fe�α = eα and so, aG(α) = α.

(4) By Proposition 6.7(2), T∗(G) is a an inductive subgroupoid of T∗E where
E = vG which is v-full since vaG = 1E. Similarly T∗(G′) is a v-full inductive
subgroupoid of T∗

E′
where E′ = vG. Since φ : G → G′ is a v-surjection,

vφ = θ : E → E′ is a surjective (regular) bimorphism. We now show that
T∗(G) is well defined by Equation (6.28). Assume that aG(x) = aG(y). Then by
Theorem 6.28(1), x and y are in the same home-set of G so that ex = ey and
fx = fy. Moreover, for all e ∈ ω(ex),

(eθ)aG′
(

φ(x)
)

= feθ�φ(x) = fφ(e�x) =
(

fe�x
)

θ

= (eaG(x))θ =
(

eaG(y)
)

θ

= (eθ)aG′
(

φ(y)
)

.

Since θ is surjective, ω(e)θ = ω(eθ) and it follows that aG′
(

φ(x)
)

= aG′
(

φ(y)
)

.
Since aG, aG′ and φ are order preserving functors, it is immediate from Equa-
tion (6.28) thatT∗(φ) is an order preserving functor. We also have the following
commutative diagram:

C(E)
εG

C(θ)

G

φ

aG
T∗(G)

T∗(φ)

C(E′)
εG′

G′
aG′

T∗(G′)

(6.31)
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inductive groupoid!fundamental – The first square commutes since φ is inductive and the second square com-
mutes by Equation (6.28). By 6.30,

εG ◦ aG = τE and εG′ ◦ aG′ = τE′ .

Therefore T∗(φ) is inductive. Suppose that φ : G → H and φ′ : H → K be
v-surjections in IG. Then for any x ∈ G, we have

T∗(φφ′) (aG(x)) = aK
(

φφ′(x)
)

= aK
(

φ′
(

φ(x)
))

= T∗(φ′)
(

aH
(

φ(x)
))

= T∗(φ′)
(

T∗(φ)(aG(x))
)

=
(

T∗(φ)T∗(φ′)
)

(aG(x)) .

Therefore T∗(φφ′) = T∗(φ)T∗(φ′).
(5) Assume thatφ : G→ G′ is a v-isomorphism so thatvφ = θ : E→ E′ is a

biorder isomorphism. Let aG(x), aG(y) ∈ T∗(G) andT∗(φ) (aG(x)) = T∗(φ)
(

aG(y)
)

.
Then aG′

(

φ(x)
)

= aG′
(

φ(x)
)

and so, eφ(x) = (ex)θ = eφ(y) = (ey)θ and fφ(x) =

( fx)θ = fφ(y) = ( fy)θ. Since θ is an isomorphism, we have ex = ey and fx = fy.
Now, for any e ∈ ω(ex)

T∗(φ) (aG(e � x)) = aG′
(

φ(e � x)
)

= (eθ) � aG′
(

φ(x)
)

= (eθ) � aG′
(

φ(y)
)

= aG′
(

φ(e � y)
)

= T∗(φ)
(

aG(e � y)
)

.

Hence eaG(x) = fe�x = fe�y = eaG(y) for all e ∈ ω(ex). Therefore aG(x) = aG(y).
Thus T∗(φ) is injective. If vφ = 1E, then for all x ∈ G, ex = eφ(x) and fx = fφ(x). It
follows that aG(x) = aG′(φ(x)) for all x ∈ G. ThereforeT∗(φ) : T∗(G) ⊆ T∗(G′).

Weshall say that an inductivegroupoidG is fundamental if anyv-isomorphism
φ : G→ G′ is injective. That is, G is fundamental if, for any inductive functor
φ : G → G′, the morphism map of φ is injective whenever vφ : vG → vG′ is
an isomorphism.

If G is fundamental, aG is injective and as in the proof of (5) above, we see
that G = T∗(G) in this case. By (3) above, any v-full inductive subgroupoid
of T∗

E
is fundamental. Hence fundamental inductive subgroupoids G with

vG = E are precisely v-full inductive subgroupoids of T∗
E
.

Remark 6.4: Notice that T∗ defined in (4) above is not a functor on IG. For, it
is easy to construct an example to show that the morphism T∗(φ) is not well-
defined by Equation (6.28). However, T∗ : IG′ → IG′ is a functor if IG′ is the
category with inductive groupoids as objects and v-surjections as morphisms.
In particular, if IGE is the inverse fiber of the functor v : IG→ RB at E (that
is, IGE is the category with objects as inductive groupoids Gwith vG = E and
with morphisms φ with vφ = 1E) then T∗ is a functor of IGE to the preorder
under inclusions of all v-full inductive subgroupoids of T∗

E
.
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extension
extensive families
ω-subgroupoid
generator

6.4.1 Exer
ise
Example 6.1: Suppose that G is an inductive groupoid in the sense of Schein (see
Theorem 5.2). Prove that G is an inductive groupid according to Definition 6.1.

Example 6.2: Let G be a groupoid. Prove that there is a partial order on Gwhich make
it a Schein’s groupoid if and only if either vG is infinite or there is a component of G
which is a group [see Schein, 1966]. However, on any groupoidG is the groupoid of an
inductive groupoid; that is, a partial order can be defined on G making it an ordered
groupoid, a biorder structure on vG = E and an evaluation of C(E) inGmaking making
G an inductive groupoid [see Nambooripad, 1979, Page 55].

Example 6.3: Prove that there are ordered groupoids that does not arise as the ordered
groupoid of an inductive groupoid. Also it may be possible to define more than one
inductive groupoid structure on a given ordered groupoid.

Example 6.4: Prove that a groupoid with evaluation G = (G, ε) satisfies the condition
(IG1∗) of Remark 6.5 if and only if it satisfies the axiom (IG1) of Definition 6.1.

6.5 extensions

In general by an extension of an inducctive groupoid G, we mean a pair (G′, φ)
where G′ is an inductive groupoid and φ : G → G′ is an embedding of the
inductive groupoidG intoG′; identifyingGwith the subgroupoid Imφwe can
regard the extension as the inductive groupoidG′ containingG as an inductive
subgroupoid.

In this sectionwe study several classes of extensions of a regular semigroup
S using the concepts of extensive families. Study of these extensions were
originally done by [Pastijn and Petrich, 1986]. The version of these results
presented here is due to [?] which illustrate the use of inductive groupoids in
such constructions.6.5.1 v − full extensions of indu
tive groupoids
We continue to use the notation G for an arbitrary inductive groupoid with
E = vG and evaluation ε. An inductive groupoid G′ is a v − full extension of G
if G is a v − full inductive subgroupoid of G′. In this section, unless otherwise
stated, by an extension, we shall mean a v − full extension.

We begin by discussing some local properties of inductive groupoids. Call
an inductive subgroupoidH of G to be anω-subgroupoid if vH = ω(e) for e ∈ E;
we write H = H(e) and e is called the generator of H. Let σ : H(eσ) → H( fσ)
and τ : H(eτ) → H( fτ) be inductive isomorphisms of ω-subgroupoids of G. If
the groupoid composite (that is, H( fσ) = H(eτ); see Example 1.21) of σ, τ exists,
then it is clear that στ : H(eσ) → H( fτ) is an inductive isomorphism. Also
1H(e) : H(e)→ H(e) is an inductive isomorphism. Therefore it is clear that there
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GG:The groupoid of
ω-subgroupoids of G

is a groupoid GG of inductive isomorphisms of ω-subgroupoids which is a
subgroupoid of the groupoid IG of all partial bijections of G. Again if σ ∈ GG

then vσ : ω(eσ)→ ω( fσ) is an ω-isomorphism of E = vG. If H(1) ⊆ H(eσ), then

τ =
(

σ|H(1)
)◦

is an inductive isomorphism of H(1) onto Im(σ|H(1)) = H(h) where h = (1)|σ.
It follows that we can define a partial order on GG as follows:

σ ≤ τ ⇐⇒ G〈eσ〉 ⊆ G〈 fτ〉 and σ = (τ|G〈eσ〉)◦ (6.32)

It is easy to verify that ≤ is the restriction of the partial order on IG to GG

and hence the inclusion GG ⊆ IG is an order-embedding of GG into IG.
Conequently we have:

Lemma 6.29. There is a groupoidGG in which vGG is the set of allω-subgroupoids of
G and morphisms are inductive isomorphisms. Moreover GG is an ordered groupoid
with respect to the relation ≤ defined by Equation (6.32).

Recall that for any u ∈ G, a(u) : ω(eu) → ω( fu) is an ω-isomorphism (see
Theorem 6.28). The following proposition is due to ?.

Proposition 6.30. For e ∈ E = vG suppose that

N(e) = {v ∈ G : ev, fv ∈ ω(e)}. (6.33a)

Then N(e) is the morphism set of an inductive subgrupoid of G with

vN(e) = ω(e)

and evaluation εN(e) = εG||C(ω(e)).

For u ∈ G define N(u) : N(eu)→ N( fu) by

(x)N(u) = (u−1 � ex)x( fx � u) for all x ∈ N(eu). (6.33b)

Then N(u) : N(eu)→ N( f ) is an inductive isomorphism with

vN(u) = aG(u).

Proof. If u, v ∈ N(e) and uv exists, then euv = eu ω e and fuv = fv ω e and so,
uv ∈ N(e). Also eu−1 = fu ω e and fu−1 = eu ω e so that u−1 ∈ G〈e〉. Hence N(e) is
a subgroupoid of G. Further, if 1 ω eu with u ∈ N(e) then fe�u ω fu ω e. Hence
e�u ∈ N(e). It follows thatN(e) is anordered subgroupoid ofGwithvN(e) = ω(e).
Since C(ω(e)) is an ordered subgroupoid of C(E) and since ε(c) ∈ N(e) for all
c ∈ C(ω(e)), it is clear that N(e) is an inductive groupoid with respect to the
evluation ε′ = ε|C(ω(e)).
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By Proposition 1.18, v−1 � eu is the unique morphism with v−1 � eu ≤ v−1 and
fv−1�eu = eu. Hence v−1 � eu = (eu � v)−1 and ev−1�eu ω ev−1 = fv. Since fN(v) ω fv it
follows that N(v)(u) ∈ N(e) for all u ∈ N(e). If w = (u)N(v), an easy computation
using the definition of N(v) shows that (u)N(v) = w if and only if u = (w)N(v−1)
and so, N(v) is a bijection with N(v)−1 = N(v−1). If u,w ∈ N(e) and if uw exists,
then

(u)N(v)(w)N(v) =
(

(v−1 � eu)u( fu � v)
) (

(v−1 � ew)w( fw � v)
)

=
(

(eu � v)−1u( fu � v)
) (

(ew � v)−1w( fw � v)
)

=
(

(eu � v)−1u fuw( fw � v)
)

since fu = ew

=
(

(euw � v)−1(uw)( fuw � v)
)

since eu = euw and fw = fuw

= (uw)N(v).

Also, if 1 ∈ N(e) is an identity then 1 ω ev. Hence

(1)N(v) = (1 � v)−11(1 � v) = f1�v = 1aG(v)

by Theorem 6.28 and so

vN(v) = aG(v)

Hence N(v) preserves composition and identities. Thus N(v) is a functor. Since
N(v) is a bijection, it is an isomorphism of groupoids. To show that N(v) is
order preserving, let u, u′ ∈ N(e)[ev] and u ≤ u′. Then we have eu ω eu′ and
fu ω fu′ . Therefore eu � v ≤ eu′ � v and fu � v ≤ fu′ � v by axiom (oG3). Also
(eu � v)−1 ≤ (eu′ � v)−1 by axiom (OG2). Hence by axiom (OG1),

(u)N(v) = (eu � v)−1(u)( fu � v)

≤ (eu′ � v)−1(u′)( fu′ � v) = (u′)N(v)

Thus N(v) is order preserving. Moreover, since vN(v) = aG(v), by Theorem6.28,
vN(v) is an ω-isomorphism and hence a biorder isomorphism of vN(eu) onto
vN( fu). Now cconsider e1, e2 ∈ ω(ev) = vN(eu). If e1 R e2, and if f1 = (ei)a(v),
i = 1, 2 then f1 R f2 and

ε′(e1, e2)(e2 � v) = ε(e1, e2)(e2 � v) where ε′ = ε|N(ev)

= (e1 � v)ε( f1, f2) by axiom (IG1)

= (e1 � v)ε′′( f1, f2). where ε′′ = ε|N( fv)

Similarly, if e1 L e2 then f1 L f2 and

ε′(e1, e2)(e2 � v) = (e1 � v)ε′′( f1, f2).
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groupoid!– with evaluation
local subgroupoid
local isomorphism
local inner isomorphism

Consequently, for any c ∈ C(ω(ev))

ε′(c)(e2 � v) = (e1 � v)ε′′(ca(v)).

It is nowclear that thediagram6.12 commutes forN(v) and so, byDefinition 6.2,
N(v) is an inductive isomorphism.

Remark 6.5: Notice that, the proof that N(v) is an order preserving functor
of the ordered groupoid N(ev) to N( fv) does not use evaluation in any way
and so the result is true for all ordered groupoids. However, the proof that
N(v) is inductive uses evaluation. In fact the statement that N(v) is inductive
for all v ∈ G is equivalent to (IG1). For, call a pair (G, EC) a groupoid with
evaluationwhereG is an ordered group such that vG = E is a biordered set and
ε : C(E)→ G is an evaluation; that is, an order preserving v-isomorphism. As
for inductive groupoids, we shall abbreviate the notation of the groupoid with
evaluation to G and denote the corresponding evaluation by εG and vG = E.
A morphism φ : G→ G′ is an order preserving functor φ : G→ G′ of ordered
groupoids such that θ = vφ : E → E′ is a (regular) bimorphism making the
diagram 6.12 commutative. The morphism φ is an isomorphism if φ is an
isomorphism of ordered groupoids and θ = vφ is a biorder isomorphism.
This defines a category GE which can be identified as a subcategory of the
morphism category of the category OG of ordered groupoids or the functor
ccategory [2,OG] where 2 denote the category · → · with two objects and
one morphism [see MacLane, 1971, Page 40]. For e ∈ E = vG, if we define
subgropoid N(e) as above, it is a groupoid with evaluation εN(e) = εG|N(e). It is
not difficult to prove that a groupoid with evaluatin is an inductive grupoid if
and only if it satisfies axiom (IG2) and the following:

(IG1)∗ For each u ∈ G, N(u) : N(eu)→ N( fu) is a local isomorphism.

(see also examples at the end of this section.)

For each e ∈ E the inductive subgroupoid N(e) ⊆ G will be called a local

subgroupoid of G at e. An iductive isomorphism σ : N(eσ) → N( fσ) is called
a local isomorphism of G. The Proposition 6.30 above shows that, for v ∈ G,
N(v) : N(ev) → N( fv) is a local isomorphism of G. N(v) is called a local inner

isomorphism of G.
The following is a useful consequence of Proposition 6.30

Proposition 6.31. Let G be an inductive groupoid with vG = E. Then the assign-
ments

N : e 7→ N(e) = N(e) and v 7→ N(v)

is an order preserving v-isomorphism N : G→ GG.

Proof. By Lemma 6.29, GG is an ordered groupoid and by Proposition 6.30,
N : v 7→ N(v) is a map of G into GG. Let v,w ∈ G such that vw exists. Then for
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extensive family
morphism

any x ∈ N(ev),

(x)N(v)N(w) = (h � w)−1(ex � v)−1x( fx � v)(k � w) where h = (ex)a(v) and k = ( fx)a(v)

= ((ex � v)(h � w))
−1 x( fx � v)(k � w)

= (ex � vw)x( fx � vw) = (x)N(vw) by Proposition 1.19(2).

Also, taking u = e in Equation (6.33b), we have xN(e) = x for al x ∈ N(e).
Therefore N : G → GG is a functor. If v ≤ w then N(ev) ⊆ N(ew) and for any
x ∈ N(ev) we have

xN(v) = (ex � v)−1x( fx � v) = (ex � (ev � w))
−1 x

(

fx � ( fv � w)
)

= (ex � w)−1x( fx � w) = (x)N(w).

ThereforeN(v) ≤ N(w) by Lemma 6.29 and so N is order preserving. Since e ω f

if and only if N(e) ⊆ N( f ), the map e 7→ N(e) is an order embedding of E = vG

onto vGG (see Lemma 6.29). This completes the proof.

Recall that a functor F : C → D to a category D with subobjects is a
subfunctor of H : C → D if F(c) ⊆ H(c) for all c ∈ vC and the map

HF : c 7→ H(c)
F(c)

is a natural transformation of F to H (see Equation (1.52)); we write F ⊆ H.

Definition 6.3. Let G be an inductive groupoid. An extensive family of G is an
order preserving v-embedding F : G→ GG such that

(a) v (F (e)) = ω(e) for all e ∈ E; and

(b) F ⊆ N.

An indutive isomorphism σ : F (eσ) → F ( fσ) is called an F -morphism if for all
1 ω eσ, the restriction of σ to F (1) in GG is an isomorphism of F (1) to F (h)
where h = (1)vσ.

Notice thatN is, in particular, an extensive family and every localmorphism
of G is an N-morphism.

Theorem 6.32. Let F be an extensive family for the inductive groupoid G. Then
there exists an inductive groupoid AF (G) = AF such that vAF = {F (e) : e ∈ E} and
morphisms are F - morphisms. Furthermore, with respect to this inductive structure
on AF , the functor F : G→ AF is an inductive v-isomorphism.

Proof. Let θ = vF and Ẽ = {F (e) : e ∈ E}. The given condition implies that the
map θ : e 7→ ẽ = F (e) is an order isomorphism of (E, ω) onto Ẽ. For e, f ∈ E

define
ẽ f̃ = ẽ f . (6.34a)
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This defines apartial binary operation on Ẽwhichmakes it a biordered set such
that θ : E→ Ẽ is a biorder isomorphism. Moreover, since F is a v-embedding,
the original partial order on Ẽ becomes the relation ω of the biordered set Ẽ.

Let σ and τ be F -morphisms and assume that στ exists inGG. Then for any
F (1) ⊆ domσ = F (eσ), by Definition 6.3 above

σ′ = σ|F (1) : F (1)→ F (h) where h = 1vσ

is a morphism in GG. Then h ω fσ = eτ and so, again by the definition above

τ′ = τ|F (h) : F (h)→ F (k) where k = hvτ

is a morphism in GG. By Proposition 1.19, we have στ|F (1) = σ′τ′ which is a
morphism in GG from F (1) to F (k). Hence στ is an F - morphism. Similarly,
since

σ−1|F (h) = (σ|F (1))−1 where 1 ω eσ, h = 1vσ

it follows that σ is an F -morphism if and only if σ−1 is an F -morphism. There-
fore there exists a groupoid AF in which morphisms are F -morphisms and
vAF = Ẽ. Again if σ is an F -morphism so is σ|F (1) for all 1 ω eσ. Therefore AF
is an ordered subgroupoid of GG with

1̃ � σ = σ|F (1) for all σ ∈ AF 1 ω eσ. (6.34b)

Since θ : E → Ẽ is an isomorphism, every E-chain in C(Ẽ) has the form
c̃ = C(θ)(c) for a unique c ∈ C(E). Define

ε̃(c̃) = F (ε(c)) for all c ∈ C(E). (6.34c)

Taking c = c(1, 1) = 1 in the above we see that

ε̃(1̃) = F (1) = 1̃ for all 1 ∈ E.

Thus ε̃ : C(E)(Ẽ)→ GG is a functor satisfying the condition

C(θ) ◦ ε̃ = ε ◦ F . (6.34c∗)

Since ε, C(θ) and F are order-preserving v-isomorphisms, so is ε̃. We now
show that (AF , ε̃) satisfies axioms (IG1) and (IG2). Accordingly assume that
σ ∈ AF and ẽi ω ẽsi, i = 1, 2. Then there exists unique ei ω eσ, i = 1, 2, such
that ẽi = (ei)θ. Let fi = (ei)αwhere α = vσ is an ω-isomorphism. Then f̃1 ωr f̃2
if and only if ẽ1 ωr ẽ2 in Ẽ. To verify (IG1)(a), suppose that e1 ωr e2 so that
ẽ1 R ˜e2e2. Since α is an ω-isomorphism we have f1 ωr f2 and f̃1 R ˜f1 f2. Then
by Definition 6.3 F (e1) ⊆ N(e1) and

F (ε(e1, eie2)) = N(ε(e1, eie2))|F (e1).



6.5. extensions 339

Therefore, for any u ∈ F (e1), eu, fu ∈ ω(e1) and

(u)ε̃(ẽ1, ˜e1e2) = (u)F (ε(e1, e1e2)) by Equation (6.34c)

= (eu � ε(e1, e1e2))
−1 u

(

fu � ε(e1, e1e2)
)

by Equation (6.33b)

= (ε(eue2, eu))u
(

ε( fu, fue2)
)

using Equation (6.5a) and the fact that ε is order preserving. Therefore, since
σ is an inductive functor, again using Equations (6.34b) and (6.34c) we have

(u)ε̃(ẽ1, ˜e1e2) ( ˜e1e2 � σ) =
(

(ε(eue2, eu))u
(

ε( fu, fue2
))

σ

=
(

ε(euσ f2, euσ)
)

(uσ)
(

ε( fuσ, fuσ f2
)

= (uσ)F
(

ε( f1, f1 f2)
)

= (u) (ẽ1 � σ)
(

ε̃( f̃1, ˜f1 f2)
)

.

Since this equality holds for all u ∈ F , axiom (IG1)(a) is proved. Proof for
axiom (IG1)(b) is dual. Hence AF satisfies axiom (IG1). To prove (IG2), let
A =

(

1̃ 1̃e

h̃ h̃e

)

be a column-singular E-square in Ẽ (so that 1, h ∈ωr (e) and 1 L h).

Then A′ =
(

1 1e
h he

)

is a column-singular matrixx in E so thatA′ is ε-commutative
in G. Since F is a functor, it follows that

ε̃(1̃, 1̃e)ε̃(1̃e, h̃e) = F
(

ε(1, 1e)
)

F
(

ε(1e, he)
)

by (6.34c∗)

= F
(

ε(1, 1e)ε(1e, he)
)

since F is a functor

= F
(

ε(1,H)ε(h, he)
)

by (IG2) for G

= ε̃(1̃, h̃)ε̃(h̃, h̃e) again by (6.34c∗).

Hence A is ε̃-commutative in AF . The proof of ε̃-commutativity of row-
singular E-squares in AF is similar. Therefore axiom (IG2) also holds in AF .
Thus AF is an inductive groupoid.

Since G and AF are inductive groupoids, and F is an order preserving
functor, Equation (6.34c∗) shows that F is an inductive functor of G to AF .
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∨Λ′:meet of Λ′:, 7
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associative –, 49
commutative –, 50

biorder
ω-ideal, 169
left ideal, 169
right ideal, 169

biorder congruence, 178
regular–, 178

biorder property, 203
strict –, 203

biordered, 151
biordered set, 152, 153

355
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biordered subset, 156
natural partial order, 153
orthodox –, 205
regular, 158
solid –, 204
universal isomorphism, 187

biordered subset
relatively regular, 159

bitranslation, 131
bitranslations

inner –, 131

cancelable, 25
left –, 26
right –, 25

Cartesian product, 1
category, 10

l-category of S, 84
r-category of S, 84
– inclusion, 14
– of groups, 12
– of sets, 36
– with factorization, 32
– with subobjects, 29
– with unique factorization, 32
– equivalence, 24
– isomorphism, 18
– of abelian groups, 12
– of sets, 12
– of small categories, 14
big –, 19
cocomplete –, 23
complete –, 23
concrete –, 27
functor –, 15
product –, 16
reflective subcategory, 24
small –, 11, 19
subcategorywith subobject, 30
trivial – on X, 12

with images, 33
class

morphism –, 11
co-restriction, 41
codomain, 10
complete lattice, 7
component-wise product, 16
composition, 10
cone, 21

– to F from d, 21
limiting –, 22

congruence, 61
S-congruence, 146
– on S-set, 81
idempotent separating, 201
band –, 249
idempotent separating, 235
left, 61
primitive –, 244
Rees –, 64
right, 61
semilattice –, 250

congruences, 61
consequence, 76
counit, 24
cover, 187
cross-connections, 152

decomposition, 4
band –, 249
semilattice –, 249

diagram
pullback, 72

directed subset, 246
domain, 10

domain of a partial binary op-
erartion, 11

dual, 5, 12, 50, 154
left-right –, 50
self-dual, 8
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duality, 50

egg-box picture, 88
elementary σ transition, 188

of type, 188
embedding, 14, 53

– of ordered groupoids, 40
contravariant Yoneda –, 20
covariant Yoneda –, 20

endomorphisms, 11
epimorphism, 26

equivalent epimorphisms, 26
split –, 26

equivalence relation, 4
cross-section of –, 90

extension, 142
ideal –, 64, 143
primitive –, 229
Schreier –, 142

filter, 5
free semigroup

E-free sewmigroup, 187
function, 2

bijection, 2
co-domain, 2
domain, 2
injective (one-to-one), 2
surjective (onto), 2
transition –, 83
value of –, 2

functor
v injective, 14
v-surjective, 14
– category, 19
– in n variables, 17
constant –, 21
contravariant –, 13
contravariant hom-functor, 14
covariant –, 13
covariant hom- –, 14

embedding, 14
evaluation –, 20
factorization preserving, 32
faithful, 14
full, 14
full embedding, 14
fully-faithful, 14
inclusion preserving –, 30
incluysion functor, 14
inductive –, 261
injective, 14
morphism of functors, 15
order preserving –, 40
strictly full, 14
subfunctor, 30
surjective, 14

fundamental embedding, 186
fundamental image, 203
fundamental representation, 203

generating set, 75
Green’s relations, 85
group

automorphism –, 94
Schützenberger –, 103
left, 103
right, 103

subgroup, 94
group with 0, 59
groupoid, 36

component of –, 37
connected –, 36
inductive –, 260
ordered –, 36, 40
Schein’s –, 261
simplecial, 38

higher universe, 19
hom-functor, 17
home-sets, 11
homomorphism, 53
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0-restricted –, 118
U-homomorphism, 146
anti–, 53
fiber homomorphism, 72
image, 54
induced fiber –, 72
monoid –, 53
partial –, 144
quotient –, 62

ideal, 5, 52
0-minimal, 105
0-minimal –, 52
categorical –, 244
left –, 52
maximal –, 52
minimal, 105
minimal –, 52
order –, 5
principal left –, 52
proper –, 52
right –, 52

idealextension
dense –, 148

idempotent, 51
– ρ-class, 231

idempotent generated semigroup,
152

identity, 50
categorical identity, 11
categorical left identity, 11
left –, 50
right –, 50

inclusion, 14
inclusion:split –, 29
interval, 5
inverse, 94

generalized –, 94
left –, 26
right –, 25

involution, 53
isodomain, 135
isomorphism, 53

v-isomorphism, 40
– of categorieswith subobjects,

30
– of ordered groupoids, 40
– of categories, 14
anti–, 53
inverse of isomorphisms, 14

join, 7

kernel
group –, 239

kernel normal system, 234

lattice, 7
complement, 9
relative, 9

distributive, 8
modular –, 8
sublattice, 8

letters, 186
limit, 22

direct –, 22
inverse –, 22

local semilattices, 207
local structure, 161

map, 2
order preserving, 6
quotient –, 4

matrix
column-monomial –, 137
monomial –, 59
Rees –, 59
row-monomial, 137
sandwich –, 59

maximal, 5
maximum, 5, 158
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meet, 6
minimal, 5
minimum, 5
modular law, 8
monoid, 51

cyclic –, 59
free –, 74
sub–, 51

monomorphism, 25
embedding, 29
equivalentmonomorphisms, 25
split –, 25

morphism, 10
balanced –, 26
canonical factorization, 32
factorization, 32
identity –, 10
image of –, 33

morphism map, 13

natural, 20
natural isomorphism, 15
natural partial order, 213
natural transformation, 15, 19

component of –, 15
naturally equivalent, 15
normal, 231
normal biordered set, 209
null-airy operation, 49

objects, 10
order

– of an element, 58
order embedding, 6
order-reflecting, 176

weakly, 176

partial algebra, 11
– anti-homomorphism, 13
– homomorphism, 13

partial binary operartion, 11

partial left translation, 135
partial order, 6

compatible –, 213
natural –, 215
restriction –, 40

partial right translation, 135
partition, 4
preorder, 28

strict –, 28
primitive, 110

– element, 227
– idempotent, 110

principal ideal, 5
principle of duality, 12
product, 68

direct product, 69
fibered product, 72
subdirect product, 70

product category, 16
products, 54
pseudo-semilattice, 206
pullback square, 22
pushout square, 22

quasi-order, 5
quasi-ordered set, 5

quasiorder
left, 153
right, 153

ramification, 143
reflector, 24
regular, 90, 94

– D-class, 96
relation, 1, 3

composable, 1
composition of relations, 1
converse –, 2
convex –, 222
disjoint –, 222
equivalence –, 23
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quasi-order –, 25
quotient –, 222
single-valued, 2

representable, 21
representation, 19, 20, 79

– by transformations, 79
contravariant –, 19
covariant –, 19
dual or left, 80
dual Schützenberger – , 140
faithful –, 79
linear –, 79
partial –, 134
partial dual –, 134
partial symmetric –, 135
partial symmetric – on D, 134
regular –, 132
right regular –, 82
Schützenberger – , 140

representations, 19
direct sum, 141
equivalent –, 140

representing object, 21
restriction, 40

domain –, 40
range –, 41

retraction, 29

sandwich set, 158
Schützenberger group, 103
self-dual, 50
semiband, 198
semigroup, i, 50

0-bisimple –, 86
0-simple –, 52
–, categorical at 0, 244
[left,right, two-sided] simple –

, 107
[left,right, two-sided]0-simple

–, 107

archimedean –, 252
bicyclic semigroup, 78
bisimple –, 86
center of the –, 255
completely 0-simple, 113
completely regular –, 204, 252
completely semisimple –, 126
cyclic –, 57
cyclic semigroup
generator, 57

extension, 50
finitely generated, 76
finitely presented, 76
finitely related, 76
free –, 74
fundamental, 201
group-bound –, 117
inverse –, 36, 100
kernel, 107
left reductive, 82
ordered –, 213
orthodox, 152
orthodox –, 98
periodic, 58
presentation, 76
primitive –, 227
principal factor of the –, 125
Rees matrix –, 59
Reesmatrix – with out zero, 60
Rees quotient –, 64
regular –, 36, 94
regular semigroup, i
regular-free –, 229
right reductive, 82
semisimple –, 126
simple –, 52
subdirectly irreducible –, 71
subsemigroup, 50
translational hull of –, 132
weakly inverse –, 136
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weakly reductive, 132
semigroups

coproduct of –, 73
free product of –, 73
inverse
fundamental, 151

semilattice, 7
– homomorphism, 7
complete –, 7

semilattice union of groups, 213
senigroups

direct product of –, 69
set, 1

– of states, 83
subset, 1

sets
Cartesian product of –, 68

small set, 11
strict P-biordered set, 203
subobject, 29

– relation, 29
choice of subobjects, 29

subsemigroup
naturally embedded –, 228

the opposite category of C, 12
trace, 120

– of S, 120
– of the D-class D, 120
– semigroup, 121
trace product, 120

transformation, 2
partial, 2

transformation of functors, 16
translation, 82

inner left –, 82
inner right –, 82
left, 153
left –, 82
linked pair, 131

right, 153
right –, 82

unary operation, 49
unit, 24
unitary

E-unitary, 269
left –, 268
right –, 268

universal, 20
– arrow, 20
– cone, 22
– element, 21

universal algebras, 49
universal grouphomomorphismon

S, 249

vertex map, 13
vertices, 10

warp, 152
word, 74

derivable, 76
directly derivable, 76
empty, 74
normalized –, 73

words, 186

Yoneda lemma, 19
Yoneda representations, 20

zero, 51
left, right –, 51

zero-divisors, 109


