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Preface

As with every branch of mathematics, the "algebraic theory of semigroup
theory" has also grown to such an extent that some degree of specialization is
inavitable in any reasonable work on on the subject. This book is an attempt
to write a account of the modern theory of "regular semigroups” with special
emphesis on structure theory. A justification for this choice, apart from the
research interests of the authors, is the fact that "regular semigroups" froms
one of the most important subclass of the class of "semgroups” for which a
well-knit theory is possible. Moreover a significant part of the existing theory
of semigroups deals with regular semigroups. The book is aimed at "graduate
students" and research workers in this or related area. The prerequisite for the
material is a good elmentary background in modern algebra including group
theory, linear algebra and category theory.

The Chapter 1 begins with a number of preliminary definitions. These are
given here for the convenience of later reference as well as setting up notations
and conventions. Since we make extensive use of categories (small, concrete
categories) in this work, we make a brief review of the standard concepts and
results from category theory needed in this work. We also define the notion
of categories with subobjects. Similarly we introduce the relavent definitions
of grouoids and related concepts. The concept of ordered groupoids, used
extensivel elsewhere, is introduced here. The chapter end with an investigation
of the relations between ordered groupoids and categories with subobjects.

Chapter 2 discuss some topics from elementary theory of semigroups.

semigroup!regular semigroup
semigroup
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CHAPTER 1

Preliminary Definitions

As we already have noted in Preface, prerequisite for the material in this
book is a good elmentary background in modern algebra including group
theory, linear algebra and category theory. An understanding of the contents
of Herstein [1988] or Hungerford [1974] will be adequate for algebra and that
of MacLane [1971] for category theory.

This chapter mainly consists of a number of preliminary definitions; these
are given here for the convenience of later reference as well as setting up
notations and conventions.We shall also introduce a few concepts that will be
used through out the rest of this book.

1.1 SETS, RELATIONS AND FUNCTIONS

We shall not define sets or related concepts here; instead, we shall adopt the
definitions and conventions of MacLane [1971] unless indicated otherwise.

Let X and Y be sets. A relation R of X with Y is a subset of the Cartesian
product X X Y. In this case the statement (x, y) € R will also be written as xRy
. We also write:

domR = {x: (x,y) € R forsome y € Y] (1.1a)
ImR ={y:(x,y) € R forsome x € X}. (1.1b)

IfRC XX YandR CY xZ are relations, the relation R o R’ defined by
RoR ={(x,z) € XX Z: for some y € ¥, xRy and yR'z} (1.2)

is called the composite of the relations R and R’. Note that composite of R and
R’ are defined only when Im R and dom R’ are subsets of the same set. If this
is the case, we shall say that the pair (R, R") are composable. If the pairs (R, R’)
and (R’, R”) of relations are composable, it is easy to see that

(RoR’)oR” =Ro (R oR”"). (1.3)

1

Hestein, I. N.

Hungerford, W.

MacLane, S.

set

relation

set!subset

Cartesian product

xRy: x and y are R-related
dom R: domain of R

Im R: image of R

R o R’: composite of R and R’
relation!composition of relations
relation!composable



associative
relation!converse —
relation!single-valued

|X|: cardinal number of X
transformation!partial
function

map

transformation
function!domain
function!co-domain
function!value of -

dom f:domain of f

cod f: codomain of f
functionlinjective (one-to-one)
function!surjective (onto)
function!bijection

1x: identity function on X

2 1. PRELIMINARY DEFINITIONS

Thus the operation of forming the composite is associative when ever the
relevant pairs of relations are composable.

Given a relation R C X X Y, we can form a relation from Y to X, called the
converse of R, as follows:

R = {(y,2): (v, y) € R). (1.4)

Further, we shall find it convenient to use the following notations: For all
X CcXandY CY,

RY' =R(Y') ={x € X : for some y €Y, xRy} (1.5a)
and

X'R=RX')={yeY:forsome xe X, xRy}. (1.5b)

whereR € XxY, X’ C Xand Y’ C Y. Especially, when Y’ = {y}, a singleton, we
shall use these later notations to be in conformity with the traditional notations
for functions. Thus we write

Ry=R(y)={xeX:(x,y) eR} forall yeImR;
xR=R'x)={yeY:(x,y)eR} forall yedomR.

A relation R C X X Y is said to be single-valued if for all x € X, there at most
one y € Y such that (x, y) € R; thatis, [R(x)| < 1, where for any set X, |X| denote
the cardinal number of X. If R is single-valued, for every x € domR, by the
above,xR = R(x) to denote the unique element y € Y with (x,y) € R. When
x ¢ domR, R(x) is not defined. A single-valued relation on X is also called a
partial transformation. R is called a function if R is single-valued and dom R = X.
Note that the relation R is a function if and only if

Rx)=1 YxeX (1.6)

Functions are also called maps, transformations, etc. We denote a function
fCXXYby f: X — Y, the set X [Y] is called the domain [co-domain] of f. For
x € dom f, the unique element f(x) € cod f is called the value of f atx. We shall
use the notation dom f and cod f to indicate the domain and co-domain of the
function f respectively. A function f is said to be injective (or one-to-one) if f~!
is single-valued and it is surjective (or onto) if Im f = cod f. f is a bijection if
both f and f~! are functions. In this case, we have

fofilzldomf and fﬁlolecodf

where, for any set X, 1x = {(x, x) : x € X}.
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If f: X —> Yand g : Y — Z are functions, it is easy to verify using
Equation (1.2) that f o g is also a function with dom(f o g) = dom f and
cod(f o g) = cod g defined for each x € dom f by:

X(fog)=(xflg or (fog)x)=g(f(x))
The composite function f o g can be indicated by the following “commutative
diagram™:

X%

Y

g
fog l
Z

By Equation (1.3), composition of functions is associative when ever the rele-

1.7)

vant functions are composable.

Remark 1.1: The rule for composition used by many authors is:

(o) =g(f(x) ¥V xeX (1.29)

where f : X - Yand g : Y — Z. Notice that this is different from the
composition relations defined by Equation (1.2) above. In this book, we will
have occation to use both these rules for composition of functions. However,
unless otherwise made explicit otherwise, the rule for composition will be
assumed to be the one given by Equation (1.2). This will also agree with
commutative diagrams of functions (see also Section 1.2).

1.1.1 Equivalence relations

Let X be a set. By a relation on the set X we mean a subset of X X X. We denote
the set of all relations on X by Bx. Note any two relations in X are composable
and by Equation (1.3), composition of relations in X is associative. Also, if
p € By, then so is its converse p~1.

DeriniTION 1.1. Let p € Bx. We say that
(R1) pis reflexive if 1x C p;

(R2) symmetricif p~! C p;

(R3) transitiveif p o p C p; and

(R4) antisymmetricif p~' N p C 1x.

A relation p € By is reflexive if and only if (x,x) € p for all x € X and it is
symmetric if and only if

xy)ep = (y,x)€p.

relation
Byx: set of relations on X



p":composite of n copies of p
equivalence relation
partition

decomposition

4 1. PRELIMINARY DEFINITIONS

Hence for any p € By, it is clear that 1x U p is the smallest reflexive relation
containing p and p~! U p is the smallest symmetric relation containing p. By
the definition of composite of relations, the transitivity is equivalent to the

property
Y, (y,2)ep = (x,2)€p.

If p" denote the composite of # copies of the relation p, it follows by induction
from the definition of composition that for alln > 1
P ={x,y): 3z €X,i=0,...,n with
20=X,z, =Y, (Zi-,z)€p, i=1,...,n}
Further, by condition (R3) of the definition above, p is transitive if and only if
p"Cp forall n>1.

If p € By, it easy to verify that

p¥ = U p" where p°=1x, (1.8a)

neN

is the smallest reflexive and transitive relation on X containing p. If p is
symmetric, so is p®.

A relation p € By is called an equivalence relation if it satisfies the properties
(Ri), i = 1,2,3. Given any relation p on X, it is easy to deduce from the
discussion above that

pf=(pup . (1.8b)

is the smallest equivalence relation on X that contain p.
Let X be a set. A collection P of subsets of X is a partition or decomposition of
X if
Yi,Yo€P, Yi#Y>, = Y1NY, =0

U Y =X (1.9a)

Yep

If P is a partition, then the relation

pp ={(x,y) € XxX:3Y e P suchthatx,yeY) (1.9b)
is the unique equivalence relation such that
pp(x) eP forall xeX
Conversely, if p is any equivalence relation, then

X/p ={p(x):x € X} isa partition such that px/, = p. (1.9¢)
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In view of this, we shall often use the terms equivalence relation and partition or
decomposition as synonyms.
Moreover, if p is an equivalence relation, there is a unique surjective map
p* 1 X > X/p which maps x to the unique set p(x) containing x; p* is called the
quotient map determined by the equivalence relation p (or the partition X/p).
Let f : X — Y be a function. Then the relation defined by

e ={(x,y): f(0) = f(y)) (1.10a)
is an equivalence relation and there is an injective map ¢ : X/mty — Y defined
by

Yr(rs(x)) = f(x) suchthat f=(mp)* oy (1.10b)
Hence the function f is injective if and only if 7y = 1x and it is surjective if
and only if 15 is a bijection.
1.1.2 Partially ordered sets

A relation p on X is called a quasi-order if it is reflexive and transitive; that is, p
is a quasi-order if it satisfies conditions (R1) and (R2). If p is a quasi-order on
the set X, the pair (X, p) is called a quasi-ordered set.

Note that every equivalence relation is a quasi-order. On the other hand,
if p is any quasi-order on X, then clearly,

pnp!

is an equivalence relation. Moreover, if p is any relation on X, p® is the smallest
quasi-order that contain p. If Y C X, then

pIY =pn(YxY)

is a quasi-order on Y; (Y, p|Y) is called a quasi-ordered subset of (X, p). If x, y € X,
then
[x,yl = (Y, plY) where Y ={ze€ X:xpzpy} (1.11a)

is called the closed interval with end points x and y; other type of intervals may
be defined similarly. If Y C X has the property that

xeY = pl)cy (1.11b)

(see Equation (1.5b)) then (Y, p|Y) is called an order ideal (or simply, ideal) of
(X, p). In particular, when no confusion is likely regarding the quasi-order
under consideration, we write:

X(x) = (p~(x), plp~ (xq)). (1.11c)

maplquotient —

quasi-order
quasi-order!quasi-ordered set
interval

ideallorder —

ideal
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dual

filter

maximal

maximum

minimal

minimum

partial order
maplorder preserving
order embedding
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This is clearly an order ideal; it is called the principal order ideal (or principal
ideal) generated by x. Note that in a quasi-ordered set, principal ideals may
have more than one generator.

If p is a quasi-order, so is p~!; it is called the quasi-order on X dual to p. If
T is a statement about a quasi-ordered set (X, p), the statement T* obtained by
replacing every occurrence of p in T by the dual quasi-order p~! is called the
dual of T. We will have several occasion to use this duality (process of deriving
T* from T) in the sequel. An ideal [principal ideal] in the dual quasi-ordered
set is called a filter [principal filter].

An element x in a quasi-ordered set X (with quasi-order p) is said to be
maximal if xpy with y € X implies ypx; x is maximum if for every y € X, ypx.
Minimal and minimum elements in a quasi-ordered set are defined dually. If
Y C X, an element y € Y is maximal [minimal] in Y if y is maximal [minimal]
in the quasi-ordered set (Y, p|Y) (that is, the quasi-ordered subset Y of X).
Maximum and minimum element of a subset Y is defined in the obvious way.

A relation p € By is called a partial order if it is a quasi-order which is
antisymmetric (so that p satisfies (Ri), i = 1,3,4). If p is a partial order, so is
p‘l. Note that an equivalence relation o is a partial order if and only if 0 = 1x.
In the sequel, we shall use symbols <, >, <, >, etc., to denote partial orders. As
above, if < is a partial order on X, we shall say that (X, <) is a partially ordered
set or that X is a partially ordered set (poset for short) with respect to <.

In a partially ordered set X the maximum element or the largest element [the
minimum element or smallest element], if it exists, is unique and is denoted
by 1 [0]. Note that 0 is the dual of 1; that is, the element 1 in the poset (X, <.
The element 1 is, often referred to as the identity of X and 0 is called the zero of
X.

Amapping f : X — Y of partially ordered sets is said to be order preserving if
forallx,y € X

x<yin X = f(x)<f(y) in Y. (1.12a)
f is called an order embedding if f satisfies the following:
y<yin X & f(x)<f(y) in Y. (1.12b)

Note that every order embedding is injective.

Remark 1.2: Again for simplicity, we shall often say that X is a partially ordered
set; unless explicitly provided otherwise, in this case, the notation for the
partial order on X under consideration will be <. We also denote partially
ordered subsets, ideals, intervals, etc., by their underlying sets.
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1.1.3 Semilattices and lattices

Here we list a few definitions and results needed later on. For more details,
the reader may refer to Birkhoff [1967].

Let A be a poset. If A’ C A, the greatest lover bound (or meet) of A’ in A is
the element ¢ such that

o<A YAeA

(1.13)
T<A VAeAN = t<o0.

The properties of the partial order (specifically, the antisymmetry) implies that
the meet of a subset A’ of A, if it exists, is unique; we denote the unique
element by AA". If A’ = {A, : @ € I}, then we write

AN = A Aa. (1.14a)

ael

In particular, if A" = {A4, ..., A,} for some n € N, then we write
AN = AL AAZ A A A (1.14b)

A partially ordered set A is called a meet-semilattice (or lover semilattice) if
every finite subset of A has meet. A meet-subsemilattice of A is a subset A’ such
that meet of every finite non-empty subset of A’ is again belongs to A’. It is
a complete meet-semilattice if every non-empty subset of A has meet. Note that
in a complete meet-semilattice A, AA must exist. It denotes the least element
in A so that AA = 0. A complete meet-subsemilattice is defined in the obvious
way.

The least upper bound (or join) of a subset A’ of A, is defined dually (that is,
by replacing < by > through out in 1.13 above). When it exists, it is unique and
we denote it by VA’. Notations dual to those given in Equations (1.14a) and
(1.14b) will also be used in this connection (with A and A replaced by \/ and
V respectively). Similarly complete join-semilattice [join-semilattice] is a partially
ordered set in which every non-empty [finite] subset has join. These concepts
are dual to meet-semilattices and complete meet-semilattices respectively. We
can define join-subsemilattice, etc., in the obvious manner. As above, a complete
join-semilattice A must have the largest element VA = 1.

A poset A is a lattice if every finite subset of A has both join and meet;
that is, A is both a join-semilattice and a meet-semilattice. A is a complete
lattice if every non-empty subset A’ of A has both join and meet. Note that in
a complete lattice A, 1 and 0 always exists and we have

VA=1 and AA=0.

The following Proposition is useful in characterizing complete lattices:

Birkhoff, G.

meet

AA':

semilattice
semilattice!complete —
join

VA’ :meet of \':
lattice

complete lattice
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ProrosrTion 1.1. Every complete meet-semilattice with identity is a complete lattice.

Proof. Let A’ be a non-empty subset of A and let
M={o:VpeA’, p<o}

Sincel € M, M # 0. Let 6 = AM. Since A is a complete meet-semilattice and M
non-empty, & exists. If p € A’, then p is a lover bound of M and hence, by the
definition of A (see Equation (1.13)) p < 5. Hence5 € Mandso 5 = VA’. O

As an example, we have:

Cororrary 1.2. Let Ex be the set of all equivalence relations on the set X. Then Ex
is a complete lattice with respect to inclusion.

Proof. Clearly &y is a poset with respect to the inclusion C. Given any non-
empty set E of equivalence relations on X, it is easy to verify that their in-
tersection is an equivalence relation on X which is clearly AE. Hence Ex is a
complete meet-semilattice. Also X x X is an equivalence relation on X and is
clearly the identity of Ex. Hence, by the above, Ex is a complete lattice. O

Let A and A’ be meet-semilattices. Then f is a A-homomorphism (or semi-
lattice homomorphism) if f preserves meet of finite subsets of A; that is, for all
AAEA,

FANN) = f) A fA);
it is a complete A-homomorphism if for all non-empty M C A,

f(AM) = Af(M).

By Equation (1.12a), every meet-homomorphism is, in particular, an order pre-
serving map and any one-to-one meet-homomorphism is an order embedding
(see Equation (1.12b)). Notice that A’ C A, then A’ is a subsemilattice of A if
and only if A’ is a semilattice and the inclusion is a meet homomorphism. The
corresponding V-concepts such as V-homomorphisms, etc., are defined dually.

If A and A’ are lattices, then they are meet-semilattices as well; a A-homo-
morphism of the associated meet-semilattices will be called a A-homomorph-
ism of the lattice A to A’. V-homomorphisms are defined dually. One can
extend in the obviouse way these definitions to complete A-homomorphisms
and complete V-homomorphisms of lattices and complete lattices. A partially
ordered subset A’ of a lattice A is a sublattice of A if A’ is a lattice and the
inclusion A" C A is a lattice homomorphism.
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If A and A’ are lattices [complete lattices] f : A — A’ is a lattice homo-
morphism or [complete lattice homomorphism] if it preserve join and meet
of finite non-empty subsets [arbitrary non-empty subsets]. Also, given any
family non-empty of [complete] lattices {A, : a € Q}, the Cartesian product

A=HAa

aeQ)

becomes a [complete] lattice when we define join and meet in A by

o(VA') = Vi, (A) and  ma(AA') = Amta(A) (1.15)

for all non-empty finite subsets [arbitrary non-empty subsets] A’ € A. Here
Ty : A — A, denote projections of the product to the co-ordinate lattices. Note
that when join and meet are defined in A as above, 7, : A — A, becomes a
lattice homomorphism for each o € Q.

Complemented and modular lattices: A lattice A is said to be modular if
Ao, teN, A<T = (AVoO)AT=AV (0 AT). (1.16)

The statement above is called the modular law. Note that the dual of this
statement is essentially the same and hence modular law is self-dual. The
lattice A is said to be distributive if for all A, 0, T € A, we have

(avo)AT=(aAT)V(0CAT) (1.17a)
(aho)VT=(@VT)A(OVT) (1.17b)

Note that a distributive lattice is modular. Every sublattice of a modular
[distributive] lattice is modular [distributive] and products of modular [dis-
tributive] lattices are modular [distributive].

Let A be a lattice with 0 and 1. A complement of an element A € A is an
element A’ € A satisfying the following:

AVA =1 and AAN =0. (1.18)

A lattice A is said to be complemented if every element in A has a complement.

It is clear that products of complemented lattices are complemented. How-
ever, a sublattice of a complemented lattice need not be complemented. If A is
complemented and modular, every interval [A, o] in A is complemented and
modular. In fact, if @’ is a complement of a € A, then

a'=(@Ao)VA (1.19)

lattice!modular —
modular law
duallself-dual
latticeldistributive
latticelcomplement
latticelcomplement



latticelcomplement!relative
Birkhoff, G.
MacLane, S.

10 1. PRELIMINARY DEFINITIONS

can be shown to be a complement of « in [A, 0]; a* is called the relative com-
plement of a in [A, 0]. Also, it is easy to see that a complemented distributive
lattice is uniquely complemented; that is, every element in a complemented
distributive lattice has a unique complement. Complemented distributive
lattices are called Boolean algebras (see Birkhoff [1967] for more details).

Example 1.1: For any set X, By is clearly a complete lattice with respect to inclusion.
By Corollary 1.2, Ex is a complete lattice. By Equation (1.8b), the map R + R€ is an
order preserving map of Bx onto Ex. It is easy to show that this map is a complete
join homomorphism which is not a lattice homomorphism. Clearly, & C Bx and the
inclusion is a meet homomorphism but not a join homomorphism. Thus & is a meet
subsemilattice of By, but not a sublattice.

Example 1.2: Let G be a group and let N' = N be the partially ordered set of normal
subgroups of G under inclusion. Then N is a lattice with

N]\/N2=N1N2 and N]/\N2=N1 mNz

where NiN, = {nmin, : 1y € Ny, n, € Np} denote the product of N; and N,. It is easy
toverify that NiN; is the join of Ny and N, in N. Let H, KN € N and H C N. Then
x € HKN N if and only if x = hk with h € H, k € K and Ik = x € N. This is true if and
only if h € Hand k = h'x € KN N. It follows that

HKNN = H(KNN)
which is the modular law for N. Thus N is a modular lattice.

Example 1.3: Let Py = P denote the partially ordered set of all subspaces of a vector
space V over the field k under inclusion. Then P is a lattice with

VivVo,=Vi+V, and VinV,=VinV,

for all V4, V, € P. Itis easy to see using elementary linear algebra that # is a comple-
mented modular lattice which is not a Boolean algebra.

1.2 CATEGORIES

The aim of this section is to list some preliminary definitions and results
about categories; this will enable us to set up notations and conventions to be
followed in the sequel. In the first section we review some definitions from
category theory for the convenience of later use. The remainder of the chapter
is devoted to describing certain results and constructions of category theory
needed later. Most of these results are quite standard and can be found in
any standard work on categories. In our formulation of these results, we have
followed MacLane [1971] as far as possible.

1.2.1 Definitions and notations

In the following we assume that the reader is familiar with the concepts of
categories, functors and related concepts (see Hungerford [1974], MacLane
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[1971], etc., for details). Here our aim is limited to introducing notations and
terminology needed in the sequel.

We shall generally follow notations and terminology established in Nam-
booripad [1994] (except for some occasional modifications). However, for
completeness, we shall reproduce most of them here. For those notation and
/ or terminology not explicitly defined here, the reader should refer MacLane
[1971], Nambooripad [1979] or Nambooripad [1994].

DeriniTION 1.2. A category C consists of the following data:
1. A class called the class of vertices or objects.

2. a class of disjoint sets C(a,b), one for each pair (2,b) € vC X vbC. An
element f € C(a, b) is called a morphism (or an arrow) from a to b, written
f:1a— b;a=domf is called the domain of f and b = cod f is called the
codomain of f.

3. Fora,b,c € vC, amap
°:Ca,b)xClb,c) = C@,c), (f,g)r foy.
o is called the composition of morphisms in C.
4. For eacha € vC, a unique 1, € C(a, a) called the identity morphism on a.
These must satisfy the following axioms:

(Cat1) The composition is associative: for f € C(a,b), g € C(b,c) and h €
C(c,d), we have
folgoh)=(fog)oh).

(Cat2) Foreacha € vC, f € C(a,b) and g € C(c,a),

lyof=f and gol,=g.

Observe that the order of the composition given by item (3) is from left to
right and agree with the composition of function defined earlier (cf. (1.2)) as
well as the usage in Nambooripad [1994].

Let C be a category. The symbol C will also denote its morphism class
. As in MacLane [1971], the sets C(a,b) will also be called home-sets. The
home-set C(a,a) is often abbreviated as C(a). Morphisms in C(a) are called
endomorphisms of a. Since the morphism sets C(a, b) are disjoint (by item (2)
above), the correspondance a + 1, is an injection of the class vC into C. It is
convenient to identify vC as a subclass of C by this injection so that we have
vC C C. With this identification, it is possible to define categories in terms of
morphisms (arrows) alone. Notice that the class bC need not be a set whereas
the morphism set C(a, b) (by (2) above) is required to be a set (small set — see

Hungerford, W.
Nambooripad, K. S. S.
category

vertices

objects

vC:vertex class of C
morphism

C(a, b):set of morphisms from a to b
dom f:domain of f
domain

codomain

cod f:codomain of f
composition
morphism!identity —
class!morphism —
home-sets
endomorphisms

small set



category!small —

partial binary operartion

domain!domain of a partial binary
operartion

partial algebra

Dx:domain of the partial binary
operartion on X

identity!categorical identity

identity!categorical left identity

identity!categorical left identity

eqg and fg:unique left and right
identity of g € C
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MacLane [1971],pp 21-24.) The category C is said to be small if the class C (that
is, the class of all morphisms in C) is a set. In view of item (2) above, this true
if and only if vC is a set.

In this work, we will use categories not only as a language but also as a
mathematical structure which is a generalization of partially ordered sets. In
the later usage the categories considered will be small. For small categories,
the arrows-only definition is more appropriate. To formulate this definition,
we need some additional concepts. A partial binary operartion on a set X is a
function from a subset D C X X X to X; the set D is called the domain of the
partial binary operartion. A partial algebra X is a set (again denoted by X) on
which a partial binary operartion is given. If no ambiguity is likely, we shall
denote the partial binary operation on X by juxtaposition and its domain by
D = Dx . Note that the statement (g, i) € D is equivalent to the statement that
the product gh exists (or is defined) in X. An element u € X is a categorical
identity or simply, an identity, if

ug =g whenever (u,g) € Dand hu=h whenever (h,u) € D.

We are now ready for the arrow-only definition of small categories (see also
MacLane [1971], pp 9).

DeriniTion 1.3. A small category C is a partial algebra satisfying the following
axioms:

(Ar1) The composite (gh)k is defined if and only if the composite g(hk) is
defined. When either is defined they are equal. The common value of
thess triple composites is denoted by ghk.

(Ar 2) If the composites gh and hk are defined, then the triple composite ghk is
defined.

(Ar 3) For all g € C, there exist identities u,v € C such that ug and gv are
defined.

If g € C an identity u € C with ug = g [gu = g] is called a left identity [right
identity]. Axiom (Ar 3) shows that every g € C has a left [right] identity. The
strong associtivity implied by axioms (Ar 1) and (Ar 2) will mean that these
are unique. For if u,u’ are left identities of g. Then products ug = g and
u’'g = u'(ug) exists in C. Hence by (Ar 1), (u'u)g exists whcich implies that u'u
exists. Since these are identities, we have u = «'u = u’ by definition. Similarly
right identities are also unique. We use the notation ¢, and f; to denote the
unique left and the right identity of the morphism g € C. Moreover, the
composite gh is defined in C if and only if f;, = ¢;. For from the fact that the
composite gh = (gf,)h exists we conclude that the product g(f,h) exists and so



1.2. CATEGORIES 13

fsh exists. This gives f; = e,. Conversely, if f, = e, = u, form the fact that
the products gu and uh exists, we conclude by axion (Ar 2) that (gu)h = gh
exists in C. It follows that, taking vC as the set of identities in C, C becomes a
category as per Definition 1.2. On the other hand, if C is a category according
to Definition 1.3, then for any a € vC, u = 1, is a categorical identity. For if
ug exists, then by item (3) of the definition, g € C(a, b) for some b € vC and
by axion (Cat 2), ug = g. Similarly, if hu exists, h € C(c,a) and hu = h. It now
follows immediately that axioms (Ar i), i = 1,2,3 holds so that C is a small
category according to the arrow-only definition.

Suppose that C is a category (not necessarily small). Then there exists a
category C°P defined as follows:

bC? = vC, C°(a,b) =C(b,a) (1.20)
for all a,b € vC and the composition * in C°P is given by
grh=hog

for all g,h € C°? = C for which & o g is defined in C. Indeed, one can readily
see from the definition above that, these data give a category C°P called the the
opposite category of C. Any statement T regarding C corresponds to a suitable
statement T* regarding C°P obtaind by reversing arrows and composition. The
statement T" is called the dual of T. Clearly, if T is true for C, then T" is true for
C°P. This method of inforing the truth of a statement T* for C°P from the truth
of T for C is called the principle of duality. Also, T = T. Note that if T holds
for arbitrary categories, it holds for C°? and so, both T and T* holds for C.

Observe that with any class X, we can trivially associate a category C with
vC = Xand fora, b € X,C(a, b)isemptyifa # band C(a) = {1,} where 1, denotes
the identity morphism on a. Since no confusion is likely, we shall denote this
trivial category on X by X itself.

Example 1.4: Some of the most frequently used examples of categories are the follow-
ing:
1. Set: the category in which vertices are sets and morphisms are maps. It is called
the category of sets.

2. Grp: the category with groups as vertices and morphisms as homomorphisms.
Grp is called the category of groups.

3. Ab: the category in which vertices are abelian groups and morphisms are homo-
morphisms. The category of abelian groups is a subcategory of Grp.

The reader may verify that the above list are valid examples of categories.

DEerINITION 1.4. A covariant functor F : C — O from a category C to a category
D consists of a vertex map vF : vC — vD which assigns to eacha € vC a vertex

C°P:the opposite category of C
the opposite category of C
dual

principle of duality

1,0

category!trivial —on X
Set:category of sets

category! — of sets
Grp:category of groups
category!— of groups
Ab:category of abelian groups
category! — of abelian groups

functor!covariant —

vertex map
vF:The vertex map of F



morphism map

functor!contravariant —

partial algebra! — homomorphism

partial algebra! —
anti-homomorphism

Cat:The category of small categories

v:functor from Cat to Set

category! — of small categories
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vF(a) € vO and a morphism map F : C — D which assigns to each morphism
f:a— beC, amorphism

F(f): vF(a) — oF(b) € D
such that
(Fn1) F(1,) = 1yr@ for alla € vC; and

(En2) F(f)E(g) = F(fg) for all morphisms f, g € C for which the composite fg
exists.

F is a contravariant functor if vF is as above and the morphism map assigns to
each f : 4 — b € C, amorphism

F(f) : vF(b) — vF(a) € D
such that they satisfy axiom (Fn 1) and the following:

(Fn*2) F(g)F(f) = F(fg) for all morphisms f, g € C for which the composite fg
exists.

In the following, unless otherwise stated, a functor will mean a covariant
functor. Observe that a functor F : C — O is contravariant if and only if
F: C% — Dis a covariant functor.

If we identify vC as a subset of C by identifying vertices with the corre-
sponding identity, the condition (Fn 1) implies that

vF=F|oC

for any functor F : C — D. Therefore we may use the same notation for the
morphism map as well as the vertex map of a functor. Thus the symbol F(x)
will mean a vertex in D if x € vC and a morphism in D if x is a morphism in C.
We may now define a covariant functor F : C — D as a mapping of the class
C to the class D that preserves identities and composition. A contravariant
functor is similarly a map that preserves identities but reverses composition.

A functor F : C — D is said to small if C is a small category. In this case, it
is easy to see that there is a small subcategory O’ of D such that F is a functor
of C to ©¥. Thus a small functor is a partial algebra homomomorphism that
preserve categorical identities. Similarly, a contravariant small functor is a
partial algebra anti-homomorphism which preserves identities. It is clear that
there is a category Cat in which vertices are (small) categories and morphisms
are (small) functors. Moreover the assignments

Cr—ouC and F+— oF (1.21)

is a functor v from Cat (the category of small categories) to the category Set.
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For any category C, there always exists a functor, denoted by 1¢, whose
vertex map is the identity map on the vertex set of C and whose morphism map
is the identity map on the morphism class of C. A category D is a subcategory
of a category C if the class D is a subclass of C and the composition in D
is the restriction of the composition in C to D. In this case, the inclusion
D C C preserves composition and identites and so, represents a functor of D
to C which is called the inclusion functor of D into C. Observe that for any
category C, the trivial category vC is a subcategory of C. In particular the
inclusion vC C C can be regarded as a category inclusion.

Let C and D be two categories. We shall say that a functor F : C — D
is v-injective if vF is injective and F is v-surjective if vF is surjective. F is said
to be faithful if the morphism map is injective on each hom-set of C and F
is injective or an embedding if it is faithful and v-injective. Note that this is
equivalent to requiring that F is injective as a partial algebra homomorphism.
We shall say that F is full if its morphism map is surjective on each hom-set of
F. Tt is surjective if it is surjective as a partial algebra homomorphism (or, its
morphism map is surjective). In this case, it is easy to see that F is v-surjective.
F is strictly full if it is full and v-surjective. If F is strictly full then it is clearly
surjective. We shall say that F is a full embedding if it is fully-faithful (that is, full
and faithful) and v-injective. An isomorphism of categories is a full embedding
in which oF is a bijection. If F is an isomorphism, the inverse F~! exists and is
also an isomorphism of categories.

We now describe two classes of set-valued functors that will be of use later.
Let C be a category. For fixed c € vCand f : ¢’ — ¢” in C, let C(c, f) denote the
function from C(c, ¢’) to C(c, ¢”’) defined as follows:

C(c, H)(g) =gf forallgeC(c,c). (1.22)

Then the assignments

¢ - Clc, )

f=C f) (1.23)

forall¢ € vCand f : ¢’ — ¢” € C, defines a functor C(c, —) from C to the
category Set. C(c, —) is called the covariant hom-functor determined by c.

Again, as above, for fixed c € vC and f : ¢’ — ¢” in C, let C(f, ¢) denote the
function from C(c”, c¢) to C(c’, ¢) defined as follows:

C(f, 0@ = fg (1.227)
for all g € C(c”, ¢). The assignments
' - C(c,0) f=C(f,0 (1.23%)

1c:
functorlincluysion functor
inclusion
category!— inclusion
functor!v injective
functor!v-surjective
functor!faithful
functorlinjective
embedding
functorlembedding
functor!full
functor!surjective
functor!strictly full
functor!full embedding
functor!fully-faithful
isomorphism! — of categories
isomorphism!inverse of
isomorphisms
F~L:inverse of F
C(c, f):function g — gf
C(c, —):covariant hom-functor
functor!covariant hom- —
C(f, c):function from C(c”,c) to
C(c’,0)



C(=, ¢):contravariant hom-functor

functor!contravariant hom-functor

natural transformation

natural transformation!component
of -

n(a) :component of the natural
transformation n

natural isomorphism

naturally equivalent

F = G:F is naturally equivalent to G

functor!morphism of functors
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forall¢’ e vCand f : ¢’ = ¢” € C defines a contravariant functor C(—,c) : C —
Set which is called the contravariant hom-functor. Notice that the definition of
contravariant hom-functor is obtained by dualising the definition of covariant
hom-functor.

Natural transformations ~ LetF: C — D and G : C — D be two functors (with
the same domain and codomain). A natural transformation 1 : F 2 G is a map
a + 1(a) from the vertex class vC of C to the morphism class of D (which by the
convention introduced above is denoted by D itself) such that for eacha € vC,
component 7(a) : F(a) — G(a) is a morphism in D such that the following
diagram commutes for all f :a — bin C:

Fa) " Ga) (1.24)

F(f)l lc(f)

Fb) — > GO)

In the following we will denote the component of 1 at a either as 1(a)(as above)
or as 1, (as in MacLane [1971]). If every component of 7 is an isomorphism,
then nis called a natural isomorphism. Functors F and G from C to D are naturally
equivalent (written F = G) if there is a natural isomorphism 7 : F % G. Notice
that for any functor F : C — D the map a +— 1, is a natural isomorphism of
F to itself which is denoted by 1.

1.2.2 Functor categories

Suppose that ¥ is a class of functors. If F: C - C' ' and G : © — O’ are
functors in € ¥, a morphism u : F 5 Gisa triple u = (a,1,a’) wherea : C — D,
@' :C' — O are functors and 1 : Foa’ 5 a o G is a natural transformation. If

p=(@na):F->G and t=B,(p):G—-H
are morphisms of functors, the composite u o T = ¢ is defined as follows:
o=(axopB,&a of). (1.25)
Here, & denote the map : ¢ — & where for each c € bC

&= ﬁ/(nc)Ca(C)- (126)

It is easy to see that & is a natural transformation & : Foa’ o/ 5 aofoH
and thus ¢ : F — H is a morphism of functors. With this morphism we can
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define a category X in which b X = ¥ provided that for all F, G € F, the class of
morphisms from F to G is a set. The reader can verify that a sufficient condition
for this to hold is that dom F and cod F of every F € ¥ is a small category. Any
subcategory of X will be called a functor category (or a category of functors).

We proceed to discuss some particular instances of this construction that
will be of use in the sequal. Suppose that ¥ is a class of functors taking values
in some fixed category D. For example ) may be the category Set, Grp (the
category of groups) or the category Ab of abelian groups, etc. A category of
D-valued functors is a category & with

v&E=F (1.27a)
and for F,G € ¥ morphisms i : F — G are of the form

U= (CY, m, 12)) (127b)

A sufficient condition that this will in fact define a category E is that # consists
of small functors. Obviousely, & is a subcategory of X if the later exists.
Morphisms in & are called transformations . If p = (a,1,1p) : F — G is a
fransformation in &, it will be convenient to write @ = vy and use the symbol
u to denote the the natural transformation 7 also if there will be no ambiguity.
It follows from Equations (1.27a) and (1.27b) that composition T = p o v of
transformations u : F — Gand v : G — H is defined by

vT=buovy, and Tc= UVoy() (1.27¢)

for all c € vC.

Suppose that C and D are categories in which C is small. Then there is a
category [C, D] whose objects are functors from C to D and whose morphisms
are natural transformations (see MacLane [1971]). Notice that this construction
can be obtained as a particular case of the construction of X (or &) if we take
¥ as the set of all functors from C to D and morhisms as transformations of
the form

u= (e, 1, 1p). (1.27d)
If S and T are functors from C to D, we shall also use the more usual notation
Nat(S, T) to denote the set [C, D](S, T) of all morphisms (natural transforma-
tions) in [C, D] from S to T. Notice that composition in this category is defined
as the component-wise product of natural transformations: if € Nat(S, T) and
C € Nat(T, U), then nC € Nat(S, U) is the natural transformation defined by

(M0)c = ncCe. (1.27e)

for all ¢ € vC (see MacLane [1971]). Clearly, [C, D] is a subcategory of the
category [—, D] of all small D-valued functors.

category!functor —

D-valued functors

transformation of functors

[C, D]:category of functors

Nat(S, T):natural transformations
fromStoT

component-wise product
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CxD:

bifunctor

functor! —in n variables
bifunctor! — criterion
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Bifunctors and bifunctor criterion Let C, D be categories. Recall that the
product category CX D is the category with vertex class bCx v, morphism class
C x O and in which composition of morphisms are defined componentwise;
thatis, if (f,9) : (c,d) = (¢’,d") and (f,g’) : (¢, d") = (c”’,d"”) are morphisms in
C X D, then the composition in the category C X D is given by the equation

f (" 9)=(ff,99).

A bifunctor or a functor in two variables is a (covariant) functor B: CxX D — &
(where & is another category). A bifunctor B : C¥7 x D — & is said to be
contravariant in the first variable and covariant in the second. In an obvious
manner, the definition above can be extended to functors in n variables which
is contravariant in r < n variables, etc.

The following principle, called the bifunctor criterion is useful in checking
whether a given assignments of functors and natural transformations consti-
tute a bifunctor:

THEOREM 1.3 (BIFUNCTOR CRITERION). Let C, D and & be categories. For each c € vC
and d € vD, let

G:D—>E and F;:C— &
be functors such that
Fi(c) = G(d) forall (c,d)evCXxvD.
Then there exists a bifunctor B : C X D — & with B(c,—) = G for all ¢ and

B(—,d) = F4 for all d if and only if for every pair of morphisms f : ¢ — ¢’ € C and
g:d — d’ € D the following diagram commutes:

Fi©) —2 G(")

Fd(f)l lpd/ f)

Fa() 5 Ge@)
If this holds, then B is defined by the assignments: a
B(c,d) = Fi(c) = G(d) (1.28a)
forall (c,d) € vC x vD and

B(f,9) = Fa(f)Ge(9) = Ge(g)Far (f)- (1.28b)
forall (f,g):(c,d) = (c’,d") e Cx D. O
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We refer the reader to MacLane [1971], Proposition 1 on page 37 for further
information about this principle.

Given any category C, it is easy to check that the contra-variant and covari-
ant hom-functors

C(=,0):C? >Set  C(c,—):C — Set (1.29)

(cf. Equation (1.23) and Equation (1.23")) satisfy the bifunctor criterion above
and hence determines a unique bifunctor C(—,—) : C¥ X C — Set. C(—,-) is
called the hom-functor. Notice that C(—, —) sends each (c,d) € vC X vC to the
set C(c,d) and (f, g) € C(c’, c) X C(d, d’) to the function C(f, g) defined by

C(f,g9): h+ fhg. (1.30)

Clearly the bifunctor C(—, —) is contravariant in the first variable and covariant
in the second.

An isomorphism of functor categories It is well-known that, if C, D are small
categories, and & is any category, we have the following category isomor-
phisms:

[C.[D.€]l = [CxD,é&] = [D,[CAE]l. (1.31)

(see MacLane [1971]). In fact the first isomorphism is defined by the assign-
ments:
F— F(—,-); and nen_ . (1.31%)

Here F(—, —) is defined, for any functor F € v [C,[D, &]], as follows. For each
c € vC, let G. = F(c). By hypothesis G. : © — & is a functor. Also for each
d € D, let F; be defined by the assignments

¢ Fe)d) and f - E(f)d).

It is easy to see that F; = F(—)(d) : C — &isafunctor. If f : c — ¢’ € C,
then F(f) : F(c) — F(c’) is a natural transformation and hence the following
diagram commutes foreach g: d — d’ € D:

F(f)a
F(c,d) ——% F(', d) (1.32)

F (C)(g)l lF ©)@)

F(c,d’ F(c’,d’
(C/ )W (C/ )

It follows from bifunctor criterion (see Subsection 1.2.2) that the functors F;
and G, determines a unique bifunctor F(—, —) : C X D — & defined as follows:

F(c,d) = F(c)(d) (1.33a)

C(—, —):the hom-functor
hom-functor

category! — isomorphism
bifunctor! — criterion
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20 1. PRELIMINARY DEFINITIONS

for each (¢, d) € vC x 0D, and for (f,g) : (c,d) = (c’,d’), let

F(f, 9) = (F(Na)(F()g) = F@)E(f)a). (1.33b)

Then we clearly have F(c,—) = F(c) and F(—,d) = F(=)(d) for all ¢ and d.
Similarly if 7 is a natural transformation in [C, [D, E]] (F, G), and if we define

Ned = (Ne)a (1.33c)

then it is easily seen that n— _ : F(—, —) % G(—, —) is a natural transformation of
bifunctors.

Conversely, let F(—, =) € o[CxX D, E]and - - € [CX D, &]. For eachc € vC,
F(c,-) : D — & is a functor and for each f : ¢ — ¢’ € C, by the bifunctor
criterion, F(f,—) : F(c,—) 5 F(¢/, -) is a natural transformation. Define F and 7]
as follows:

F(o) = F(c,~); F(f)=F(f,~);
fle = Te,-
It can be shown that F : C — [D, &] is the unique functor such that the
bifunctor (-, —) determined by F as above (using Equations 1.33a and 1.33b)
coincides with F(—, —). Alsoitis easy to see that 7j: F — Gisthe unique natural

(1.34)

transformation such that the natural transformation of bifunctors determined
by fj (as in Equation 1.33c) is the same as 1 _. It follows that the assignments
given by Equation (1.31%) is a category isomorphism. Since categories C x D
and D x C are isomorphic, the second isomorphism of Equation 1.31 can be
obtained in the obvious way.

Remark 1.3: Notice that even if C and D are not small [C, D] can still be inter-
preted as a category though the hom-sets of this category is no longer small;
also Equation (1.31) remains valid where the isomorphisms are isomorphisms
of “large” categories (that is, categories whose hom-sets belongs to a higher
universe so that they are not small sets—see MacLane [1971], pp 21-24). In
any case, given any bifunctor F from C X D to &, Equation (1.34) gives a repre-
sentation F sending each object in C to a functor from O to & and morphisms
to natural transformations between such functors and this assignment is func-
torial in the sense that it preserve identities and composition. When C and
D are not small, F will be a functor from a category with small hom-sets to a
category whose hom-sets may not be small sets.

Yoneda lemma  For any category C, we use the notation C* to denote the
functor category [C, Set]. If C and D are any two categories, by Equation (1.31),
we have the following isomorphisms:

[C.D] = (CxD) = [D,C]. (1.35)
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In particular, setting D = C% it follows from Equation (1.35) that there are
unique functors (representations)

Hc:C? - C* and HC:C— (C*) (1.36)

that corresponds to the bifunctor C(—, —) under the isomorphisms given in
Equation 1.35 (see Equations 1.33a, 1.33b, and 1.34). It follows that Hc :
C — (C" is a unique contravariant representation of C by covariant set-valued
functors on C. Similarly H® : C — (C*)" is a unique covariant representation of
C by contravariant set-valued functors on C.

Let F € C* and u € F(c) with ¢ € vC. It is easy to see that for each ¢’ € vC
and f € C(c, ),

o(f) = F(f)(u) (1.37)
defines a map C}; : C(c,c’) — F(c’) such that the assignment ¢’ + !, is a natural
transformation C* of C(c, —) to F. Every element of Nat(C(c, —), F) is of this form.
This leads to the following well-known result, due to N. Yoneda Yoneda [1954],
which we shall need in the sequel (see also MacLane [1971], pp 59-62).

THEOREM 1.4 (YoNEDA LEMMA). Let C be a category, ¢ € vC and F € vC*. Then the
map
Yc,F U B Cu

is a bijection of F(c) onto Nat(C(c, —), F) which is natural in c and F. O

The last statement that Y, r is natural in c and F may be explained as follows.
Let E¢ be defined on objects and morphisms of the category C x C* as follows:

Ec(c,F) = F(c), Ec(f,n) = F(f)ne = n.G(f) (1.38)

where f € C(c,¢’) and n € Nat(F,G). The equality F(f)n- = 1n.G(f) follows
from the fact that 7 is a natural transformation. It is easy to see that E¢ is a
set-valued bifunctor on C X C* and is called the evaluation functor. Similarly,
)¢ defined on objects and morphisms of C X C* to Set by

Yel(c, F) = Nat(He(c), F),  De(f, ) = C'(He(f), n) (1.39)

is a bifunctor. Here H¢ denotes the functor from C% to C* satisfying Equa-
tion (1.36) and C*(HcC(f), 1)) is the function defined by Equation (1.30). Yoneda
lemma is equivalent to the following:

CoroLrrary 1.5. The assignment
Y:(c,F)— Y.

is a natural isomorphism Y : Ec — 2C. O

representations

He, HCcontra, co-variant
representations

representation!contravariant —

representation!covariant —

natural transformation

Yoneda, N.

Yoneda lemma

natural

Ec:evaluation functor

functorlevaluation —

Dc:Yoneda functor

Y:Yoneda equivalence
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Another consequence of Yoneda lemma is that it gives some useful rep-
resentations, called Yoneda representations. In fact, the functors He and HC are
embedding of categories; Hc is called the contravariant Yoneda representation (or
embedding) and HC is called the covariant Yoneda representation (or embedding).

1.2.3 Universal arrows, representable functors and limits

Let F : C — D be a functor. Recall that a universal arrow from d € vD to the
functor F is a pair (¢, g) where ¢ € vC and g € D (d, F(c)) such that given any
pair (¢/,g’) with g € D(d, F(c')), ¢’ € vC, there is a unique f € C(c,¢’) such that
g’ = goF(f) (cf. MacLane [1971], p 55). In this case, we say that the morphism
g is universal from d to F. A universal arrow from F to d is defined dually.

The following are standard examples of universal arrows.

Example 1.5: Let U : Grp — Set be the forgetful functor from the category Grp of
groups to Set. Let F(X) be the free group on the set X [see Hungerford, 1974, page. 65]
for definition of free groups). Let jx : X — U(F(X)) be the natural insertion of generators
in F(X). Then the pair (F(X), jx) is a universal arrow from X to U. Also there is a functor
F : Set — Grp sending each set X to the free group F(X) generated by it. If G is any
group, then there is a unique quotient homomorphism g¢ : F(U(G)) — G where F(U(G))
is the free group generated by the set U(G) of G. The pair (F(U(G)),4¢) is a universal
arrow from the functor to G.

The remainder of this section deals with some applications of this concept
which we shall find useful later.

Universal elements  Let F € C* and let (c, g) be a universal arrow from a one
point set = to F. Then the map g : * — F(c) is uniquely determined by the
element x = g(+). In this case the pair (c, x) (or, the element x alone, if the object
c is clear from the context) is called a universal element for F. Note that x € F(c)
is a universal element for F if and only if for every ¢’ € vC and y € F(c’),
there is a unique f : ¢ — ¢’ such that F(f)(x) = y. It is easy to see that the
natural transformation C* defined by Equation (1.37) is a natural isomorphism
if and only if the element x € F(c) is a universal element for F. By Yoneda
lemma every natural isomorphism of F with a covariant hom-functor C(c, —)
is obtained in this manner.

Representable functors A functor F € C* is said to be representable if F is
naturally isomorphic to some C(c, —); in this case the object ¢ € vC is called a
representing object for F. Remarks above imply that c is a representing object
for F if and only if F(c) contains a universal element for F. In particular, F is
representable if and only if F has a universal element.
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Limits Let C and D be two categories and let d € vD. In the following we
denote by A, the constant functor from C to D with value d; that is, the functor
which sends every object of C to d and every morphism to 1;. By a cone we
mean a natural transformation ¢ belonging to either Nat[F, A;] or Nat[Ay, F]
where F : C — D is a functor. If 0 € Nat[F, A4] then it is called a cone from the
base F to the vertex d. Clearly ¢ : ¢ — o, is a function from vC to D such that for
any f : ¢ — ¢’ € C, the following diagram commutes:

Fo)— L Fey (1.40)

We shall write o : F -5 d to mean that ¢ is a cone from the base F to d. In
particular, if F is the inclusion functor of C in D, we shall say that ¢ is a cone
from the base C to d; in this case we write 0 : C 54 IfF = Ay, another
constant functor, them any o : F % Ay is a constant mapping of vC to D(d’, d)
which may be represented as A, where g = o(c) for any c € vC. Moreover, the
assignments

d—A; and g A, (1.41)

is a functor A : D — [C, D]

Dually if 0 € Nat[Ay, F] then it is called a cone to the base F from the vertex
d (see MacLane [1971], pp 62-71). In this case, we write 1 : d - F to indicate
this natural transformation.

A cone ¢ : F 5 d is a universal cone if for each cone 7 : F = d’ there is a
unique g : d — d’ such that the following diagram commutes for every c € vC:

F(o) —=— 4 (1.42)

N

d/

A cone ¢ : F 55 d is universal if and only if the natural transformation ¢ : F -
A; is a universal arrow from F to the functor A in the sense defined earlier
in this section. The direct limit (or inductive limit or colimit) of F is a pair (d, o)
whered € vDand ¢ : F 5 dis a universal cone (see MacLane [1971] pp 67-68).
In this case we write
d=1lmF
—
and o is called the limiting cone. Dually the limit (or inverse limit or projective
limit) of F is a pair (lim F, 7) where im F € D and 7 : lim F 5 Fis a universal
— — —
cone to F from @F.

functor!constant —

Ag:constant functor with value d

cone

o : F 5 d:cone from base F to vertex
d

o : coneC 5 d

A:D - [C, D]

cone!l —to F from d

n:d 2 F:cone to the base F from
vertex d

universal! — cone

limit!direct —

lim F:direct limit of F

—

conellimiting —

limit

limitlinverse —

lim F:inverse limit of F

—
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We end this section with some useful examples of limits.

Example 1.6 (Pushout square): A pushout square of a pair (f,g) of morphisms in a
category C (with common domain) is a commutative square on the left below such that
whenever a commutative square, such as the one on the right below is given, there is
a unique isomorphism ¢ : b ][, ¢ — s such that w = ut and z = vt.

f, f .,
u w (1.43)

9 9

—XS

z

SN
S

—— bl

A push out square can be interpreted as a direct limit of a functor from the category
- ¢« - — - to C. Observe that it is a particular case of the fibered sum or coproduct over a,
the common domain of f and g (see 2.23). ([see MacLane, 1971, Page 66]).

Example 1.7 (Pullbacks): A pullback square of a pair (f, g) of morphisms in a category C
(wth common codomin) is a commutative square on the left below such that whenever
a commutative square such as the one on the right below is given, there is a unique
morphism t : s — a X, b such that w = ut and z = vt.

ﬂ%C $>

R

aX b ——b -

z

(1.44)

S —> 0

Show that a push out square can be interpreted as a limit of a functor from the category
- — - « - to C. Moreover it is a particular case of the fibered product or product over
¢ =cod f = codg. A pullback square is the dual of a pushout square. ([see MacLane,
1971, Page 71]).

Example 1.8: Itis well-known that if C is a small category then for any functor F : C —
Set, both lim F and lim F exists, since the category Set is complete and cocomplete (see
MacLane [1971], pp 105-108). In fact, let X denote the disjoint union of sets {F(c) : c €
vC} and let p denote the smallest equivalence relation containing the relation

{(x, y) e XxX:F(f)(x) =y forsome fe€C}.
Also, let p“ : X = X/p denote the quotient map. Then it can be checked that
UimF = X/p

and themap ¢ — p|F(c) gives the limiting cone. The inverse limit of F can be constructed
in a similar fashion (see MacLane [1971], Theorem1, p 106).

1.2.4 Adjoints and equivalence of categories

It is clear that given any functor F : C — D, the assignments

(c,d) = (F),d);  (f,9) = ()9
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is a bifunctor F X 1p : C X D — D x D. Hence the composite
DF(-),-)=(Fx1p)oD(-,-): CxD — Set

is a set-valued bifunctor which is contravariant in the first variable. Here
D(—, —) denote the hom-functor of D. Similarly,

D(—F(=)=1pXF)oD(—,—-): DXxC — Set

is a set-valued bifunctor which is also contravariant in the first variable.
Let n € Nat[F, G] be a natural transformation where G : C — D. If
H:9D — Xand K : A — C are functors, it is easy to verify that the mappings

c— H(ne) and a1k
are natural transformations. We denote these by

nH:FoH-5GoH and Kn:KoF 5 KoG.

We use these notations in the statement below. See MacLane [1971]; page 81,
Theorem 2 for a proof.

TueorEM 1.6. The following statements are equivalent for functors F : C — D and
G:D-C:

(1) There exists a natural isomorphism

¢: C(=,G(=)) = D), -).

(ii) There exists a natural transformation 1) : 1¢ = F o G such that for each c € vC,
1 is a universal arrow from c to G.

(iii) There exists a natural transformation o : GoF %> 1g such that for each d € vD,
04 is a universal arrow to d from F.

(iv) There exist natural transformations
n:l¢ 5FoG and 0:GoF 5 1p
such that

(NF)c o (Fo)e = 1. and (Gn)a o (6G)a =14

forallc e vCandd € vD.
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Moreover, given F : C — D there exists G : D — C satisfying the equivalent
conditions (i) — (iv) if and only if for each d € 0D there is a unique Go(d) € vC and
04 : F(Go(d)) — d which is universal from F to d. Dually, given G : D — C there
exists F : C — D satisfying the equivalent conditions (i) — (iv) if and only if for each
c € vC there is a unique Fo(c) € 0D and 1. : ¢ = G(Fo(c)) which is universal to G
from c. O

Given a pair of functors F : C — D and G : D — C, we shall say that
F is a left adjoint of G and G is the right adjoint of F if the pair (F, G) satisfies
the equivalent conditions of the theorem above. The natural isomorphism
¢ of statement (i) above is often referred to as the adjunction between F and
G. Also the natural transformation 7 of (ii) (or (iv)) is called the unit and the
natural transformation o of (iii) (or (iv)), is called the counit of the adjunction.
By the statements (i) and (iv) above, the triple < F, G, ¢ > or the quadruple
< F,G,1n,0 > completely determine the adjunction. We shall use the notation
<EG,n0>C — D for an adjunction from C to D where F: C — D is a left
adjoint of G: D — C,n:1¢ > FoGisthe unitand 0 : Go F - 1p is the
counit of the adjunction. Note that any two left adjoints [right adjoints] of G
are naturally equivalent (see MacLane [1971], page 83).

We say that two categories C and D are equivalent if if there exist functors
F:C—>D,G:D - Candsuchn:1¢ —»5 FoGandv: 19 — GoF. We write
<FGnv>C = Dforan equivalence between catwegories C and D. In this
case both < F,G,n,v"! > C = Dand < G,Ev,n! > D — C are adjunctions
so that F is both left and right adjoint of G. An adjunction arising in this way
from an equivalence is called an adjoint equivalence. If < F,G;n,nu >: C = Dis
an equivalence of categories C and D, G is called the adjoint inverse of F (and F
is the adjoint inverse of G). Note that if F : C — D is a category isomorphism
with inverse G (so that FoG = 1cand GoF = 1p),then< F,G,1¢,1p >:C — D
is an adjoint equivalence. Therefore an inverse is, in particular, an adjoint
inverse; but the converse is not true.

Let D be a subcategory of C and let K : D — C be the inclusion functor.
If K has a left adjoint F, then D is called a reflective subcategory of C and F is
called a reflector of C on D.

1.2.5 Monomorphisms and epimorphisms

Monomorphisms ~ Recall thata morphism f ina category Cis a monomorphism if

a

gf =hf =>g=h forall g heC; (1.45a)

that is, f is a monomorphism if it is right cancelable. A morphism f € C(c,c’) is
called a split monomorphism if there exists a morphism g € C(¢’,c) with fg =1,
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in which case g is called a right inverse of f. In this case, if i,k € Cwith hf = kf
then

h=n(fg) = (hf)g = (kf)g = k.

Thus a split monomorphism is a monomorphism; but not all monomorphisms
are split.

Let MC denote the class of all monomorphisms in C. Foranyc € C, 1. € MIC
and fg € MC for all f,g € MC. These imply that MC is a subcategory of C
with bMC = vC. It is useful to note that the subcategory MC has the following
property:

f,geC and fgeMC = feMC. (1.45b)

On MC define the relation
f<g &= f=hg forsome heC. (1.45¢)

Clearly if f < g then f and g have the same codomain and by Equation (1.45b),
the morphism /i such that f = hgis also a monomorphism. Also the <is a quasi-
order (that is satisfies (R1) and (R2) of Definition 1.1; see § Subsection 1.1.2)
and so

~=<n<t (1.45d)

is an equivalence relation on MC. We have the following characterization of

~"

ProrositioN 1.7. For f, g € MC, f ~ g if and only if there there is an isomorphism h
such that the following diagram commutes:

N
Cﬁd

Proof. If an isomorphism & exists making the diagram commute, then f = hg
and so f < g. Then g = h™'f and so, g < f. Therefore f ~ g. Conversely
if f ~g,and if b,k € C with f = hg and g = kf, then 1.f = f = hkf where
¢ = dom f and since f is a monomorphism, we have hk = 1.. Similarly, kh = 14
where d = domg. Hence & is an isomorphism making the diagram above
commute and k = i1 a

Two monomorphisms f and g are said to be equivalent if f ~ g (see MacLane
[1971], p 122).

inverselright —

MC:subcategory of monomorphisms
<y

relation!quasi-order —

f ~ geequivalent monomorphisms

monomorphismlequivalent
monomorphisms
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Epimorphisms ~ Dually, f € C(c,c’) is called an epimorphism if f satisfies the
following: a
fg=fh=g=h forall gheC; (1.45a")

so that f is left cancelable. f is called a split epimorphism if there is g € C(c’, c)
such that gf = 1. As before a split epimorphism is an epimorphism and f is
a split epimorphism if and only if its left inverse is a split monomorphism.

Definitions dual to that of MIC give a subcategory EC of all epimorphisms
in C satisfying the property:

f,geC and fgeEC= geEC. (1.45b")

Moreover, dual of Equations 1.45c and 1.45d gives a quasi-order and an equiv-
alence relation on EC; since there is no possibility of confusion we shall use
the same notations < and ~ to denote these relations on EC as well. Dual of
Proposition 1.7 also hold for this relation on EC. Two epimorphisms related
by ~ are said to be equivalent.

Balanced morphisms A morphism f is a balanced if it is both a monomorph-
ism and an epimorphism. Clearly, an isomorphism is a balanced morphism;
but there exist balanced morphisms that are not isomorphisms. The following
observation will be of use later:

Prorosrtion 1.8. A balanced morphism which is a split monomorphism or a split
epimorphism is an isomorphism.

Proof. . Suppose that f : ¢ — d is a balanced morphism with right inverse
g:d —c. Then fg = 1. and

flgf) =(fo)f = f = fla

Since f is an epimorphism, we have gf = 1; which implies that f is an isomor-
phism with f~! = g. If f is a split epimorphism, we can similarly (dually) see
that f is an isomorphism. O
Example 1.9: Let D C X be a proper dense subspace of a topological space X. Then the

inclusion mapping j : D € X is a balanced morphism in the category Top of topological
spaces which is clearly not an isomorphism.

1.3 SMALL CATEGORIES

Recall that a category C is small if its morphism class C (or equivalently vC)
is a set (see Subsection 1.2.1). We have noted that small categories can be
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considered as partial algebras and functors between small categories as par-
tial algebra homomorphisms which preserve identities. We therefore have a
category Cat in which objects are small categories and morphisms are functors.
Recall from § Subsection 1.2.1 also that, for any morphism u in small category
C, we use the notations e, and f, for identities corresponding to domu and
cod u respectively.

In this section we give some definitions and results, mainly relevant for
small categories needed in the sequel. Note that some of these definitions are
valid for arbitrary categories also.

1.3.1 Concrete categories and preorders

We shall say that a category C (not necessarily small) is concrete if there exists
a faithful functor U : C — Set. If C is concrete, we may assume that there is a
faithful functor V : C — Set which is injective on objects. For, if U : C — Set is
faithful, define V : C — Set by

V(c) ={(x,c): x € U(c)}

and for f € C(c,d),x € U(c), let

V() c) = (U(f)(x), d).

Then V is faithful Set-valued functor on C which is injective on vC. In this case,
the image Im V' of C in Set is a subcategory of Set and V is an isomorphism
of C onto Im V. Therefore, with out loss of generality, any (small) concrete
category C can be regarded as a category of sets; that is, objects in C are
sets and morphisms are functions. However, such representation of C is not
unique.

ProrositioN 1.9. Let C be a small category. Then there exists a faithful functor

Uc : C — Set which is injective on vC. Hence C is isomorphic to a category of sets;
in particular, C is concrete.

Proof. We construct a functor U = Ug : C — Set as follows. For each ¢ € vC
define

U(c)=1{geC:codyg = c} (1.47)

and for f : ¢ — ¢’ € C, define U(f) : U(c) — U(c") by

U(f)g) = gf- (1.48)

category!concrete —
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Since C is small, U(c) is a set for all ¢ € vC. Moreover, since 1. € U(c), U(c) # 0.
For f : ¢ — ¢/, U(f) is clearly a map of U(c) to U(c’) and it is easy to verify that
U; C — Set is a functor. Now for ¢ # ¢/,

U)nU(()=0

and so U is injective on objects of C. Also, if U(f) = U(h) for f,h € C(c, c’), then
gf = ghforall g € U(c) and so

f=1f=1h=h

Thus U : C — Set is faithful. Consequently, U(C) = Im U is a subcategory of
Set and U¢ : C — U(C) is an isomorphism. O

Remark 1.4: Proposition 1.9 has the following consequence. Let Scat denote
the category of all small subcategories of Set. Then Scat is a full subcategory
of Cat. For C € vCat, let Uc : C — U(C) be the isomorphism constructed in
the Proposition 1.9 above. It is easy to verify that Uc is a universal arrow
from C to the inclusion functor | : Scat — Cat (see § Subsection 1.2.3). Hence
by Theorem 1.6, | has a left adjoint. Therefore Scat is a reflective subcategory
of Cat (see § Subsection 1.2.4). In fact, the construction C + Im U¢ can be
naturally extended to a functor U : Cat — Scat which is the reflector of Cat in
Scat.

Preorders A category P is called a preorder if the hom-set P(p, ) contains at
most one morphism for all p,q € vP. If P is a preorder and if P = vP, the
relation

p(P)={(p,q) € PXP:P(p,q) # 0} (1.49)

is a quasiorder (reflexive and transitive relation) on the class P. In particular, a
small preorder is a quasiordered set. Conversely, if p is any quasiorder relation
on a class X, then p may be considered as the morphism set of a preorder with
vertex class X; composition in p is defined as follows: for all (p, ), (+,s) € p,

(p,s) ifg=r;

1.50
undefined if g #r. (1.50)

(P, 9(r,s) = {

Thus the quasiordered class (X, p) becomes a preorder with morphism class
p and vertex class X. Note that if P = (X, p), then the relation p(P) defined
by Equation (1.49) coincides with p. We may therefore use the same notation
to denote a preorder and the associated quasiordered class. Also, a mapping
f of the vertex class of the preorder P to the vertex class of Q determines a
unique functor of P to Q if and only if f is an order preserving mapping of the
associated quasiordered classes; as above we shall use the same notation to
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denote functors of preorders as well as order preserving maps of the associated
quasiordered classes.

A preorder P is said to be strict if the associated relation p(P) defined by
Equation (1.49) is antisymmetric; this is equivalent to the fact that quasiordered
class is a partially ordered class.

1.3.2 Categories with subobjects

Here we introduce the important preliminary notion of subobject relations in
categories. Most of the familiar categories such as Set, Grp, Top, etc., are nat-
urally endowed with subobject relations (the relation induced by the usual
set inclusion). Moreover, morphisms in these categories satisfy a factorization
property which enables us to identify image of a morphism with a universal
subobject of its codomain. Here we shall be concerned mostly with small cate-
gories even though most of the definitions may apply for arbitrary categories.

Subobjectrelations  According to the usual definition, subobjects in a category,
are certain equivalence classes of monomorphisms (see MacLane [1971], page
122). While this is quite adequate in algebraic categories such as Set, Grp,
Vcty, etc., the natural subobject relation in categories such as Top (category of
topological spaces), Tvs (category of topological vector spaces), etc., indicate
embeddings rather than monomorphisms. We shall therefore give a new
definition of subobject relation to take this distinction into account (see also
Krishnan [1990], Krishnan and Nambooripad [1993]).

DeriniTION 1.5. Let C be a category. A choice of subobjects in C is a subcategory
P C C satisfying the following:

(a) Pis a strict preorder with vP = vC.
(b) Every f € Pis a monomorphism in C.
(c) If f,g € Pand if f = hg for some h € C, then h € P. par

If P is a choice of subobjects in C, the pair (C,P) is called a category with
subobjects.

In the following, to simplify the notation, we shall denote by C, D, etc.,
categories with subobjects. If P is the choice of subobjects in C, then by
axiom (a), P induces a partial order p(P) on vC (see Equation (1.49)) and this
partially order completely determine the preorder P. When C has subobjects,
unless explicitly stated otherwise, vC will denote the choice of subobjects in
C. Also, in this case, the partial order defined by Equation (1.49) will be
called the preorder of inclusions or subobject relation in C and will be denoted

preorder!strict —

subobject

Krishnan, E.

Nambooripad, K. S. S.
subobject!choice of subobjects
category!— with subobjects
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by C; as usual the statement (c,d) €C is written as j9 : ¢ € d (or ¢ C d for
short) where ;% denotes the unique morphism in vC from c to d. When ¢ C d,
we say that c is a subobject of d; the morphism j¢ is called the inclusion of
c in d. Since we often identify vertices with identities, we shall continue to

use these notations for identities also. Thus if e and f are identities in C the
om f

relation e C f is synonymous with dome C dom f and the inclusion ]jome

is written also as ]5 . Any monomorphism f equivalent to an inclusion (with
respect to the equivalence relation ~ defined by Equation (1.45d)) is called an
embedding. We say that an inclusion splits if it is split as a monomorphism
(see § Subsection 1.2.5); thus j¢ splits if there is a morphism € : d — ¢ such
that ]?e = 1,; in this case € is called a retraction; a retraction is clearly a split

epimorphism.

Lemma 1.10. Let C be a category with subobjects. Then
1) No two inclusions can be equivalent as monomorphisms.
2) Ifa split inclusion 10 is an epimorphism, then a = b and X = 1;.

3) If a retraction € : b — a is a monomorphism, then a = b and € = 1.

Proof. 1) If inclusions j = j; and j* = j; are equivalent as monomorphisms,
then by Equation (1.45d), there exist p : 4 — band q : b — a such that j = pj’
and j/ = gj. By axion (c),p = Y and g = J;- Thusa Cband b Ca. Hencea = b
since the preorder of subobjects is strict. Thereforep =g =1,andso j = j'.

2) Let j = ;b be a split inclusion with je = 1,. Then we have j(ej) =
jej = j = jlp. If j is an epimorphism, we have €j = 1, and so, j : @ — b is
an isomorphism. Since j = jl;, it follows that inclusions j and 1, = ]Z are
equivalent as monomorphisms and so, 2 = band j = 1, by 1).

3) Assume that the retraction € : b — a is a nonomorphism. If j = j%, then
(€j)e = €1, = € = 1€ and so €j = 1,. Hence € is an isomorphism and j is its
inverse. In particular, j : 2 — b is an isomorphism and by 2),a = band j = 1;.
Since € is the inverse of j, we have € = 1;. O

Let C and D be categories with subobjects. A functor F : C — D is said
to be inclusion preserving if vF = F|uC is a functor of the preorder vC to vD;
that is, for all ¢,d € vC with ¢ C d, we have F(c) C F(d). F : C —» D s an
isomorphism of categories with subobjects if F is a category isomorphism such that
vF : vC — vD is an isomorphism of preorders. It is clear that, in this case the
assignment
p:CH—vC, and F+— oF

is a functor of the category of small categories with subobjects to the category
of small preorders.
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Note that, if D is a subcategory of a category C with subobjects, then the
class of all inclusions of C that belongs to D is a choice of subobjects for D
and the inclusion functor O C C preserves subobject relation. However, for
d,d’ € v, it is possible that d C d’ in C, but ]g’ ¢ D. We shall say that D is a
subcategory with subobject if for d,d’ € vD,

dcdinD < dcd inC. (1.51)

This is equivalent to requiring that vD C v(C is a full embedding of preorders
(that is, fully-faithful and injective on vertices).

A subobject relation on a category O may be extended to the functor
category [—, D] of all D-valued small functors (see § Subsection 1.2.2). If
F, G € v[—, D], we say F is a subfunctor of G, written F C G, if

domF =domG, F(c) S G(c) forallce€ vdomF and the map]F cH ]S((CC

(1.52)
of vdomF to D is a natural transformation from F to G. It is easy to verify
from the definition that

={)f :EGev[-,D], FCG)

is a strict preorder. Also, for each F C G, ]1(-"; is a monomorphism in [—, D]. For
lets,t: H — F are transformations in [—, D] such thatso j = t o j where j = ]I(_:’.
Suppose that

vs=a:A—->C and vt=F:A->C.

Since vj = 1¢, we have
a=aolc=v(soj)=v(toj)=p

and for any a € v A,

N _ . Ga@) _, Gla@)
(50 )a = Sa]piaqay = talF(a(m)-
G(a(a) )
Fla(a))
implies that j = j is a monomorphism in [, D].

Since § is a monomorphism in D, s, = ¢, for alla € v A. Hence s = t which

We have thus shown that P satisfies axioms (a) and (b) of definition Def-
inition 1.5. To verify (c), let f : FC Gandg: FC H. Ifh:G > Hisa
transformation such that f o = g, then dom G = dom F = dom H = C (say).
Hence /i : G - H is a natural transformation and

(f oh). = fchc =Y.

Since f, = ]1?(( and g. = ] , are inclusions in D, by axion (c) of Definition 1.5,
h. is an inclusion in D for all c € vC. Hence hh : G € H. We have thus proved
the following:

category!subcategory with subobject
functor!subfunctor
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Prorosrtion 1.11. Let D be a category with subobjects and let [—, D] denote the
category of small functors. Define the relation C on v[—, D] by Equation (1.52). Then

P={$:FGev[-,D], FCG)

is a choice of subobjects for [-, D]. Moreover, if C is any small category, then
the category [C, D] of all D-valued functors on C is a subcategory of [—, D] with
subobjects.

Example 1.10: In categories Set, Grp, Vcty, etc., the relation on objects induced by the
usual set-inclusion is a subobject relation in the sense of the definition above. Notice
that in these categories, all monomorphisms are embeddings.

Example 1.11: LetCbea concrete category so that there is a faithful functor U : C — Set
which is injective on objects (see § Subsection 1.3.1). Let
P={f eC(cd): U(f) = U(c) C U(d)}. (o)

It is easy to verify that P is a choice of subobjects in C according to Definition 1.5 and
with this subobject relation, U : C — Set becomes an inclusion preserving functor. In
this case, a morphism f € C is a monomorphism if U(f) is injective; but the converse
may not hold. In view of Proposition 1.9, this example also shows that every small
category has at least one choice of subobjects.

Example 1.12: The category Top of all topological spaces and continuous maps is
clearly a concrete category and so, the construction in the last example gives a choice of
subobijects in Top consisting of all continuous inclusions. So, with this choice, subobjects
of topological spaces will include spaces other than those with relative topology. For
this category, the natural choice of subobjects is the collection of all inclusions that are
homeomorphisms onto the range. This also shows that a category can have more than
one choice of subobjects.

Example 1.13: LetF : Set — Grp be the functor given by the construction of free groups.
Itis clear that F is naturally inclusion preserving. Similarly many other familiar functors
are inclusion preserving. On the other hand, functors that arises in the construction
of fundamental groups or homology groups of topological spaces are not inclusion
preserving.

Categories with factorization A morphism f in a category C with subobjects
is said to have factorization if f can be expressed as f = pm where p is an
epimorphism and m is an embedding. The factorization of a morphism need
not be unique. For if f = pm is a factorization of f, then m is an embedding
and so, f ~ j for some inclusion j. Then by Equation 1.45d m = uj where u
is an isomorphism in C. But then p’ = pu is an epimorphism and f = p’jis a
factorization of f. This also shows that every morphism f with factorization
has at least one factorization of the form f = qj where g is epimorphism and j
is an inclusion. Such factorizations are called canonical factorizations.

We shall say that C is a category with factorization if C has subobjects and
if every morphism in C has factorization; the category has unique factoriza-
tion property if every morphism in C has unique canonical factorization. If C
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and D are categories with factorization, a functor F : C — D is factorization pre-
serving if whenever f = xj is a canonical factorization of f in C, then F(x)F(j) is
a canonical of F(f) in D. Clearly if F is factorization preserving then F preserve
inclusions and epimorphisms. The uniquiness of factorization is an important
property. A sufficient condition for its existance is given in the following.

ProrositioN 1.12. Let C be a category with factorization property such that every
inclusion in C splits. Then every morphism in C has unique canonical factorization.

Proof. Let f = xj = yj’ be two canonical factorizations of f € C. Since inclu-
sions split, there exist u,v € C with ju = 1, and j'v = 1, wherea = dom j and
b=domj. Then

yj'uj=xjuj=xj=yj
and since y is an epimorphism, we have (j'u)j = j’. Similarly, (jv);’ = j. Hence
jand j are equivalent monomorphisms. Hence j = j*. Since xj = yjand jisa
monomorphism, x = y. O

Example 1.14: If f : X — Y is a mapping of sets and if f(X) = Im f then f(X) C Y and
we can write f = f° ]fY(X). Here f° denote the mapping of X onto f(X) determined by f.
Since surjective mappings are epimorphisms in Set, this gives a canonical factorization
of f in Set which is clearly unique. Thus Set is a category with unique factorization. In
a similar way it can be shown that categories such as Grp, Vct, etc., are also categories
with unique factorization.

Example 1.15: Since surjective continuous mappings are epimorphisms in Top, it fol-
lows as in the last example that the category has factorization property. However, if

Y is dense in X, h = ]if is an epimorphism in Top and & = 1yjy = ]i/(lx. Then both

1y ]§ and ]§ 1x are canonical factorizations of i in Top. Thus Top does not have unique
factorization property.

Images Here we introduce the concept of the image of a morphism in a cate-
gory with factorization.

ProrositioN 1.13. Let C be a category with factorization. Suppose that the morphism
f € C has the following property:

(Im) f has a canonical factorization f = xj such that for any canonical factorization
f =yj of f, there is an inclusion j”" with y = xj".

Then the factorization f = xj is unique.

Proof. Suppose that f € C satisfies the given condition and that the factoriza-
tion f = xj has the property stated above. Hence if f = yj’ is any canonical
factorization, then y = xj” where j : a = codx C cody = b. Therefore if
f = yj also has this property, then we have a = b and so, j” € C(a). Since the

functor!factorization preserving
morphism!image of —
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inclusions form a preorder and 1, € C(a), we must have j” = 1,. Therefore
y = x so that xj = xj’. Since x is an epimorphism, we have j = j'. O

A morphism f in a category with factorization is said to have image if f
satisfies the condition (Im) of the Proposition above. In this case the unique
canonical factorization f = xj with the property stated in (Im) is denoted by
f = f°jr where f° is called the epimorphic component of f and j; is called the
inclusion of f. The unique vertex

Im f = cod f° = dom jr (1.53)
is called the image of f.

Example 1.16: Since categories Set, Grp, etc., has unique factorization, morphisms in
these categories have images by the observation above. Though the category Top does
not have unique factorization, it can be seen that every morphism in Top also has image.

If f € C has image, we define the direct image of a subobject a € dom f by:
f(a) =Im(fla) where fla="F. (1.54)

Here fla = ]imf f is called the restriction of f to a. Clearly, fla is a morphism
with domain 4 and codomain cod f.

We say that C is a category with images if every morphism in C has image
in the sense defined above. Note that if C has unique factorization, then C has
images. Also, by Proposition 1.12 C has images if every inclusion in C splits.

Categories with unique factorization We have noted above that a category C
with unique factorization has images. Hence for any f € C and a C dom f, the
direct image f(a) is defined.

ProrositioN 1.14. Let C be a category with unique factorization. Then we have

(f9)° = f°(glIm f)° and Im fg = g(Im f).
forall f,g € C for which fg exists.

Proof. Since fg exists, cod f = domg and so Im f C domg. Leth = jrg =
glIm f. Then

(f9)irg = f9=Fjrg = f'h =1 jn
Now f°h° is an epimorphism and so the f°h°jj, is a canonical factorization of
fg. Since C has unique factorization, we have (fg)° = f°h°. This proves the
first equality. Further, j¢, = j, and so,
Im fg = dom js, = dom j, = Imh = g(Im f)

by Equation (1.54). O
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We have seen that every small category C is isomorphic to a subcategory of
Set (see Proposition 1.9). However, if C has subobjects, this isomorphism may
not preserve subobjects. We now use the Proposition above to obtain an inclu-
sion preserving isomorphism of a small category C with unique factorization
onto a subcategory of Set.

TueOREM 1.15. Let C be a small category with unique factorization. Then there exists
a faithful, inclusion preserving functor U : C — Set which is injective on objects with
the following properties:

(a) cCdinvC — U(c) C U(d) in Set.
(b) f € Cis monomorphism in C if and only if U(f) is injective.
(c) f € Cis split epimorphism in C if and only if U(f) is surjective.
Hence for f € C, f° is a split epimorphism if and only if
U(Im f) = Im U(f). In particular, U(f) = U(f°)U(jr)

is the canonical factorization of U(f) in Set. Consequently, every epimorphism in C
splits, if and only if U : C — Set is factorization preserving.

Proof. Define U : C — Set as follows: for ¢ € vC, let
Ul)=1{f":feC, codf=c}; (1.55)
andfor f:c = deC,let

Uif) :9° = (gf)°, g° € U(c). (1.56)

We first observe that, since C is small, U(c) is a set for all ¢ € vC and that the
maps ¢ — U(c) and f — U(f)satisfies (a). If c € d and f° € U(c), thencod f =¢
and so g € U(d) if g = f;%. Then
9= Fis1 = s
Since C has unique factorization, we have f° = g° and so f° € U(d). Thus
U(c) € U(d). By the definition of U(}%), we have
UG : £ € U = (F1)° € U@.

Since fj4 = f°j¢j? is a canonical factorization of f;?, we have (f?)° = f°.
Therefore

UGH(f) = £ = 1y (f) forall  f* € U().
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Conversely, if U(c) € U(d), then 1. € U(d). Hence 1. = g° for some g with
codg = d. Then Img = c and so, we have ¢ C d. Since vC is a strict preorder,
this also shows that the map ¢ — U(c) is injective.

To show that U is a functor, let f : ¢ = d,g:d — e € C and let h° € U(c).
Then by Equation (1.56),

U(fg) = (hfg)° = h°(jnfg)° by Proposition 1.14,
= h°(f|ITm h)° (g]f (Im h))° by Equation (1.54).

Similarly, using Proposition 1.14 and Equation (1.54), we get

(h)U(HU(g) = ((2°(FITm )°) U(g)
= K(fIImR)° (g1 f(Im h))°

Hence U(fg) = U(f)U(g). If ¢ € d and g° € U(c), then by Proposition 1.14,
(979 = 9°(% D=9 by the unique factorization property of C. Hence, by
Equation (1.54), U(}9) = J%) .
inclusion preserving functor.

Let f,g € C(c,d). If U(f) = U(g), then by Proposition 1.14, f° = (1.f)° =
(1cg)° = g°. Hence by the definition of image, Im f = Im g and so, f = g. Thus
U is faithful.

To prove (b), assume that f : ¢ — d is a monomorphism. If (h°)U(f) =
(hf)° = (g°)U(f) = (gf)°, then, as above hf = gf and so h = g which imply that
U(f) is injective. Conversely, if U(f) is injective and if i f = gf for h, g € C(a, c),
then (h°)U(f) = (hf)° = (g9f)° = (g°)U(f) and since U(f) is one-to-one, h° = g°
which implies & = g. Therefore f is a monomorphism. This proves (b).

In particular, U(1;) = 1y and so, U is an

If f : ¢ — dis a split epimorphism then thereis g : d — ¢ with gf = 1;. Let
h® e U(d). If k = hg, then cod k = cod g = c and (k°)U(f) = (kf)° = (hgf)° = h°.
Hence U(f) is surjective.

Conversely, if U(f) is surjective, then there is g° € U(c) such that (g°)U(f) =
14. Then we have (9f)° = 15 and so Im(gf) = d = cod gf. Hence gf = 1,; thus
f is a split epimorphism and (c) follows.

Let f : c — d be such that f° is a split epimorphism. Then U(f) = U(f°js) =
U(f°)U(js). By the above, LI(f°) is surjective and hence an epimorphism in Set.
Since U is inclusion preserving, U(js) = U( ]fm f) = ]ngr)n Y Hence U(f°)U(jy) is
the canonical factorization of U(f) in Set. Therefore

u(f®) = udf)°, ]Zgﬁlﬁ = ]ii(ldl)l(f) and so, U(Im f) = Im U(f).
Let f : ¢ — d satisfy U(Im f) = Im U(f). If a = Im f, we have

U(f) = U(ff) = ULIUGE) = U )y = U Jnr-
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This implies that U(f°) = U(f)° and so, U(f°) is surjective. Hence by (c), f° is
a split epimorphism. The last statement now follows from this. O

Remark 1.5: We have noted that every conctete category C is a category of
sets so that objects in C can be identified as sets and morphisms as maps. C
is said to be a category of sets with subobjects if, in addition, U : C — Set is a
v-isomorphism (so that U satisfies condition (a) of the theorem above). The
theorem above shows that every small category C with unique factorization
is isomorphic to and hence can be identified with a category of sets with
subobjects. To an extent, such identification enables us to replace categorical
arguments in C by elementary setheoretic arguments. However, the theorem
above also shows the limitations in this: the factorization of a morphism f in C
may be different from its factorization in Set. When epimorphisms in C splits,
the factorization in C coincides with those in Set; in this case one can more-
or-less replace completely replace categorical arguments in C by setheoretic
arguments.

1.4 GrRoOUPOIDS

In this section we shall briefly discuss a class of small categories, called
groupoids, which we need in the sequel. Groupoids occur naturally in several
branches of mathematics. Here, in § Subsection 1.4.1 we content ourself by
giving necessary definitions, a few elementary properties and some examples.
We refer the reader to Higgins [1971] for a more detailed discussion. In § Sub-
section 1.4.2 we discuss a class of groupoid, called ordered groupoids endowed
with an additional structure in the form of a partial order. Aswe shall see later,
ordered groupoids are important structural components of the class of inverse
semigroups and regular semigroups. Finally, in § Subsection 1.4.3, we discuss the
relation between ordered groupoids and categories with subobjects.

1.4.1 Definition and examples

A groupoid is a small category in which every morphism is an isomorphism.
This means that when G is a groupoid and 4,b € vG, then for any u € G(a, b),
there exists u™! € G(b,a) such that uu™ = e, = 1,and u™'u = f, = 1, (see § Sub-
section 1.2.1). Recall that, by the convention introduced in § Subsection 1.2.1,
since groupoids are small categories, we regard them as partial algebras and
identify vertices with identities.

If G is a groupoid, then it is easy to see that for alla € vG,H, = G(a,a) is a
group under the composition in G. It is easy to see that maximal subgroups of
the groupoid G are precisely the groups H, fora € vG.

A groupoid G is said to be connected if for all a,b € vG, G(a,b) # 0. Given

category!— of sets
groupoid
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any groupoid G the relation
a~b & G@ab)#0 VYV abeX (1.57)

where X = vG, is an equivalence relation on X. For a € X, let X, denote the
~-class of X containing a. If

G.= | ] 6o (1.58)
b,ceX,

then it can be seen that G, is the maximal connected subgroupoid of G with
vG, = X,;. The subgroupoid G, is called a component of G. If a,b € X, then it is
easy to see that either

Go=Gy or G.NGp=0.

Thus we have:

ProrositioN 1.16. Let G be a groupoid with vG = X. Then Equation (1.57) defines
an equivalence relation ~ on X and G, defined by Equation (1.58) is the component
(maximal connected subgroupoid) whose vertex set is the ~-class containing a. Hence
G is the disjoint union of its components. O

We now give some examples of groupoids some of which will be of use
later.
Example 1.17: Every group G is a groupoid with exactly one vertex.
Example 1.18: Let G be a group and X be a set. Let
G={(xg9y):xyeX geG=XxGxX
Define composition in G by:

(x, gh,v) ify=u

rJr 7 h/ =
(%9, 1,0) {undeﬁned ify#u.

G, with this composition, is a connected groupoid such that we can identify vG with
X. In the following we will denote by X x G x X, the connected groupoid with vertex
set X and in which morphisms and composition is defined as above.

Example 1.19: Let H be a subgroup of a group G and let
G(G/H) = {xHy : x,y € G}.

Define composition in G(G/H) as follows:

xHyuv if (yu)H = H(yu);

(cHy)(uHo) = {undefined if (yu)H # H(yu).

With this composition G(G/H) is a connected groupoid whose vertex set (set of identi-
ties) is the set of all conjugates of H in G.
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Example 1.20: Let o be an equivalence relation on a set X. For (x, y), (4, v) € o, define
a partial composition in o by:

(x,0) ify=u
(. ) ) = {undefined ify #u.
With this composition, ¢ becomes a groupoid whose vertex set can be identified with
X. Note that in the groupoid o, the hom-set o(x, y) contain utmost one element; in
particular, maximal subgroups of ¢ are trivial. Conversely, any groupoid G with the
property that any hom-set of G contain atmost one element can be represented as a
groupoid determined by an equivalence relation on vG as above (see Higgins [1971]).
A groupoigd with this property is called a simplecial groupoid . We shall use the same
notation for the equivalence relation and the correspoinding simplecial groupoid.

Example 1.21: Let X be a set and let Ix be the set of all bijections between subsets of
X. For a,p € Ix, let

the usual composition, if cod @ = dom f3;

ap
B= 1.59
“p {undefined if cod a # dom§p. (1.59)
With this product, Ix is a groupoid. We shall refer to the composition defined above as
groupoid composition

Example 1.22: The example above can be generalized further by replacing X by any
specified mathematical system and Ix by the class of all isomorphisms of suitable
subsystems provided that these isomorphisms are closed with respect to groupoid
composition (see Equation (1.59)). Thus if M is a (finite dimensional) manifold and if
M denote the set of all homeomorphisms co-ordinate neighborhoods (of suitable type
such as differentiable, smooth, analytic, etc), then M is a groupoid when composition is
defined as in the last example. Similarly, if A denote the set of all analytic isomorphisms
of regions in the complex plane, then A is a groupoid. Note that, by Riemann mapping
theorem, the set of all analytic isomorphisms of simply connected regions different
from the whole complex plane C, is a component in A.

Example 1.23: An important classical example of groupoid is the following: Let [«]
denote the path-homotopy class of a path « in the topological space X. For paths «a, 8
in X, let a - B denote the usual product of paths in X which is defined if a(1) = B(0).
Consider the set

H(X)={[a] :a¢ isapathin X].

Define composition in H(X) by:

[a-pl if a(1) = B(0);
La1lp] = {undeﬁned if a(1) # B(0).

H(X), with this composition, is a groupoid, called the homotopy group of paths in X.
The vertex set of H(X) can be identified with X. The maximal subgroup H, of H(X) at
x € X is the fundamental group of X based at x. Also the groupoid H(X) is connected
if and only if X is path connected. See Munkers [1984], Spanier [1971] or Singer and
Thorpe [1967] for details and proofs.

Higgins, P.
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We proceed to show that structure of connected groupoids is quite simple;
all of them are isomorphic to a groupoid constructed as in Example 1.18 above.

Prorosrtion 1.17. Let G be a connected groupoid and let X = vG. Let 1 denote a
fixed element in X and suppose that H = G(1,1). Then we have the following:

(a) G is equivalent (as categories) to the group H.
(b) G is isomorphic to the groupoid X X H X X (see Example 1.18).

In particular, all maximal subgroups (hom-sets G(a, a) for a € X) of G are isomorphic
to H.

Proof. For each a € X, choose 1, € G(a,1) such that 7; is the identity on the
vertex 1. Since G is connected G(a,1) # 0 for all 4 € X and so it is possible to
choose 1, as above.

(@) Define F: G — Hby

F(u) = n;lunb YV u € Ga,b).

Then clearly, F(u) € H for all u € G(a,b). Also, F is the morphism map of a
functor of G to H whose vertex map is the constant map on X with value 1.
Let ] : H C G be the inclusion functor. It is easy to verify that for eacha € X, 1,
is universal from a to | and that the map 71 : a — 7, is a natural isomorphism
of 1¢ = FJ. Hence by Theorem 1.6, F is a left adjoint to ] and 1 : 1g - FJ is
the unit of adjunction. Now JF = 1y and so, the counit of the adjunction is the
identity on JF. It follows that

<FEJn1 >G—~H

is an adjoint equivalence of G to H.

(b) LetK:G —» XxHxXand K’ : X X Hx X — G in the reverse direction
be defined by

K = 1x = K’
and fora,b € X,u € G(a,b) and v € H, let
K(u) = (a,F(u),b) and K'(a,0,b) = naon,".

Then K and K’ are mutually inverse functors from G to X X H x X and back
respectively. Hence K and K’ are isomorphisms.

Clearly, the functor F : G — H is fully faithful and so, its restriction to
maximal subgroups H, are isomorphisms of H, onto H. O
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The statement (a) above implies that any groupoid is equivalent (as cat-
egories) to a groupoid whose components are all groups (that is, a disjoint
union of groups). Also, by statement (b), every groupoid is isomorphic to a
disjoint union of groupoids of the form X x H x X.

1.4.2 Ordered groupoid

Many groupoids that occur naturally carries additional structures. For exam-
ple, consider the groupoid Ix of all partial bijections of the set X (see Example
1.21). Clearly, vIx = P(X), the set of all subsets of X. The inclusion relation is
a natural partial order on P(X). If @ € Ix and D € dom a, then the restriction
alD of a to D is an injective map of D into coda. We denote by («|D)°, the
unique bijection of D onto (D)a determined by a|D. We can be extended the
partial order on P(X) to a partial order on Ix by setting

a<p & domaCdomp and a=(fldoma)°. (1.60)

Thus, the usual restriction of functions induces a partial order on Ix. We
formalize this as follows:

DeriniTION 1.6. Let G be a groupoid and < be a partial order on G satisfying
the following:

(OG1) Suppose u < x and v < y in G. If products uv and xy exists in G, then
uv < xy.

(OG2) Ifu < x,thenu™ <x71.

(OG3) If x € G and e < e, with e € vG, then there exists a unique e. x € G such
thate.x <xande,., =e.

Then G is called an ordered groupoid with respect to <.

The unique element e . x of axiom (3) is called the restriction or domain
restriction of x to e. Often, we shall also use the usual notation x|e to denote
e.x. If u < x, it follows from axioms (1) and (2) that

ey =uu! <xx'=e, andsimilarly, f, < fi.
Therefore, in view of the uniqueness in axiom (3), u < x implies u = e, . x. The
relation < is called the restriction (or restriction order) on G.
If G and G’ are ordered groupoids, a functor f : G — G’ is said to be order
preserving if whenever x < yin G, f(x) < f(y) in G’. In the following, unless
otherwise stated explicitly, by a functor of ordered groupoids, we shall mean

groupoid!ordered —
restriction

restriction!domain —

e . x or xle:restriction of x to e
partial order!restriction —
functorlorder preserving —



isomorphism!v-isomorphism
embedding!— of ordered groupoids
isomorphism!— of ordered groupoids
X . fco-restriction of x to f
co-restriction

restriction!range —
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an order preserving functor. The collection of all ordered groupoids forms a
category O® with morphisms as order preserving functors.

An order preserving functor f : G — H of ordered groupoids is said to be
a v-isomorphism if v f is an order-isomorphism. f is an embedding of ordered
groupoids if f preserves and reflects partial orders; that is,

x<y inG & f(x)<f(y) inH. (1.61)

The functor f is an isomorphism of ordered groupoids if f is an isomorphism
of groupoids as well as an order isomorphism.

A subgroupoid G’ of an ordered groupoid G is an ordered subgroupoid
ifand only ife.x € G’ for all x € G’ and e € vG’ with e < ¢,. Note that, in
this case, G’ € G an embedding of ordered groupoids. Note that if f is an
embedding of G to H, then f(G) is an ordered subgroupoid of H and f is an
isomorphism of G onto f(G).

Observe that axioms (1) and (2) above are (left-right) self-dual. We show
below that the dual statement of (3) is equivalent to (3).

Prorosition 1.18. Let G be a groupoid and < denote a partial order on G such that
axioms (1) and (2) of Definition 1.6 hold. Then G satisfies axiom (3) if and only if it
satisfies the following:

(3)* Forevery x € Gand f < f, with f € vG, there exists a unique x . f € G such
that x . f < xand f.r = f.

Proof. Assume that G satisfies axiom (3). Given x € G and f < f,, define

xof=(f.xHL (1.62)

Since f < fy = e,1, by axiom (3), f.x7! < x7! and so, by axiom (2), x. f =
(f v x D! < x. Also, fi. f = et = f by axion (3). If y € G also satisfies the
conditions y < x and f, = f then by axiom (2), y! < x'and ¢, = f, = f.
Therefore by (3), we must have y™ = f.x™! and so y = x. f. This proves the
uniqueness of x. f. Thus x. f satisfies the conditions in (3)*.

Conversely, if (3)* holds, defining

e.x=x"t.e)l. (1.627)
we can show, as above, that axiom (3) holds. O

Forx € Gand f < f,, the morphism x. f defined by Equation (1.62) is called
the co-restriction (or range restriction) of x to f.

Example 1.24: By the remarks at the beginning of this section, for any set X, Ix is
an ordered groupoid with order relation induced by restriction (see Equation (1.60)).
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Similarly, if X is any partially ordered set, the set of all order isomorphisms of order
ideals (see § Subsection 1.1.2 for definition of order ideals) is an ordered groupoid
with respect to the usual restriction of maps (again defined as in Equation (1.60)). We
denote this by OIx. Note that vOly is the partially ordered set of all order ideals
under inclusion. Similarly, isomorphisms of pricipal order ideals of X gives an ordered
subgroupoid T*(X) of OIx. Since there exists an order-isomorphism of X onto the set
of principal orderideals of X, we may identify X with vT*(X) and regard T*(X) as an
ordered groupoid with vT*(X) = X. Also, the groupoids M and A of Example 1.22 are
also ordered groupoids under inclusion.

The next proposition lists a few useful properties of ordered groupoids

ProrosrtioN 1.19. For an ordered groupoid G, we have the following:

(1) Let x € G, and e, f € vG withe < ey, f < fr. Then f = f.. if and only if
e = ey,r. When e and f satisfies this, we have e . x = x . f.

(2) Assume that xy exists in G. If e < ey, then
e« (xy) = (€ x)(feur - y):

Dually, if f < f,, we have
(@y)« f=(xeen))y-f)

Proof. (1). Let f = fo.x. Then e, 1 = f and by axiom (2), (e.x)™" < x~!. Hence

1

by the uniqueness in axiom (3), (¢.x)™! = f.x™! and so, by Equation (1.62),

e.x =x.f. Butthene = e, = ey.r. The converse can be proved similarly.

(2) Suppose that xy exists in G and e < ey. If I = f..,, then using axioms (1)
and (2), we have
h = (E . x)_l(e -X) < x‘lx = fx = ey'

Hence the product z = (e. x)(h . y) exists in G and z < xy by (1). Further,
e:=zz"' = (e.x)h.y)(h.y) M. x)
=C.0)he.x) =E.x)e.x)"!

= Cex = €.
Therefore, by axiom (3), z = e.xy. The remaining assertionis proved dually. O

Next Proposition give a representation of an ordered groupoid (not nec-
essarily faithful) as an ordered subgroupoid of T*(X) C Olx for a suitable
partially ordered set X. This will be useful later on.

ProrositioN 1.20. Let G be an ordered groupoid and V = vG. Then we have:
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(1) Visan orderideal in G.
(2) Ifx € G, themap a(x) : e = f,.x is an order isomorphism of V(ey) onto V(fy).
(3) The map a : x = a(x) is a v-isomorphism of G onto T*(V).

Proof. (1) To show that V is an order ideal in G, it is sufficient to show that for

e € Vandx < ein G implies that x € V. Since x < e, x™! < ¢!
ex = xx~! < ee = e by axiom (1). Then x = ¢, . e = e, by axiom (3).

= e and so,

(2) fh<e<e,thenh.x <e.x < x. Hence fir < for < fr; that is
ha(x) < ea(x) < fr. Hence a : V(ex) = V(f) is order preserving. Dually, it can
be seen that the map a’(x) : f + e..s is an order preserving map of V(f,) into
V(ex). Now

(ea(x)) a’(x) = (fe)a'(x) = e
by Proposition 1.19(1). Hence a(x)a’(x) = 1y,). Similarly a’(x)a(x) = 1y, and
so a(x) is an order isomorphism.

(3) By the above, a(x) € Oly for all x € G. Hence a : x — a(x) is a mapping
of G into OIy. Assume that xy exists in G and e < e;. Then

ea(xy) = fouy
= ffoey by Proposition 1.19(2)
= (fer)a(y)
= (ea(x)) a(y)
=e(a(x)a(y)).

Hence a(xy) = a(x)a(y). If e € V, then it is easy to see that a(e) = 1y) and so
a: G — Oly is a functor. If e < e, then for any I € V(e),

ha(e' X) = fh.(e.x) = fh.x = hCl(X)

which shows that a(e. x) = (a(x)|V(e))°. Therefore a is order preserving. Since,
fore,heV,

a(h) <ale) &= a(h) = (ale)|V(h)° = V()< V()  h<e,

va : G — Oly is an embedding. If & € vT*(V) then, by definition of T*(V), &
must be an identity map on some principalideal V(e) of e € V. Clearly, a(e) = &.
Hence va : vG — vT*(V) is an order isomorphism. O

The construction given in the Proposition above represents any ordered
groupoid G as a groupoid of order isomorphisms of principal order ideals



1.4. crouroIDS 47

of vG. Though this representation has important applications, it may not
be faithful. The next theorem shows that any ordered groupoid G can be
embedded (represented faithfully) as an ordered subgroupoid of OIx of a
suitable partially ordered set X. In the construction below, we take X = G and
consider X as a partially ordered set.

TueorEM 1.21. Every ordered groupoid is isomorphic to an ordered subgroupoid of
OlIx for a suitable partially ordered set X.

Proof. Let G be an ordered groupoid with vG = V. For each e € V let

Ae)={xeG: fi<e} @)

If x € A(e) and y < x, then f, < f, < eand so y € A(e). Hence A(e) is an order
ideal of G. Also, it is easy to see that

e<f = Al)C A @)

in particular, the mapping e — A(e) is injective from V to the partially ordered
set of order ideals of G under inclusion.
Now, for each x € G(e, f), let

yO(x) = y(f,.x) forall ye Ae). (3)

Since y € Ae), fy <e=eyandso fy.x < x. Then fys,..) = fi5,.) < fr = f. Hence
0(x) is a well defined map of A(e) into A(f). Letz <y € A(e). Then f, < f, <e
and so, f; . x < f, . x. Hence by axiom (1),

z0(x) = z(f « x) < y(fy » x) = yO(x)

and so 0(x) : A(e) — A(f) is order preserving. Suppose that the product xy
exists in G so that f, = e, = f (say). Also, lete = e, and g = f,. Then for any
u € A(e),

uf(x)0(y) = u(fu - x)(h.y) where h = f; .,
=u(fy « xY) by Proposition 1.19
= ub(xy) by Equation (3).

Hence

0(x)0(y) = O(xy).
If e € V, then clearly, 0(e) = 14(,). Hence, for any x € G,

0(x)0(x™") = O(ex) = 1a,
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and similarly 6(x1)60(x) = 1, ) Therefore 0(x) : A(ex) — A(fy) is a bijection.
It follows that 0 : G — Ol is a functor. If x < y, then x = e, . y and so, for any
u € A(ey), fu < ex < ey and we have

u0(x) = u(fu + x) = u(fu « (ex + y))
=u(fy . y) = uo(y) by axion (3).

Therefore 0(x) = (0(y)IA(ex))° which implies that O(x) < 0(y) in OIg. On the
other hand, if 6(x) = (0(y)IA(ex))°, then e, € A(ex) € A(ey) so that e, < e, and
by the definition of 6 (Equation (3)), x = e,0(x) = e,0(y) = ex. y. Thusx < y. It
follows that

O0(x) = (OW)IA(er)° &= x <.

Therefore 0 : G — Olg is an embedding of ordered groupoids. O

1.4.3 Categories generated by ordered groupoids

We now discuss the relation between ordered groupoids and categories with
subobjects.

Recall that, if C is a category with subobjects, then vC, which is the same as
the set of identities of C, is a partially ordered set. Here we shall also use the
notations and conventions of § Subsection 1.3.2. Furthermore, it is clear that,
the set of isomorphisms of C is a subgroupoid G(C) of C with 86C = vG(C).

DerintTION 1.7. We shall say that a small category C with subobjects is generated
by an ordered groupoid G if

(CG1) there is an injection of groupoids 0 : G — C which induces an iso-
morphism of G on to the groupoid of isomorphisms of C. the set of
isomorphisms of C which induces an order isomorphism of partially
ordered set of identities of G onto vC;

(CG2) given a morphism o in C there exists x € G with fg) < f; such that o
has the factorization .
o= G(x)]f;x).

We now characterizes small categories generated by ordered groupoids:

Prorosition 1.22. A category C with subobjects is generated by an ordered groupoid
if and only if C has the following property:

(CG*) Every morphism f € C has a factorization f = uj in C where u is an
isomorphism and j is an inclusion.

In particular, if C is generated by an ordered groupoid, then C has images.
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Proof. If C is generated by the ordered groupoid G, then by axioms (CG1) and
(CG2) of Definition 1.7, C satisfies (CG*).

Conversely assume that C satisfies the condition (CG*) and that G denote
the set of all isomorphisms in C. Then G is a subgroupoid of C containing all
identities of C. Let 6 denote the inclusion of G in C. Now the set of identities of
G (which is the same as those of C) is a partially ordered set and the inclusion
0 is clearly an order isomorphism. Thus axiom (CG1) holds and (CG2) follows
from (CG¥). It remains to show that we can define a partial order on G with
respect to which G is an ordered groupoid.

We first observe that for any f € C, the factorization f = uj given by (CG*)
is unique and that f° = u. For if f = g/’ is any canonical factorization of f, we
have j = u~'gj’ and hence by axiom (c) of Definition 1.5, there is an inclusion
j” such that u=!q = j’; that is, ¢ = uj”. Hence the factorization f = uj satisfies
condition (Im) of Proposition 1.13 which implies that it is unique and that
f°=ue@. ForxeGande < e, define

e.x = (jox)%; (1.)
and

USX & u=ce.x. (2.)

Since the factorization given by axiom (CG*) is unique, the morphism e . x
given by (1.) is uniquely determined by x and e. It follows, again from the
uniqueness of the factorization, that the relation defined by (2.) is a partial
order on G. Clearly, axiom (3) of Definition 1.6 holds. Now if for x, y € G, the
product xy exists in G, then for e < ey,

e.xyyy = iy
=(e.x) ]Jh[" v, where h = f,.x
= (-0 Y},

since f, = e,. Hence by the uniqueness of factorization, we have
e.xy=(.X)(fex+ V)
from which axiom (1) of Definition 1.6 follows. From
Jex = (e x)]f
where h = f,.,, we obtain

(eax) g = !
=(h.xN

€x
fh.x*1 ’
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It follows, again by uniqueness of factorization, that

(e.x)t=f.x!

which shows that axiom (2) also holds. Therefore G is an ordered groupoid
with respect to the partial order defined by (2.). This completes the proof. [

Suppose that G is an ordered groupoid. Then the embedding 0 constructed
in Theorem 1.21 embeds the groupoid G into the category of sets. Let ¢(E)
denote the smallest subcategory of sets containing 6(&) and the set of all
inclusions

]ﬁﬁf e,fevg, e<f}

Clearly, P is a preorder isomorphic to vG. Also €(E) is a category with subob-
jects whose preorder of inclusions is P. Since €(E) is generated by 6(G) and P,
any morphism in €(E) is a finite product of the form

jio1...jroy, Ji €P, o0;€0(G)

foralli =1,...,r, where all indicated compositions exists in Set; that is cod j; =
domo; fori=1,...rand codo; = dom jj;1 fori=1,...r —1. Now let j = ]ﬁg))
with and ¢ : A(f) = A(g) = O(x). Then, in Set, we have

jo = alA©) = (01A@)) L), -
As in the proof of the Theorem 1.21, (0|A(e))° = O(x . x). Hence

)0(x) = O(e . x) 19 (imfc)

]A(e) Tam)

where h = f,,. It follows inductively that every morphism has a unique
factorization of the form oj where o = 6(x) for some x € G and j is an inclusion
in P. Thus ¢(E) satisfies conditions (CG1) and (CG2) above and hence €(E) is
generated by G.

TueoreM 1.23. Let G be an ordered groupoid. Then G generates a category €(E)
which is unique up to isomorphism. Further, if ¢ : G — H is a morphism of ordered
groupoids, there is a unique inclusion preserving functor €(¢) : €(E) — €(H). Every
inclusion preserving functor of €(E) to €(H) arises in this way.

Proof. The discussion preceding the statement of the theorem shows that ev-
ery ordered groupoid generates a category €(E). Let C be another category
generated by G. Let

l’b — 6_1 o
where 0 and 0’ are embeddings of G in ¢(E) and C respectively. By axiom
(CG1) of Definition 1.7, ¢ also induces an order isomorphism of the preorder
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of inclusions of €(E) to C. In view of axiom (CG2), i has a unique extension
to an isomorphism of €(E) to C, defined by

Y(j101 - - - jkok) = P(j1)(o1) - .. P P(ow). (%)

Thus €(E) is unique up to isomorphism.

Let ¢ : G — H be a morphism of ordered groupoids. The embeddings
0:G — €E)and 0’ : H — €(H) are isomorphisms of G onto the ordered
groupoid 6(G) of isomorphisms of €(E) (see proof of Proposition 1.22) and H
onto 0'(H) C €(H) respectively. Then

O =0"1opo0 :0(G) — O (H)

is a morphism of ordered groupoids and so ¢* is an inclusion preserving
functor of 6(G) to 6'(H). Then as in (x), we can define a unique extension
of ¢* to an inclusion preserving functor €(¢) : €(E) — €(H). Conversely if
F : ¢(E) — €(H) is an inclusion preserving functor, then F|0(G) is a morphism
of ordered groupoids and so

¢ =00 (FIOG)) o (0)

is a morphism of ordered groupoids G to H. It follows from axiom (CG2) that
¢(¢) = F. O

Remark 1.6: The construction of the theorem above can be routinely extended
to a category equivalence € of the category of ordered groupoid with the
category of small categories satisfying conditions of Proposition 1.22. This
means that in any discussion, we can always replace ordered groupoids and
morphisms of ordered groupoids by categories generated by those groupoids
and inclusion preserving functors respectively.






CHAPTER 2

Semigroups

In this chapter we introduce some of the basic concepts of semigroup theory.
The aim of this discussion is limited to setting up notations and to presenting
those results of semigroup theory needed in the sequel. For details of topics
and results covered here, we refer the reader to the standard books on semi-
group theory such as Clifford and Preston [1961], Howie [1976], Lallement
[1979], etc.

2.1 ELEMENTARY DEFINITIONS

In this section we give basic definitions of semigroups, homomorphisms, etc.,
and provide a list of standard examples.

Notation: In this book, we use the symbol N for natural numbers {0,1,2,.. .},
Q for rational numbers, R for real numbers and C for complex numbers. For
X =N, Q, RorC, X* denote the set of non-zero numbers in X.

2.1.1 Monoids and semigroups

Let X be a set. For n € N, X" denotes Cartesian product of n copies of X ifn > 1
and a fixed singleton set * if n = 0. A function © : X" — X is called an n-airy
operation on X. For n = 0, this is a mapping from * to X and hence represent
a choice of an element in X; it is called a null-airy operation. Forn =1, is a
mapping of X to X and is called a unary operation. For n = 2, ©is called a binary
operation on X. In This book we are mainly interested in binary operations. For
a more general discussion of operations and the algebraic structures (called
universal algebras) determined by them we refer the reader to Cohn [1965].

Thus a binary operation on X is a mapping - : X X X — X; the value of the
function - at (x,y) € X X X is usually denoted by x - y. The binary operation -
is associative if

(x-y-z=x-(y-2) VYxyzeX;
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N: natural numbers

Q: rational numbers

R: real numbers

C: complex numbers

N*, Q*, R*, C*: set of non-zero
numbers

X": Cartesian product of n copies of
X

n-airy operation

null-airy operation

unary operation

binary operation

universal algebras

binary operation!associative —



semigroup

-, +, %, 0: symbols for binary
operations

binary operation!commutative —

semigroup!subsemigroup

semigrouplextension

dual

duallleft-right —

SOP: Left-right dual of S

T°P: dual of statement T

duality

self-dual

identity!left —
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The binary operation - is commutative if
x-y=y-x VYx,yeX

A semigroup is a pair (S,-) consisting of a set S and an associative binary
operation - on S. The binary operation - will be called the “product” of the
semigroup. Other symbols such as +, *, o etc., may also be used to represent
product in a semigroup. However, often we shall not use any particular
symbol to represent the product in a semigroup if it does not lead to any
ambiguity. In this case, the product of x,y € S is simply indicated as xy.
Again, for convenience, the set S itself will be used to denote the corresponding
semigroup. A semigroup S is commutative if the product in S is commutative.

A subset T of a semigroup S is a subsemigroup of S if T is a semigroup with
respect to the restriction of the binary operation of S to T; equivalently, if the
subset T has the property that

T ={xy:x,yeT}CT

where xy denote the product of x and y in S. If T is a subsemigroup of S, then
S is called an extension of T.

Left-right duality: ~ 1f S is any semigroup, we can form the semigroup, denoted
by S°P, as follows: the set underlying S°P is the same as the set underlying S
and the binary operation of S°P (denoted by o here) is defined by

xoy=yx VYxyeS (2.1)

It is clear that the binary operation o, called the left-right dual of the binary op-
eration of S, is associative and hence S°P is a semigroup. We call the semigroup
5P also as the left-right dual of S. If T any statement about a semigroup, then
we denote by T°P the statement obtained by replacing every occurrence of
the binary operation in T by its left-right dual. The statement T°P is called
the left-right dual of T. If T is true for S, it is clear that T°P must be true for
S°. Consequently, if T is a statement which is true for arbitrary semigroups,
then T°P must also be true for arbitrary semigroups. The relation between
statements T and T°P is called the left-right duality in semigroups. A statement
T is left-right self-dual if T is the same as T°P. Note that statements about
commutative semigroups are always left-right self-dual.

Identities and zeros:
identity of A if

If S is a semigroup and A C S, an element x € S is a left

xXa=a YaeA.
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An element x € S is a right identity of A in S if it is a left identity of A in
S°P. If x is both a left as well as a right identity of A, then it is called a [two-
sided] identity of A. The element x is a left [right, two-sided] identity of S
if the equation above and its left-right dual holds with A = S. A subset of
semigroup may have more than one left [right] identities. However, while a
proper subset A C S may have more than one identity in S, identity of S, if it
exists, is unique. The unique identity of S, if it exists, will usually be denoted
by 1.

Given any semigroup S we can always adjoin a new left [right] identity as
follows: Let T = S U {e} where ¢ does not represent an element of S. Extend
the multiplication in S to T by setting ex = x [xe = x] forall x € S and ee = e.
Clearly, this makes T a semigroup and e, a left [right] identity of T having S
as a subsemigroup. Note that this construction works even if S already have
left [right] identities. However, the old left [right] identities of S will no longer
left [right] identities in T. Similarly, a new identity can be adjoined to S by
extending the multiplication in S to T by

ex=x=xe Yx€$S and ee=e. (2.2)

Again, as before, S is a subsemigroup of T and if S has identity, it will cease to
be identity in T.

A semigroup S with identity is called a monoid. A submonoid M’ of a
monoid M is a subsemigroup such that the identity of M belongs to M” (which
implies that M and M’ have the same identity). Note that, it is possible that
a subsemigroup S’ of a monoid M may itself be a monoid with out being
a submonoid of M. The remarks above implies that any semigroup can be
extended to a monoid by adjoining a new identity to S. Given any semigroup
S, we denote by S! the monoid defined as follows:

2.3)

gl S if Sis a monoid,
| T if S has no identity

where T is the monoid obtained by adjoining an identity 1 to S.

An element z in a semigroup S is called a [respectively left, right, two-sided]
zero of asubset A C Sifza=2z[az=2,az =z =za]foralla € A. When A =S,
we say that z is a [respectively left, right, two-sided] zero of S. Left and right
zeros of S need not be unique. But a two-sided zero (or just zero for short) of S,
when it exists, is unique and will be denoted by 0. As in the case of identities
it is possible to adjoin a new left, right or two-sided zero to S. Thus if 0 does
not represent an element of S, then T = 5U {0} becomes a semigroup with zero
0 having S as a subsemigroup if we extend the multiplication in S to T by:

Ox=0=x0 VYxeS and 00=0.
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Again, as in Equation (2.2), we define S° by

Q0 _ {S if S has zero, (2.4)

T if S has no zero

where T is the semigroup obtained by adjoining a zero 0 to S. Note that an
element e [z] in a semigroup S is the identity [zero] of S if and only if every
element of S is a zero [identity] of the set {¢} [{z}]. Also given a semigroup S,
for brevity, we shall often write S = S° to mean that the semigroup S has zero
0.

An element e in a semigroup is called an idempotent if ee = ¢> = e. Left
identities, right identities, identity, left zero, right zero and zero of a semigroup
S are all idempotents in S. Also if e is an idempotent, then the set of elements
of S5 for which e is a left identity [respectively right identity, identity, left
zero, right zero or zero] is non-empty (since each of this set contain e). In the
following, we shall denote the set of all idempotents of S by E(S).

Ideals A subset I of a semigroup S is called a left ideal [right ideal] if for all x € I
anda € 5,ax € I [xa € I]. I is said to be a two-sided ideal (or simply an ideal) if I is
both a left as well as a right ideal. Clearly S is an ideal. An ideal respectively,
left or right ideal is said to be proper if it is different from S (so that it is a proper
subset of S). If S has 0, then {0} is clearly an ideal of S. In the following, if no
confusion is likely, we shall denote this ideal also by 0. It is easy to see that
the set of all ideals [respectively left ideals, right ideals] is a complete lattice
under union and intersection; consequently, these are distributive lattices. We
shall denote these lattices by Jg, (or J if S is clear from the context) £Js (or
£3) and RTs (or RT) respectively. Note that the empty subset 0 of S is clearly
anideal in S and is the smallest ideal in S. We will follow that convention that
0 of Js (respectively llat[S] and PiTs) is 0 if S has no 0 and 0 = 0 if S has 0.
Thus in a semigroup with 0, an ideal is always non-empty. An ideal I is said
to be maximal if I is maximal in the partially ordered set of all proper ideals
and it is minimal if it is minimal in the partially ordered set of all non-empty
ideals. If S has 0, then an ideal I is said to be 0-minimal if I is minimal in the
partially ordered set of all non-zero ideals. Maximal, minimal and 0-minimal
left or right ideals are defined in the obvious way.

If {I, : a € A} is any set of left, right or two-sided ideals, then Nyeal, is an
ideal of the same type. Hence, given any subset A C S, the set of ideal that
contain A is not empty since S itself is a member of this set. Hence intersection
L(A) of all left ideals of S containing A is the smallest left ideal of S containing
A; L(A) is called the left ideal generated by A. Similarly the intersection R(A)
[J(A)] of all right [two-sided] ideals of S containing A is the right [two-sided]
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ideal generated by A. Given subsets A and B of a semigroup S, we use the
notation AB = {ab : a € A, b € B}; AB is called the set-product (or, simply, the
product) of A and B in S. It is easy to show, using the notation introduced in
Equation (2.3) that

L(A) =SAUA = S'A; (2.5)
R(A) = AUSA = AS; (2.6)
J(A) = SLAS!. (2.7)

When A = {a}, as usual, we write L(a) for L({a}); L(a) = S'a is called the principal
left ideal generated by a. Similarly, R(a) = aS! denote the principal right ideal
and J(a) = S'aS! denote the principal ideal generated by a. The set Js [As, Is]
of all principal ideals, [principal left ideals, principal right ideals] is clearly a
partially ordered subset of J [respectively £3J, :iJ]. Again the suffix S will be
omitted if the semigroup S is clear from the context.

A semigroup S is said to be simple if S has no proper ideal; it is said to
be 0-simple if S has 0 and 0 is the only proper ideal in S. Obviously similar
definitions can be given for semigroups that are left [right] simple, left [right]
0-simple, etc.

2.1.2  Homomorphisms

Let S and T be two semigroups. A mapping f : S — T is called a homomor-
phism of S into T if

fay)=f@f(y) ¥ xyes.

If f:S— Tand g: T — U are homomorphisms of semigroup, it is easy to
verify that fg : S — U is a homomorphism. A homomorphism f is injective or
surjective if the map f is injective or surjective. A homomorphism f : S — Tis
said to be an isomorphism if the map f is a bijection. Clearly f is an isomorphism
if and only if f™' : T — S is a homomorphism. In particular, the identity
map 1s : S — S is an isomorphism. Notice that for any homomorphism
f:S—=T, f(S) =1{f(s) : s € S} is a subsemigroup of T. Also, f considered as
a homomorphism of S onto f(S) (that is, the range restriction of f to f(S)) is a
surjective homomorphism f° : S — f(S) and we can factorize f as:

f= fo];(sy (2.8)

Consequently, if f : S — T is an injective homomorphism f° : S — T is an
isomorphism of S onto f(S). Thus an injective homomorphism is also called
an embedding of S in T. If ' is a subsemigroup of S then the inclusion map 3,
is clearly an injective homomorphism or an embedding of S’ into S.

ideal!principal left —
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If S and T are monoids, a homomorphism f : S — T is a monoid ho-
momorphism if f(1) = 1" where 1 [1’] is the identity of S [T]. Note that a
monoid homomorphism is, in particular, a semigroup homomorphism; but
there are semigroup homomorphisms of monoids that are not monoid homo-
morphisms. A monoid homomorphism is said to be injective, surjective or
is an isomorphism if the corresponding semigroup homomorphism has the
respective property. It is clear that f : S — T is a monoid isomorphism if
and only if it is a semigroup isomorphism. Also, if M’ is a submonoid of the
monoid M, then ]ﬁ, : M’ — M is a monoid homomorphism.

A homomorphism [isomorphism] f : S — T°P is called an anti-homomor-
phism [anti-isomorphism]. An anti-homomorphism 6 : S — S such that

02=006=1s (2.9)

is called an involution on S. An involution 0 is therefore a unary operation
and is denoted by notations like O(x) = x* x° or x” etc. Hence the assignment
x — x*is an involution on S if and only if for all x, y € S, we have

(xy) ' =yx* and x"=(x") =x. (2.10)

Note that the second condition above implies that the assignment x +— x" is, in
fact, an anti-isomorphism.

The category & The discussion above implies that we have a category & in
which objects are semigroups and morphisms are homomorphisms. & has a
natural subobject relation (see § Subsection 1.3.2). It is easy to verify that those
inclusions that are morphisms in & gives a choice of subobjects in & according
to Definition 1.5. Further, for any homomorphism f : S — T in G, in the
factorization given by Equation (2.8), f° is a surjective homomorphism onto
f(S). Hence it is an epimorphism in G(see Remark 2.1 below). Clearly, the
inclusion f(S) € T is a morphism in &. Hence Equation (2.8) gives a canonical
factorization of f in &. Itis easy to see that this factorization satisfies condition
(Im) of Proposition 1.13. Hence f° denote the epimorphic component of f and
by Equation (1.53),

Imf=fS)={yeT:y=f(x) forsome xc¢€S). (2.8

is the image of f. Thus the category & has images (see § Subsection 1.3.2).
Since f° is anisomorphism if f is injective, it follows that every injective homo-
morphism is an embedding (see § Subsection 1.3.2). Therefore, by Remark 2.1
below, every monomorphism is an embedding in &. The discussion in § Sec-
tion 2.3 shows that & has products in the usual categorical sense (see MacLane
[1971], page 69,70).



2.1. ELEMENTARY DEFINITIONS 59

Similarly, there exists a category 9t whose objects are monoids and mor-
phisms are monoid homomorphisms. Thus 9 is a subcategory of & with
subobjects, factorizations and images.

Remark 2.1: In the category &, a homomorphism is a monomorphism if it is
injective and an epimorphism if it is surjective. This follows from the fact that
in the category Set, a map (morphism in Set) is a monomorphism if and only

Conversely, every monomorphism in & is injective. To see this, we first
observethatN = {1,2, ...} is a semigroup under addition and if x is any element
of a semigroup S, then there is a unique homomorphism 0, : N — S sending 1
to x (set O(n) = x" for alln € N). Now if f : S — T is a homomorphism which
is not injective, then there is x, y € S with x # y such that f(x) = f(y). Then
Oy o f=0,0 fand 0, # 0,. Hence f is not a monomorphism in &.

However, not all epimorphisms in & are surjective. We can construct an
counter example (which is an adaptation of the example given in Remark 1.6
of Lallement [1979]) as follows. Let R* be the set of non-zero elements of an
integral domain (commutative and withidentity) R. Then R" is a subsemigroup
of the multiplicative semigroup of R. Let D* denote the group of non-zero
elements of the field of fractions of R. Then D* = {{ :a,b € R'}. Let f :a > 7
be the embedding of R* in D*. Then, if 0 : D* — T is any homomorphism of
D to a semigroup T, then Im 0 is a subgroup of T and

0 (g) = (6(f(@))) (B(F(b))) ™"

for all § € D*. Hence if 6; : D* — T, i = 1,2 are homomorphisms such that
fo01 = fo0,, then 01 = 0,. Therefore f is an epimorphism. If R is not a field,
then f is not surjective.

The arguments above can be easily adopted for the category 9. Thus a
monoid homomorphism f is a monomorphism in 9t if and only if f is injective;
f is an epimorphism if it is surjective; but the converse is not true.

2.1.3 Examples

Here we give a list of examples of semigroups. These are standard examples
and we shall have occasion later to refer back to some of these.

The semigroup of relations on the set X: From the discussion in Subsec-
tion 1.1.1 it follows that By is a semigroup in which product is the composition
of relations defined by Equation (1.2). It has identity 1x and zero (. This
semigroup has additional structures. Since every R € Bx has the unique con-
verse R™! defined by Equation (1.4) (see also § Subsection 1.1.1) the assignment
R + R7! is a mapping and hence a unary operation on By. It is easy to see
that it is an involution (that is, satisfies conditions given in Equation (2.10)).
Moreover, By is an ordered semigroup in the sense that inclusion C is a partial



60 2. SEMIGROUPS

order on Bx compatible with the binary operation:

RoRyCRoR, and

RiCRy =
RioRCRyoR.

The involution R — R is also admits the order on Byx:
RiCR, = R{'cRL

Note that 0, the zero of By, is the smallest element with respect to this order
and X X X is the largest.

This semigroup has several important subsemigroups; we list some of them
below.

The semigroup of partial transformations: Let .7 x denote the set of all par-
tial transformations (single-valued relations) on the set X. Since composite
of single-valued relations are single-valued, &7 x is a subsemigroup of the
semigroup Bx. Each a € &7 is a surjective function a : doma — Ima
and hence determines an equivalence relation 7, on (partition of) dom a and
a bijection of dom a/m, onto Im a (see Equations (1.10a) and (1.10b)). Hence
each a € .7 x determines a symmetric and transitive relation 7, and a subset
Y € X such that
|doma/m,| = |Y].

a is an idempotent in &7 x if and only if Y is a cross-section of 7, (that is,
a subset such that it intersect every partition class in exactly one element).
Also every pair (11, Y) where 7 is a symmetric and transitive relation and Y
is a cross-section determines a unique idempotent in &.7 x. Moreover, any
a € P T x can be factorized relative to a cross-section Y of 7, as

a=eoqa

where e is the idempotent determined by (7., Y) and & = a|Y is a bijection.

The semigroup Ix: We denote by Ix the set of all injective elements of &?.7x.
If a, B € Iy, it is easy to verify that a o § € Ix. Hence Ix is a subsemigroup
of # T x. Since every a € Ix is injective, the equivalence relation 7, induced
by a on dom « is the identity relation on doma. Therefore Ix consists of all
bijections of subsets of X. In particular, idempotents in Ix are identity maps
on subsets of X. In fact I is a subsemigroup of Bx which inherits the structure
of Bx. Thus, since a™! € Ix for all & € I, the involution R — R~ restricts to
an involution on Ix. Ix is also an ordered semigroup with respect to inclusion
and the set of idempotents of Ix has the structure of a lattice (Boolean algebra)
with respect to inclusion (see also Section Subsection 1.4.2).
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Remark 2.2: Clearly, the inclusion gives &?.7x the structure of an ordered
semigroup. However, this is not of much significance for #.7x. On the
other hand, the inclusion is an important structural part of the semigroup
Ix and is called the natural partial order on Ix. It may also be noted that the
groupoid Ix considered in Example 1.21 is obtained from the semigroup Ix by
restricting the product in the semigroup to pairs «, f with cod @ = dom f8 in the
semigroup Ix; in other words, the product in the semigroup Ix is an extension
of the composition in the groupoid Ix.

The semigroup Tx: The set Jx of all transformations on X (maps of X into
X) is clearly a subsemigroup of &7 x. Hence most of the remarks for the
semigroup &7 x can be adopted for .7x. Thus idempotents in Jx are uniquely
determined by pairs (17, Y) where 7t is an equivalence relation on X and Y'is a
cross-section of 7. Further every f € Jx can be factorized as

f:eoa

where e is an idempotent in .7x and « is a bijection of the cross-section Im e of
Ty = 7, onto Im f. Also, composition in Jx (same as relational composition)
is written in the order in which they appear in commutative diagrams and
elements of Jx (transformations of X) are regarded as operating on the right.
Often it will also be necessary to consider the left-right dual .7,* of Jx or sub-
semigroups of 7. In this case transformations of X, considered as elements
of Z,*, are written as left operators.

This (that is Jx) gives an important class of examples; we shall discuss
other properties of these semigroups later. All examples of semigroups given
so far are all monoids.

Semilattices: A semilattice is a commutative semigroup of idempotents (that is, a
semigroup in which every element is an idempotent). If E is a lover semilattice
(meet-semilattice) as defined in Subsection 1.1.2, then clearly, the map

(e,eYEEXErene

which assign to each (¢, ¢’), the meet e A ¢’ is a binary operation on E. It
follows from the definition of A (see Equation (1.13)) that this binary operation
is associative, commutative and idempotent. Hence E is a semilattice with
respect to the binary operation A. In the partially ordered set does not have
1, then E is a semigroup which is not a monoid. Similarly, if E is an upper
semilattice, E is a semilattice in the sense above with respect to V.

Conversely, any semilattice E (as defined above) can be considered as a
lover semilattice as follows: for e, ¢’ € E, define

/

e<e & e =e.
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Then < is a partial order on E such that
e’ =eNe Ve €E.

Hence E becomes the lover semilattice with respect to the partial order defined
above. On the other hand if we set

/

e<ed = e =¢,

then < is a partial order on E and E becomes the upper semilattice with respect
to <. Thus a semilattice is a semigroup; it can be regarded as an order structure
in two ways: as a lover semilattice or an upper semilattice as above. In the
following, unless otherwise stated, a semilattice will be regarded as a lover
semilattice.

Cyclic semigroups: A semigroup S is said to be cyclic if every element of S is
a positive integral power of an element in S; that is, S = {a" : n € N*} for some
a € S, where N* = {1,2,...}. The element a is called the generator of S and S is
denoted by (a). There are two possibilities:

1. Powers of a are distinct. In this case (a) is clearly infinite and is isomor-
phic to the additive semigroup (N*, +).

2. Not all powers of a are distinct; that is, a" = a™ for some n,m € N*, n # m.

In the second case, there exists the smallest integer s > 1 such that a” = a° for
some r < s with r > 1. The choice of s implies that

are distinct powers of a in (a). We show that these are precisely the set of all
distinct elements of {a) so that, in this case, the order of {a)iss — 1.

ProrosrTion 2.1. Let S = (a) be the cyclic semigroup generated by a. Then either S
is isomorphic to (N*, +) or there exists positive integers r and m such that

_ 2 ror+l r+m—1y.
S={a,a*,...,a",a"",...,a };

Ka — {ar, ar+1, L ,ar+m71}

is a cyclic subgroup of S of order m with identity a' where t is the unique integer
satisfying
t=0 (modm), r<t<r+m.

The integer v is called the index of S and m is called the period of S.
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Proof. In view of the discussion preceding the statement, it is sufficient to
consider the case in which there is the smallest positive integer sand 0 < v <'s
such that a" = a°. In this case, powers al,1 < i < s are distinct elements of S.
Letm = s —r. Then we have a” = a’*" = g"**" for allk € N. If n > r, we can find
keNand 0 < j<msuchthatn —r=km+ jand so

n r+km+j _ ar+j

a'=a where n=r+j (modm), r<r+j<r+m. (%)

It follows that S = {a’ : 1 < i < r + m}. Since these powers are all distinct, the
order of Sis r + m — 1. We now show that for any n,n’ € N, we have

n=n if min{n,n’} <7,
" (mod m) if min{n,n’} >r. )
Assume that n < n’. If n < r, then by the definition of s = v + m, n’ > 5. By (%),
there is a unique n” with r < n” < s such that a”” = a” = a" which contradicts
the definition of s. Hence we must have n = n’. Let n > r. Choose p,q € N*
withr <p,qg<s,n=p (mod m)and n’ =g (mod m). Thena" = a" implies by
Equation (x) that a” = af. Since, for i < s, powers a' are distinct, it follows that
p=gandso,n =n" (mod m). On the other hand, if n = n’ (mod m), then it is
immediate from (x) that a" = a"".

It follows from (e) that the map ¢ : a” = n (mod m), n > r is a bijection of
K, onto Z,,, the cyclic group of integers (mod m). Also, forp,q >,

P(a’a’) = (@) = (p+¢q) (mod m)
=p (mod m)+q (mod m)= ¢(a’)+ ¢(a’).

Therefore ¢ : K, — Zy, is anisomorphism. Ifa' € K,, r < t < r+m, is the identity
in K,, then we have a'a' = a' and so, by Equation (e), = 0 (mod m). O

The order of an element a in a semigroup S is the order of the cyclic sub-
semigroup {a) of distinct powers of 2 in S. The order of a is finite if the order
of (a) is finite; otherwise, the order of a is infinite. The semigroup S is said to
be periodic if the order of every a € S is finite.

Example 2.1: Given two positive integers r and m there is a finite cyclic semigroup with
index r and period m. Consider the transformation « of the set M = {0,1,...,7,...,7r +
m — 1} defined as follows:
i+1 ifi<r+m-1,
o =
r ifi=r+m-1.

It is easy to show that a" = a™" which implies that the cyclic semigroup (a) of all
powers of a is a finite cyclic semigroup of index r and period m.

order!— of an element
semigroup!periodic
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monoid! ;ty;zcl(;'c - The cyclic monoid M generated by a is the set {a" : n € N} (including a° which
roup wi

ifmtrrj)x[Rees - is defined as 1). Note that M = {a)', the monoid obtained by adjoining identity

matrixlmonomial — 1 to (a). It follows from the above that the cyclic monoid (a)! is either infinite

MOG; I, A; P): Rees I X A-matrix . . . . .. .. .
Segmgmup O)Ue, GO in which case all powers of a (including a°) are distinct and is isomorphic to

semigroup!Rees matrix — (N, +), or there exist integers r and m such that a” = 4", in which case the

matrix!sandwich — . .
monoid {a)! is of order r + m.

Rees-matrix semigroups:  Let G be a group and let G be the semigroup ob-
tained by adjoining 0 to G (see Equation (2.4)). G* is called a group with 0. Let
A and I be sets. A mapping P : AxI — G’ is a A xI-matrix over G’; we denote
the value of P at (A,7) by py;. Leta

MO(G;1,A;P) = (G xIxA)U{0}. (2.11a)
Define product in M°(G; I, A; P) by

(aprjb i, u) ifpr; #0;

2.11b
0 otherwise. ( )

(@,i,A)- (b, j, 1) ={

Non-zero elements (a,1, A) of M°(G; I, A; P) can be interpreted as I X A-matrices
as:

(a,i,A) = (arp)ixa
in which

- if (", A) = (i, A);
Y0, # G A

Such matrices are called monomial matrices or Rees matrices. The element 0
is treated as I X A O0-matrix (0)ixa. If we do this, the product defined above
reduces to the row-column product

(a,i,A) - (b, j,u) = (a,1, A)P(b, j, 1).
If x =(a,i,A), y=(bju) and z = (c,k,v) are elements of MY(G; 1, A; P),
then using Equation (2.11b), we have
(xy)z = (aprjbpuxc, i, v) = x(yz).

Hence M°(G; I, A; P) is a semigroup. M°(G;I, A; P) is called the Rees I X A-
matrix semigroup over G° with sandwich matrix P. The sandwich matrix P is
said to be regular if every row and every column contain at least one non-zero
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entry; that is, for each A € A there is some i € I such that p;; # 0 and for each Se’z'g;i’or"”?’mees matrix —with out
i €I thereis A € A with py; # 0.

Letx = (a,i,A) € M%(G;I,A,P). If Pis regular, we can find p € A such that
pui # 0and j € I such that py; # 0. Let

' = (b, j,u) where paj#0, paj#0, b= (puapa))
An easy computation with the product defined above shows that

xx'x = x.

Hence, to each x € M%(G;I, A; P) there is some x’ € M%(G;I, A; P) satisfying
the equation above if P is regular. Conversely, if the semigroup MY(G; 1, A; P)
has this property, it can be shown easily that the matrix P must be regular as
defined. For if x = (a,i,A) # 0 (that is, a # 0) the condition implies that for
some x" = (b, j, 1), x = xx’x and so we have, in particular, xx” # 0. This implies
that pyj # 0 and so for A € A, thereis j € I with p,; # 0. Similarly from x'x # 0
we infer that for i € I, there is u € A with p,; # 0. Semigroups satisfying this
condition is said to be reqular (see Subsection 2.6.2).

By Equation (2.11b), the set of non-zero elements of M°(G;I, A;P) is a
subsemigroup of MO(G; I, A; P)if and only if py; # 0 for all (A,i) € Ax 1. When
P satisfies this condition, we denote the subsemigroup of non-zero elements
by M(G; I, A; P); it is called the Rees matrix semigroup over the group G or a Rees
matrix semigroup with out zero. Note that M(G; I, A; P) is always regular. In
particular, if we choose G = {1}, the one element group and P as the constant
mapping with value 1, then the Rees matrix semigroup over G can be identified
with a semigroup on the set I X A with product defined by

(A G =G VG A), (o) €Tx A,

This semigroup is called the I X A-rectangular band. Note that every element in
the I X A-rectangular band is idempotent.

Semigroup of matrices and linear transformations: Let V be a vector space
over the field k. It is well known that the set .Z.7 (V) of all linear endomor-
phisms of V' is a semigroup under composition and so it is a subsemigroup of
Fv. In this case € € £ .7 (V) is an idempotent if and only if

NeEe)®Ime=V
where N(e) denote the subspace of V given by:

N(e)={veV:e() =0}
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Conversely, given any direct-sum decomposition N @® U = V, there is a unique
idempotente € 2.7 (V) with N(e) = N and Im € = U (as well as an idempotent
€’ with N = Uand Ime’ = N; wehave €’ =1 —¢). Asin Subsection 2.1.3, every
f € Z.7(V)canbe factorized as f = € o @ where € is an idempotent in .Z.7 (V)
and a : Ime — Im f ia a linear isomorphism.

Further properties of this semigroup will be considered later.

2.2 CONGRUENCES

Let ¢ : G — H be a surjective homomorphism of groups. The basic homomor-
phism theorem for groups states that the quotient group G/ ker ¢ is isomorphic
to H. This implies that, up to isomorphism, ¢ is completely determined by the
normal subgroup ker ¢ (see for example, Hungerford [1974]). Moreover, ker ¢
is an object of the same type as G and is the kernel of the morphism in the cat-
egory Grp of groups. On the other hand, for homomorphisms of semigroups
there exist no sub-semigroup, or an object in the category & which determines
homomorphisms in this way. In particular the category & does not have
kernels. This is an important point of difference between group theory and
semigroup theory. If i : S — T is a homomorphism of semigroups, it is nec-
essary to replace the kernel in the theory of group homomorphisms with the
equivalence relation 7y, determined by the function i as in Equation (1.10a).
Equivalence relations arising in this way are called congruences.

In this section, we give preliminary definitions of congruences and de-
rive some of the basic properties of homomorphisms. We also give a brief
discussion of the lattice of congruences on a semigroup.

2.2.1 Congruences and homomorphisms

Let S be a semigroup. A relation p on S is right compatible if p satisfies the
following: a

(x,y)ep = (xa,ya)ep VaeS. (2.12a)
A relation p is left compatible if it is right compatible as a relation on S°P. p is
compatible if it is both left and right compatible. For any p € Bs

RS = {(axb,ayb) :a,b € S' and (x,y)€R}. (2.12b)

can be shown to be the smallest compatible relation that contain R.
A right [left] congruence on a semigroup S is an equivalence relation p on
S which is right [respectively, left] compatible. p is a congruence on S if it

is compatible so that it is both a right and a left congruence on S. This is
equivalent to the fact that p satisfies the following:

), &, y)ep = (xx',yy) ep. (2.13)
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We have the following:

ProrosiTioN 2.2. Let p be a congruence on the semigroup S. For each x € S, let
p(x) denote the p-class containing x (the equivalence with respect to p that contain
x). Then

p(x)op(y) =pxy) Yx,yes (2.13%)
defines a single-valued binary operation o on

S/p={px):x €S} (2.14)

which is associative. Hence S/p is a semigroup with respect to o. Moreover, the
quotient map p* : x - p(x) is a surjective homomorphism of S onto S/p.

Proof. The fact that o is single-valued is equivalent to Equation (2.13). The
remaining statements are immediate consequence of the definitions. O

We denote the semigroup constructed above also by 5/p and is called the
quotient of S with respect to the congruence p.

Example 2.2: If G is a group, an equivalence relation p on G is a left congruence if and
only if the equivalence class p(e) = K containing the identity e of G is a subgroup of G
and p(g) = gK for all g € G. Thus p is a left congruence on G if and only if the partition
of p is a left-coset decomposition of G with respect to the subgroup p(e) of G. Similarly
a right congruence p on G is a right-coset decomposition with respect to the subgroup
p(e). Thus p is a congruence on G if and only if for all g € G, p(g) is a left as well as a
right coset of G. This is true if and only if p(e) is a normal subgroup of G.

Isomorphism theorems of group theory can be extended to semigroups.
The following is the analogue of the first homomorphism for groups. The
routine verification is omitted.

THEOREM 2.3 (FIRST ISOMORPHISM THEOREM). Let ¢ : S — T be a homomorphism of
the semigroup S =into T. Then

xp = {(x,y): x¢ = yo}

is a congruence on S. Further, the map 1 : S/xp — T defined by
(kPP =xp VxeS

is an injective homomorphism such that the following diagram commutes:

T (D2)

/W
S
S gy x®

The homomorphism ¢ is injective if and only if k¢ = 1s and surjective if and only if
Y : S/kp — T is an isomorphism. O

S/p: quotient semigroup
homomorphism!quotient —
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Other isomorphism theorems for groups can also be extended to semi-
groups by replacing subgroups by subsemigroups and normal subgroups by con-
gruences in the corresponding statements for groups. Thus the second isomor-
phism theorem can be stated as follows.

THEOREM 2.4 (SECOND ISOMORPHISM THEOREM). Let ¢ be a congruence on the semi-
group S and let T be a subsemigroup of S. Then the restriction or = o N (T X T) of o
to T is a congruence on T and there is an isomorphism

¢:T/or — o(T)/o
where
o(T) = ot
teT
denote the union of all congruence classes of o that intersect T.
Proof. Let ® = ¢"|T denote the restriction of the quotient homomorphism
0" : S — S/o to T. Then @ is a homomorphism of T into S/o. It is easy to see

that x® = or and Im ® = ¢(T)/o. By Theorem 2.3, there is an isomorphism of
T/or onto o(T)/o. O

THEOREM 2.5 (THIRD ISOMORPHISM THEOREM). suppose that p, o € £ are congruences
on S such that p C 0. Then

a/p ={(px), p(y)) : (x,y) € o}

is a congruence on S/p such that there is an isomorphism

@5/ —(S/p)/(a/p)
making the following diagram commute.
(S/9)/(a/p) (2.15)
9 o
S——— Slo

Moreover, 0 = ¢/p is an inclusion preserving bijection of the set of all congruences
on S containing p and the set of all congruences on S/p.

Proof. 1t is easy to verify that o/p is a congruence of S/p and that the map
¢ : x — 0/p(p(x)) is a homomorphism such that kp = 0. By Theorem 2.3, there
is an isomorphism @ : S/o — (5/p)/(c/p) The last statement is also easy to
verify (see Proposition 2.8 and Remark 2.5). O
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Rees congruences  Let I be an ideal in a semigroup S and let
pr={(x,y) :eitherx =y orx,y € I}. (2.16)

It is easy to verify that p; is a congruence on S such that

w1 fxel
PR =V ifxel

Note that the congruence p; is completely determined by the ideal I. p; has
atmost one non-trivial congruence class I in S. Congruences determined by
ideals in this way are called Rees congruences. The quotient (or factor) semi-
group S/pj is called the Rees quotient semigroup or Rees factor semigroup and
is denoted (for brevity) as S/I. Note that S/I is the semigroup obtained by
identifying all elements in I as a single element [ in S/I which is the 0 of S/I and
leaving every other element (not in I) unaltered. We have noted that 0 is an
ideal in S. We follow the convention that the Rees quotient S/ = S. Similarly,
if S has 0, then for I = 0, the Rees quotient S/I is isomorphic to S; in this case
also, we will assume that S/I = S/0 = S.

Let T and N be semigroups. A semigroup S is called an ideal extension of
the semigroup N by the semigroup T if N is isomorphic an ideal N’ of S and
the Ree’s factor semigroup S/N’ is isomorphic to T.

We observe that, if p is any congruence on S the 5/p is a semigroup with
zero if and only if there is a congruence class p(x) which is an ideal in S; in
this case, the zero in S/p is the ideal I = p(x) and p; € 0. Thus every such
congruence contains a Rees congruence.

Remark 2.3:Isomorphism theorems for Rees congruences can be stated in
much more simpler way. Thus the second and third isomorphism theorems
can be stated as follows:

(a) LetIDbe an ideal in the semigroup S and let T be a subsemigroup. Then
(Iun/1=T/INT).

(b) Let I and ] be ideals in the semigroup S such thatI C J. Then
S/] = (S/D/(J/).

Moreover, | = /I is an inclusion preserving bijection of the set of all
ideals of S containing I and the set of all ideals of S/I.

These statements follows immediately from Theorems 2.4 and 2.5 respectively.

Remark 2.4: For a more detailed discussion of ideal theory of semigroups,
including the theory of ideal series such as composition series, principal series,
etc. and the Jordan-Ho lder-Schreier refinement theorem, we refer the reader
to Clifford and Preston [1961], Rees [1940]. Since we have no occasion to use
these results in this book, we shall not discuss them here.

congruence!Rees —

semigroup!Rees quotient —

S/I: Rees quotient semigroup of S
by ideal 1

extension!ideal —
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2.2.2 The lattice of congruences

Let £ denote the set of all congruences on the semigroup S. Then £ isnonempty
since the identity relation 15 and the universal relation S x S belongs to it.
Clearly, £ is a partially ordered set with respect to inclusion in which S x S is
the largest element, 1 and 15 is the smallest, 0 (see § Subsection 1.1.2.

Recall that a complete lattice is a partially ordered set in which every
subset has both join and meet (see § Subsection 1.1.3). The Proposition below
describes the join and meet in the partially ordered set £ and shows that it is
a complete lattice.

ProrosITION 2.6. Let S be a semigroup. Then £ is a complete sublattice of the lattice
&s of all equivalence relations on S with join and meet defined as follows:

AN =()pi 2.17)

iel

®
U pi] (2.18)

i€l

VA =

for any subset A = {p; :i € I} of £.

Proof. It is easy to verify that AA € £; clearly it is the largest congruence
contained in each p;. Hence AA is the meet of A in £.

Let p = Ui piand 0 = p. Since p is reflexive and symmetric, by definition,
o is the join of A in &. Hence it is sufficient to show that o is compatible. Let
a € S and (x,y) € 0. Then by Equation (1.8a), (x, y)p" for some 1 € N; that is,
there existu; € S, t =0,1,...,n with up = x and u, = y such that (u:—1, us) € p.
Then for each ¢, there is i; € I with (11, u;) € p;,. Since p;, is a congruence for
every t, (ui—1a, usa), (aus—q,aus) € p;,. It follows that (xa, ya), (ax,ay) € o and so
o€ L.

For each A C &, it is clear from the definitions above that AA and VA are
respectively meet and join of A in &s. Hence £ is a sublattice of Es. O

Note that, if G is a group, £¢ can be identified with the lattice of normal
subgroups of G (see Example 2.2). The following result gives some useful
consequences of the Proposition above:

ProrosrTiON 2.7. Let S be a semigroup. We have:

(a) For any R € Bs, there is a congruence R such that R is the smallest
congruence containing R. The map R — R is a complete V-homomorphism
of the lattice Bs of all relations on S onto £.



2.2. CONGRUENCES 71

(b) Let E be an equivalence relation on S and let
Eo=1{(x,y): (axbayb) e EV a,b e Sh.

Then E is the largest congruence contained in E. The mapping E — E() is a
complete A-homomorphism of the lattice Es of all equivalences on S onto £.

Proof. To prove (a), let
R = {(axb,ayb):a,b€ S' and (x,y) € RUR}.

Then by Equation (2.12b), R¢ is the smallest relation containing RUR™. Hence
R¢ is the smallest symmetric and compatible relation of S containing R. It
follows from the construction of the transitive closure (see Equation (1.8a))
that the transitive closure of a symmetric and compatible relation is again
symmetric and compatible. Hence

RO = (RC)(t)

is the smallest congruence containing R° and hence containing R. The map
R — RY is clearly inclusion preserving. Let M € Bs. Then (VM) 2 R for
allR € M and so

\/ R® ¢ (VvM)©.

ReM

Now, since for each R € M,

v R® 2RO SR,
ReM

\/ R9 2 (vm)©.

ReM
Hence \/gep R© = (VM)©. Thus the map R — R is a complete V-homomor-
phism.

To prove (b), we observe that, since E an equivalence relation, so is E). If
(x,y) € E(), then from the definition of E), we see that (xa, ya), (ax,ay) € E
for all a € S'. Hence E) is both a left as well as a right congruence. Thus E
is a congruence which is clearly contained in E. Now let p be any congruence
contained in E. If (x,y) € p, then for all a,b € st (axb,ayb) € p C E. By the
definition of E(), we conclude that (x, y) € E(); thus p C E,).

Again, the map E — E() is inclusion preserving. Let M C &s. Since, for all
E € M, AM C E and so,

(AM)() € E(o) and so,
(AM) € /\ Eco-

EeM
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Since Agep E() € AM, we have

/\ E(c) - (/\M)(C).
EeM
Hence
/\ E( = (AM)o)
EeM
which proves that the map E — E() is a complete A-homomorphism. O

Recall (see Equation (1.11a) and Remark 1.2) that in a partially ordered set
A, we use the notation

[a,Bl=1{y:a<y<BlCA

for a, € A. If A is a complete lattice, so is [, f]. Recall also that an order
preserving map of a lattice is a V-homomorphism [A-homomorphism] if it
preserve join [meet](see Subsection 1.1.3).

Prorosrtion 2.8. Let f : S — T be a surjective homomorphism of the semigroup S
onto T. For each p € £ and p’ € L1, define

fp)={(xf,yf) eTXT:(x,y) € ph
(o) ={(x,y) € SXS: (xf,yf) € p').

Then we have the following:

(2.19)

(a) f*: £ — Lris a surjective complete V-homomorphism.

(b) f.: Lr — [6,1]is a lattice isomorphism such that

f*Of*Zl,gT
wherekf =6and1=S5XxS.

(c) For each p € [0,1], there is a unique isomorphism f, : S/p — T/f*(p) such
that the following diagram commutes:

s— 1 .7 (D3)

P“l Jf*(p)”

S/p 5 T/f(p)

Here p* and f*(p)* denote the quotient homomorphisms (see Proposition 2.2).
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Proof. It is clear that f*(p) is a congruence on T for any congruence p € £; also
the mapping p = f*(p) is order preserving from £ to £r. For p’ € £r, it is
clear that f.(p’) defined in the statement, is a congruence in [9, 1]. Moreover, it
is easy to see that f, is also an order preserving map of kT into [, 1] and for all
p' € ET,
[ (£(p")) =p'. Hence fof =1lg,.

It follows that f. is a one-to-one order preserving map of £r into [6,1] and that
f* is surjective.

We now show that f. : £7 — [§,1] is surjective. Let p € [,1] so that 6 C p.

Let p = f.(f*(p)). Then p C p. If (x,y) € p, then (xf,yf) € f*(p) and so, by
the definition of f*, there is (u,v) € p such that (xf,yf) = (uf,vf). Hence
(x,u), (v, y) € 0. Therefore

(x,y)edopodCp’=p

since p is transitive. Hence

(xy)ep = (f,yf) € f(p) (%)

This shows that p = p. Therefore f. is surjective and

(fllo,1]) o fo = 157

Thus f. : £ — [6,1] is an order isomorphism.

To prove that f* is a complete V-homomorphism, assume that A C £,
0 = VA and ¢’ = Vf*(A) where f*(A) = {f*(p) : p € A}. Since f* is order
preserving, ¢’ C f*(0). Since f*(p) C ¢’ forall p € A,

p < f(f(p)C filo)
so that
0 C fi(o’) which implies f*(0) C f* (f.(0")) = 7.
Thus f(0) = o’ and this proves (a) and (b).
To prove (c), define f, by:
(PN fo = f(p)(xf) forall xeS.

It follows from (*) that f, : S/p — T/ f*(p) is a bijection. Using Equation (2.13)
and Proposition 2.2 we can easily show that f,, is a homomorphism. Hence f,,
is an isomorphism. Using quotient maps the definition of f, may be rewritten
as

xp*f, = xf (f'(p))! forall xe$

which shows that the Diagram (D3) is commutative. O
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Remark 2.5: The statement Proposition 2.8(c), in particular, implies the third
isomorphism theorem Theorem 2.5. For if p, 0 € £ are such that p C o, then by
Equation (2.19), a/rho = (p*)*(p) is a unique congruence on S/p induced by the
quotient homomorphism p* and by Proposition 2.8(c), there is an isomorphism

p%:S/a — (S/p)/(alp).

which is the the third isomorphism theorem. Applied to Rees congruences,
the statement Proposition 2.8(b) implies that given any ideal I in S, the map
A — A/l is an inclusion preserving bijection of the set of all ideals A in S
containing I and all ideals in S/I such that S/A = (S/I)(A/I) (by Theorem 2.5).

2.3 PRODUCTS

Various types of products are basic methods of constructing new semigroups.
The reader can find a good discussion of direct products and coproducts of
sets, groups, etc., in any good book on set theory / algebra (for example
Hungerford [1974] gives a good account of these). In fact we can define these
concepts categorically (see MacLane [1971]).

2.3.1 Direct product of semigroups

Recall that the Cartesian product of a family of sets A = {A; : i € I} is the set of all
functions f : I — U;A; where f(i) € A; for all i € I. The function on the indexset
Isatisfying the condition above will also be denoted as f = (f;)ier (as I-tuples).
When [ is a finite set having cardinality n € N, this definition coincides with
the definition of n-tuples. We use these notations below.

ProrositioN 2.9 (DIReCT PRODUCTS). Let F = {S; : i € I} be a family of semigroups.
Assume that
S= H Si = 1_[7‘ (2.20a)
iel
denote the cartesian product of sets S;. Define a binary operation on S pointwise:
xy = (xiyi) forall x=(xi),y=(y;) €S (2.20b)
Then S with the binary operation above, is a semigroup such that for eachi € |
mi(x)=x; forall xeS (2.20¢)
is a homomorphism 1; : S — S;. O
The semigroup S = [[ ¥ constructed above is called the Direct product of
the family ¥ = {S; : i € I}. When ¥ is finite, say ¥ = {51, 52, ..., Su} we use the

usual notation
S5=51 X5 %X---X§,
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to denote the product. The above equations are valid for an arbitrary family
of semigroups (where I is a set). Hence product of any family of semigroups
exists. Moreover, products can be characterized upto isomorphisms abstractly
(categorically) in terms of homomorphisms. The proof of the following is
routine exercise.

TueoreM 2.10. A semigroup T is isomorphic to the product [ Si if and only if T
satisfies the following universal property:

() Foreachi € 1, thereis a homomorphismo; : T — S; such that, to each semigroup
U and each family {t; : U — S;,i € I} of homomorphisms, there corresponds a
unique homomorphism t : U — T making the following diagram commute:

u (2.21)

N

TTS[ O

There are several constructions related to direct products that are useful in
structure theory of semigroups. We discuss two such constructions below that
are of interest to us in the sequel.

Remark 2.6: The proposition above proves the existance and gives a construc-
tion of direct products in the category of semigroups and the theorm gives
the unvesal property of direct products. If, in these results one replaces
semigroups by monoids or semigroups with zero and homomorphisms with
monoid homomorphisms or homomorphisms that preserve zero, then it can
be shown easily that the resulting product will also be of the same type; that
is, the category of monoids and the category of semigroups with zero have
products and is the same as the product in the category of semigroups.. In
particular, it is useful to note that, the category of all groups with zero also has
this property. However, other products discussed below does not have this

property.

2.3.2  Subdirect products

A subsemigroup T of the direct product S of the family F = {S;}i is called a
subdirect product provided that, for eachi € I, 0; = m;|T : T — §; is a surjective
homomorphism.

Subdirect products is a concept from universal algebra that has been useful
in semigroup theory. In many constructions of semigroups, we need a sub-
direct product rather than direct product. However, it may be noted that a
subdirect product is not uniquily specified by the family #; we need addi-
tional conditions to fix it uniquely. The following results are consequences of
G. Birkhoff’s basic work on universal algebras ? (see also Grillet Grillet).

product!subdirect product
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If 0: S — T is an isomorphism of S to a subdirect product T of ¥, then for
eachi € I, ¢; = 0 o ; where 0; = m;|T is a surjective homomorphism. Now, for
eachteT,

0(t) = (0:(6(1))) = (¢i(1))

Since 0 is an isomorphism, for any t,t' € T, t # t/, O(t) # O(t'). Hence for
any t,t’ € T, t # t' there exists i € I with ¢;(t) # ¢;(t'). Therefore the family
{¢i}ier of surjective homomorphisms separate points of S. Conversely if S is a
semigroup and if {¢; : S — S;}ies is family of surjective homomorphisms of S
to semigroups in ¥, then by Theorem 2.10, there is a unique homomorphism
0 of S to the product ] F such that the Diagram 2.21 commutes for all i € I.
If T = Im 0, this implies in particular that 77;(T) = S; for alli € I. Hence T is a
subdirect product of . Moreover, 0 is injective if and only if the family {¢;}
separates points of S. Thus we have

ProrosrtioN 2.11. A semigroup S is isomorphic to a subdirect product of a family
F = {Si}ier ifand only if there is a family {¢p; : S — Si}ier of surjective homomorphisms
that seperate points of S. O

When S satisfies the conditions of the proposition above, we will refer to S
as a subdirect product of F with projections ¢;. We can formulate the result
above in terms of congruences as follows.

CoRroLLARY 2.12. Let {p; : i € I} be a set of congruences on the semigroup S and let
p = Nipi. Then S = S/p is a subdirect product of semigroups S; = S/ p;.

Proof. By Theorem 2.5, for each i € I, 0; = p;/p is a congruence on S = S/p such
that S/o; is isomorphic to S; = S/p;. Hence there exists surjective homomor-
phisms ¢; : S — S;,i € I. Suppose that 4, b € S are such that ¢;(7) = ¢;(b) for all
i € I. Since the map 6 : x - p(x) is a surjective homomorphism of S onto S we
can find a,b € S with @ = p(a), b = p(b). Then

(p(a), p(b)) €0 = (a,b) e p; forall iel

This gives 4 = p(a) = p(b) = b. Hence the family of homomorphisms {};}ics
separates points of S. O

A semigroup S is said to be subdirectly irreducible if S has more than one ele-
ment and has the following property: if S is isomorphic to a subdirect product
of semigroups S;, i € I, there is atleat one i € [ such that the corresponding pro-
jection S — S; is an isomorphism. By the proposition above, this is equivalent
to the statement that intersection of any set of proper (non-trivial) congruences
on S is proper.

The following result is due to G. Birkhoff ?.
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TuEOREM 2.13. Every semigroup is a subdirect product of subdirectly irreducible
semigroups.

Proof. Let S be a semigroup. Consider (a,b) € S? with a # b. Let R, denote
the set of all congruences p on S for which (a,b) ¢ p. Clearly, union of any
chain (under inclusion) of congruences in R,; again belongs to R,;. Hence
by Zorn’s lemma R, , contains maximal congruences. For each (a,b) € §* with
a # b choose a maximal congruence p,; € R;p. The maximality of p,; implies
that for every congruence p 2 p,, with p # p.s, (a,b) € p. Hence intersection
of any set of congruences on S properly containing p,; properly contains pgp.
This implies that intersection of any set of proper congruences of S, = S/, is
proper. Therefore the semigroup S, ; is subdirectly irreducible for all (a, b) € S?,
a # b. Also since

(por: @b)e s azb) =15
by Corollary 2.12, S is a subdirect product of semigroups S, ;. O
2.3.3 Fibered products
Let¢:5— Uand 0 : T — U be homomorphisms of semigrroups. Then

SxuT={(s,) € SXT:s¢ =t0} (2.22)

is easily seen to be a subsemigroup of the direct product S x T. We use the
notations introduced above in the statement:

ProrosiTion 2.14. Let S, T, ¢ and O be as above. Assume that
Y1 =m|F, ¢ =molF
where

m:SXT—=S mn:SXT—T, areprojectionsand F=SxyT.
Then the first diagram below is commutative:

m

quTLs LN

W
IPZJ J(P TIZJ/ ¢ (2.23)
T

T——F—U ——u
Moreover, if 1 : W — Sand n, : W — T are homomorphisms such that the second
diagram above is commutative, then there exist a unique homomorphism & : W —
S Xy T such that

m=~&oin, and m=E&oy,. ©)



S xy Tfibered product of S and T
over U
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Proof. The definition of Sx; T implies that the first diagram in 2.23 is commuta-
tive. If ;, i = 1,2 are homomorphisms making the second diagram commute,
then

ué = (um,unp) forall ueWwW

defines a homomorphism & : W — S x; T satisfying the conditions (*). These
conditions imply that, for allu € W,

um = W&y, and unp = WE)ps.

Since i, i = 1,2 are projections the equations above shows that u& = (un, un)
for all u € W and so, £ is unique. O

The semigroup S Xy; T is called the fibered product of semigroups S and T
over U. Homomorphisms ¢ and O are refered to as fiber homomorphisms while
Y1 and 1, are induced fiber homomorphisms. Here 1 is induced by ¢ and ¢ is
induced by 0. The result above says that the first diagram in (2.23) defining
the fibered product is a pullback diagram (see MacLane [1971], page 71).

We can generalize the construction for an arbitrary family of semigroups
in the obvious manner.

2.3.4 Coproducts

To define coproducts of ¥, we may assume with out loss of generality that
§ins;={1) forall i#j.

Consider the set

x:Usi.

i€l
A word in X is the concatenation
w =X Xi, ... Xi,, X, € Si,
of a finite sequence

(xil/ sy xin) = (xif)lﬁtﬁn

in of elements in X. The word w is said to be normalized if no two adjacent
terms of the sequence (x;)1<t<» belongs to the same semigroup; equivalently,
is # is+1 for any s, 1 < s < n. Given an arbitrary finite sequence (x;,)1<¢<n, if Xi,
and x;,, belongs to the same semigroup, we may multiply these and obtain
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a modified sewquence in which the term x;, is replaced by the product x; x;,,
and x;, is replaced by x;_,,,, t > 1. Repeating this process a finite number of
time, we will obtain a unique normalized word. For convenience we denote
the normalizes word obtained from (x;,)1<t<n by w(xi, ..., x;,). Notice that for
a € S;, i € I, the normalized word w(a) given by the sequence with the only
term a is a itself. It is not difficult to verify the following.

ProrositioN 2.15. Let F = {S; : i € I} be a family of semigrpoups and let X = | J;¢; Si.
Suppose that
P= H S; = {w : wis a normalized word in X}. (2.24a)
i€l

For any words w = x;,x;, ... x;, and w’ =y, ...yj, in P, define the product ww’ by
ww' = WX, .y Xigy Yijrs oo r Yj)- (2.24b)

This defines a product in P and with this product P is a semigroup. Further, for each
i € I, the map
Ji ra - w(a)

is an injective homomorphism of S; into P. O

The semigroup P constructed above is called the Coproduct or free product of
the family . Free products are (categorical) duals of products.
The following is the dual of Theorem 2.10; its proof is left as an exercise.

THEOREM 2.16. A semigroup P is isomorphic to the coproduct of a family {S}ier of
semigroups if and only if P satisfies the following universal property:

(L) Foreachi € I, thereis a homomorphism j; : S; — P such that, to each semigroup
U and each family {n; : S; — U, i € I} of homomorphisms, there corresponds a
unique homomorphism 1 : P — U making the following diagram commute for
eachie€l:

Si P (2.25)

Ji
n
\
u O
We discuss an important particular case of free products in the next section.

2.4 FREE SEMIGROUPS AND PRESENTATIONS OF SEMIGROUPS

Free semigroups form one of the most important and naturally occuring class
of semigroups. In this section we provide the elementary definitions and
discuss presentations of semigroups by generators and relations.

[icr Si ofree product of {S;}ier
semigroups!coproduct of —
semigroups!free product of —
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2.4.1 Free semigroups and monoids

Let X be a set. A word over [the alphabet] X is a finite sequence (x1, X2, ..., /)
of symbols representing elements of X in which repetitions are allowed. We
denote words by juxtaposition as w = x1x,...x,. We can define a binary
operation in the set of all words by juxtaposition: if w; = x1...x, and w, =
Y1...Ys are words, we set

wiwy = (X1... X)W1 Ys) = X1 X Y1 .. Ys.

This binary operation is clearly associative. Thus the collection X* of all non-
empty words over X is a semigroup; X* is called the free semigroup on X. A
semigroup S is said to be free if it is isomorphic to X* for some X # 0.
If wy and w, are non-empty words over X, then clearly it is not possible to
have
W1y = w1 Or wWiWwy = Wy.

Hence X* is a semigroup and not a monoid. If we include, in the set of words
over X, a word e which does not have any symbol, called the empty word, then
for any word w over X, we must have

we =ew=w

Hence the set X* of all words over X (including empty word) is a monoid and
is called the free monoid over X.

Example 2.3: Let X = {x} be a singleton set. Then words over X are precisely powers
of x and so x* = {x" : n € N*}. Hence x* = (x). Since no two distinct words in x* can
be equal, by Proposition 2.1, it is an infinite cyclic semigroup which is isomorphic to
(N*, +). Similarly the free monoid x" is the infinite cyclic monoid isomorphic to (N, +).

The free semigroup is characterized by the following universal property:

Prorosition 2.17. Let jx : X — X* denote the map which identifies each x € X
with the word containing the only symbol x. Then the pair (X*, jx) has the following

property:

e Let S be a semigroup and f : X — S be a map. Then there exists a unique
homomorphism f : X* — S such that the following diagram commute:

S (D1)
N
XX

The free semigroup X" is characterized up to isomorphism by the property above.
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Proof. Forw = x7...x, € X*, define

flw) = f(x1)... f(xy) (2.26)

where, on the right-hand side, the productis taken in the semigroup S. Clearly,
f: X* - Sisahomomorphism. If x € X, then jx(x) is the word in X* having the
only symbol x and so, by the definition above, f(jx(x)) = f(x); this proves that
the diagram (D1) commute. The uniqueness of f is clear from the definition.

Suppose that (S, f) is a pair consisting of a semigroup S and a mapping
f + X — S that satisfies the property above. Since X* is a semigroup and
jx : X — X' is a mapping, by the above, there exists a homomorphism
h:S — X* such that f o h = jx. By the diagram above jx o f = f. Hence

jx=jxolx-=foh=(jxof)oh
=jxo(foh)=jxog
where foh = g : X* — X* is a homomorphism. By the uniqueness, we have
g = 1x. Similarly h o f = 15. Thus f : X* — S is an isomorphism. O

Example 2.4: Let X be a set. Show that there is an isomorphism 0 : X* — [].xx".
The proposition above holds for monoid also; in fact, we have:

Prorosition 2.18. Let jx : X — X* denote the map which identifies each x € X
with the word containing the only symbol x. Then the pair (X", jx) has the following

property:
o Let M be a monoid and f : X — M be a map. Then ere exists a unique monoid
homomorphism f : X* — M such that

jxof=f.
The free monoid X* is characterized up to isomorphism by the property above.

Proof. The proof for Proposition 2.17 goes through in this case if we replace
X* by X*, the semigroup S by the monoid M, homomorphism / by a monoid
homomorphism, and define f by Equation (2.26) and the condition that f(e) =
1, the identity of M. U

A subset A of a semigroup [monoid] S [M] is called a generating set (or a
set of generators) for S [M] if every element of S [M] can be written as a finite
product of elements in A. Note that X (identified as a subset of X* by the
function jx) is a generating set for X*, where as X U {e} is a generating set
for X*. It is easy to see that every semigroup S [monoid M] has at least one
generating set (the trivial generating set S [M] of all elements of S [M]). We
have:

generating set
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CoRroLLARY 2.19. Every semigroup [monoid] is a homomorphic image of a free semi-
group [monoid].

Proof. Let A be a generating set for the semigroup [monoid] S [M]. By the
Proposition 2.17 [Proposition 2.18], f tAT > S f : A* — M] is a homomor-
phism [monoid homomorphism], where f denote the inclusion of A in S [M].
Clearly A C Im f [A C Im f] and hence f [f] is surjective. O

Remark 2.7: The universal property of the construction of X* given in Propo-
sition 2.17 implies that the construction X* gives a left-adjoint of forgetful
functor U : & — Set (see Theorem 1.6). Similar remark holds for the free
monoid construction also.

2.4.2 Presentations

We have seen that every semigroup S is a quotient (homomorphic image) of a
free semigroup A* where A is a generating set for S (see Corollary 2.19). Hence
by Theorem 2.3, there is a congruence p on A* such that A*/p is isomorphic
to S. If R is any relation that generate the congruence p (that is, R = p, see
Proposition 2.7) then S is determined, up to an isomorphism by the set A and
the relation R. We say that (A; R) is a presentation of S. If R and R’ are both
relations generating p they give two equivalent presentations of S. Since

R@ = (RUR™MH,

we may assume that R is symmetric. If R = {(w;, w)) : i € I}, is symmetric, we
indicate the presentation (A; R) as

(A {w; = wj,i €I}).

Note that, if f : A C S denotes the inclusion, then the homomorphism f :
A" — § defined by Equation (2.26) maps both w; and w/ to the same element
in S. Now, since R is symmetric, from the proof of Proposition 2.7, we have

p=R)"

By Equation (2.12b), (u,v) € RS if and only if u = rw;s, v = rws or u = rwis,
v = rw;s for some i € I. We say that the word v is directly derivable from the
word u; if (u,v) € R then v is said to be derivable from u. In this case the
relation u = v is said to be a consequence of relations {w; = w/,i € I}.

Note that every semigroup (S, -) admits at least the trivial presentation

Slxy=x-yVx,yes))
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If S admits a presentation (A; {w; = w/,i € I}) in which A [I] is finite, then S is
said to be finitely generated [finitely related]. If both A and I are finite, then S is
said to be finitely presented .

Presentations of monoids can be defined as above by replacing A* by A*
and f by f (see Proposition 2.8) in the discussion above. Note that a monoid
can have a semigroup presentation if there is a word v € A* such thatv = 11is
a consequence of the the relations R = {w; = w/, i € I}.

We have the following universal property for semigroups [monoids] with
a given presentation. We formulate the result for semigroups. The same result
holds for presentations of monoids also with appropriate modification.

Prorosition 2.20. Let S = (A; {w; = w;,i € I}) be a semigroup presented with gen-
erators A and relations w; = w, i € I. Let f : A — T be a mapping of A into a
semigroup T. If for every i € I,

xif oo xof =x1f..x,f where wi=x1...x,, wW;=Xx]...X, (1%

then there exists a unique homomorphism f : S — T such that the following diagram

commuites.
T
N
LA

A—S

(D17)

where 14 denote the insertion of the generators A in S.

Proof. Since f : A — T is a mapping, by Proposition 2.17 there is f : A* > T
such that jao f = f. Leto = xf. Since equations (1*) holds for each i, w; f = w; f
for all i. Hence if R = {w; = w; : i € I} denote the relation determined by the
presentation of S, then R C ¢. Hence p = R() C g. Therefore if we set

(p(w)f = wf forall weA”"

then f : S — T is clearly a homomorphism. Since 14 : A — S is a mapping,
by Proposition 2.17, there is a unique homomorphism iy = ¢ : A* — S such
that ja o ¢ = 14. Also, by the definition of p, 14 sends each a € A to the p-class
containing the word 4; that is,

ats = p(aja) = aja o p*
for all a € A. Hence by the uniqueness, ¢ = p*. Therefore by the definition of
f, ¢ o f=f. Hence,
taof=jacdof
=jacof=f.

semigrouplfinitely generated
semigrouplfinitely related
semigroup!finitely presented
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Thus the given diagram commutes. The uniqueness of f is clear from its
definition. O

Example 2.5: A semigroup S is free if and only if it has a presentation of the form
(X;0).

Example 2.6: (x) is a finite cyclic semigroup if and only if it has a presentation of the
form (x; x" = x™*™) with r € N and m € N*. This shows in particular that, given any two
positive integers r and m, there is finite cyclic semigroup with index r and period m
which is clearly unique up to isomorphism (see also the Example in § Subsection 2.1.3).
Moreover, any presentation of a semigroup with one generator is a consequence of
a presentation of the form (x;x" = x™") if it is not free. For any presentation of a
semigroup S with one generator x, relations must be a set of equations of the form
{x"" = x% :i eI} withr;,s; € N*and r; # s;. If I # 0, by Proposition 2.1, S must be a finite
cyclic semigroup and hence these relations must be consequence of a single relation of
the form x" = x™".

Example 2.7: Let S = (p,q;pq = 1) be the monoid generated by elements p and g with
relation pq = 1. Then in S, we have

q'p"+#1 for neN-. (a)

To see this holds for n = 1, by Proposition 2.20, it is sufficient to find a monoid T and
a,b € Twithab =1and ba # 1. For example consider T = J, and a,b € 4 be the maps
definedbya:n—n+1,00=0, nb=n-1forn > 0. Then it is readily seen that ab = 1
and ba # 1. For n > 1, assume that the result holds for 1 < r < n. If g"p" = 1, then, using
the relation pq = 1, we obtain
g =p@'pg=pg=1

which is a contradiction. Further, for any m, n € N, again using the relation pg = 1, we
deduce that

prtoifm>n;
m _n — b
P {q”‘”‘ ifm<n. ®)
Here, we write p° = 1 = ¢°. Moreover,
qmpn = qrps & m=71r, n=S=. Q)

To prove (c), we first observe that p and g are of infinite order in S. For, if p is
of finite order, by Proposition 2.1, there exist r,m € N* such that p" = p™". Then
p" = pg = p'p" = 1and so, gp = p"qp = p"'p = p" = 1 which contradicts (a). In
Equation (c) we note that, if m = r then p" = p° which implies the p is of finite order
if n # 5. Assume that m > r. If n < s then we get 4" = 1 which implies that g
is of finite order. If n > s, then p"™" = p"~° which implies that p is of finite order if
m—r#n-—s. Ifm—r=n-s,this gives ¢""p"" = 1 which contradicts (a). The case
m < r can be treated similarly. It follows that (c) holds. Therefore the monoid S can be
described as:

S={g"p" :m,neNj} (d)
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with product defined by

Mph=r+s  if 57 > 7
(qmpn)(quS) — {q p L (e)

gy ifn <.
The monoid S can also be given a semigroup presentation:

S={p,q;pqp = p*q=p,9p9 = 7" = 9)-

Suppose that T is the semigroup presented as above. If pg = ¢, it is easy to verify that e
is the identity in T and so the relation pq = 1 is a consequence of the relations of T. It is
clear that the relations of T is a consequence of the relation pg = 1. Hence S = T. The
semigroup (or monoid) S is called the bicyclic semigroup (or monoid).

2.5 REPRESENTATIONS

By a representation of a semigroup S, we shall mean a homomorphism ¢ :
S — T of S into a semigroup T of some specific type. If S is a monoid,
then ¢ is a representation of monoids if T is also a monoid and ¢ is a monoid
homomorphism. Thusif T = J%, ¢ is arepresentation by transformations on X,
if T = & Ty, itis called arepresentation by partial transformations, etc. Linear
representations, that is, representations by linear transformations on vector
spaces are also important. This is particularly true if V is finite dimensional.
Note that such a representation is equivalent to a representation by n X n
matrices over a field. A representation ¢ is said to be faithful if ¢ is a one-to-
one homomorphism.

In the first subsection below, we consider representations of semigroups
by functions on sets. In Subsection 2.5.2 we examine a specific representation
and in Subsection 2.9.3 we discuss a representation by row-monomial matrices
over a group with 0.

2.5.1 Representation by functions

We begin by showing that every representation of a semigroup S by functions
on a set X determines an action of S on X.

ProrosiTion 2.21. Let S be a semigroup and X be a set. Suppose that ¢ : S — Tx is
a representation of S by functions on X. Define

O(x,8) = xd(s) forall (x,s) € XXS. (2.27)
Then ¢ : X X S — X is a map such that
Px,st) =P (qf)(x,s), t) forall xeX, s,teSs. (2.28a)

Conversely, if ¢ : X X S — X is a map satisfying the condition (2.28a) above, then
for each s € S Equation (2.27) defines a map ¢(s) : X — X such that ¢ : s — ¢(s) is

semigroup!bicyclic semigroup
representation

representation!— by transformations
representation!linear —
representation!faithful —

action
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a representation of S by functions on X. Moreover, if S is a monoid (with identity 1),
then ¢ satisfies the following:

P(x,1)=x forall xeX. (2.28b)

if and only if ¢ is a representation of monoids.

Proof. Since ¢ is a representation, fors,t € S

P(x,st) = x¢(st)

= (x(p(s)) o(t), since ¢ is a homomorphism;
= ((x,9) p(t) by Equation (2.27)
= $((x,9),1)

which proves Equation (2.28a). If ¢ isa monoid homomorphism, then ¢ clearly
satisfies Equation (2.28b).

Conversely assume that the function ¢ satisfies Equation (2.28a). It is clear
that for fixed s € S, Equation (2.27) defines a function ¢(s) : X — X. Moreover,
ifs,t €S, thenforallx € X,

xp(st) = ¢ (é(x, s), t) by Equation (2.28a)
= (xp()) p(t) by Equation (2.27).

It follows that ¢ is a representation and clearly ¢ is a monoid homomorphism
if Equation (2.28b) holds. O

The Proposition above shows that there is a bijection between represen-
tations of a semigroup S by functions on X and functions ¢ : X x S — X
satisfying Equation (2.28a). A function ¢ : X xS — X is called an right action of
the semigroup S on the set X if it satisfies Equation (2.28a). ¢ is the right
action of a monoid S on X if and only if it also satisfies Equation (2.28b). When
the action of S on X is clear from the context, we may simplify the notation
by writing ¢(x, s) as xs. With this simplification, Equations 2.28a and 2.28b
becomes x(st) = (xs)t and x1 = x respectively for all x € X and s,t € S. If ¢ is
a right action of the semigroup [monoid] S on the set X, then the pair (X, ¢) is
called a right S-set. Again we abbreviate the notation to X and say that X is a
right S-set if ¢ is clear from the context. A right S-set X is said to be faithful if
the associated representation is faithful.

Dually a left action of S on X is defined as a function i : SXX — X satisfying:

U(st,x) =P (s, P(t,x)) forall xeX, s teS. (2.28a%)
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If S is a monoid, 1 is the left action of the monoid if, in addition, we have

P(1,x)=x forall xeX (2.28b%)

In this case, the dual of Proposition 2.21 also holds. However, it may be noted
that, the function ¢ : S — Jx defined by (the dual of Equation (2.27))

(s, x) = x(s) forall (s,x) € SxX

gives a homomorphism ¢ : S — Z,* (that is an anti-homomorphism of S to
Fx). We shall refer to this as a dual or left representation. Again if 1 is clear
from the context, we may write sx for i(s, x). A left S-set is a pair (X, ) where
X is a set and ¢ is a left action of S on X; again we abbreviate this to X if the
left action is clear from the context. A left S-set is faithful if the associated
representation is faithful.

We observe that the concept of left S-sets is the left-right dual of right S-sets
and so we may dualise every definition right S-sets to left S-sets and vice-versa
and to every result that holds for right S-sets, the dual result holds for left S-
sets. Consequently, in the following we shall not repeat the dual statements
explicitly.

If X and Y are right S-sets, a mapping A : X — Y is called a morphism of
right S-sets or an S-morphism if (using simplified notations)

Alxs) = (A(x))s forall xeX; seS. (2.30)

We shall follow the convention that morphism of right [left] S-sets are written
as left [right] operators. As a consequence, the endomorphism semigroup of
a right [left] S-set X is naturally identified as a subsemigroup of 9; P [ Fx] (see
§ Subsection 2.1.3).

A subset X’ of a right S-set X is called an S-subset if for allx’ € X', x’S' € X’
where x'S! = {x’s : s € S'}. Thus the subset X’ C X is an S-subset if and only
if X’ is a right S-set and the inclusion j¥, is a morphism of right S-sets. Note
that, for any x € X, xSt itself is an S-subset of X and is called the orbit of x in
X. A right S-set X for which X = xS! for some x € X is said to be a cyclic (or
monogenic) S-set generated by x. Dually, a left S-set X is cyclic if X = S'x for
some x € X.

Given a semigroup S, the collection of all right S-sets with morphisms
defined as above is clearly a category Sets. Isomorphisms, endomorphisms,
automorphisms, etc. of right S-sets are isomorphisms, endomorphisms, etc.
in the category Sets. The discussion of S-subsets above implies that Sets has
subobjects in the sense of § Subsection 1.3.2. Also it is easy to see that if
f + X — Y is a morphism of right S-sets, then the factorization of f as a

representation!dual or left

S-morphism

S-set:S-subset

S-setlorbit

xSt :eyclic right S-set generated by
x

S-set!cyclic -
Slx :cyclic left S-set generated by x
Setg:category of right S-sets
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mapping (that is, factorization of f in Set) gives a factorization of f in Sets also.
Therefore the category Sets has images (see § Subsection 1.3.2). We also have
a category sSet of all left S-sets which has images.

Let X be a right S-set. A congruence on X is an equivalence relation u
satisfying the following condition:

x,y)eu & (xs,ys)eu forall se st (2.31)

A congruence on a left S-set is defined dually. The routine proof of the follow-
ing statement is left as an exercise.

ProrosrTiON 2.22. Let u be a congruence on the right S-set X. Then X/ is a right
S-set with respect to the action defined by

(u(x),8) = p(xs)  forall (u(x),s) € X/uxS$ (2.32)

such that the quotient map u* : X — X/u is a morphism of S-sets. Moreover, if
0 : X — Y is a morphism of S-sets then

to ={(x,x) e XX X : 0(x) = 9(x")}

is a congruence on X and there exists an injective S-morphism y : X/ peg : Y such that
the following diagram commutes:

Y (D4)

)

X X/uo
Ho
In particular, O is surjective, if and only if 1 is an isomorphism. O

2.5.2 Regular representations

If S is a semigroup, with respect to the product in S, S can be regarded as a
right S-set as well as a left S-set. Here we shall refer to these as right reqular
and left reqular S-set and use the notations S, and S; respectively to denote
these. A subset X of S is an S-subset of S, [5;] if and only if X is a right [left]
ideal of S and X is cyclic if and only if X is a principal right [left] ideal. The
representation p; = p associated with the right regular S-set S, is called the
right regular representation of S. In this case, for any a € S, we write p, for
ps(a). The map p, : s + sa is called the inner right translation of S by a. Note
pa : S = S is an endomorphism of the left regular S-set S;. More generally,
a right translation p is an endomorphism of S;. It follows from the discussion
that
p:S— End(S)
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is a homomorphism of S to the endomorphism semigroup of S;.

These definitions can be dualized for the left regular S-set S;. In particular,
the left representation determined by S; is denoted by As and for a € S, the
map Ag(a) = A, : s — as is called the inner left translation by a. As above,
a left translation is an endomorphism of the right regular S-set. Note that,
according to the convention adopted for morphisms of left and right S-sets
(see Subsection 2.5.1), left translations are considered as maps in QSOP and
written as left operators. Consequently End(S,) is naturally a subsemigroup
of 7. * and

Ag=A:S — End(S,)

is a homomorphism of S into the semigroup of endomorphisms of the right
regular S-set S,.

Also, every inner right translations commute with every inner left transla-
tions; that is for all s,t,a € S,

(Asa)pr = As(apy). (2.33)

We say that a semigroup S is right[left] reductive if right regular [left regular]
representation is faithful.

It is clear from Equation (2.31) that an equivalence relation i on S is con-
gruence on the right regular S-set if and only if u is a right congruence on
the semigroup S (see § Subsection 2.2.1). Dually p is a congruence on the left
regular S-set if and only if i is a left congruence on the semigroup S.

Let M be a monoid. Cyclic right [left] M-sets and right [left] congruences
on the monoid M are related as follows.

ProrositioN 2.23. Let u be a right congruence on the monoid M. Then M/ is the
cyclic right M-set xM, generated by x = p(1). Conversely, if X = xM is a cyclic right
M-set, then

uX) ={(s,f) e M X M : xs = xt}

is a right congruence on M such that X is isomorphic to M/ u(X). Moreover, if X = xM
and Y = yM are cyclic M-sets, there is surjective morphism 0 : X — Y with O(x) = y

if and only if W(X) € u(Y).

Proof. Since aright congruence on M is a congruence on the right regular M-set,
it follows that M/ is a right M-set by Proposition 2.22. Since u* : M — M/ is
a surjective morphism, we have

u*(s) = p¥(1s) = p(1)s = xs

and so M/u = xM. Conversely, given X = xM, (s, t) € pu(X) implies xs = xt and
so x(su) = x(tu) for all u € M. This implies that (su, tu) € p(X). Thus u(X) is a

As : left regular representation
translation!inner left —
translation!left —
semigrouplright reductive
semigroup!left reductive
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set!— of states
function!transition —
automaton!transition monoid
automaton!finite state —

90 2. SEMIGROUPS

right congruence. Also, the map Ox : s = xs is a surjective morphism of the
right M-set onto X such that Ox(s) = Ox(t) if and only if (s, t) € u(X). Therefore,
by Proposition 2.22 X is isomorphic to M/ u(X).

Suppose that f : s = xs and g : s = ys where X = xM and Y = yM. Then,
by the above, f and g are morphisms of the right regular M-set to X and Y
such that the right congruences on M induced by f and g are p(X) and u(Y)
respectively. Also we have f(1) = x and g(1) = y. If p(X) € u(Y) then it is easy
to see that

0(f(s)) =g(s) forall seM

defines a surjective morphism 6 : X — Y with 8(x) = y. Conversely, assume
that a surjective morphism 0 : X — Y exists with 0(x) = y. If (s, t) € u(X) then
by the definition of u(X) we have xs = xt. Then

ys = 0(x)s = O(xs) = O(xt) = O(x)t = yt
which shows that (s, t) € u(Y). Thus p(X) € u(Y). O

Remark 2.8: The Proposition above shows that cyclic right [left] actions of
monoids are characterized, up to isomorphisms, as quotients of monoids by
right [left] congruences. A similar characterization of semigroup actions is
not possible. However, we can always associate a cyclic S-set with every right
[left] congruence u on a semigroup S. For if X = 5/, let u denote some symbol
not representing any element in X. Then X! = {u} U X becomes a cyclic S-set by
defining action of S on u by us = p(s). But the cyclic S-set X! may not a quotient
of the right [left] regular S-set even though it is a quotient of S'. Notice that
S!, the semigroup obtained by adjoining identity to S (see Equation (2.3)) is
always a faithful, cyclic [right, left] S-set.

Remark 2.9: Let M is a monoid with identity 1. A right M-set A = (X, ¢) is
also called an M-automaton (see Eilenberg [1974], Lallement [1979]). In this
case the set X is called the set of states of A and ¢ : X x M — X is called its
transition function. If ¢ : M — j is the representation determined by A, then
Im ¢ = $(M) is a sub-semigroup of Ix; (M) is called the transition monoid of
A. If X is a finite set, then A is called a finite state automaton. Concepts such
as sub-automaton, morphism of automata, etc., can be defined in the obvious
way.

2.6 IDEALS GREEN’S RELATIONS

Study of the structure the set ideals (both one-sided and two-sided) hasbeen an
important technique for analyzing the structure of various types of algebraic
systems. For semigroups this technique has proved to be of great importance.
Of particular importance are the classes of principal left and right ideals. These
are usually studied via certain equivalence relations induced by them on the
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semigroup. These relations were first introduced and studied by Green Green
[1951] and has shed considerable light on the local structure of semigroups in
general and the class of regular semigroups in particular. Here we shall study
these relations in terms of certain categories of principal left and right ideals.

2.6.1 Green’s relations

Let S be a semigroup. Recall from Subsection 2.5.2 (see also § Subsection 2.1.1)
that! C Sis aleftideal of S if and only if I is an S-subset of the left-regular S-set
5. In particular, for any a € S, L(a) is a cyclic S-subset of S; and is a quoitent of
the left S-set 5. Dual remarks hold for right ideals. I is a two-sided ideal of S
if and only if I is an S-subset of both S; and ;.

DeriniTiON 2.1. Let L(S) denote the subcategory of the category sSet of left
S-sets (cf.Subsection 2.5.1) for which vertices are:

oIL(S) = {L(a) : s € S}; (2.34)

and p € sSet(L(a), L(b)) is a morphism in IL(S) if and only if there is t € S' such
that

xp=xt forall xe€L(a). (2.35)

IL(S) is called, for brevity, the I-category of S. The r-category R(S) of S is defined
dually.

Thus L(S) is a clearly a subcategory of sSet. Therefore if p : L(a) — L(b)
is a morphism in L(S), it is a morphism in sSet. The converse may not be
true (see Example 2.8). Also if L(a) C L(b), ]EEZ; satisfies Equation (2.35) with
t = 1. Hence inclusions are moriphisms in LL(S). It is easy to verify that
this provides a choice of suboblects in LL(S) (see Subsection 1.3.2). Furtermore,
every morphism in IL(S) has unique factorization so that L(S) has images. Dual
remarks hold for R(S).

Remark 2.10:If I and | are left [right] ideals, any S-morphism (in the category
sSet) is a morphism of ideals. In particular, ifa € J, then p,|I [A,4][]is a morphism
of I to . However, if I and | are principal ideals, by a morphism 0 : I — |, we
shall mean a morphism in the category IL(S) [R(S)].

Since LL(S) has subobjects, vlL(S) is a partially ordered set which we denote
by As = A. Thus A is the partially ordered set of principal left ideals under
inclusion. Dually we denote by Is = I the paritally ordered set of principal
right ideals and we have bR(S) = .

IL(S):I-category of S
category!l-category of S
category!r-category of S
R(S):r-category of S



<u Sp S quasi-orders induced by
principal ideals

Green’s relations

L, R, H,9, J: Green’s relations

LR, H,9, Jlclass

La, Ra, Ha, Dy, Ja: equivalence class
of Green’s relations

92 2. SEMIGROUPS

DEeFINITION 2.2 (FUNDAMENTAL QUASI-ORDERS). The set of principal left and right
ideals of a semigroup S (§ Subsection 2.1.1) induce some fundamental relations
on S:

a<b < L) CL(b); (2.36a)
a<,b < R(a) CR(®D); (2.36b)
a<jb = J(a)CJb). (2.36¢)

These are quasi-orders (that is reflexive and transitive relations) on S (see §
Subsection 1.1.2) such that order ideals with respect to these are respectively
left, right and two-sided ideals.

We shall write <; (S), <, (S), etc., if it is necessary to indicate the semigroup
on which the relations are defined.

Recall (see § Subsection 1.1.2) that if p is a quasi-order on a set X, then
p N p~! is an equivalence relation on X. The quasi-orders above generate
certain equivalence relations on the semigroup S which are also of fundamental
importance.

DeriniTION 2.3 (GREEN'S RELATIONS). The following equivalence relations on a
semigroup S are called Green’s relations:

Z =<0 =1{(a,b) € Sx S : L) = Sta = L(b)}; (2.37a)
Z =<, (<) ={(a,b) € SxS:R(a) =aS' = RD)}; (2.37b)
H =L NZE (2.37¢)
D=L X (2.37d)
J =<;0(£)" ={(a,b) € SxS: J(a) = S'aS' = J(b)}. (2.37¢)

Again we shall use the notations .Z (S), Z (S), etc., to denote these rela-
tions in case it is necessary to specify the semigroup to which these relations
corresponds.

Ifa € S, thenthe L%, 5,2, J]-classofais denoted by L, [respectively,
Ri, Ha, Dy, Ja]. It may be noted that L,, R, and ], are generating sets of the
principal ideal L(a), R(a) and J(a) respectively. If (a,b) €%, then for any s € S},
L(as) = L(bs) and so, .Z is a right congruence. Similarly Z is a left congruence.
However, in general, 7 and _# are neither left nor right congruences. Recall
that v, in Equation (2.37d), denote the join of .Z and Z in the lattice &s of all
equivalence relations on S (Corollary 1.2). Since £C_# and #C_#, we have
LNV Z=9C ¢. ltis easy to see that Green’s relations satisfy the following
inclusions:

HCLCYC I, HCHRCIC I .

In general all these inclusions are proper (see examples at the end of this
section).
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The partially ordered sets of Green’s classes The quasiorder <; induces a par-
tial order on the quotient set S/ .Z defined by

L <L, & L@ CL®) forall L,L,eS/ & (2.38)

so that S/ .Z is order isomorphic with the partially ordered set As = A =
vlL(S) of all principal left ideals under inclusion (see § Subsection 2.1.1) and
Definition 2.1. In the following, we shall identify the partially ordered set
S/ & with Ag (or A). Similar remarks are valid for quasi-order <,; we will
identify partially ordered sets S/ Z# with Is = vR(S). Js denotes the partially
ordered set of j-classes (see Subsection 2.1.1).

It is clear that a semigroup S is simple [0-simple] if and only if it has only
one [non-zero] _#-class. Similar remarks hold for left simple semigroups,
right simple semigroups, etc. A semigroup having only one [non-zero] Z-
class is said to be [0-]bisimple. Since ZC ¢, a bisimple [0-bisimple] semigroup
is simple [0-simple]; but the converse is not true (see Example 2.13).

The following results are statements regarding categories L.(S) and R(S).
Therefore morphisms and/or isomorphisms considered are morphisms and/or
isomorphisms in L(S) or R(S). Snce these are left-right duals, the dual of
any result proved for one of them holds for the other. In particular % is the
left-right dual of .

Since principal ideals are cyclic S-sets, the following uniqueness property
holds for morphisms of principal ideals.

LemMmA 2.24. Let S be a semigroup and let a,b €. If p, 0 : L(a) — L(b) are morphisms
in IL(S) such that ap = ac, then p = o.

Proof. If ap = ao, for any u = sa € L(a) (s € S'), we have up = s(ap) = s(ao) =
(sa)o = uo. Therefore p = o. O

The following result exhibit certain connections between isomorphisms of
principal ideals (in L(S) or R(S)) and Green’s relations .# and Z.

TueOREM 2.25. Let S be a semigroup and p : L(a) — L(b) be an isomorphism of left
ideals. Then we have the following:

(a) Forany x € L(a), x Z xp.
(b) Forany x € L(a), p|Ly is a bijection of L, onto Ly,.
(c) Ifc=ap,thena % c £ b.

In particular, p|H, is a bijection of Hy onto Hy,.

semigroup!bisimple —
semigroup!0-bisimple —
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Proof. By the definition of isomorphisms there exists t, ' € S! such that xp = xt
for all x € L(a) and yp~! = yt' for all y € L(b). If y = xp, then this shows that
y € R(x) and so R(y) € R(x). Similarly, R(x) € R(y). Hence x % y = xp. This
proves (a) and the relation a % c in (c). Since p maps L(a) onto L(b), and since
Im p = L(c), we have L(c) = L(b) which implies ¢ .£ b proving (c). If x € L(a),
then L, C L(a) and since .Z is a right congruence, Lyp = Lyt C Lyt = Ly,. Thus p
maps L, into Ly,. Similarly p~ maps Ly, into L,. It follows that p is a bijection
of Ly onto Ly,. This proves (b). Finally, if u # x, then u 2 x which implies,
by (b), that up £ xp. Also, by (a), up Z u % x % xp and so up € xp. Asin
the proof of (b), it can be shown that p is a bijection of H, onto Hy,. O

TueOREM 2.26 (GREEN). Let a and b be elements of a semigroup S. Then a Z b if and
only if there is a unique isomorphism p : L(a) — L(b) such that ap = b.

Proof. Assume thata % b. Then R(a) = R(b) and so b € R(a). Hence b = at
for some t € S'. Similarly there is ' € S! witha = b’. Let p = ps|L(a) and
p’ = pr|L(b). Then p : L(a) — L(b) and p’ : L(b) — L(a) are morphisms in IL(S)
such that ap = b and bp’ = a. Then pp’ : L(a) — L(a) is a morphism with
app’ = a and so by Lemma 2.24, pp’ = 1. Similarly p’p = 11¢). Thus p is an
isomorphism. Uniqueness of p also follows from Lemma 2.24. Conversely, if
p : L(a) — L(b) is an isomorphism such that ap = b, then by Theorem 2.25(c),
aZb. O

Leta, x € S. Then, by the above,a Z axif and only if there is an isomorphism
o : L(a) — L(ax) with ao = ax and p,|L(a) is a morphism of left ideals L(a) to
L(ax). Hence, by Lemma 2.24, 0 = py|L(a). This remark is often useful and so
we state it as:

CoroLLaRry 2.27. Let a,x € S. Then a % ax if and only if 0 = py|L(a) is the unique
isomorphism of L(a) onto L(ax) such that ac = ax. O

If a, B are equivalence relations on a set X and if they commute, it is easy
to see that y = @ o § = ff o a is an equivalence relation. Since« C y and f C y,
aVy Cy. On the other hand, if p is any other equivalence relation with
a, B C p, then by the transitivity of p, y = a o C p . Hence

aof=Bfoa=aV}p.

We use these remarks in the following characterization of the Green's relation

2.

ProrosiTioN 2.28. Let 9 denote the relation defined by Equation (2.37d) on a semi-
group S. Then
D=L o R=FK o L .
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Proof. Let (a,b) € o %. Then, by the definition of composition (Equa-
tion (1.2)), for some c € S, a .Z ¢ # b and by Theorem 2.25, there is a unique
isomorphism o : L(a) = L(c) — L(b) such that coc = b. Letd = ao. Then by The-
orem 2.25(b),a # d and by (c),d £ b. Hencea % d £ band so (a,b) €Z o L.
Thus

L oRHK oL . Similarly, X o LCL oR

and so . and % are commuting equivalence relations on S. Hence
L oR=K o =L N A= .

by the remarks preceding the statement of the proposition and the definition of
2 (Equation (2.37d)). The last statement is now clear from Theorem 2.25. [

The following are some of the consequences of the Proposition above.

CoroLraRry 2.29. For a,b € S, the principal ideals L(a) and L(b) are isomorphic in
IL(S) ifand only ifa Z b.

Proof. If ¢ : L(a) — L(b) is an isomorphism, then by Theorem 2.25(a) and the
Proposition above, a & b. Conversely, if 2 Z b, then by the above, there
isc e Switha #Z ¢ £ b and by Theorem 2.26, there is an isomorphism
o : L(a) — L(c) = L(b) such thatao = c. O

Cororrary 2.30. Let L denote an Z~class and R, an Z-class of a semigroup S. Then
H = LNR # 0Qifand only if there is a D-class D with LUR € D. Moreover, if H # 0,
then H is a 7¢-class of S.

Proof. f LNR # 0, thenforanya € Landbe R, a ¥ c # dforanyce LNR.
Hencea Z b. Therefore LUR C D,. Converselyif LUR C D, thena Z b for any
a € Land b € R. Hence by Proposition 2.28, there is c witha £ ¢ # b so that
c € LN R. The last statement is a consequence of the definition of the relation
2 (Equation (2.37¢)). O

Cororrary 2.31. Let Hy and H be two 7#-classes contained in the same 9-class of
S. Then there is a bijection of Hy onto H,.

Proof. Let D be the Z-class such that Hy UH, € D and leta € Hy and b € H,.
Then a & b and so, by Proposition 2.28, a % ¢ £ b for some ¢ € D. By
Theorem 2.25 there exist an isomorphism o : L(a) — L(c) which is a bijection
of H, = Hy onto H,. Dually, there is an isomorphism A : R(c) — R(b) which is
a bijection of H, onto H,. Hence ¢ o A|H; is a bijection of H; onto Hj. O

CoRrOLLARY 2.32. Let L denote an Z~class and R, an %-class of a semigroup S. Then
the set product LR of L and R is contained in some P-class of S.
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Proof. Leta,a’ € L and b, b’ € R. Since .Z [#] is a right [left] congruence we
haveab £ a’b % a’b’. Hence by Proposition 2.28,ab & a'b’. O

Remark 2.11 (The “egg-box” picture of ~D-classes): Let Dbea Z-classin S. Since
ZC9, D is the union of all Z-classes intersecting D. Similarly, D is the union
of all Z-classes intersecting D. Let {R; : i € I} and {Ly : A € A} be the sets
of # and Z-classes contained in D. Then by Corollary 2.30, H;y = R;N L,
is not empty and so, is an .##-class for any (i, 1) € I x A. By Corollary 2.31
there is a bijection between any two of these J#’-classes. Therefore D is a
rectangular grid of #-classes H;, having I rows, the Z-classes contained in
D, and A columns, the .Z-classes in D, and such that each cell contains the same
number of elements. We may thus visualize Z-classes as “egg boxes” in which
each cell contain the same number of “eggs”. In the following, whenever we
refer to the egg-box picture of Z-classes, we shall assume that columns of the
egg-box represent £-classes and rows represent Z-classes. The semigroup S itself
may be viewed as a stalk of egg boxes placed one over the other with the box
containing 1 (if it exists) at the top and the a single box containing 0 alone at
the bottom.

Note that the fundamental quasiorders <, <, and <; (see Equations (2.36a)-
(2.36c)) and Green's relations (see Equations (2.37a)-(2.37d)) on a semigroup
S are defined in terms of the product in S. Therefore they are preserved under
homomorphisms. For example, ifa <; bin S then's = sb for some s € S'. Hence
if ¢ : S — T is a homomorphism, then a¢p = (s¢)(b¢p) and so app <; b inT. Ina
similar way it can be shown that ¢ preserves other relations also. This fact is
of constant use in the sequel and so we state it as:

Lemwma 2.33. Let ¢ : S — T be a homomorphism of a semigroup S into T. If a,b € S
are related by any one of the fundamental quasi-orders defined by Equations (2.36a)-
(2.36¢) or Green'’s relations defined by Equations (2.37a)—(2.37d), then a¢ and b are
related by the same relation in T. O

Even though homomorphisms preserve these relations, they do not reflect
them; that is, if ap and b¢ are related by, say £ in T, it is clear that a and b
may not be so related in S. It is not even true that if agp £ b¢p then they are so
related in the subsemigroup ¢(S) = Im ¢ of T (see Example 2.9).

We end this section with some counter examples and examples which
illustrate the computation of Green'’s relations on some important classes of
semigroups.

Example 2.8: Let S = X" over the set X and let u be a non-empty word. Then S = L(e)
where e is the empty word and L(u) = Su are objects in the category LL(S) amd the
mapping g : w — wu is a morphism of L(S) from S to Sw which is clearly injective.
Infact, it can be seen that the map g~ : Sw — S is a morohism od S-sets in the catehory
sSet; but there exists no t € S = S! such that g7! = p,|S. For, if it did, we must have
ut = 1 which is imposible in a free monoid if # # 1. Thus 7! is not a morphism in L(S).
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Example 2.9: Let S = (N, +). Itis clear that the quasi-orders <, <, and <; coincides with
the natural order on N and so all Greeen’s relations on S coincides with the identity
relation on N. It is clear that on any group G, all the fundamental quasiorders and
Green'’s relations coincides with the universal relation G x G. Therefore, even though
S = (N, +) is a subsemigroup of the additive group (Z, +) of integers, the fundamental
quasi-orders or the Green’s relations on S is not the restriction of the corresponding
relation on (Z, +) to S.

Example 2.10: Let S = % (cf. § Subsection 2.1.3 be the semigroup of transformations
of a set X. Recall Corollary 1.2 that Ex denote the lattice of all equivalence relations
on X and let P(X) denote the partially ordered set (under inclusion) of all non-empty
subsets of X. We say that Y € P(X) is a cross-section of m € Ex if each m-class contains
exactly one element of Y. If y, denote the unique element in Y N 7t(x), this implies that
the map n(x) = y, is a bijection of X/m onto Y. By Zorn’s lemma, every n € Ex has at
least one cross-section; it is also easy to see that for any Y € P(X), there is at least one
7t € Ex such that Y is a cross-section of 7.

For each f € S we can associate a subset Im f Equation (1.1b) of X an equivalence
relation 7y Equation (1.10a) such that |X/7t| = |Im f| (see Equation (1.10b)). Conversely
given m € Ex and Y € P(X) with |X/n| = Y], for any bijection ¢ : X/ — Y, the map
f= it o 1 is a transformation of X such that iy = mand Im f = Y. Given f € S, choose
7 € Ex such that Im f is a cross-section of 7w and let Y be a cross-section of 7¢. Then f|Y
is a bijection of Y onto Im f and so ¢ : 7t(x) — (f1Y)"'(y,), where y, denote the unique
element in Im f N 7(x), is a bijection of |X/7| onto Y. Hence by the remarks above,
f =" o1 is a transformation of X with n = mand Im f’ = Y. Moreover, for this f,

we have
fff=f and  fff=f.

This shows that the semigroup S = 9% is regular (see § Subsection 2.6.2 for definition
of regular semigroups). These Equations shows in particular that ff' : X — Y and
f'f : X = Im f are idempotents (so that ff'|Y = 1y and f' f|Im f = 1py ).

If g = sf fors € S! = S, then it is clear that Img Ce f. Suppose conversely that
ImgCImf. If f/: X - Y € Jxis constructed as in the paragraph above, then gf' f = g.
So g = sf where s = gf’. Hence

95 f & ImgCImf andby(2.37a), wehave g2 f < Img=Imf. (1)

Again, if g = ft with t € S, then 1, 2 ry. Conversely, if 7, 2 7¢, then any cross-section
Y of 715 contains a cross-section of g and so ff’g = g where f’ is constructed as above.
Then g = ft where t = f’g. Thus we have

g%, f & myCmn, henceby(237b), g% f — ny=m,. 2
By Equation (2.37c) and (1) and (2) above, we obtain
gH f & Img=Imf and mnf=m,. 3

If f 2 g, then by Proposition 2.28 f .2 h # g for some h € S. Hence by (1) and (2)
above, Im f = Imh and 7, = 7, and so,

|Im f| = |[Im k| = |X/m,| = |X/m,| = [Im g].

On the other hand, if | Im f| = [Im g|, we can find ¢ € S such that a = #[Im f is a bijection
of Im f onto Im g. Thenby (1), ft £ gand since ft = fa, f = 1y so that f Z ft. Hence
by Proposition 2.28, we have

99 f < |Img| =|Imf]. 4)

equivalence relation!cross-section of

regular
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If g <; f, then g = sft fors,t € S. Then t maps Im f onto Im g and so |[Im g| < |Im f]. If
f and g satisfies this condition, it is easy to see that for some ¢ € S, t maps Im f onto
|Im g and so, by (1), ft £ g; in particular, g <; ft. Also ft <, fand so g <; f. Thus

95 f & |Imyg| <|Imf]. )

Hence by (2.37e) and Equation (4), we have

I=9. (6)

We have noted above that the quasiorder <; induces a partial order on the quotient set
S/ £ which is order-isomorphic with the partially ordered set of principal left ideals
under inclusion. The Equation (1) above shows that S/ . is order isomorphic with
P(X). Similarly, it follows from Equation (2) that S/ Z is order isomorphic with Ex. If
Ly denote the unique -Z-class corresponding to Y € P(X) and R, denote the the unique
Z-class corresponding to 1t € Ex, then Ly N R, # 0 and hence an J#-class if and only if
thereis f € S with Im f = Y and 7y = 7; this is true if and only if |X/n| = |Y]. If we set

{(fimg=m Imf=Y} if|X/n|=[Y];
H.y = .
’ 0 otherwise.

then we have

S/ A= {Hyy : |X/n| = |Y]}.

By Equation (5), S/ _# is order isomorphic with the linearly ordered set of all cardinal
numbers «a < |X].

Example 2.11: Let S = .Z.7(V), (cf. § Subsection 2.1.3 the semigroup of all linear
transformations on a vector space V over some field k. Most of the arguments in the
last example carries over to this situation if we replace maps by appropriate linear
transformations. In this case, if f € S, Im f is a subspace of V and s is the coset
decomposition of V with respect to the null-space N(f) = {v € V : vf = 0}. Recall that,
for f € £7(V), Rank f = dim(Im f). We have the following description of Green’s
relationson S = Z.7 (V).

9< f & ImgCImf, g% f & Img=Imf; (1)
g f = N(f)SN(@), g#f = N(g)=N(f); @
g<jf < Rankg < Rank f, g ff = g2f. 3)

It follows from (1) above that, for the semigroup S = .Z.7(V), the partially ordered
set S/ .2 is order isomorphic with the lattice (V) of all subspaces of V and by (2),
S/ Z is dually isomorphic with B(V) (or isomorphic to B(V) with dual order— see §
Subsection 1.1.2). If for N, U € P(V), Ry the unique #-class corresponding to N and
Ly denote the unique .Z-class corresponding to U, then Ry N Ly # 0 if and only if
dimN + dim U = dim V; when N and U satisfy this condition, Ry N Ly = Hyy is an
-class of S consisting of all linear transformations with null space N and image U.
Again, using Equation (3), we can see that S/ _¢ is order isomorphic with the linearly
ordered set of all cardinal numbers @ < dim V.
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Example 2.12: Let S = (p,q : pq = 1) denote the bicyclic semigroup (see Example 2.7).
For any x = g"p™,y = q'p° € S, using Equations (c) and (e) in 2.7, we find that there is
t = g"p® € S with y = xt if and only if n < r; that is

qr° < q'p" & n<r and (P Zqp" & r=n. 1)
Similarly
gy < q'p" & m<s and qp° LY’ = s=m. 2)
It follows that every %-class of S is of the form
R, =Ry ={q"p’:s €N}, (3r)
for n € N and every .Z-class of S has the form

Lm = me = {qrpm ire N}, (31)

for m € N. It follows from (1) and (2) that S/ #={R, : n € N} and S/ = {L,, : m € N}
are both order isomorphic with N. Now for any n,m € N, by (1) and (2), we have
R, NL, = {g"p"}. Hence every J-class of S contain exactly one element. Also, this
shows that any %Z-class of S intersect any -Z-class. Therefore, by Corollary 2.30, any
two elements of S are Z-related. Hence S has exactly one Z-class (and so, one _# -class);
that is, S is bisimple.

Example 2.13: Let R* denote the set of all positive real numbers and A = R* x R*.
Define product in A by:

(a,b)(c,d) = (ac, bc + d). (@)
Ifa=(a,b),p=(d),y=I,f) €A, then, using (1), we compute

(aB)y = (ac,bec +d)(e, f) = (ace, (bc + d)e + f)
= (ace, bee + de + f) = (a, b)(ce, de + f)

= a(By).

Hence A is a semigroup. Given a = (a,b), = (c,d) € A, choose positive real numbers u
and v satisfying bu + v < d. Let x and y be solutions of Equations

c=xau, and d=yau+bu+o.

Then 0 = (x,y),7 = (u,v) € A and B = oat. This implies that § € J(a) and since
is arbitrary, we have J(a) = A. It follows that A does not contain any proper ideal.
Therefore A is simple. Now suppose that o Z f. If a # B, there exists 7,7’ € A such
that § = at and a = pt’. Then @ = att’. If a = (a,b) and 77" = (u,v), then we have
(a,b) = (a,b)(u,v) = (au,bu + v) and so u = 1 and v = 0. This implies that (1,v) ¢ A
which is a contradiction. Hence a = §; that is, Z= 14. Similarly, = 14 and so,
D=5 N %= 14. Therefore A is simple, but not bisimple; in particular, 2# _7.
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2.6.2 Regular Z-classes

Here we introduce the concept of regular elements and investigate the structure
of Y-classes containing regular elements. Most of the results are reformulation
of results due to A. H. Clifford and D. D. Miller (from Miller and Clifford
[1956]). The first result is of basic importance in the discussion of regularity
Clifford and Preston [1961], Miller and Clifford [1956].

TueoreM 2.34. Let a and b be elements of a semigroup S. Then ab € R, N Ly, if and
only if L, N Ry contains an idempotent.

Proof. Theresultstated canbeillustrated, using
the “egg-box picture” (see Remark 2.11), given
on the left.
¢ ab Suppose that ab € R, N Ly. Then by Corol-
lary 2.27 the map o = py|L(a) is an isomor-
phism of L(a) onto L(ab) = L(b). Since, by
Theorem 2.25, ¢ preserves .Z-classes, there is
a unique e € L, N Ry such that ec = eb = b.
Now ¢ € L(@) and ¢’c = e*h = eb = b.
Hence eo = ¢?0 and since o is an isomorphism,
€ b e = ¢?. Conversely, if there is an idempotent
ee€L,NRy, then b = et for some ¢ € S! and so
Fig. 1 eb = é*t = et = b. Hence, as above o = py|L(a) is
an isomorphism of L(a) onto L(b) and by Theo-
rem 2.25,ab =ao € R, N L. O

Remark 2.12: Theorem 2.34 is one of the few theorems in semigroup theory
that assert the existence of an idempotent. Since idempotents have strong
relation to the structure of important classes of semigroups such as regular
semigroups, finite semigroups, etc., we will find this an indispensable tool in
the sequel.

As a consequence of Theorem 2.34, we have the following characterization
of J#-classes that contain idempotents.

CoroLLARY 2.35. Let H be an -class of a semigroup S. Then there exists a,b € H
such that ab € H if and only if H contains an idempotent.

Proof. If there exista, b € H such thatab € H, then by Theorem 2.34, H contains
an idempotent. Conversely, if e = ¢ € H, then e, ¢,ee = ¢® € H. O

The following properties of idempotents are useful frequently and so, for
convenience of reference, we state them as:

LemwMma 2.36. For an idempotent e in a semigroup S, we have the following:
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(a) e is a right identity of every element in L(e) and hence right identity of every
element in L,. Further, L(e) = Se.

(b) e is a left identity of every element in R(e) and hence of every element in R,.
Further, R(e) = eS.

(c) eis a two-sided identity of every element in eSe and hence of every element in
H..

Proof. If a € L(e) = S'e, then a = se for some s € S! and so, ae = se? = se = a.

Since e = ¢? € Se, it follows that
Se C S'e=SeU {e} C Se.

This proves (a). Proof of (b) is dual and (c) is an immediate consequence of (a)
and (b). O

ProrosiTiON 2.37. Let e be an idempotent in a semigroup S. Then H, is a subgroup of
S and there are isomorphisms ¢ : H, — Aut[L(e)] and © : H, — Aut[R(e)] of H,
onto the group of automorphisms of L(e) and R(e) respectively. Moreover, maximal
subgroups of S are precisely those 7¢-classes that contain idempotents.

Proof. Since e is an idempotent in S, by Theorem 2.34, ab € H, for alla,b € H,
and so H, is a subsemigroup of S. By Lemma 2.36, ea = a for all a € H,. Hence
foranya € H,, 0, = p,|L(e) is the unique automorphism of L(e) such thateo, = a
by Corollary 2.27. If a,b € H,,

eo,0p = eab = eoyy

and by the uniqueness (Lemma 2.24), we have 6,0, = 0. Thuso :a — o, is a
homomorphism of H, into the group Aut[L(e)] of automorphisms of L(e) which
is injective by Lemma 2.24. If a € Aut[L(¢)], then a = ea € H, by Theorem 2.25
and, again by Lemma 2.24, « = 0,. Thus 0 : H, — Aut[L(¢)] is an isomorphism.
In particular H, is a group with identity e. Dually the map 7 : a = 7, = A4|R(e)
is an isomorphism of H, onto the group Aut[R(e)] of automorphisms of R(e).
Now suppose that G is a subgroup of S with identity e. Then clearly, e is

la=¢ein G

an idempotent in S. If a € G, equations ae = ea = g and aa™! = a~
implies that e 5# a and so G € H,. This proves that a subgroup G of S is a

maximal subgroup if and only if G = H, for some idempotent e of S. O

Anelementa € Sis said to be regular if thereis t € S! such thatata = a; in this
case t is called a generalized inverse of a. An element a’ € S is called a semigroup
inverse or simply an inverse if there is no ambiguity if 2’ is a generalized inverse
of a and vice versa; that is a and a’ satisfies the following:

ad’a=a and d'ad’ =a’; (2.39)

grouplsubgroup
grouplautomorphism —
regular
inverselgeneralized —
inverse
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a’ is called a group-inverse of a if
aa'a = a, ad'ad’ =a’ and d'a=ad. (2.40)

The set of all inverses of a is denoted by #{a). A semigroup S is said to be
regular if every element of S is regular.
If a is regular with generalized inverse ¢, and if a’ = tat then

a’aad’ = t(ata)tat = t(ata)t = tat = a’;

!4 — — —
aa’a = (ata)ta = ata = a. a

aa

Hence a’ = tat is an inverse of a. Moreover
e = aa’ is an idempotent such that ea = a and
so e # a. Similarly e . a’ and if f = a’a, then
a2 f % a'. These relations are shown in the
figure on the right. These imply thata 2 4’ and
so, /(a) C D,. Further, if a’ is a group inverse of
a(sothate = f), thenby theabove,a € H,and a’ aa a
is the inverse of a in the group H,. Conversely,
if a is an element of a maximal subgroup H, of Fig. 2
S, the inverse of 4 in the group H, is clearly a

group inverse as defined above.

For convenience of later reference, we summarize the discussion as:

Lemma 2.38. An element a in a semigroup S is reqular if and only if ¥(a) # 0. Further,
ifa’ € Na), then e = aa’ and f = a’a are idempotents such that

aReZLa ZfZLa.

In particular, ¥(a) C D,. Moreover, a’ € Ha) is a group inverse of a if and only if a
belongs to a maximal subgroup H, of S and a’ is the inverse of a in the group H,. O

We now characterize regular elements in terms of Green’s relations.

ProrosrTiON 2.39. For an element a in a semigroup S, the following statements are
equivalent:

(a) aisregular;
(b) L, contains an idempotent;
(c) R, contains an idempotent.
Further, if a is regular, every element in D, is also reqular.

Proof. The statement (a) implies (b) by Lemma 2.38. Conversely, if e is an
idempotent in L,, then e = sa for some s € S and asa = ae = a by Lemma 2.36.
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Thus statements (a) and (b) are equivalent. Dually, statements (a) and (c) are
equivalent. Also, the equivalence of (a) and (b) implies that, if one element of a
Z-class Lisregular, then every element of L is regular. Dually if one element of
an #-class R is regular, then every element of R is regular by the equivalence
of (a) and (c). Now if if a is regular and if b € D,, then by Corollary 2.30,
R,NLy # 0. Hence thereis csuch thata Z ¢ £ b. Since R, = R,, by the remarks
above, c is regular. Again, this implies that every element of L, = L; is regular
and so, b is regular. O

If D is a Z-class of a semigroup S, the result above shows that either every
element of D is regular or none of them are regular. We say that D is a regular
P-class of S if every element of D is regular.

The next result locates all inverses of a regular element. Recall from
Lemma 2.38 that every inverse a’ of a regular element a of S belongs to D,. In
the following, for any X C S, we write E(X) for the set of idempotents in X.

ProrositioN 2.40. Let a be a regular element of a
semigroup S and let a’ be an inverse of a. a aa’ e

(a) Foreverye e E(R,)and f € E(L,), fa’eisan
inverse of a in L, N Ry (see the figure on the

right).
(b) Ifa’ A a”,a',a” € Na) thena’ =a”. a'a a | ae
(c) Na)={fa’e:e € ERy), f € E(Ly)}. f o | fave
In particular, a € S has unique inverse if and only
if L, and R, contains exactly one idempotent each. Fig. 3

Proof. Since a’ is an inverse of a, by Lemma 2.38, aa’ and a’a are idempotents
such that 2 € Ryy N Ly, and a” € Ly N Ry,. Hence a’a € Ry N Ly and so
fa’ € Ry N Ly by Theorem 2.34. Similarly, aa” € Lsy N R, and so, again by
Theorem 2.34, fa'e € R¢y N L, = Ry N L. Further,

a(fa'e)a = (af)a’(ea) = aa’a = a;

(fa'e)a(fa’e) = fa'(eaf)a’e = f(a’'aa’)e = fa'e.

This proves (a) (see the egg-box diagram on the right).

To prove (b), suppose that 2’ and a” are s#-equivalent inverses of a. Then
aa’, aa”, a’a and a”a are idempotents such that aa’ ¢ aa” and a’a 7 a”a (by
Lemma 2.38). By Proposition 2.37, aa’ = aa” and a’a = a”a. Hence we have

a =da'aa’ =a"aa’ =a"aa” =a”.

regular!— 9-class
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Finally, Let X denote the set on the right of the equation in item (c). By (a),
X € Ha). If a” € ¥a), then by Lemma 2.38,

e=aa" €eR,NLy; f=a"ael,NRy.

Then by (a), fa'e is an inverse of a in L, N Ry = H,». Hence by (b), fa'e = a”
and so a” € X. The last statement is am immediate consequence of (c). O

Remark 2.13: The result above throws considerable light on the structure of the
set of inverses of a regular elements. An J#-class H}, contains a an inverse of
an element a if and only if s#-classes R, N L, and L, N R, contains idempotents.
If e and f are respectively these idempotents, one can calculate the unique
inverse in Hy in terms of any other inverse a’ of a as fa’e. It may be noted that,
in this case, a’, fa’, a’e and fa’e are all inverses of a (see the figure above). It
follows that there is a bijection (e, ) — fa’e of E(L;) X E(R,) onto #(a). We may
therefore visualize the set #(a) as a rectangular E(L,) X E(R,)-array of elements
in D,.

Recall that for any a € S, L, [R,, 4] is the set of generators of the principal
ideal L(a) [respectively R(a), J(a)]. Therefore L(a) has an idempotent generator
if and only if L, contains an idempotent. We have the following important
characterization of regular semigroups and their homomorphisms in terms
of Green’s relations and idempotents. Note that an idempotent is always a
regular element.

In the following, we denote by E(S) the set of all idempotents of the semi-
group S.

TueOREM 2.41. The following statements are equivalent for a semigroup S:

(a) Sis regular.
(b) Every principal left ideal has an idempotent generator.
(c) Every principal right ideal has an idempotent generator.

(d) For every PD-class D, E(D) # 0.

Moreover, if ¢ : S — T is a homomorphism of a regular semigroup S onto a semigroup
T, then T is regular and
E(S)¢ = E(T).

Proof. Equivalence of (a), (b) and (c) areimmediate consequences of statements
(a), (b) and (c) of Proposition 2.39. If (a) holds, then every Z-class D is regular
and hence by Lemma 2.38, E(D) # (0. Therefore (a) implies (d). If (d) holds, then
every 9-class contain idempotents and hence regular elements. Therefore, by
Proposition 2.39, (a) holds.
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To prove the last statement, let y = x¢ € T. If X’ € #(x), clearly, x'¢ € Hx¢)
and so y is a regular element of T. Hence T is regular. Also it is clear that
E(S) € E(T) and so, to complete the proof, it is sufficient to show that given
any ¢’ € E(T), there is an idempotent e € S with epp = ¢’. So, assume that
¢’ € E(T). Since ¢ is onto, there is x € S with x¢p = ¢’. Choose f € E(L,),
g€ ERy),a € Hfg)andlete = gaf. Then

¢ = ga(fg)af = gaf =e.

Now, by the choice of f and g, we have

ff=foZLxp=¢ Zgp=yg

and so, by Theorem 2.34, f’g" € L, NRy. Itis easy to verify that e’ is the inverse
of f'g" in Ly N Ry. Also, a¢ is an inverse of (fg)¢ = f'g’ and by statement
(a) of Proposition 2.40, g’(a¢)f’ is the inverse of f’g" in Ly N R,. Hence by
Proposition 2.40(b),

¢ = g @h)f = (gaf)p = e

Whence the proof is complete. O

The foregoing theorem is essentially due to Clifford and Miller Miller and
Clifford [1956]. The last assertion of the theorem implies that idempotents in
the homomorphic image of a regular semigroup are images of idempotents.
As far as we know, this important property of homomorphisms of regular
semigroups was first noted by Lallement Lallement [1967]

If T is a subsemigroup of a semigroup S, then it is clear that, if p denote
any one of the Green’s relations ., #, 7, 9 or 7, then

p(T) < p(5) N (T X T)

where p(S) denote the relation p on the semigroup S. In general these inclusions
are proper (see Example 2.14). However, we have following result due to Hall
Hall [1972].

CoROLLARY 2.42. Let T be a reqular subsemigroup of a semigroup S. Then
p(T) = p(S) N (T X T)
forp =%, % or F.
Proof. We shall varify the assertionfor p =.%. Leta . (S)b wherea, b € T. Since
T is regular, by Theorem 2.41, there are idempotentse, f € T withe .Z (T)a and

b2 (T)f. Then
e ZS)a LO)b L (S)f
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and so,e .Z (S) f. Hence by Lemma 2.36, ¢f = e and fe = f. This implies that
e Z(T)f. Hencea £ (T)b. O

Note that the statement of the Corollary above is not true for relations 7
and _Z (see Example 2.16).

Before ending this section, we give preliminary classification of regular
semigroups that illustrate the use of concepts and results developed in this
section. We consider two subclasses of the class of regular semigroups:orthodox
semigroups and inverse semigroups. These classes appread early in the de-
velopment of the theory of regular semigroups; many structure theorem that
exist to day (especially for regular semigroups) were modeled on theorems
developed for these semigroups. Moreover, they will provide a rich source of
examples in the sequel.

Orthodox semigroups A regular semigroup S is said to be orthodox if E(S) is
a subsemigroup of S. A semigroup in which every element is an idempotent
(or briefly, an idempotent semigroup) is called a band. Thus S is orthodox if
and only if E(S) is a band. As far as we know, the following characterization
of orthodox semigroups is due to Schein Schein [1966].

THEOREM 2.43. A regular semigroup S is orthodox if and only if it satisfies the following
condition: forall x,y € S

X' eNx), y €Ny = y'x € Nxy). (241)

Further, if ¢ : S — T is a homomorphism of an orthodox semigroup onto a semigroup
T, then T is orthodox.

Proof. Assume that S is orthodox. Letx,y € S, x" € #(x) and iy’ € #(y). Since S
is orthodox, (x'x)(yy’) and (yy’)(x’x) are idempotents. Using this we deduce

C(y'x")(xy) = x(yy ) (x'x)y
= x(x'x)(yy ) (') (yy )y
= x(x'x)(yy )y = (xx'x)(yy'y)
= xy

and similarly,
YY) = y' (yy ) ) (yy ) (¥ )’

= (y'yy")(x'xx’)
=y'x.
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Hence y'x" € #(xy). Conversely suppose that S satisfies the given condiyion
and let f,g € E(S). Then f € (f) and g € #(g) and so, by the given condition,
gf € !fg). Hence

f9 = (f9@Nf9) = (fo)(fg)

which shows that fg € E(S) so that S is orthodox.

Finally if ¢ : S — T is a homomorphism of the orthodox semigroup S
onto T, then by Theorem 2.41, T is regular and E(S)¢ = E(T). Since E(S) is a
subsemigroup of S,it follows that E(T) is a subsemigroup of T and hence T is
orthodox. O

Remark 2.14: Note that the condition stated in Equation (2.41) is the analogue
of the group-theoretic fact that
(wo)t=v !

for any two elements u and vina group G. The theorem above therefore implies
that this property does not hold in an arbitrary regular semigroup which is not
orthodox. However, we will show later in the next chapter (Chapter 3, ) that
there is a suitable interpretation of this condition which is valid for arbitrary
regular semigroups.

Note also that in a group the mapping u +— u~" is an involution of groups
(see Equation (2.9)). For arbitrary orthodox semigroups the relation

1

V={(x,x):x€S, x' € HNx)}

is not single valued. However, in the class of semigroups defdined below,
(inverse semigroup) this property also holds. Furthermore, the theorem above
implies that when S is othodox the set #is closed with respect to the product

XNy, y) = (xy, y'x’)

and 7is a semigroup.

Inverse semigroups A semigroup S is called an inverse semigroup if every
element in S has a unique inverse. In this case, 27! will usually denote the
unique inverse of 2 € 5. Note that an inverse semigroup is regular; in fact, by
the theorem below, it is orthodox. The theorem below also gives some useful
characterizations of inverse semigroups using Green’s relations. Recall that a
semilattice is a commutative semigroup of idempotents (see Subsection 1.1.3).

TuEOREM 2.44. The following conditions on a semigroup S are equivalent.

(1) S is regular and E(S) is a subsemilattice of S;

(2) Every principal left ideal and every principal right ideal has a unique idempotent
generator;

semigrouplinverse —
a~': unique inverse of a

ref?
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(3) S is an inverse semigroup.

When S is an inverse semigroup the map x +— x~* is an involution S.

Moreover, if ¢ : S — T is a homomorphism of an inverse semigroup S onto a
semigroup T, then T is an inverse semigroup.

Proof. (1) = (2). It is sufficient to show that every .#-class and every Z-class
contain exactly one idempotent. By Theorem 2.41, every .¥ [#] class contains
idempotents. Lete . f. Thenby Lemma2.36 and (1), wehavee = ef = fe = f.
Similarly, every %-class also contains exactly one idempotent.

(2) = (3). By Proposition 2.40, (2) implies that each element in S has exactly
one inverse (see Proposition 2.40). Hence S is an inverse semigroup.

(3) = (1). Since, by definition, inverse semigroups are regular, it is sufficient
to show that the set of idempotents is a commutative subsemigroup of S. Let
eand f be idempotents in S and a € #ef). If h = fae, then

(ef)h(ef) = (efHa(e*f) = (ef)alef) = ef; h(ef)h = f(a(ef)a)e = fae=h and
I = (fae)(fae) = f(a(ef)a)e = fae = h.

Hence h is an idempotent inverse of ef and so, h,ef € #(h). Therefore by
(3), h = ef. Hence ef is an idempotent. Similarly fe is also an idempotent.
Consequently,

(ef)(fe)(ef) = (ef)(ef) = ef and similarly, (fe)(ef)(fe) = fe.

Therefore fe,ef € #ef) and so, fe = ef by (3).
To show that the map 0 : x — x~!is an involution, consider x, y € S. Then,
using statement (1) above, we get

y T yy T =y ) (yy !
1.-1

=y (yy He ot =y

and

xyy ey = x(yy 0y
= x( 0y Ny = xy.

Therefore, the uniquiness of inverse implies that (xy)™! = y~!x™' and so 6 isan

involution.

Finally,if ¢ : S — Tis a surjective homomorphism of the inverse semigroup
S, then by Theorem 2.41, T is regular and E(S)¢ = E(T). This implies that, since
E(S)is acommutative subsemigroup of S, E(T) is a commutative subsemigroup
of T and so, T is inverse. O
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The following statement intutively mean that every Z-class has the same
length breadth; that is the number of #-class contained in a Z-class D is the
same as the number of .Z-class contained in D.

CoroLLARY 2.45. If D is a 9-class of an inverse semigroup, then there is a bijection O
of the set D/ 2 of all £-classes contained in D onto the set D/ such that the 7*class
L N ¢(L) contains an idempotent.

Proof. For each Z-class L, let e, denote the unique idempotent in L. Clearly
L — ¢y is a bijection of D/.Z onto E(D). Since each Z-class contain a unique
idempotent the map 6 defined by 6(L) = R,, is a bijection such that L N (L)
contains ey . O

Example 2.14: In the semigroup (N, +), the Z-relation is the identity relation and
the only regular Z-class is {0}. (N, +) is a subsemigroup of the group (Z, +) and all
Green'’s relations on (Z, +) is the universal relation (see Corollary 2.42). Similarly, for
the semigroup A of Example 2.13 each Z-class is singleton and has no regular Z-class.
However, if S is a semilattice, Z-classes are singletons, but every Z-class is regular.

Example 2.15: Let S = k. Let f € 5, U = Im f and 7 = 4. It follows from Example
2.10 that an inverse of f can be uniquely constructed from a cross-section Y of 7 and an
equivalence relation 7" having U as a cross-section. If I;; denote the set of equivalence
relations having U as a partition and A, denote the set of all cross-sections of 7, then
there is a bijection between A, X I;; and #(f). Note that there are bijections between I;
and E(Ly) and A, and E(Ry). Itis clear that if | X| > 1 and if f is not a bijection, then f has
more than one inverse. Similarly if S = 2.7 (V) and dim V' > 1, then any f € S which
is not invertible has more than one inverse; in fact there is a bijection between ()
and C(N) x C(U) where C(N) [C(U)] denote the set of all complements of the subspace
N =N(f) [U =1Im f].

Example 2.16: Let S = (p,q : pg = 1) be the bicyclic semigroup (see Examples 2.7 and
2.12). Each Z-class L,» contain exactly one idempotent 4"p" and each Z-class R »
contain exactly one idempotent 4"p". Hence S is an inverse semigroup (which is
bisimple—see Example 2.12). It can be seen that the unique inverse of 4"p" is g"p™.

Now, the set of idempotents E of S is a regular subsemigroup of S and the Z-relation
on E is the identity relation where as the Z-relation on S is the universal relation.

2.6.3 The Schiitzenberger group of an .77°-class

If H, is any J#-class of a semigroup S containing the idempotent ¢, then
by Proposition 2.37 H, is a group isomorphic with both the automorphism
groups Aut[L(e)] and Aut[R(e)] of L(e) and R(e) respectively. P. M. Schiitzen-
berger Schiitzenberger [1957] gave an appropriate extension of this result to
an arbitrary s#-class.

Here we give a different formulation of his result which exhibits its relation
with the ideal structure of the semigroup as well as its left-right symmetry.
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Note that since H C L, [H € R,] L(H) = L(a) [R(H) = R(a)] for any a € H.
Now elements 0 € Aut[L(H)] [t € Aut[R(H)]] are induced by inner right [left]
translations of S. Hence by Equation (2.33)

(tu)o = t(uo)
for all u € H. We use this remark in the proof below.
ProrosiTiON 2.46. For any 7¢-class H in the semigroup S, there is a isomorphism
¢ : Aut[L(H)] — Aut[R(H)].

In particular, if H contains an idempotent e, then we can choose the isomorphism ¢
so that the following diagram commute:

H

o T

Aut{L(H)] Aut{R(H)]

Here ¢ and 1 denote isomorphisms defined in Proposition 2.37.

Proof. Fix a € H. For each ¢ € Aut[L(H)], by Theorem 2.25, a¢ € H, and by the
dual of Lemma 2.24 and Theorem 2.26, there is a unique t € Aut[R(H)] such
that ta = ao. For each ¢ € Aut[L(H)], let

¢(0) =1, where 7 € Aut[R(H)] with 7a = ao.

This defines a mapping ¢ of Aut[L(H)] to Aut[R(H)]. By Lemma 2.24,
Theorem 2.26 and their duals, ¢ is a bijection. If 01,0, € Aut[L(H)], by the
definition of ¢, we have

¢(0102)a = aoy02 = (ac1)o2
= (¢(0)a)az = ¢(01)(a02)
= §(01) (P(02)a)
= ¢(01)Pp(02)a.

Since ¢(o102) and ¢(o1)P(02) are morphisms of principal right ideals, this
implies by the dual of Lemma 2.24 that ¢(0102) = ¢(01)p(02). Hence ¢ is an
isomorphism.

To prove the last statement, let ¢ be the isomorphism determined by the
condition ¢(c)e = ec where e € H is the idempotent. Then using the defi-
nition of isomorphisms o : a = 0, = psL(H) and 7 : a = 7, = A,R(H) in
Proposition 2.37, we have

((aa)¢) e=q(oa)e =eo, =a=(1,)e
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Hence

acp =1, =atr forall ae€H.
This proves that the given diagram commutes. O

Note that the isomorphism ¢ : Aut[L(H)] — Aut[R(H)] constructed above
depends on a2 and so is not “natural” as isomorphism of the corresponding au-
tomorphism groups. However we can associate an abstract group g(H) which
is isomorphic to both Aut[L(H)] and Aut[R(H)]. It is clear that the group g(H)
does not depend on the element a used in the definition of ¢» and only on the
#-class H. The group g(H) is called the Schiitzenberger group of the .7#-class
H.

Let G be a group acting on the set X. We say that the action (or the G-set)
is [simply] transitive if given (a,b) € X X X there is [a unique] g € G such that
ag = b. Note that the G-set X is transitive if and only if it is cyclic (this does not
hold if G is not a group). Now, by Theorem 2.25, 0|H is a permutation of H for
any o € Aut[L(H)]. Thus Aut[L(H)] acts on H on the right. By Lemma 2.24 and
Theorem 2.26, the action is faithful and simply transitive. It follows that the
corresponding representation of Aut[L(H)] is an injective homomorphism of
Aut[L(H)] into the symmetric group S(H) of all permutations of H and hence,
an isomorphism of Aut[L(H)] onto a simply transitive permutation group
I'(H) which clearly depend depend only on the #-class H. Consequently, by
the definition above, g(H) is isomorphic to the permutation group I'(H) of H.
When H contains an idempotent, by Proposition 2.37, there is the isomorphism
o : H —» Aut[L(H)] which induces an isomorphism a + ¢,|H of H onto I'(H).
It is easy to see that this isomorphism is in fact the right regular (or Keyley’s)
representation of H. Thus, when H is a group, I'(H) is the image of the right
regular representation of H. Similarly Aut[R(H)] acts simply transitively on
the left on H and so it is isomorphic to a subgroup of S(H)°P. Since Aut[R(H)] is
a group of automorphisms of the right S-set R(H), it acts on the left of R(H) and
hence on H. By lemma 2.24 the map a — « | H is an embedding of the group
Aut[R(H)] into S(H)°P. Thus Aut[R(H)] is isomorphic to a permutation group
acting on the left of H. This group is then anti-isomorphic to a permutation
group I"(H) € S(H) which is faithful and simply transitive. The groups I'(H)
and I'"(H) are callef the right Schiitzenberger group and left Schiitzenberger group of
the s#-class H respectively. As above, when H is a group, I'*(H) is the image
of the left regular representation of H. Consequently the group g(H) acts on
H both on the right and the left and these actions are faithful and simply
transitive. We summarize the discussion as:

9(H): Schiitzenberger group of H
Schiitzenberger group
group!Schiitzenberger —
action!simply transitive —
group!Schiitzenberger —Iright
group!Schiitzenberger —!left



S): symmetric group of degree a
Gly(k): general linear group of
degree o
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TueEOREM 2.47. Let H be an -class of a semigroup S. Then there exists a group
g(H), called the Schiitzenberger group of H, satisfying the following:

(a) g(H) is isomorphic to both Aut[L(H)] and Aut[R(H)].

(b) There exist simply transitive permutation groups I'(H) and I'*(H) acting on H
such that g(H) is isomorphic to I'(H) and anti-isomorphic to I'*(H).

If H contains an idempotent, then H is isomorphic to g(H) and I'(H) [T*(H)] is the
image of the right [left] reqular representation of H. O

The result above shows that we can associate a group, the Schiitzenberger
group g(H) with every .7#-class H in such a way that it is isomorphic to H when
His a group. Since g(H) is isomorphic to Aut[L(a)] for any a € H, it is clear that
g(H) is isomorphic to g(H’) if L(H) and L(H’) are isomorphic (or dually, if R(H)
and R(H’) are isomorphic). By Corollary 2.29 L(H) and L(H’) are isomorphic if
H and H’ are J#-classes contained in the same Z-class. Hence we have:

CoroLLARY 2.48. If H and H' are 7¢-classes contained in the same 9-class of S, then
g(H) and g(H’) are isomorphic. O

Example 2.17: Let a be a cardinal number. By the symmetric group of degree o, denoted
by S,, we shall mean the group isomorphic to the group S(U) of all permutations of a
set U with |U| = a. By Example 2.10, there is a bijection a — D, of the set of all cardinal
numbers o < |X]| and the set S/ Z of all Z-classes x. It follows from Example 2.10 that
for a < |X|, an s#-class H of the 2-class D, has the form

H=H,y={f:ng=m,Imf =Y} where [X/n|=]Y|=a}l.

If e is any idempotent with 7, = 77, then e Z f forany f € H. Also, if U = Ime, then itis
easy to verify that the map f — f|U is an isomorphism of H, onto S(U). It follows from
Theorem 2.47 and Corollary 2.48 that the Schiitzenberger group g(H) of H is isomorphic
to S,.

Example 2.18: Let V be a vector space over the field k and let « be a cardinal with
a < dimV. We denote by Gl,(k), the group GI(U) of all linear isomorphisms of a
subspace U of V with dim U = «; Gl, (k) is called the general linear group of degree ar. Let
S = Z.7(V) be the semigroup of all linear endomorphisms of V (see Example 2.11).
Any s#-class in S has the form (Example 2.15)

H(N,U)={f€S:N(f)=N,Im f = U} with dimN +dimU =dim V.

If U’ is any complement of N, then it is easy to see that the map f — f|U is an
isomorphism of H(N, U") onto GI(UI'). It follows from Corollary 2.48 that g (H(N, U)) is
isomorphic to Gl (k). Thus if f € S with Rank f = «, then g(Hy) is isomorphic to Gl (k).

Example 2.19: If S = (p,q;pq = 1) is the bicyclic semigroup (see Examples 2.7 and
2.12) then every .#-class in S contain only one element and so the Schiitzenberger of
every J¢-class in S is trivial. Similarly, Schiitzenberger group of every .7 -class of the
semigroup A of Example 2.13 is also trivial.
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Example 2.20: Let H be an .7/-class of a semigroup S and a € H. For each b € H,
Lemma 2.24 and Theorem 2.26, there is a unique automorphism o, € Aut[L(H)] such
that ao, = b and by Theorem 2.25, 0; = 0,|H is a permutation of H belonging to I'(H).
Since the action of I'(H) on H is simply transitive, the map ¢* : b - 0 is a bijection of
H onto I'(H). It is therefore clear that

bc = aojo;,

defines a binary operation on H with respect to which H becomes a group with identity
a. Further, the map ¢" : b — o is the right regular representation of the group H. In
particular, if 2 = e is an idempotent, the binary operation of H defined above, coincides
with the binary operation of the maximal subgroup H, = H and ¢* coincides with the
isomorphism induced by the isomorphism of Proposition 2.37.

2.7 SIMPLE AND (0-SIMPLE SEMIGROUPS

2.7.1 Minimal and O-minimal ideals

Recall § Subsection 2.1.1 that a left [right,two-sided] ideal L in a semigroup S
is a minimal if L is minimal in the lattice £J [respectively 7T, Js]. If S has 0, the
left [right or two-sided] ideal L is 0-minimal (§ Subsection 2.1.1) if L satisfies
the following:

(i) L #0;and
(if) if L’ # Ois an ideal of the same typeas Lin Swith L’ C L, then L’ = L.

Remark 2.15:If S is a semigroup with out 0, then any ideal (of any type) [ in S
corresponds to the non-zero ideal I° = TU{0} of the same t ype in the semigroup
S and the correspondence I — I° is an inclusion preserving bijection of the
set of all left [right, two-sided] ideals of S onto to the set of all non-zero ideals
of the same type in S°. Therefore from any result about non-zero ideals (of
some type) in a semigroup with 0, one can derive a result about ideals (of
the same type) in a semigroup with out 0. In the following such results will
not be stated explicitly unless there is some strengthening in case of ideal in
a semigroup with out 0 or emphasis is desired. It should be noted that the
reverse derivation of results about non-zero ideals in semigroups with 0 from
results about ideals in semigroups with out 0 may not always possible.

Note that if I is 0-minimal ideal of any type, then either I = 0 or I? = I. For
if I # 0, then I? is a non-zero ideal of the same type as I, contained in I and so
I? = I by the 0-minimality of I. Thus we have

Lemma 2.49. Let I be a [left,right or two-sided] 0-minimal ideal of a semigroup with
0. Then either I* =0 or I* = L. a

The following result gives the structure of left [right, two-sided] 0-minimal
ideals in terms of the corresponding Green's relations.

ideal!minimal
ideal!0-minimal
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Lemma 2.50. Let L [R, ]] be a left [right, two-sided] ideal in a semigroup S. Then L
[R, ]I is O-minimal if and only if L = L, U {0} [R = R, U {0}, | = J, U {0}] for all
aeL—{0}[aeR—{0},ae]—{0}]. Further L [R, ]J]is minimal if and only if L = L,
[R=R, J=JdforallacLlacR ac]l

Proof. We prove the result for leftideals. Proofs for the other cases are obtained
by appropriate modification of this.

Suppose that L = L, U{0} where L, is the -Z-class of S of a non-zero element
ae L. If L’ C Lis any non-zero left ideal and if is b # 0 in L’ thena .Z b and so,
L,=LbC L' Since0 € L', we have L C L’. Thus L is O-minimal.

Conversely assume that L is 0-minimal. If for some a € L — {0} Sa = 0 then
L” = {0,a} is a non-zero left ideal in S contained in L and by the 0-minimality
of L, L =L'. Hence L, = {a} and so, L = L, U {0}. Suppose now that Sa # 0 for
any non-zero a € L. Since Sa is a left ideal contained in L, we have Sa = L for
alla € L —{0}. Hencea € Sa and so, L = Sa = S'a = L(a) for all a € L — {0}.
By Equation (2.37a) (the definition of .# relation) it follows that the set of all
non-zero elements of L is a .#-class in S.

In view of Remark 2.15, the statement about minimal ideals follow from
that of 0-minimal ideals. O

LemMa 2.51. Let S be a semigroup with 0 and let I be an ideal in S such that I # 0.
Then 1 is O-minimal if and only if lal = 1 for all a € [ witha # 0.

Anideal I is minimal if and only if Ial = I for all a € 1. Moreover if S has a minimal
ideal 1, then it is the minimum ideal in the partially ordered set of all non-empty ideals
and hence unique.

Proof. Let I be a 0-minimal ideal in S with I? # 0. By Lemma 2.49, I* = I. Let
J={xe€l:IxI =0}. Then Jis anideal in S and so, either | = 0 or | = I by
the 0-minimality of I. If ] = I, then IxI = 0 for all x € [ and so I° = 0. But
B =1I=1I=I>=1 Since I is 0-minimal, I # 0 and so I®> # 0. Hence | = I is
not possible. Thus | = 0 which implies that IxI # 0 for any x € [ with x # 0.
Since IxI is an ideal contained in I, by 0-minimality of I, we have I = IxI for all
x € I with x # 0. Conversely, assume that I is an ideal in S satisfying the given
conditions. Since I? # 0, we have I # 0. Let | # 0 be an ideal contained in I
and 0 # x € J. Since | is an ideal, we have

I=IxICS'%S' ]

which implies that | = I. Thus [ is 0-minimal.

If I is minimal and x € I, then IxI = I as above. Conversely if I satisfies
this condition and if | is any ideal in S, then for any x € I N J, we have
I =1IxI € S'xS' C J. Thus I is minimum. O
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Examples can be constructed to show that there may exist 0-minimal ideals
I with I? = 0; however, this condition is not sufficient to ensure 0-minimality.
For if S is any null semigroup (that is, if S is a non-empty semigroup with 0
such that S? = 0). If Y is any subset of S containing 0, then is an ideal in S such
that Y2 = 0. If Y contains more than one non-zero element, then Y is clearly
not 0-minimal.

Note also that a minimal ideal is minimum and hence unique. The unique
minimal ideal of a semigroup S is called the kernel of S. We shall denote by
K(S) the kernel of S when it exists.

It should also be noted that there is no uniqueness for minimal left or right
ideals (see Example 2.21 below) and for 0-minimal ideals of any type (see
Example 2.22 below).

Notice the difference in the corresponding characterization of one-sided
0-minimal ideals below. The analogue of the condition Ial = I for one sided
ideals should have been Ia = I for left ideal and al = I for right ideals. In
fact the corresponding statements for left and right ideals are not true for 0-
minimal ideals(see Example 2.23). In fact the condition for left [right] ideal is
sufficient but not necessary (see also Corollary 2.58). However, these are both
necessary and sufficient for minimality.

Most of the results that follows (about one-sided ideals) are stated for left

ideals; the corresponding results for right ideals follow by duality.

Lemma 2.52. Let L be a left ideal in a semigroup S such that L> # 0. Then L is
0-minimal if and only if Sa = L for all a € L with a # 0.
A left ideal L in S is minimal if and only if La = L forall a € L.

Proof. Suppose that L is 0-minimal and that a € L — {0}. Then Sa is a left ideal
contained in L and so, by 0-minimality of L, either Sa = L or Sa = 0. If Sa = 0,
then L’ = {0, a} is a non-zero left ideal contained in L and so, L’ = L. But then
L2 = 0, a contradiction. Hence Sa = L foralla # 0 € L. Conversely, assume
that L satisfies the condition Sa = L for alla # 0 € L. Let L be any non-zero left
ideal contained in L. Choose a € L witha # 0. Then L = Sa C S'a C L since L is
a left ideal. Hence L = L.

If L is any left ideal and a € L, then aL is clearly a left ideal contained in L
and so aL = L if L is minimal. Conversely if L satisfies the given condition and
if L’ C L is any left ideal, then L = La € §* C L’ for some a € L’. Hence L is
minimal. O

Recall from § Subsection 2.1.1 that for any X C S, X* denote the set product
of X with itself.

semigroup!kernel
K(S): kernel of the semigroup S
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A semigroup S is said to be [left, right, two-sided]simple if S is the only [left,
right, two-sided] ideal of S. If S has 0, then S is said to be [left,right, two-sided]
0-simple if

(1) S? #0;and
(2) if ] is any ideal [left ideal, right ideal] of S then either | =0 or | = S.

Note that a semigroup S is simple if and only if the semigroup S° obtained by
adjoining 0 to S is 0-simple. Note that condition (2) ‘nearly” implies condition
(1).For, we have

LemMma 2.53. Let S be a semigroup with 0 such that S # 0. If S has no non-zero proper
[left, right, two-sided] ideal, then S is either [left, right, two-sided] O-simple or S is a
semigroup of order two.

Proof. We shall consider the case of left ideals. The proof for others are similar.
So, assume that S has no proper non-zero left ideal. Then 52 is left ideal in S
and so, either $%2 = S or §? = 0. In the first case, since S # 0, S2 # 0 and hence S
is left 0-simple. If S? = 0, then for any proper non-empty subset X of S, X U {0}
is a proper non-zero left ideal of S. This is not possible by hypothesis. Hence
S — {0} contains exactly one element. O

An alternate characterization of 0-simplicity follows as a Corollary to
Lemma 2.51.

CoroLLARy 2.54. A semigroup S is O-simple if and only if S # 0 and SaS = S for all
0#£a€s.

Proof. 1f S is O-simple, S is a 0-minimal ideal and so, by Lemma 2.51, SaS = S
for all a € S with a # 0. Conversely, if S # 0 and SaS = Sforall 0 # a € S,
then for some a € S with a # 0, we have S = SaS C S? and so, S? # 0. The
0-simplicity of S now follows from the O-minimality of the ideal S which is a
consequence of Lemma 2.51. O

Combining the Corollary above with Lemma 2.51, we obtain
COoROLLARY 2.55. Let I be an ideal in S with I* # 0. Then I is O-minimal in S if and
only if the semigroup 1 is O-simple. I is minimal if and only if I is simple. Thus if S

has kernel, then it is a simple subsemigroup of S O

LemMa 2.56. A semigroup S with 0 is left 0-simple if and only if S # 0 and the set
T ={a €S :a+0}isaleft simple subsemigroup of S.
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Proof. Assume that S # 0 and that T is a left simple subsemigroup of S. Then
T? = Tand so S = T> U {0} = S. Hence S* # 0. If L is any non-zero left ideal
idealin S, then L’ = L—{0} = LN Tis anidealin T and so L’ = T which implies
that L = S. Thus S is left 0-simple.

Conversely assume that S is left 0-simple. Suppose thata, b € T and ab = 0.
Then L ={s € S :sa =0}is aleftideal and b € L so that L # 0. Since S is left
0-simple, L = S. But this implies that L’ = {0, a} is a non-zero left ideal in S and
so, S = L'. Then $? = {0,4%} = 0 which contradicts the hypothesis that S is left
0-simple. Therefore T is a subsemigroup of S. If L is any left ideal in T, then
L U {0} is a non-zero left ideal in S and so S = L U {0} which implies that L = T.
Hence T is left simple. O

The result above shows that there is no essential difference between the
theory of left [right] simple and right 0-simple semigroups in the sense that
a right 0-simple semigroup can always be obtained by adjoining a 0 to a left
simple semigroup or a left simple semigroup can be obtained by removing
the 0 from a right 0-simple semigroup. Thus from any result about left simple
semigroups we can obtain a corresponding result about left 0-simple semi-
groups and vice-versa. However, the situation is entirely different for simple
and 0-simple semigroups. For example, a 0-simple semigroup may contain
zero-divisors; that is there are elements a # 0, b # 0 such that ab = 0 so that the
set of non-zero elements does not form a subsemigroup. Thus the theory of
0-simple semigroups is quite different from that of simple semigroups.

CoroLLARY 2.57. A semigroup S is left 0-simple if and only if Sa = S foralla € S—{0}.

Proof. Let S be left simple. Then by Lemma 2.56, S = T U {0} where T is a left
simple subsemigroup of S. If a € Sand a # 0, thena € T and by Corollary 2.54,
Ta =T. Hence Sa = TaU {0} = T U {0} = S> Conversely assume that Sa = S
foralla € S witha # 0. Let L be a non-zero leftidealin S. If 0 # a € L, then
S =Sa C L(a) C Lsince L is a left ideal. Hence L = S and so, S is O-simple. [

Corollary 2.55 gives a characterization of 0-minimality of two-sided ideals
in terms of 0-simplicity of semigroups. There is no analogous characterization
of 0-minimality of one-sided ideals. However, we have the following;:

CoroLLARY 2.58. Let L be a left ideal in a semigroup S. If L is a left 0-simple
subsemigroup of S, then L is O-minimal and L is a left simple subsemigroup if and
only if L is minimal in S.

Proof. Suppose that L is left O-simple. By Corollary 2.57, La = L foralla € L,
a # 0. Let L’ be a non-zero left ideal of S contained in L. Then L’ is clearly a

zero-divisors
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non-zero left ideal of the semigroup L and by 0-simplicity of L, L’ = L. Thus L
is left 0-minimal.

If L is a left simple subsemigroup of S, it follows from Lemma 2.56 and the
proof above that L is minimal. Conversely, if L is minimal and if L’ C L is a
left ideal in L, then for any a € L’, La is a left ideals of S contained in L and so
La = L. Since La is clearly a left ideal in L contained in L', we have L = La C L.
Hence L is minimal. O

Example 2.23 shows that a 0-minimal left ideal L satisfying the condition
L* # 0 may not satisfy the condition that La = L for alla # 0 € L and hence L
may not be 0-simple.

Lemma 2.59. Let I be a 0-minimal ideal of a semigroup S with 0 such that I> # 0. If L
is any non-zero left ideal contained in I, then L2 # 0.

Proof. Since LS is an ideal contained in I, by 0-simplicity of I, either LS = 0 or
LS =1. If LS = 0, then L is a non-zero ideal contained in [ and so L = I and
I? = LI C LS = 0 which contradicts the hypothesis that I* # 0. Hence LS = L.
Since I* = [ by Lemma 2.49, we have I = > C LSLS C L?S which shows that
L* #0. O

Lemma 2.60. Let L be a 0-minimal left ideal of a semigroup S with 0 and x € S. Then
either Lx = 0 or Lx is a O-minimal left ideal of S. If L is a minimal left ideal of S, then
Lx is a minimal left ideal for all x € S.

Proof. By Lemma 2.50, L = L, U {0} for any non-zeroa € L. Assume that Lx # 0.
Then there is a € L — {0} such that ax # 0. If bx = 0 for some b € L — {0}, since
b % a,a = sbforsomes € S and so, ax = sbx = 0 which contradicts the choice
of a. Hence ax # 0 for any a € L — {0}. It follows that L,y = L,x is precisely
the set of all non-zero elements of Lx which is clearly a left ideal of S. Hence
Lx = L, U {0} and so by Lemma 2.50, Lx is a 0-minimal left ideal.

If L is minimal in S, L° = L U {0} is 0 minimal in S°. Since Lx # 0 for any
x € S, it follows from above that L%x = Lx U {0} is 0-minimal in S° and hence Lx
is minimal in S. [l

TueorEM 2.61. Let M be a 0-minimal ideal in a semigroup containing at least one
0-minimal left ideal of S. Then M is the union of all 0-minimal left ideals contained
in M. Moreover, if M? # 0, then every left ideal of the semigroup M is also a left ideal

of S.

Proof. Let My be the union of all 0-minimal left ideals contained in M. Then
M is clearly a left ideal of S contained in M which, by hypothesis, is non-zero.
Let L be a 0-minimal left ideal contained in M and x € S. Then Lx C Mx € M.
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By Lemma 2.60, either Lx = 0 or Lx is a 0-minimal left ideal of S; in either case,
Lx C My. It follows that M is a non-zero ideal contained in M and so, My = M
by the 0-minimality of M.

Now suppose that M? # 0. Then by Corollary 2.55, M is a 0-simple sub-
semigroup of S. Let K € M be a non-zero left ideal of M. Ifa € K, a # 0,
then by the above there exists a 0-minimal left ideal L of S witha € L € M.
By Lemma 2.51, MaM = M and so Ma # 0. Since M is an ideal in S, Ma
is a left ideal in S and Ma C L. Hence, by the 0-minimality of L, we have
Ma = L; in particular, a € Ma. Clearly Ma is a left ideal in M and so, Ma C K.
Hence K = U{Ma : a € K}. Thus K is a union of left ideals in S and so K itself
is a left ideal in S (since the lattice of all left ideals in S is complete—see §
Subsection 2.1.1). O

For a semigroup S we use the notation
E(S)=leeS:eé* =e¢); (2.42)
the set of all idempotents in E. In E(S) define the relation
ewf & ef =fe=e. (2.43)

It is easy to verify that when E(S) # 0, this defines a partial order on E(S). In
the following (in this chapter) E(S) will denote this partially ordered set. (Later
in Chapter III, we will define additional properties of E(S).)

Let S be a semigroup with 0. We shall say that e € E(S) is a primitive if for
any f € E(S) — {0}, f w e implies f = e; that is, e is minimal in the partially
ordered set of all non-zero idempotent in S. In a semigroup S with out 0, by a
primitive idempotent, we shall mean an idempotent which is minimal in E(S)

THEOREM 2.62. Let M be a O-minimal ideal in a semigroup with 0. Then the following
statements are equivalent.

(a) M? # 0 and M contains at least one 0-minimal left ideal and at least one
0-minimal right ideal.

(b) M contains a primitive idempotent.

When M satisfies these equivalent conditions, M is a 0-bisimple and reqular subsemi-
group of S (see § Subsection 2.6.1) and every non-zero idempotent in M is primitive.

Proof. Suppose that (a) holds. Leta, b € M —{0} such thatab # 0; such elements
exist since M? # 0. By Theorem 2.61, there is a 0-minimal right ideal R such
that 2 € R. Then ab € R and since ab # 0, by Lemma 2.50, @ % ab. Dually
b £ ab. Hence by Theorem 2.44, L, N Ry, contains an idempotent.

E(S):set of idempotents of S
primitive
primitive! — idempotent
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We now show that any non-zero idempotent e in M is primitive. Let
f € ES)with f w eand f # 0. Then f = ef € eS. By Theorem 2.61, eS is a
0-minimal right ideal and hence Lemma 2.50, ¢ % f. So, by Lemma 2.36(b),
e = fe = f. Hence e is primitive. This shows that (a) implies (b).

Now assume (b). Let ¢ be a primitive idempotent in M. Then e € M? and
so, M?> # 0. Let L = Se. Since e € Se, L = S'e = L(e). Let L’ be a non-zero left
ideal contained in L and a € L’ — {0}. Then by Lemma 2.51, MaM = M and so
thereiss’,t’ € Mwithe =s’at’. Lets = es’ and t = et’e. Then

e=sat, satsa =esa=as, tsat=1te==t.
Hence sa € #(t) and by Lemma 2.38, f = tsa is an idempotent. Also we have

ef = (et)sa = tsa = f, fe=ts(ae) =tsa =t;

and e =¢* = sa(tsa)t = saft.

It follows that f < e and f # 0. Since e is primitive, we have ¢ = f € Sa.
Therefore L = Se = Sa C L’. This proves that L = Se is a 0-minimal left ideal.
Dually R = ¢S is a 0-minimal right ideal. Thus (b) implies (a).

Suppose that M satisfies (a) and (b) and a,b € M — {0}. Then by (a) and
Lemma 2.51, MaM = M and so, b = sat for s,t € M. Since b # 0, sa,at € M — {0}
and so, by Lemma 2.50, 2 .Z sa and a % at. Thena &% at £ sat = b and
so, a 9 b. Hence M — {0} is a ZY-class of S and contains an idempotent by
(b). Therefore by Proposition 2.39, every non-zero element, and hence every
element in M is regular. We have already shown that any non-zero idempotent
in M is primitive. O

A semigroup may have kernel (minimal ideal) but may not have minimal
left or right ideals (see Example 2.24). The following result for minimal ideals
(kernels) due to Clifford Clifford [1948] which corresponds to Theorems 2.61
and 2.62 above for 0-minimal ideals, shows that if a semigroup has minimal
right or left ideal, then it has kernel.

THEOREM 2.63. For a semigroup S, we have the following:

(a) Suppose that S has at least one minimal left ideal. Then the union K of all
minimal left ideals of S is the kernel of S and minimal left ideals of S are
Z-classes contained in K.

(b) Suppose that S has at least one minimal left ideal and at least one minimal right
ideal. Then K is a @-class of S and every -class contained in K is a subgroup

of S.
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Proof. Let L be a minimal leftideal in S and x € S. Then by Lemma 2.60, Lx is a
minimal left ideal of S. It follows that the union K of all minimal left ideals of
Sisanidealin S. Since every a € K is contained in a minimal left ideal, there
is a minimal left ideal L of S containing a. Let ¢ € L. Then L(c) is a left ideal
contained in L and so L(c) = L. It follows that every element of L generates L
as a left ideal and so, L = L,. Hence L is a minimal left ideal of S if and only
if it is a .Z-class of S contained in K. Suppose that ] C K be an ideal. If L is
any minimal left ideal, then we have L C JNL C L and so | N L is non-empty
and is a left ideal. By the minimality of L, we have JN L = L; thatis, L C J. It
follows that K C J and so K is the minimal ideal of S. This proves (a).

To prove (b), let K [K’] be the union of all minimal left [right] ideals of
S. Then by (a) and its dual K and K’ are minimal ideals of S and so K = K’
by Lemma 2.49. Therefore, by (a), minimal left [right] ideals are .#-classes
[#-classes] contained in K. Let L be an .Z-class and R be an %-class contained
inK. Ifae Landb € R, thenab € R(a) = R, and dually, ab € L;. Hence by
Theorem 2.34, L, N Ry = L N R contains an idempotent. It follows that L N R is
nonempty and hence an .7#-class of K. By Corollary 2.30 and Proposition 2.37,
Kis a Z-class of S and every J#-class contained in K is a group. O

Example 2.21: Let S = Jx. Then K(S) is the set of all constant maps on X which is
therefore in one-to-one correspondence with X. Also K(S) is a minimal right ideal also
and for any f € K(S), {f} is a minimal left ideal. Dually, in S°, K(S) is a minimal left
ideal and {f} is a minimal right ideal for any f € K(S).

Example 2.22: Let {G; : i € I} be a set of groups and let S denote the disjoint union
of the groups G; together with a symbol 0 that does not represent any element in any
group G;. Define product in S as follows: fors,t € S,

; the productin G; ifs,t € G; for some i;
St =
=0 otherwise.

Then S is a semigroup in which G; U {0} is a 0-minimal ideal which is also a 0-minimal
left as well as a right ideal for each i € I. Hence if |I| > 1, then S has more than one
0-minimal [left, right] ideals.

Example 2.23: Let S = £.7(V) where V is a vector space of dimension n over the
field k and let W be a subspace spanned by a non-zero vector v € V. Let Ly be the
Z-class of S corresponding to the subspace W (see Example 2.11). It is easy to check
that L = L U {0} is a 0-minimal left ideal of S such that L? # 0. Choose a hyperplane U
(subspace U with dim U = n—1) such that W C U. Then Hyw = RyNLw is a non-empty
-class. Let f € Hyw. Then f # 0 and Lf = 0. In this case L’ = {0, f} is a proper
non-zero left ideal in L and so, the semigroup L is not left 0-simple. Also it is easy to
see that fL = Hyw U {0} is a proper non-zero two-sided ideal in L and so L is also not
0-simple.

Example 2.24: Let S = (p,q;pq = 1) be the bicyclic semigroup (see Examples 2.7 and
2.12). It follows from Example 2.16 that S is a bisimple inverse semigroup and hence
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simple. Therefore S has minimal ideal (S itself). Now R is a right ideal in S if and only
if for some r € N, R = R, and any left ideal of S is L for s € N, where

R, ={g*"p" :m,neN} L= {g"p"™ :m,neN}.

Since R, € R, for r > s, right ideals in S is an infinite chain and so has no minimum.
Thus S does not have minimal right ideals. Similarly S also does not have minimal left
ideals. Also, idempotents in S are e, = q"p", n € N (see Example 2.16) and it is easy to
verify that

ey W ey & n<m.

It follows from Example 2.7(a) and (c) that e, = ¢, if and only if n = m. Hence
idempotents in S also form an infinite descending chain and so S does not contain
primitive idempotents.

2.7.2 Completely 0-simple semigroups

A semigroup S with 0 is said to be completely 0-simple if
1. Sis O-simple; and
2. S contains a primitive idempotent.

A semigroup S with out 0 is said to be completely simple if S is simple and
contains a primitive (minimal) idempotent.

Now S is 0-simple if and only if S is a 0-minimal ideal in S. Hence Theo-
rem 2.62 implies the following result due to Clifford Clifford [1949]

TueoreM 2.64. The following statements are equivalent for a semigroup S:
1. S is completely O-simple;
2. Sis O-simple and contains a O-minimal left ideal and a 0-minimal right ideal;
3. Sis 0-bisimple, regular and every non-zero idempotent in S is primitive. O
In view of Remark 2.15, from this result, we derive the following charac-

terization of completely simple semigroups. (This also follows from Theo-
rem 2.63).

THEOREM 2.65. Let S be a semigroup (with out zero). The following statements are
equivalent:

1. S is completely simple;
2. Sis simple and contains a minimal left ideal and a minimal right ideal;

3. S is bisimple, reqular and every non-zero idempotent in S is primitive.

Moreover, when S is completely simple, every 7€ -class of S is a group. O
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If S is completely 0-simple, then by Theorem 2.64, S is 0-bisimple and so
S = DY = D U {0} where D is the set of all non-zero elements of S, which is a
P-classin S. Now, by Theorem 2.61 and its dual, S is the union of all 0-minimal
left ideals and the union of all 0-minimal right ideals. Hence we have

D=U{L,:0#a€eS}=U{R,:0#a€eS};
where

L(a) =L, U{0},  R(a) =R, U {0}

where L(a) and R(a) are unique 0-minimal left and right ideals of S respectively
containing a € S, a # 0. We now list some important properties of completely
0-simple semigroups that will, later, enable us to construct all such semigroups.

THEOREM 2.66. Let D denote the set of non-zero elements of a completely 0-simple
semigroup S. Then

(1) Fora,b € D, L,Ry # 0 if and only if L, N Ry, contains an idempotent. If this
holds, then L,L;, = D.

(2) Foralla,be S, H,H, = Hy.

In particular, for any a € D, either a> = 0 or a*> € H, and H, is a subgroup of S.

Proof. Suppose that L,R, # 0. Then fora’” £ aand b’ Z b, a’b’ # 0. Since
a't’ € R(@’) and since R(a’) is the 0-minimal ideal containing a’, we have
a’ Z a't’. Dually b’ £ a’b’ and so, by Theorem 2.34, L, N Ry = L, N R, contains
anidempotent. Lete € L,NR; be the idempotent. Then again by Theorem 2.34,
a”b” € D and hence a”b” # 0 for any a” € L, and " € Ry. Therefore L,R;, C D.
Let ¢ € D. By Corollary 2.29, there is an isomorphism o : L(e) — L(c). Since
L(e) = L, U {0} and L(c) = L. U {0}, by Theorem 2.25, ¢ is an #-class preserving
bijection of L, onto L. Therefore if t = eg, then we havee Z t £ cand ¢ = p;.
Let s be the unique element in L, with so = ¢. Then ¢ = so = st which implies
that c € LR, = L,R;. This proves (1).

To prove (2), suppose that H,Hy, # 0. Then for some a’ 5 aand V' J¢ b,
a’b’ # 0. Then L,Ry = LyRy # 0 and so, by (1), L,Ry = D. Hence a”b” # 0 for
all @’ € H, and b” € Hy. Moreover, a”’b” € R,» N Ly, = Hy,. Since for all s € L,
s % sb, by Theorem 2.34, 0 : s + sb is an Z#-class preserving bijection of L,
onto Ly, and maps H, onto Hy, by Theorem 2.25. Hence

H,H, 2 H,b = (H;)o = Hpp.

Therefore H,H, = H,,. If H,H, = 0, then ab = 0 and so, in this case also,
H,H, = Hy,.



124 2. SEMIGROUPS

If > # 0, then by (1) above, H, contains an idempotent and so, by Proposi-
tion 2.37, H, is a group and hence a* € H,. O

We proceed to prove another characterization of completely 0-simple semi-
groups. We need some preliminary results. Recall that if x is a regular element
in S and x” € x), then by Lemma 2.38 ¢ = xx" and f = x’x are idempotents
in Ssuch that x Z e £ x’ # f £ x. Further for e € E(S) we denote by
w(e) = {g : g w e} the order ideal of S with respect to the partially ordered set
defined by Equation (2.43).

LeEMMA 2.67. Let x be a regular element in the semigroup S and let x’ € ¥(x). Then
the map a(x,x") defined by

ga(x,x')=x'gx forall gw xx’ (2.44)
is an order isomorphism of w(xx’) onto w(x’x).
Proof. Lete = xx" and f = x’x. If g w e, we have,
f(ga(x, x)) = x'xx’gx = x'gx = ga(x,x');
(ga(x,x")) f = X' gxx’x = ga(x, x').
Thus by Equation (2.43), ga(x,x") w f. If h w g for h, g € w(e), then
(ga(x, x7)) (ha(x, x")) = ¥’ g(xx")hx = x"gehx = x'hx = ha(x, x");

and similarly, (ga(x, x")) (ha(x, x’)) = ha(x,x’). Therefore ha(x,x’) w ga(x,x’).
Thus a(x,x’) : w(e) = w(f) is an order preserving map. Similarly, a(x’,x) :
w(f) — w(e) is also an order preserving map. Further. for g € w(e),

(ga(x, x")) a(x’, x) = x(x'gx)x" = ege = g.

Therefore a(x, x")oa(x’, x) = 1. Similarly a(x’, x)a(x, x") = 1,(r and so a(x, x")
is an order isomorphism. O

A more details study the map a(x, x’) defined above will be made later in
the chapter on inductive groupoids.

Recall from Proposition 2.28 that two idempotents e and f are Z-related if
and only if R, N L, and L, N R, are non-empty and that, for each x € R, N L,
there is a unique inverse x” € L, N R, (by Proposition 2.40).

LemmMa 2.68. Let B = {p, q; pq = 1) be the bicyclic semigroup. Let e and f be P-related
idempotents in a semigroup S such that f w eand f #e. Ifx € R, N L, and y is the
unique inverse of x in L, N R,, then for each n > 1,

yre Nx"y with x"y"=e (2.45a)
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and for n,m € Nwithn < m

In=Y"X" @ g =Y'x", G # gn- (2.45b)

Further, {x" : n > 1} and {y" : n > 1} are sequences of elements belonging to distinct
J-classes in R, and L, respectively. Moreover, if B = (x, y) is the subsemigroup of
S generated by x and y, there is an isomorphism ¢ : B — B* such that ¢(p) = x and

o) =y.

Proof. By Lemma 2.38, ¢ = xy and f = yx. Also, by Lemma 2.67, a(x,y) :
w(e) = w(f) is an order isomorphism. Since w(f) C w(e), a(x, y) is an order
embedding of w(e) into itself. Hence for each n € N,

a(x,y)" = a(x,y)o---oa(x,y) n factors

is also an order embedding of w(e) into itself. Since e # f, it follows that
ea(x, y)" # fa(x,y)" = ea(x,y)"* . If g, = ea(x, y)", it follows that

gnw gm forn<mand g, # gn.

Thus {g, : n € N} is a descending infinite sequence of idempotents in D,. It
follows from the Lemma 2.67 that

gn=y"x",  x"y"=e and y"eNx"). ()
Therefore, by Lemma 2.38,
x"€R.NLy, y'€L.NRy,.

It follows that x and y satisfies Equations (2.45a) and (2.45b). Now since
In @ gm and g, # g, for n < m, it is not possible that g, and g,, are .Z related
or # related. It follows that {x" : n € N} is a sequence of elements belonging
to distinct s#-classes in in R,. Similarly, {y" : n € N} is a sequence of elements
belonging to distinct .7#’-classes of in L,. Hence y"x™ € R,, N L,,. It follows
that
yx' =y &< n=r, m=s.

Also, using () we have,

“ris .
yrms ifm >

(Y x")y'x) = {y,,ﬂm ()

X ifm<r.
It follows that {y"x™ : n,m € N} is a subsemigroup of S containing x and y
and so B* = {y"x™ : n,m € N}. Therefore, compairing the product in B given
in Example 2.7(e) and the equation above, it is clear that the map ¢ : B — B*
defined by

o@"p™") =y"x" forall mneN

is an isomorphism of B onto B* with ¢(p) = x and ¢(q) = y. O
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We shall say that the semigroup B* of S constructed above is a bicyclic
subsemigroup of S generated by x and y and with identity e.

ProrosiTION 2.69. Let e be a non-zero idempotent of a 0-simple semigroup S. If f #0
is any idempotent with f w e and f # e, then there exist x,y € S such that

xy=e andg = yxisanidempotent with gw f.

The subsemigroup B* = (x,y) generated by x and y is a bicyclic semigroup with
identity e. Therefore if S is not completely O-simple, then S contains a copy of the
bicyclic semigroup.

Proof. By Corollary 2.54, SfS = S and so thereis x’, y’ € S, with x'fy’ =e. Let
x =ex' f and y = fy’e. Then we have

Xy=e Xyx=ex=2Xx, Yxy=ye=y.
Hence y € #(x) and so g = yx is an idempotent. Also

fg=fyx=yx=yg, and gf=yxf=yx=g.

Hence g w f w e. Since f # e, we have g # e. Therefore, by Lemma 2.68, x and
y generates a bicyclic subsemigroup of S with e = xy as identity.

If S is not completely 0-simple, the idempotent e is not primitive. Hence
thereis 0 # f € E(S) with f w e and f # e and so, by the above, S contains a
bicyclic semigroup with identity e. O

We may restate the result above as a characterization of those 0-simple
semigroups that are not completely 0-simple:

CoroLLARY 2.70. A O-simple semigroup S is not completely O-simple if and only if S
satisfies one of the following conditions:

A S does not contain non-zero idempotents;

B S contains a copy of the bicyclic semigroup. O

A semigroup S is said to be group-bound if some finite power of each element
of S belongs to a subgroup of S. If S is a semigroup with 0 and if S? = 0, then
a* = 0 for alla € S and so S is group-bound. A cyclic semigroup is group-
bound if and only if it is finite (see § Subsection 2.1.3). Hence any periodic
semigroup (§ Subsection 2.1.3) is group bound.

The next theorem is due to Munn Munn [1961]

TueEOREM 2.71. A 0-simple semigroup S is completely 0-simple if and only if it is
group-bound.
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Proof. If S is completely 0-simple, then by Theorem 2.66, S is group-bound.

Conversely suppose that the 0-simple semigroup S is group-bound. Then
foranya # 0in S, SaS = S by Corollary 2.54. Then a € 5aS and so there are
x,y € S with a = xay. It follows from this that a = x"ay" for all n € N and since
a # 0,x" # 0 for any n. Since S is group-bound, x" belongs to a subgroup of S;
the identity of this group must be a non-zero idempotent in S. Thus S contains
non-zero idempotents.

Assume that 5 is not completely 0-simple. Let e be a non-zero idempotent.
Then by Proposition 2.69 there are elements x,y € S such that B* = (x, y) is
a bicyclic semigroup with identity e. Then xy = e and y € #(x). So, yx Z e,
yx # e and yx w e. Hence by Lemma 2.68, {x" : n > 1} is a sequence of
elements in R, belonging to distinct .7’-classes. This implies that H,» is not a
group for any n > 1. For if Hy is a group, we have x** = (x")? € Hys. Then
gn L X" xn L Jen- Since gy, w gy, this gives g, = g2, which is impossible
by Lemma 2.68. Therefore S is not group bound. O

In view of the discussion preceding the theorem, we have:

CoroLrary 2.72. Every periodic, in particular, every finite, 0-simple semigroup S is
completely 0-simple. O

Let¢ : S — T be a homomorphism of a semigroup S with 0 to a semigroup
T. We shall say that the homomorphism ¢ is 0-restricted if it has the property
that x¢p = 0 implies x = 0.

TueOREM 2.73. Let ¢ : S — T be a homomorphism of a completely O-simple semigroup
onto a semigroup T. Then T is either T = 0, the trivial (one-element) semigroup or T
is completely 0-simple and ¢ is O-restricted.

Proof. Let x¢p = 0 and x # 0. Since S is regular, there is a non-zero idempotent
eec Swithe Z x. Thenep Z x¢ = 0in T (using Lemma 2.33) which implies
that e¢p = 0. It follows similarly that y¢ = Oforally € R.and y € L,. If z € D,,
by Theorem 2.66(1), there is y; € L. and y» € R, such that z = y;1, so that
z$ = (119)(y2¢) = 0. Therefore z¢p = 0 for all z € S and since ¢ is surjective,
T =0. Hence if T # 0, then ¢ is O-restricted.

We now assume that T # 0. If I is any non-zero ideal in T, clearly, I[~! is
a non-zero ideal in S and so I¢p~! = S which implies that I = T. Hence T is
0-simple. Lett € T and leta € S with ag = t. By Theorem 2.66, either 4> = 0
or a> € H, and H, is a group. Then either #> = 0 or #* € H,¢ C H; and H; is a
group. Therefore T is group-bound and so, by Theorem 2.71, T is completely
0-simple. O

homomorphism!0-restricted —
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2.7.3 Rees matrix semigroups

Let GY be a group with 0 (§ Subsection 2.1.3) and I and A be sets. Recall from §
Subsection 2.1.3 that a sandwich A X I-matrix over G’ isamap P: AXI — G,
(A,i) & pri. A Rees I X A-matrix semigroup over a group with 0, G° with
sandwich A x [-matrix P is the set

MO(G;1, A;P) = (G X I x A) U {0} (2.46a)
together with product defined, for any s, ¢ € MOG; 1, A; P), by

(apajb i, p) ifs=(a,i,A), t = (b, j,u) and paj # O;
st =<0 ifs=(a,i,A),t=(b,j,u)and py; = 0; (2.46b)
0 ifeithers=0,t=0o0rs=t=0.

By § Subsection 2.1.3, the binary operation defined above is associative and
s0,S = MG;1,A;P)is a semigroup with 0. Again, it follows from § Subsec-
tion 2.1.3 that the semigroup is regular if and only if the matrix P is regular in
the sense that P satisfies the following:

Viel, du€eA suchthat p, #0

, (2.46¢)
YAeA, 3djel suchthat p,;#0.

In particular, if p,; # 0 for all y € A and i € I, then P is clearly regular. In this
case, it follows from the equation (2.46b) that the set of all non-zero elements
of the semigroup MYG;1,A;P)is a subsemigroup M(G; I, A; P). Recall from
Example Subsection 2.1.3 that M(G; I, A; P) is the Rees matrix semigroup with
out zero.

In the following discussion, we will use the notations in introduced above:

Lemma 2.74. Let S = MY(G; I, A; P) be a regular Rees matrix semigroup. For A € A
and i € I, let

Ly={,jA):beG, jel} and Ri={0,ju):beG, ueAl

Ifx=1(a,i,A) € S, we have:

Ly=Ly and L(x)=L,U{0}; (2.47a)
Ry =R; and R(x)=R;U{0}; (2.47b)
H,=Hij ={(b,i,A):beG}. (2.47¢)

Consequently there exist bijections A +— L) and i — R; of the set A onto the set
of non-zero .£-classes of S and of the set I onto the set of non-zero %-classes of S
respectively. Further, the map (i, A) — H;, is a bijection of I X A onto the set of
non-zero J¢-classes of S.
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Proof. . Letx = (a,i,A) € Sand y € L(x). Since S regular, by Lemma 2.36, y = sx
for some s € S and so, either y = 0 or by Equation (2.46b), y = (b, j, A) for some
b e Gand j € I. Conversely if y = (b, j, A), then by Equation (2.46c), there is
p € Awithpy; # 0 and if ¢ = ba’lpyi, then we have y = (c, j, u)(a,i, A). Hence
y € L(x). By symmetry, we have

(a,i,A) L (b, j,u) & A=u andso, L(x)=L,U{0}
where L, is the set defined in the statement. Dually, we have
(a,i,A) #Z (b, j,u) < i=j andso, R(x)=R;U{0}.

It follows that every non-zero .¢ [#] class is of the form L, [R;] and the
mapping A = Ly [i = R;] is a bijection. Also for any (i, A) € X A, H;, is a non-
empty set consisting of non-zero elements of S and the mapping (i, A) = Hi
is clearly a bijection. Also, by the above,

Hhpn=RiNnLy=R,NLy=H,. O

TueorEM 2.75. Every reqular Rees matrix semigroup is completely 0-simple.

Proof. Let S = M°(G;1, A; P) be a regular Rees matrix semigroup. It follows
from Lemmas 2.50 and 2.74 that every principal left and right ideal in S is
0-minimal. Further if x = (4,i,A) and y = (b, j, 1) are non-zero elements in S
and ¢ € G, then by Equations (2.47a) and (2.47b)

(@,i,A) Z (c,i,u) £ (b, ], ).

Therefore the set of non-zero elements from a Z-class in S and so, S is 0-
bisimple. By Theorem 2.64, S is completely 0-simple. O

Specializing the areguements above to Rees matrix semigroups with out
zero, we obtain:

CoroLLARY 2.76. Every Rees matrix semigroup with out zero is completely simple.

The theorem above is a part of the important theorem due to Rees Rees
[1940] which asserts that a semigroup is completely 0-simple if and only if it is
isomorphic with a regular Rees matrix semigroup. Thus Rees theorem consists
of Theorem 2.75 and its converse which we proceed to prove. Here we shall
derive the converse from an important result due to Miller and Clifford Miller
and Clifford [1956], which applies to regular Z-classes of any semigroup.
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Let D denote a Z-class of a semigroup S. For x,y € D, let

oy = {xy if L, N R, contains an idempotent; (2.48a)

undefined otherwise.

x * i, when it exists, is called the trace product of x and y. Then * is a partial
binary operation on D. The partial algebra D(+) = (D, *) is called the frace of
D. Note that, by Theorem 2.34, we may define * equivalently by requiring that
x * y is defined if and only if xy € R, N L,. The partial binary operation * can
be extended to a binary operation on D° = D U {0}, again denoted by *, in the
obvious way. For x, y € D° let

xy ifx,ye€Dandxy € R,NLy;
x+y=40 ifx,yeDandxy¢ R,NL,; (2.48b)
0 ifeitherx=0,y=00rx=y=0.

The partial algebra
s¢ =) D

DeS/2
is called the trace of S.
Note that, the trace product of x, y € D exists as in Equation (2.48a) if and
only if x * y # 0 in D(+). The proof the following statement is quite routine.

LemMa 2.77. The binary algebra D°(+) with operation defined by Equation (2.48b) is
a semigroup.

Proof. Suppose thatx,y,z € U = DO(»). Ifxxy #
Lil|Lyt|L Oand y#z # 0, thenitis easy to see that x*(y*z) #

* : 0 and (x*y)*z # 0 and the two expressions are
equal (see the egg-box diagram on the right).

R; — g z From the diagram it is also clear that if one of
x+yand y*zis 0, thenx*(y*z) =0 = (x*y)*z.
R,—| f Yy yz It follows that = is associative. O

The semigroup D°(x) is called the trace semi-
Ry—| x | Xy | Xyz group (or simply trace if there is no ambiguity).
Note thatif D is not regular then the trace prod-
uct is not defined for any pair of elements in D
and the semigroup D°(+) is the null semigroup.

Fig. 4

Let D be a regular Z-class of the semigroup S and let e be an idempotent
in D. By Proposition 2.39 D contains idempotents. Let

D/ %={R;:i€l} and D/ ZL={L,: A€ A}
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be the set of Z and .Z-classes of S contained in D. Then

D/ #={Hj =R,NL,y: (@A) elxA}

is the set of all /#-classes of S contained in D. Since J#-classes are disjoint,
each x € D belongs to a unique .#-class H;, in the above set. Now with out
loss of generality, we may assume thate € IN A and that H.. = H, by renaming
the index iy € I for the Z-class R, as e and similarly renaming the index for L,
in A also as e. We use these notations in the following statement.

THEOREM 2.78. Let D be a regular P-class of a semigroup S and let I and A denote
index sets for # and £-classes of S contained in D. For each A € A and i € 1, choose

rAn€Hpp=R.NLy and gi€H,=R;NL,

and set

(2.49)

_ |ragi if Hix contains idempotent;
Pu= 0 otherwise.

Then the map P : (A,i) v py; is a reqular A X I matrix over H?. Fort € T =
MO(H,; I, A; P), define

_|qiary ift=(a,i,A) #0;
tp = {0 ift=0. (2.50)

This is an isomorphism ¢ : T — D°(x). Hence D°() is a completely 0-simple
semigroup.

Proof. LetA € A. Thenby Proposition 2.39, there is anidempotent f € L,, = L,.
Let Ry = R;. Then

fe€Hn=RyNL,;
so, by Theorem 2.34,

pri =74 =71 %qi € L "Ry, = He.

Hence for each A € A, there is i € I with p); € H,; in particular, for this i,
pai # 0. Dually, for eachi € I, there is A € A with 0 # py; € H,. It follows from
Equation (2.46¢) that the map P : (A,i) > py; is a regular A X I matrix over H.
Hence T = MY(H%; 1, A; P) is a regular Rees matrix semigroup over H? (see §
Subsection 2.1.3).
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We first show that ¢ defined by Equation (2.50) is a bijection of T onto
U=D).If0#teT, thent=(aiA)forsomeac H,i€land A € A. Also,
it is easy to see that

tp = qiary = gi+ax*ry € Hjy (1)

(see the diagram below). It follows that ¢ maps T into U such that t¢p # 0 if
and only if t # 0. Now for any A € A, by Proposition 2.40, L, contains at least
one inverse of ;. Let | be an inverse of r, in L, so that 7,7 = e and 77, is
an idempotent in L). Similarly, for each i € I, choose an inverse gq; of g; in R,.
If x € Hj), using Theorem 2.34, we see as above that a = g/xr) € H, (see the
diagram below) and so,

(qixr, i, AP = qiqixr’ry = x.

Hence ¢ is surjective. If, for a,b € H,, qiary = g;bry, then, by the choice of ¢;
and 7, we have

a = eae = q.qaryry = q.q;brary = b.
Hence if (a,i, A)¢ = (b, j, u)¢, then H;y = H;, which impliesi = jand A = u and
this in turn implies, by the above, that a = b. Hence (4,1, A) = (b, j, u). Thus ¢
is one-to-one.

L. | Lyl
R, —| a=qxr) q; 9]
r’A r\ra
R, — qgi qiq; X = giary
Fig. 5

Lets,t € T. If s=0ort = 0, thens¢ = 0 or t¢ = 0 in U by the definition
of ¢. Hence (s¢) = (tp) = 0 in U and so, (st)p = (s¢)(t¢) in this case. Let
t=(a,i,A),s = (b, j, u). By Equation (2.46b), st = 0 if and only if p;; # 0. Using
Equation (1) we obtain

sp=qixaxry L1y Lpr and tP=gqjrarry Zq; X paj.
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Hence
LS‘T) N th!) = H]/\
Therefore, by Equations (2.46b), (2.48b) and (2.49), we have

spxtp#£0 < prj#0 < st#0.

Moreover, using Lemma 2.77, we obtain

(sp) * (tp) = (gixaxra) +(q;+bxry) by (1)
=q;* (a* paj* b*)r“ by Equation (2.49)
= (apajb, i, )¢ by (1)
= (st)o by Equation (2.46D).

Hence ¢ : T — S is a homomorphism. Since ¢ is a bijection, it is an isomor-
phism. O

We now prove the theorem due to Rees on completely 0-simple semigroups
Rees [1940, 1941]. A particular case of this result has been proved earlier by
Suschkewitsch in his paper published in 1928 Suschkewitch [1928]. (see also
Suschkewitch [1937] where he discuss some further results on this class of
semigroups.)

TuEOREM 2.79 (REES). A semigroup S is completely O-simple if and only if S is
isomorphic to to a reqular Rees matrix semigroup.

Proof. If S is isomorphic to a regular Rees matrix semigroup, then by Theo-
rem 2.75, S is completely 0-simple.

Suppose that S is completely 0-simple. By Theorem 2.64 S is 0-bisimple.
Let D denote the Z-class of non-zero elements of S. Identifying the 0 of S
with the 0 of U = D°(x), the underlying sets of S and U coincide. Let x,y € S.
By Theorem 2.66, xy # 0 in S if and only if L, N R, contain an idempotent.
By Equation (2.48b), this is true if and only if x * y # 0 in U and, in this
case, xy = x * y. It follows that binary operations in S and U also coincide.
Therefore S = U and by Theorem 2.78, S is isomorphic to a regular Rees matrix
semigroup. O

Specializing the arguements above to completely simple semigroups and
Rees matrix semigroups with out zero, we obtain:

CoroLLARY 2.80. A semigroup S is completely simple if and only if S is isomorphic to
a Rees matrix semigroup with out zero. O
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The isomorphism completely 0-simple semigroups with regular Rees ma-
trix semigroups constructed above is not unique. In fact, from the construction
in Theorem 2.78, it is clear that the isomorphism ¢ depends on

(a) the choice of the idempotent ¢ in D; and

(b) the choice of elements 1, € H,) and g; € H.

For a different choice of these parameters, a different Rees matrix semigroup
will result. However, it follows from Theorem 2.78 that these Rees matrix
semigroups will be isomorphic. We shall discuss abstract characterization of
such isomorphisms (more generally, homomorphisms of Rees matrix semi-
groups) after we have developed better machinery to analyze structure of

regular semigroups and their homomorphisms (see Chapters Chapter 6 and
?2?).

2.8 SEMISIMPLICITY OF SEMIGROUP

2.8.1 Principal factors

Recall that an ideal I in a semigroup S is maximal if there is no proper ideal
Jin S with I C | (see § Subsection 2.1.1). If [ and | are ideals in S with I C ],
then I is maximal in |, if A is any ideal in S with I € A C ], then either [ = A
or A = J; that is, the interval [I, J]] = {I, J} in the lattice Js of ideals of S (see §
Subsection 2.1.1).

Recall that, by the convention adopted in § Subsection 2.1.1, an ideal I in a
semigroup with 0 is always non-empty.

Lemwma 2.81. Let I be an ideal in a semigroup S.

(1) If ] is an ideal in S with I C ], then I is maximal in | if and only if J/I is
a minimal or 0-minimal ideal in S/I; if this is the case, then /I is a simple,
0-simple or null semigroup. J/1is simple if and only if [ = 0.

(2) Iis maximal in S if and only if S/I has no proper non-zero ideal; if this is so,
then S/1 is either simple, 0-simple or a null semigroup of order two. Again S/1
is simple if and only if = 0

Proof. (1) Assume thatI # 0. Let 0 : S — S/I be the quotient mapping. If A
is a non-zero ideal in S/I contained in /I, then A = A67! is an ideal in S that
properly contain [ and contained in J. Since I is maximal in J, A = | and so
A = A/l =]/I. Hence J/I is 0-minimal. Hence by Corollary 2.55, the semigroup
J/Iis 0-simple if (J/I)* # 0.
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If I = 0, the statement that I is maximal in | is equivalent to the statement
that | does not have any proper ideal; that is | is the minimal ideal which is
therefore a simple subsemigroup of S by Corollary 2.55. If I # 0, then clearly
J/I has 0 and so is not simple.

(2) If I # 0is a maximal ideal in S, then, as above, we see that there is no
proper ideal A in S with I € A and so S/I has no proper non-zero ideal. By
Lemma 2.53, if S/I is null, it is a null semigroup of order two. Asin (1), we see
that, I = 0 if and only if S = 5/I is simple. O

Remark 2.16: Let I and | be ideals in a semigroup S with I C J. If I is maximal
in | in the sense defined above, then I need not be a maximal ideal in the
subsemigroup | of S. Consequently, the statement (2) of the Lemma above
does not follow from (1) as a particular case of | = S. In fact, when [ is
maximal in | and J? C I (so that J/I is null), the semigroup J/I can cotain more
than two elements. The reason for this is that, if A is an ideal of an ideal | in a
semigroup S, then A need not be an ideal in S (see Example 2.25 below).

ProrosiTiON 2.82. Let S be a semigroup and a € S. Then
l(a) = J(a) = Ja- (2.51)

Then I(a) is an ideal in S which is maximal in [(a) and so, J(a)/1(a) is either a minimal
or 0-minimal ideal in S/1(a) and the semigroup J(a)/1(a) is either simple, O-simple or
null. J(a)/1(a) is simple if and only if ](a) is the kernel of S or equivalently, I(a) = 0.

Proof. Suppose that b € I(a) and s € S'. If sb € J,, then usbv = a for some
u,v € S. But this implies that a € J(b) and so J(a) = J(b) which contradicts
the hypothesis. Hence sb € I(a). Similarly bs € I(a) for all s € S!. Hence I(a)
is anideal in S. If A is any ideal in S with I(a) ¢ A C J(a), then AN J, # 0; if
be AnJ,, then J(a) = J(b) € A and so A = J(a). Thus I(a) is maximal in J(a). By
Lemma 2.50, J(a) is minimal if and only if J(a) = J,; that is, I(a) = 0. If this is
true then J(a)/1(a) = J(a) (see § Subsection 2.1.1) and I(a) is clearly the maximal
ideal in [(a). The remaining statements follow from Lemma 2.81(1). O

The semigroup J(a)/1(a), for a € S, is called the principal factorof S at a; we
denote it by F,(S). Thus

_J@/I(a) ifI(a) £ 0;
FulS = { f@)  ifI(a) =0. (2.52)

By the Proposition above, F,(S) is either a simple, 0-simple or null semigroup
and ¥ ,(S) is simple if and only if J(a) is the kernel of S.

semigroup!principal factor of the —
F a(S): Principal factor of S at a
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Example 2.25: Let C = (a) denote the infinite cyclic group generated by a and let
B={b,:neZ}. Let
S=AUBU{0} with product in S defined by
unbm = bn+m; bmﬂn = bmbn =0 V m,n e Z;
and 0 is the zero of S. Then S is a semigroup and B® = B U {0} is the unique maximal
ideal in S. Further, J;, = B for all n € Z. Hence the ideal {0} is maximal in B, but {0} is
not maximal in the semigroup B (which is the null semigroup). Also B’/{0} = B® and

the semigroup B? has infinitely many non-zero proper ideals; none of these are ideals
in S. Thus an ideal of an ideal in a semigroup S may not be an ideal in S.

2.8.2 Semisimple and completely semisimple semigroups

A semigroup S is said to be semisimple if its principal factors are either simple
or 0-simple. Thus by Proposition 2.82, a semigroup is semisimple if and only
if none of its principal factors are null.

The definitions show that simple and 0-simple semigroups are semisimple.
The following proposition shows that the class of semisimple semigroups is
quite large.

ProrosrtioN 2.83. Every reqular semigroup is semisimple.

Proof. LetSbearegular semigroup anda € S. Then, by Lemma 2.38, ], contains
an idempotent, say, e. Hence e € J> which implies that #,(S)> # 0. Hence, by
Proposition 2.82, ,(S) is simple or 0-simple. Thus S is semisimple. O

Example 2.25 shows that an ideal of an ideal in a semigroup S need not be
an ideal in S. However, we have:

ProrosiTiON 2.84. An ideal of an ideal in a semisimple semigroup S is an ideal in S.

Proof. LetIbe anideal in S and let A be an ideal in the subsemigroup I. Then
clearly IAI € A. Letb € A — IAI Since S is semisimple, ¥,(S) is simple or
0-simple; in either case, F;(S)® = F,(S). Hence J(b)* U I(b) = J(b). Now

J(b)® = S'hSTSthStStpSt C SThSThSSt = J(b)b](b).
Since J(b) CIand b € A, we have
J(b)® C J(b)b](b) C IAL
Consequently,
J(b) = J(b)®> UI(b) C IAT U I(b).

Since b ¢ IAI and b ¢ I(D), the above Equation implies that b ¢ J(b) which is a
contradiction. Hence A = IAIl and so A is an ideal in S. O
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A semigroup is completely semisimple if its principal factors are completely
simple or completely 0-simple.

Clearly a simple [0-simple] semigroup S is completely semisimple if and
only if S is completely simple [0-simple]. This is an important class of semi-
groups; we proceed to obtain a number of equivalent characterizations of this
class.

Recall (§ Subsection 2.6.1) that A [L, J] (or Ag, etc., if necessary) denote the
partially ordered set set 5/ . of all #-classes [respectively S/ Z,S/ Z].

We say that S satisfies the condition M [M] if for every a € S the set of .
[#] classes contained in ], has a minimal element with respect to the ordering
in As [Is]. We first show that the condition M; (dually My) imply a stronger

property.
Lemma 2.85. Let S be a semigroup and a € S.

A IfI(a) # 0, then the ZL-class L, is minimal in the set of £-classes contained in
Ja if and only if LY is a O-minimal left ideal of S/I(a).

B IfI(a) = 0, then the £-class L, is minimal in the set of £-classes in ], if and
only if L, is a minimal left ideal of S.

Moreover, if |, contains a minimal £-class, then every Z~class in ], is minimal.

Proof. Since I(a) is the 0 of S/I(a), by Lemma 2.50 LY = L, U {0} is an ideal in
S/I(a) if and only if LY is a O-minimal left ideal in S/I(a). If 0 : S — S/I(a) is the
quotient map, by Theorem 2.5 (see also Remark 2.3) L is a left ideal in S/I(a)
if and only if

L, UI(@) = (L))o

is a leftideal in S. If L, U I(a) is a left ideal and L. is a .Z-class contained in J,
with L. < L, then c € L, U I(a). Since c ¢ I(a), we have c € L, and so, L, = L.
Hence L, is minimal in the set of all .#-classes in J,. Conversely, suppose that
L, is minimal in the set of all .Z-classes in J,. Letb € L, UI(a) and s € S. If
b € I(a), clearly sb € L, U I(a) since I(a) is an ideal. If b € L, then sb € L(a) C J(a).
So, if sb ¢ I(a), then sb € J,. Hence Ly, is a Z-class in |, with Ly < L, and so
Ly, = L, by minimality. Hence sb € L, which implies that L, UI(a) is a left ideal.
This proves A. Proof of B is similar.

By Proposition 2.82, J(a)/1(a) is a 0-minimal ideal in S/I(a). If ], contains a
minimal #-class L,, thenby A, L! is a 0-minimal left ideal contained in [(a)/I(a).
If L. is any .Z-class in J,, by Theorem 2.61, L. is contained in a 0-minimal left
ideal L C J(a)/I(a). Since L. consist of non-zero elements of L, by Lemma 2.50,
L = L. Hence by A, L. is minimal in J,. Therefore every .Z-class contained in
Ja is minimal. O

semigroup!completely semisimple —
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We shall say that the semigroup S satisfies the condition My (minimum
condition on idempotents in a _# -class) if for any e, f € E(S)

ewf and e 7 f=e=f. (2.53)
We now show that the relation ¢ in the equation above can be replaced by 2.

Lemma 2.86. The semigroup S satisfies My, if and only if for any e, f € E(S),

ewf and e f=>e=f (2.53%)

Proof. Since 2C ¢, the condition M}, clearly implies Equation (2.53"). Con-
versely assume that Equation (2.53*) holds. Suppose thate, f € E(S)withe ¢ f
and e w f. If T = J(e)/I(a), then clearly T? # 0 and so, by Proposition 2.82, T is
simple of 0-simple. Since f € J,, f # 0in T. Hence by Proposition 2.69 there
is an idempotent g w f w e such that g & e. Then by hypothesis, g = e and so
f=e O

TueoOREM 2.87. The following conditions are equivalent for a semigroup S.

(a) S is completely semisimple.

(b) S is regular and satisfies the condition M.
(c) S is regular and satisfies the condition M; .
(d) S is regular and satisfies the condition My,

(e) Sis semisimple and satisfies both M; and M.

Proof. (a) = (b) Leta € S. By (a), F4(S) is completely 0-simple or completely
simple. Hence ¥ ,(S) is 0-bisimple or bisimple. In either case ¥ ,(S) is regular
and the set of non-zero elements is the Z-class D, of S. Hence every Z-class is
regular and so S is regular. Since every idempotent in D, is primitive in F4(S),
S satisfies the condition M.

(b) = (c) LetL, and L, be Z-classes in the same _#-class such that L; < L,.
Since S is regular, by Proposition 2.39, we can find idempotents e and f with
L, = Leand L, = Ly. Since f € L(e), by Lemma 2.36, fe = f. Let g = ef. Then

g =efof=ef=g, gf=g fg=fef=F

Hence g is an idempotent with L, = Ly, g # e and g w e. Hence by the
condition My, g = eand so Ly = L,. Hence S satisfies M.
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(c) = (e) Since S is regular, it is semisimple by Proposition 2.83. So it is
enough to prove that S satisfies M. Let Ry < R, where Ry and R; are #-
classes in the same _#-class. Since S is regular, by Proposition 2.39, we may
assume that Ry = R, and Ry = Ry where ¢, f € E(S). Since R; and R, are
contained in the same _#-class, we havee ¢ f and by Lemma 2.36, fe = e.
If g = ef, as above, we find that g is an idempotent with R, = R, and g w f.
Then L, < Ly. By Mj, wehave L, = Ls. So, g Z f and g @ f and these imply
that g = f. Hence Ry = R, and this proves My.
The implications (b) = (d) = (e) can be proved dually.

(e) = (@) LetT = F4(S). Then by hypothesis, T is simple or O-simple. Since S
satisfies M| and My, by Lemma 2.85 and its dual T contains 0-minimal left and
rightideals. By Theorems 2.64 and 2.65, T is completely 0-simple or completely
simple. Therefore S is completely semisimple. O

CoroLLARY 2.88. If the semigroup S is completely semisimple, then S is regular and

9= 7.

Proof. Regularity of S follows from the theorem above. So, it is sufficient to
show that Z=_¢ . Now the set of non-zero elements of ¥ ,(S) is J,. Since F,(S)
is either completely simple or completely 0-simple any two elements in |, are
P-related in F,(S) and hence in S. Thus |, = D,. O

The Example below shows that the converse of this Corollary is not true.
The following gives some further class of semigroups that are completely
semisimple.

THEOREM 2.89. Let S be a semisimple, group bound semigroup. Then S is completely
semisimple. In particular any semisimple periodic or semisimple finite semigroup is
completely semisimple.

Proof. 1If S is group bound any subsemigroup, in particular, any ideal in S is a
group bound semigroup. Hence J(a) is group bound for all a € S. It follows
that #,(5) is a group bound semigroup. If S is also semisimple, then ¥,(S) is a
simple or 0-simple, group bound semigroup. Hence by Theorem 2.71 F,(S) is
completely simple or completely 0-simple for each a € S. When S is periodic
or finite, it is clearly group bound. O

Remark 2.17: For a more extensive discussion of the minimal conditions of the
set of left, right and two-sided ideals and some related concepts such as stable
semigroups, elementary semigroups, etc., we refer the reader to Clifford and
Preston [1967], § 6.
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Example 2.26: If B = (p,q : pq = 1) is the bicyclic semigroup, then it is regular and sat-
isfies the condition Z=_¢ ; but is not completely semisimple. Similarly the semigroup
A of Example 2.13 is simple and hence semisimple but not completely semisimple.

Example 2.27: Let S = Jx be the semigroup of transformations on the set X (see §
Subsection 2.1.3 and Example 2.10). Then S is regular and Z=_¢. If X is infinite, for
any infinite subset Y of X, there is Z C Y such that |Z| = |Y|. Then there are idempotents
e, f € Ssuch thatIme =Y, Im f = Z and f w e. Since there is a bijection of Y onto Z,
by Example 2.10, ¢ 2 f. Hence S is not completely semisimple if X is infinite. If X is
finite, then clearly S is a finite regular semigroup and by Theorem 2.89, S is completely
semisimple. In a similar way, it can be shown that the semigroup Z.7 (V) (cf. §
Subsection 2.1.3) of linear transformations on a vector space V is a regular semigroup
which satisfies the condition =_¢ (see Example 2.11). Also, .27 (V) is completely
semisimple if and only if V is finite dimensional.

Example 2.28 (Baer-Levi semigroups): Let p, g be infinite cardinals such that p > ¢
and let X be a set with |X| = p. Consider the set S of all one-to-one mappingsa : X — X
such that [ X — Xa| =g. If o, f € S, then

X — Xap = (X - XB) U (XB — Xap).
Since § is one-to-one,
IX — Xa| = |(X — Xa)B| = |XB — Xap| = q.

Since X — XB and X — Xap are disjoint and have the same infinite cardinal g, (X — XB) U
(XpB — Xap) has cardinal 4. Hence |X — Xaf| = q. Thus af € S and so, S is a semigroup
under composition (that is, a subsemigroup of 7x); clearly, S does not have 0.

Since S is a semigroup of one-to-one mappings, it is right cancellative. We now
show that S is right simple. Accordingly let o, € S. Then |X — Xa| = |X - Xf| = gq.
Since g is infinite, we can find a subset Y of X — X such that Y and its complement in
X — XB has the same cardinal q. Let 6 : X — Xa — Y be a bijection. Now define

o (xa ™) ifxe Xa;
7w if v € X - Xa.

Then y is one-to-one and Xy = X U Y. Hence, by the choice of Y, we have
X-Xyl=IX-XB-Y|=q.

Thus y € S and clearly, ay = B. Therefore S is right simple. If a € S, we have
|X - Xa| = |Xa — Xa?|. Since q is infinite, & # a? and so, S does not contain idempotents;
in particular, S is not regular.

Since S is right simple, it is semisimple and satisfies the condition Mj. If S satisfies
M, then by Theorem 2.87(e), S is completely semisimple and hence regular. This is not
possible. Hence S does not satisfy the condition M; . It is not difficult to verify directly
that S contains an infinite descending chain of Z-classes which will also show that it
does not satisfy M;. The dual construction will give a semigroup which is semisimple,
satisfy M;, but not My,. This shows that the conditions M; and M} are independent.

Example 2.29: Let
S={(,j):1<i,j<oo, i<jlu{0}
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Define a product in S by the rule

.. ) ifj=m
(w)(r,S)—{O ifi#

0x = 0 = x0.
S with this productis a semigroup. Also, for all (i, j) € S, using the definition of product

in S, we see that the principal left, right and two-sided ideals and Green’s classes are
given by

and forall x € S, let

LG j) =010l )):1<r<i}, Lijp =1G Dk
R@, j) = {0y U{(@is):s 2 j); Riijp =10 Dk
JG@,j) =101uf(rs):1<sr<i szj} Jap =G )}

It follows that S satisfies both M; and Mj. Now J(i, j)* = 0 and so ¥ ;(S) is null for all
non-zero elements of S. Hence S is not semisimple.

2.9 SOME SPECIAL REPRESENTATIONS OF SEMIGROUPS

In Section 2.5 we had given a general discussion about representations of
semigroups. In particular Subsection 2.5.1 discusses representations of semi-
groups by functions on a set. Given any semigroup S, the right S-system
Subsection 2.5.2 5, affords the specific representation p by functions on the set
S and the left S-system S; affords the dual representation A. Here we discuss a
few such representations by pairs of transformations, partial transformations,
matrices over groups with 0, etc. that have proved to be of importance in the
structure theory of various classes of semigroups.

2.9.1 Representation by pairs of linked translations

Given a right translation p and a left translation A of a semigroup S, we say
that (p, A) is a pair of linked translations or that p is linked to A if forall s, € S,

(sp)t = s(AB). (2.54)

A linked pair of translations is also called a bitranslation. For eacha € S, (p,, A4)
is clearly a linked pair and these are called inner bitranslations. We can define
a right and left action of a bitranslation = (p, A) on S as follows: fors € S

sp=sp, and Pfs=As.

Thus § acts on the right of S as a right translation and on the left as a left
translation.

Combining the right regular representation p; and the left regular repre-
sentation Ag, we can obtain a new representation of S by bitranslations. We
have the following:

translation!linked pair
bitranslation
bitranslations!inner —
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TreEOREM 2.90. Let S be a semigroup and define
QS) =1{(p,A): p islinked to A}.

Then CX(S) is a semigroup with multiplication defined by

(0, MN(p", ) = (pp’, AX).

Moreover, for any a € S and (p, A) € €X(S),

(o, M(Pas Aa) = (Pra, Ara)  and  (pa, Aa)(p, A) = (Pup/ /\up)-

Consequently the map ms = m, defined for all s € S, by

STt = (pS/ AS)
is @ homomorphism of S onto an ideal of ()(S).
Proof. First observe that for (p, A), (p’, ) € QX(S),
(S)pp’t = (sp)p't
= (sp)(A't) p’ is linked to A’;
=s(A(A't)) p is linked to A;
=s(AL't).

Hence pp’ is linked to AA’. Since the binary operation defined in the statement
is obviousely associative, ()(S) is a semigroup. For any a € S it is clear that

ar = (pa, Ag) € CUS)
and the map m : S — ()(s) defined above is a homomorphism. If (p, 1) € Q(S)
and s € S, we have
sppa = (sp)a= s(Aa) = spaq;
AAgs = AMas)= A(a)s = Ap,s;
$pap = (sa)p= s(ap) = spap;
AaAs = a(As)= (ap)s = Agps.
Hence
(Pr /\)(Pu, /\u) = (P/\ur /\/\u);
(Pur /\u)(p/ /\) = (Pup/ /\up)-

Therefore
Imm={am:a€eS}

is an ideal of the semigroup €)(S). O
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The semigroup €)(S) is called the translational hull of the semigroup S and
the homomorphism ms = m is called the reqular representationof S by linked
translations. S is said to be weakly reductive if the representation 7 is faithful;
that is, if and only if S satisfies the condition

sa=sb and as=bs forall s€S = a=0.

Notice that any right or left reductive semigroup is weakly reductive. The
following observation implies that the class of weakly reductive semigroups
is quite large.

TueorEM 2.91. Every regular semigroup is weakly reductive.

Proof. Suppose that S is a regular semigroup and an = bt for a,b € S. Then
pa = pp which implies in particular that L(a) = L(b). Similarly from A, = Ay,
we have R(a) = R(b) and so, by Equations (2.36a), (2.36b) and (2.37c), a 5 b.
Since a is a regular element, by Proposition 2.39 there is an idempotent e € R,
which by Lemma 2.36, is a left identity of R, = R;. Therefore,

a=ep; =epp=b.
This proves that the representation m is faithful. O

The representation by bitranslations affords a representation by pairs of
mappings. Several existing structure theorems for classes of semigroups uses
this directly or related representations especially when the semigroup under
consideration is weakly reductive. The theorem above suggests that the cost
of this assumption is comparatively small.

Theorem 2.90 also shows that 7 is a representation having some special
properties. When S is weakly reductive, it provides an embedding of S as an
ideal of its translational hull €)(S). We will use this fact in the next section to
construct ideal extensions of weakly reductive semigroups.

2.9.2 Lallement’s representation

Here we consider a special representation of semigroups by partial tramsfor-
mations due to G. Lallement Lallement [1967]. It is shown in Nambooripad
and Sitaraman [1979] that various known representations for special classes
of semigroups are particular cases of this representation and that it is closely
related to the ideal structure of the semigroup.

We begin with a representation closely related to Lallements representation
which is also of independent interest.

semigroup!translational hull of —

Q(S) :translational hull of S

Tts: representation of S by
bitranslations

representation!regular —

semigroup!weakly reductive
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transformations on the 9-class D

oP :representation of S by partial
transformations on the 9-class D

representation!partial —

representation!partial dual —

AP : anti-representation of S by
partial transformations on D

®P :partial symmetric
representation of S on D
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ProrosiTiON 2.92. Let D be a D-class of a semigroup S. For each a € S let
Do? ={xeD:xZxa} and o =p,|Dg.
Then @ : DP — L(a) € 2 T p and the map
oP:am oS> 27p
is a representation of S by partial transformations on D.

Proof. Clearly gP € 227 foralla€ S. Fora,b € Sletx € A= dom (QaD o QbD).
Then x € Dg? and xa € Do}’ and so,

x X# xa X xab

which implies that x € Dgfb. Conversely, if x € Dgfb, then x Z xab implies,
by Theorem 2.26, that x = xabs for some s € Sl. If t = bs then x = xat and so,
x % xa. Therefore

X Z xa X xab.

Thus A = Dgﬁj and for any x € Dgz,
D& oP) = xab = xoP
x(gf o @) = xab = xg.

Therefore the map @ : a — P is a representation by partial transformations.
O

The representation P is called the partial representation of S on D. Its left-
right dual, called partial anti-representation, is the homomorphism A" : a
APofSto 27 ¥ where for eacha € S,

DAP ={xeD:x Zax} and AL =A,DAD.
Combining these we can get another representation of S as follows:
CoRroLLARY 2.93. For each a € S let
a@” = (g7, AY)-

Then @ :S > PTpx PT fg’ is a representation of S. Moreover, if D is a reqular
D~class, then ®P is injective on D.

Proof. The fact that @ is a representation as claimed, follows readily from
Proposition 2.92 and its dual. Th show that @ is injective on D when D
is regular, suppose that a@” = b@P for a,b € D. Since D is regular, by
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Propositions 2.39 and 2.40, there is an inverse a'n#{(a) such that e = a’a and
f = aa’ are idempotents with

eLaRfLa Xe.

Then e} = ea = a and since g = g}, eb = a. Hence a € L(b). Similarly b € L(a)
and hence a . b. Similarly, considering the representation A” we get a % b
dually. Hence a 5# b. Therefore

a=eg = eQbD =b

since e € R, = R, and so, by Lemma 2.36, ¢ is a left identity of bothaand b. O

@V is called the partial symmetric representation of S on D.
The following result, obtained by considering Proposition 2.92 above for all
P-classes simultaneousely, is essentially due to G. Lallement Lallement [1967].

THEOREM 2.94. Let S be a semigroup and for each a € S, let

Do, = | ) D&P and o= | ) o
DeD/9 DeD/2

Then Do, is a left ideal such that

Do, ={x€S:x % xa}.

Moreover g, : Do, — L(a) is a morphism of ideals and o : a — @, is a representation
of S by partial transformations on S.

Proof. First notice that, since S/ % is a partetion of S, from the definition of DQuD
in Proposition 2.92 we see that Dp, = {x € S : x #Z xa}. Letx € Dg,. If y € L(x),
then y = tx for some t € S'. If D is the Z-class of x then by the definition of
Dg,, x € Dg” and so x % xa by Proposition 2.92. Hence x = xas for some s € S.
Then

Yy = tx = txas = yas
and so, y € Dg,. Hence L(x) C Dp, for all x € Dp, which shows that Dg, is a
left ideal. It is clear from the definition of g, that

0, = pa | Do,

and so, g, is a morphism of left ideals.
To show that g is a representation, consider 4,b € S. For any x € S, let
D = D, be the Z-class containing x. Then

xg, =xeh =x(¢) o &) =x (e, © 0,)
by Proposition 2.92. Hence g, = g, © g,- Therefore g is a representation in
PTs. O

representation!partial symmetric —
on D



isodomain

Do, :isodomain of p,

o,:partial right translation by a

partial right translation

o:representation by partial right
translations

DA, :isodomain of A,

A,:partial left translation by a

partial left translation

A:representation by partial left
translations

@:partial symmetric representation
ofon S

representation!partial symmetric —
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The ideal Dg, has the important property that restriction of the translation
pa (or the partial translation g,) to any L(x), x € Dg, induces an isomorphism
of L(x) onto L(xa). In fact Dp, is the union of all principal left ideals with
this property. We shall call Do, as the isodomain of p, and g, as partial right
translation by a. The representation g is called the representation by partial
right translations

Again, the left-right dual of g is a representation A : S - 2.7 (or an
anti-representation in &7 s) where each A, : DA, — R(a) is a morphism of
right ideals. Here DA, is the isodomain of A, which is the left-right dual of Do,
given by

DA ={xeS:x Zax} and A,=A,|DA,.

Foranya € S A, is called the partial left translation by a. The representation A is
called the representation by partial left translations

We may combine the representations g and A to get a new representation
of SINnPTgX PT gp. As a consequence of Theorem 2.94 and its dual, we
have:

CoroLLARy 2.95. Let S be a semigroup. For eacha € S let

ao = (Qa’ }\a) .

Then @ : S — P Tsx P T is arepresentation. O

@ is called the partial symmetric representation of S. Assume that S is regular.
Then for any a € S, by Proposition 2.39, there is an idempotent e € S withe % a
and ¢ is a left identity of . Hence Hence L(e) C Dg, and g, is an isomorphism
of L(e) onto L(a). In particular , is surjective from Dg, onto L(a). Similarly A,
is surjective from DA, onto R(a). Now leta®@ = b@. Then g, = g, and A, = A,.
In particular L(a) = L(b) and R(a) = R(b) which implies thata ¢ b. If e is an
idempotent in R,, then we have

a=ea=eQ,=ep,=eb="0.
Therefore @ is faithful.

CoROLLARY 2.96. If S is a regular semigroup, then the representation @ of S is faithful.

Recall Subsection 2.6.2 that a semigroup is an inverse semigroup if every
element of S has a unique inverse. See Theorem 2.44 for various equivalent
characterizations of inverase semigroups. In particular, every inverse semi-
group is a regular semigroup.
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TuEOREM 2.97. If S is an inverse semigroup, then
Do, = L(aa™Y) = L(e,) and

and o, : L(e;) — L(f;) is a is a one-to-one partial transformation. Thus o is a
faithful representation of S by one-to-one partial transformations of S. Similarly
representations A and @ are also faithful.

Proof. Since S is inverse, by Theorem 2.44, it is regular and by |cor 2.96,the
representation @ is faithful. To prove that g is faithful, let g, = g,. By
Theorem 2.44, R, contains a unique idempotent ¢ (say). Then

e€Dp,=Dp, andso, eb=ea=a€R,U L.

By Theorem 2.34, L, U R, contains an idempotent f. Then ¢ .Z f and by
Theorem 2.44, ¢ = f. Thereforea % b and so, a 5# b. Thena = ea = eb = b.
Therefore g is faithful. Dually A is faithful.

Finally we show that g, is one-to-one for every a € S. If e is the idempotent
in Ry, it is clear that e € D, and g, | L(e) = p, | L(e) is an isomorphism of
L(e) onto L(a). Suppose that x € Dg, and f be an idempotent in L,. Since
sp, = sa = (se)a for all s € Dp,, it follows from the definition of D, that f % fe.
By Theorem 2.44 fe is an idempotent in R, and so, again by Theorem 2.44,
f = fe. Hence f € L(e) and so, L(x) € L(e). Hence L(¢) = Dp, and so,
0, = Pa | L(e) which is an isomorphism of L(e) onto L(a). This proves that g, is
a ono-to-one partial transformation of S. O

The representation p for inverse semigroups is known as Vager-Preston
representation and it was first studied by Vagner Vagner [1953a] and indepen-
dently by Preston Preston [1954b]. B. R. Srinivasan introduced an studied a
class of regular semigroup called weakly inverse semigroups ? which properly
contains the class of inverse semigroups and for which the representation o
is faithful. This representation need not be faithful for arbitrary regular semi-
groups. For, let S = B! where B is an n X n rectangular band (n > 1) and
S is obtained by adjoining identity to B. Then the regular representation of
S is faithful but the representation p is not faithful. Notice that B is a regu-
lar semigroup for which neither the regular representation nor the Lallement
representation is faithful.

2.9.3 Schutzenberger representations

Here we shall discuss some representations by matrices over a group with
0 G° (see § Subsection 2.1.3 and § Subsection 2.7.3 for relavent definitions).

semigrouplweakly inverse —
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matrix!column-monomial —

Miow-mon:semigroup of
row-monomial matrices
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Suppose that {g; : i € I} is an indexed subset of G’ indexed by an arbitrary set
I. For convenience, we shall write

0 if g; = 0 for all j;
Y 5=1a if g; = 0 for all i with i # k and
el undefined if there exist k,I € I, k # [ such that gy # 0 and g; # 0.

(*)
Recall that, for any set I, an IxI-matrix over G’ is amap IXI — G°. Suppose that
m = (g;j) and m’ = (hy) are two I X I matrices over GY. The usual (row-column)
product of these matrices is

@) = @) where ey =Y gijhy

jel
if the sum is meaningful. Unless an additive structure exists on G’, the sum
should be interpreted as in (). Hence the product exists if and only if, for each
i,1 € I, there is exactly one j with ¢; = g;;h . This will hold if either every row
of m contains exactly one non-zero entry or every column of m’ contain exactly
one non-zero entry. Thus the product mm’ exists if either m is row-monomial or
if m’ is column-monomial. If m is row-monomial, so is mm’ for any matrix m’ and
mm’ is column-monomial, if m’ has this property. Thus the set Myow-mon Of all
rowmonomial matrices is a semigroup under matrix multiplication abow and
similarly, we have the semigroup Mcol-mon Of all column-monomial matrices.
Notice that the set of all monomial matrices § Subsection 2.7.3 is a common
subsemigroup of these.

We have discusses representation of completely 0-simple semigroups by
monomial matrices in § Subsection 2.7.3. Here we discuss some representa-
tions by row-monomial and column-monomial matrices over a group with
0.

Let D be a Z-class of S and let H C D be an #class contained in D. Let

D/% = {RjZiGID} and D/XZ{L/\ZAGAD}

denote the set of Z-classes and .#-classes contained in D respectively. For each
i € Ip = I, we denote by R(i) the principal right ideal generated by L;; similarly
L(a) denote the principal left ideal generated by Ly, A € Ap = A. Also, we
write R = R(H) and L = L(H). Recall Proposition 2.46 that the automorphism
groups of L and of R are isomorphic to the Schiitzenberger group g(H) of the
st-class of H. It will be convenient in the sequel to identify these groups. Thus
an automorphism a € Aut(L) [a € Aut(R)] will be identifies with the unique
element 0 € g(H) such that aa = a6 [a(a) = Oa] for alla € H.

Now if a,b € D, by Proposition 2.28 there is c € D witha #Z ¢ £ b and
by Theorem 2.26, there is a unique isomorphism o : L(a) — L(b) in L(S) with
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ac = c. Since o is an isomorphismin(S), thereiss, s’ € S! such thato = p, | L(a)
ando7! = ps - It follows that for each A € A we can choose s, s/ € S! such that

Y2 =ps, | L isanisomorphism onto L(A) and  py | L(A) =y

Suppose thata € S. For any A € A, p, | L(A) is an isomorphism onto L(u) for
some u € A if and only if

x#xael, forall xelL,.

If this is true then

M =72 (pa | LV 73! (2.55)

is an automorphism of L = L(H) and so corresponds to a unique element in
g(H). Now let

(@) = {hw if pg | L{A) : L(A) — L(u) is an isomorphism (2.55b)
0 otherwise.

When m, , # 0, it is an automorphism of L(H) = L and so, can be taken to be
an element of the Schiitzenberger group g(H) of the .##class H. In either case
m, , represents a unique element in the group with zero (g(H))°. Note that for
any A € A, there exist utmost one u € A for which m, ;, # 0. It follows that

Mp(a) = M(a) = (m, ,(a)) (2.55¢)

is a row monomial I X [-matrix over (g(H))0 where I = Ip. If a,b € S, by the
definition of the product,

M@M(b) = (pry) where py, = Z my,(@)m,, ()
UEA

By Equation (2.55b), pa, # 0 if and only if there exists a uuique 1 € A such that
P = m/\r](a)mr]v(b)

and so,py, # 0if and only if

myy(a@) #0 and my,(b) # 0.
Therefore x Z xa % xab for all x € L. Hence x % xab and so m,,(ab) # 0. Also
the automorphism of L corresponding to p, = g(a)1,9(b), in g(H) is

P = m/\r](a)mqv(b)

=y (pa | L) Yy vy (o | L) !

=72 (pape | L(A)) v

=y (pav | L(A)) v

= m/\v(ab)‘
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Therefore p;, = my,(ab). Conversely, if my,(ab) # 0, x % xab for all x € L) and
as in the proof of Proposition 2.92, we have x % xa % xab. This implies that

myy(@) #0 and my,(b) # 0.
Thus p,, # 0. Consequently
M(a)M(b) = M(ab).

Dually, for each i € Ip = I, we can choose an isomorphism §; : R — R(i) and
for each a € S, define

M () = (m} (@) (2.55¢%)
where
" @ 6i (Aa | R(7)) 6171 if A, | R(i) : R(i) = R(j) is an isomorphism
w, (a) =
A 0 otherwise.

(2.55b%)

Then it can be verified, using Proposition 2.46 and Theorem 2.47 that M’ : a =
M’(a) is a dual (anti) representatyion of S by row-monomial matrices over the
Schiitzenberger group with zero (g(H))°. If we set

M3 (a) = (M’ (a))' (2.55d)

as the transpose of the matrix M’(a), then M*(a) is column-monomial and we
have

M (@)M*() = (M’ (a))’ (M’ (b))’
= (M ()M’ (@)’
= (M'(ab))" = M"(ab).
Therefore M7, is a representation of S by column-monomial Ip X Ip-matrices

over (g(H))’. We use the notations introduced above in the following state-
ment.

THEOREM 2.98. Let D be a D-class of a semigroup S and let H be an *class contained
in D. For eacha € S, let Mp(a) be defined by Equation (2.55c). Then the map

Mp:am MD(ﬂ)

is a representation of S by row-monomial Ip X Ip-matrix over (g(H))".
Dually for eacha € S, let M7, (a) be the matrix defined by 2.55¢" and (2.55d). Then
the map
M}, :a = Mp(a)

is a representation of S by Ap X Ap column-monomial matrices over (g(H))".
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The representation Mp is called the Schiitzenberger representation of S with
respect to the Z-class D. Similaely the representation My, is called the dual
Schiitzenberger representation of S with respect to the Z-class D.

Suppose that ¢ and 1) are two representations of the semigroup S. We shall
say that ¢ and ¢ are equivalent if k¢ = xip. If this is the case, it is clear that the

semigroups Im ¢ and Im 1 are isomorphic.

THEOREM 2.99. Let D be a P-class of a semigroup S then the partial representation
oP and the Schiitzenberger representation Mp are equivalent. Similarly, the dual
representations AP and M7, are also equivalent.

Proof. Suppose that a,b € S. For brevity, we have write M(a) for MpD(a), etc.
Then, by (2.55b) and (2.55c), M(a) = M(b) if and only if, for each A € Ap, p, is
an isomorphism on L(A) if and only if p; is an isomorphism on L(A) and the
two isomorphisms coincide. Now, by Corollary 2.27, for x € D, p, | L(x) is an
isomorphism if and only if x % xa. Hence p, | L(x) is an isomorphism if and
only if x € DQuD . It follows that M(a) = M(D) if and only if DQuD = DQbD and the
restrictions of p, and py to this set are equal. Therefore M(a) = M(b) if and only
if oY = gp; that is Mp and " are equivalent representations. Dually we can
see that kM7, = xAP and so, these representations are also equivalent. O

The representation Mp clearly depends on the choice of the isomorphisms
y1: L — L(A). However, if M}, is another representation with respect to D, by
the result above, we have

*Mp = k" = xM,.
Therefore:

Cororrary 2.100. Let D be a P-class of a semigroup S. The Schiitzenberger repre-
sentation of S with respect to D is unique up to an equivalence.

For each w in an index set Q, let M, be a representation of the semigroup
S by A, X A,-matrices over the group with zero GY. If My(S) = ImM,,
then M, (S) is a semigroup and M, is a homomorphism onto M,(S). Let
T = I1yeq Mo (S). Each s € S determine a unique element

M(s) = (...,My(s),...) €T
such that the map

M : s M(s)

Mp:The Schiitzenberger
representation of with respect to D
representation!Schiitzenberger —
M7,:The dual Schiitzenberger
representation of with respect to D
representation!dual Schiitzenberger

representations!equivalent —
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is a homomorphism of S into T. We write

Mz@Mw

weQ)

and is called the direct sum of representations M,. Let A = |J,eq Aw be the

disjoint union of sets A, and let G° be any group with zero containing, for
each w Im Q, G?, as a subgroup with zero (for example, we may take G’ as the
direct product [],cq G, of all semigroups GY, see Rmk 2.6). Then, for each
s € S, M(s) can be regarded as a A X A-matrix over G’

M(s) = M, (s) (2.56)

in which the matrices M, (s) form the diagonal blocks along the main diago-
nal. If each M,, is a representation by row-monomial (or column-monomial)
matrices so is the direct sum M.

Let 5/2 = Q be the sert of all Z-classes of S. By Corollary 2.48, upto
isomorphism, there is a unique group associated with each D € Q) which is
isomorphic to the Schiitzenberger group of any /#class of D. We shall refer to
this group as the Schiitzenberger group of D. Recall that for each D € Q, Mp is
a homomorphism of S into the semigroup of all row-monomial matrices over
GY where Gp is the Schiitzenberger group of D. Clearly, sets Ap are mutually
disjoint and A = 5/.Z = |Upeq Ap- It follows from the remarks above that the
direct sum

M = @ Mp (2.57)

is a representation by row-monomial A X A-matrices over the group with zero
G where

GO = H GY. (2.58)
DeQ

the direct product G° of all Schiitzenberger groups of S. Notice that, by
Remark 2.6, G" is a group with zero.

TueorEM 2.101. The direct sum M (2.57) of all Schiitzenberger representations of a
semigroup S is a representation of S by row-monomial AX A-matrices (A = S/.Z) over
GP. Morewover, M is equivalent to the representation @ by partial right translations
(see Theorm 2.94).

Dually, the direct sum M* of all dual Schiitzenberger representations is is a repre-
sentation by column-monomial I X I-matrices (I = S| %) over G° and is equivalent to
the representation A by partial left translations. Finally, if U = A U I, the direct sum
M, = M @& M is a representation of S over G® and M, is equivalent to the by partial
symmetric representation @ (see Corollary 2.95).
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Proof. In view of the discussion preceding the statement, it is only necessary
to prove the equivalence of representations M with p. The equivalence of M*
with A will follow by duality and that of M, with @ from the equivalences
mentioned above. To prove that kp = kM, assume that (a,b) € xg. By the
definition of p, and 0,  we obtain, for every x € S,

XZxa or xZxb= xa=xb. 1)

Now if x # ax then, by Equation (2.55b), m,,(a) # 0 where L(A) = L(x) and
L(u) = L(xa). If this hold, the condition (1) above implies that

my (@) = may(b)

When x # xb we similarly see that this equality hold. If neither of these hold
then

mAy(a) = m/\y(b) =0.
Therefore

myu(@) =my(b) forall A, ueA=52 (2)

and so, we have M(a) = M(b). Conversely, let M(a) = M(b) so that a and b
satisfies Equation (2). Assume that x € Dg, so that x % xa. Then, as above,
we see that m,,(a) # 0 where L(A) = L(x) and L(u) = L(xa). By Equation (2),
my,(a) = my,(b). By Equation (2.55b) it follows that p, | L(x) = p, | L(x) and so,
xa = xb. Similarly, we see that when x € Dg,, xa = xb. It follows that g, = g,.
This completes the proof. O

It follows from Theorem 2.97 and the result above that the representation M,

is faithful for regular semigroups. For inverse semigroups the representations
M, M* and M, are all faithful.

2.10 EXTENSIONS

By an extension of a semigroup S we mean a semigroup T containing S as a sub-
semigroup. The problem of constructing all extensions of a given semigroup
is too general to be of much interest (even for groups). A much restricted
form of this problem for groups is the following: given two groups N and H
construct all groups G having N as a normal subgroup and G/N isomorphic to
H. This construction is possible and is given by the Schreier extension theory.
A direct generalization of this to semigroups is again not possible since, in
the case of semigroups, there is no proper replacement for concept of kernel

extension
extension!Schreier —
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of homomorphisms. However, in some particulae cases, this construction has
been carried out successfully for semigroups (see, for example, Leech ?, Grillet
Grillet, ? and Clifford Clifford [1949], Clifford and Preston [1961]). Here we
shall briefly discuss the later construction due to clifford Clifford and Preston
[1961] which is particularly useful in finding structure of several classes of
semigroups (in particular, certain classes of finite semigroups).

2.10.1 Ideal extensions

To save repetition we shall assume through out this section that S is a semi-
group with zero 0 and U is a semigroup disjoint from S. A semigroup T is an
ideal extension of a semigroup U if U is isomorphic to an ideal U’ of T. Further,
we say that T is an ideal extension by a semigroup S with zero if the Rees
quotient T/U’ is isomorphic to S. For convenience, we may identify U with U’
by the given isomorphism and regard U as an ideal of T and S = T/U. The-
orem 2.90 says that when U is weakly reductive, the translational hull Q(U)
is an ideal extension of U. Clifford [1949] was first to study ideal extensions
(see also Clifford and Preston [1961], Grillet). Petrich and Grillet ? have also
contributed significantly.

Notice that the construction of T from the given semigroups U and S is
analogous to the Schreier construction of groups. On the other hand, there are
also significant differences between these constructions. For example, given
two groups N and H there is always a Schreier extension of N by H; the direct
product N x H is one such extension. However, as shown by the Example 2.30,
this is not true for ideal extensions of semigroups.

Let T be an ideal extension of U by S. Then it is clear that

T=UUS" where S =5-{0}.

Also, if s,t € T, the product s * t in T is formed as follws. In the following,
products in S or U is indicated by juxtaposition.

(1) s=t=steS" ifs,tsteS;

(2) s*tel ifs,t € S"and st = 0;
B) s+tel ifseS*and t e U; (2.59)
(4) s=tel ifselUandte S

(5) s*t=stelU ifstel.

Therefore an ideal extension T of U by S defines an associative product on
T = U U S satisfying equations (1) — (5). We proceed to discuss some of the
consequences of this. Since S and U are given, conditions (1) and (5) can be
ensured with out any further work. Other products must be specified in such
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a way that the resulting product is associative. The products of type (2) defines
amap ¢! = ¢ defined by

P(s,t) =s=*t forall (st) € Z(S) (2.60a)
where

Z(S)={(s,) €S xS :st=0 in S}. (2.60b)

Following Clifford and Preston [1961], any map ¢ : Z(S) — U is called a
ramification of S into U. Hence every ideal extension T of U by S induces a
unique ramification ¢ of S into U.

If s € §* the products of the form (3) gives a map

Adt=s+t forall tel (2.61a)

of U into itself which is clearly a left translation of U. In fact, /\él =As | Uis
the restriction of the inner left translation of T determined bt s to U. Similarly
products of the type (4) gives the map, defined for all t € S*, by

spl=s+t forall sel (2.61b)
which is a right translation of U. Moreover, for any s € S*
(tpél)u = t(Ayu) forall tuel
Hence the pair
n =15 = (ps', A (2.62a)

satisfies Equation (2.54) and so, this pair belongs to ()(UI). Associativity of the
product * in T imples that

Nst = ns1¢  foralls,t € S*such that st # 0. (2.62b)

By a partial homomorphism of a semigroup S with 0 to a semigroup U we mean
is a mapping 1 of S* = 5§ — {0} into U satisfying Equation (2.62b) above. Thus
the discussion above shows that every ideal extension T of U by S induces a
partialhomomorphism ! = nof Sto U. 1" is called the partial homomorphism
induced by T.

Excep for minor changes in notation and terminology, the following result
is the same as Proposition 1.1 of Chapter III in Grillet.

ramification
homomorphism!partial —
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Tueorem 2.102. Suppose that S is a semigroup with zero and U is a semigroup disjoint
from S. Let T be an ideal extension of U by S. Then the partial homomorphisn n’ = 1
and ramification ¢T = ¢ of S to U satisfy the following: for s, t,x € S*,

D (nsu)ne = ns(uny) forall u € U;

) nay = (s, ) ifst=0inS;

(B) 1Pt x) = P(s, e if st =0=tx; (2.63)
(4) nsP(t, x) = P(st, x) ifst#0,tx=0;

(5) P(s, e = P(s, tx) ifst=0,tx#0;

6) (s, tx) = P(st, x) if st # 0 # tx and stx = 0.

Conversely, let n : s +— 1, be a partial homomorphism and ¢ be a ramification of
S to U satisfying the conditions (1)...(6) above. On T = S* U U define the binary
operation * as follows: For all s,t € T

st ifs, t,ste S ors, tel;
¢(s,t) ifs,teS andst=0inS;
nst ifse S andtell;

ST ifseUandteS".

(2.64)

Then T with this binary operation is the unique ideal extension of U by S such that the
partial homomorphism and ramification induced by T coincides with the given maps.

Proof. Let ¢ be the ramification defined by Equation (2.60a) and 1 be the partial
homomorphism defined by Equation (2.62a). The properties listed in Equa-
tion (2.63) are immediate consequences of the definitions and the associativity
of the product in T. The verification of these are left as exercise.

To prove the converse, we first verify that the product defined by Equa-
tion (2.64) is associative. To do this it is necessary to verify the following
equality in various cases:

(axb)y*c=ax*(b=+c) forall a,bceT. "

Lets,t,x € S*and u,v,w € U. The case a, b, c € U follows from the associativi-
ties in the semigroup U. Since 75 acts on the left of U as a left transtlation, we
have

s* (u*0) = ns(uv) = (Msu)v = (s*+ u) * v.

Dually, we have (1 *v) *s = u » (v*s). Since 1, € Q(U) the two translations
represented by 7, are linked. Hence

(u=s)*v = (uns)v = u(nsv) = u*(s*v).
Again by condition (1) above, we have

(s*u) =t =Msu)n; = ns(un;) = s+ (uxt).
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If st # 0, since 7 is a partial homomorphism, we have, homomorphism!U-homomorphism
congruence!S-congruence

(s*t)*u = ngu = N = 5 * (£ * 1).
If st = 0, then by the case 2 of the definition of + and conditions (1) and (2),

(s*t)*u = (s, hu = Tyt = Nst)th = s * (£ * ).

Now if st # 0 # tx and stx # 0, then by the case 1 in the definition of *, we have
(s*t)*x =s=*(t*u). If st # 0 # tx and stx = 0 then

(s*t)+x =st+x=¢(st,x) ands=*(f+x)= (s, tx)

and so, (!) follows by condition (6). Let st # 0 and tx = 0. Then (st)x = 0.
Hence

(s*t)+x=(st)*x =P(st,x) and s=*(t+x)=s=*(f,x) =Pt x).

So, the equality (!) holds by condition (4). Similarly it can be shown that in
the case when st = 0 and tx # 0 (!) holds because of condition (5). Finally if
st=0=tx,

(s*8)*x= (s, )+ x = (s, and s (£+x) = np(t, ).

Therefore, in this case, (!) holds by condition (3). This completes the proof of
associativity of *.

Equation (2.64) clearly shows that U is an ideal in T. Since T = S* U U,
the Rees quotient T/U is clearly in one-to-one correspondance with S. The
first and second cases in Equation (2.64) shows that this correspondance is
an isomorphism. Thus T is an ideal extension of U by S. Comparing Equa-
tion (2.60a) and Equation (2.64), we see that the ramifcation ¢ of T (defined
by Equation (2.60a)) and the given map coincide. Similarly compairing Equa-
tions (2.61a), (2.61b), (2.62a) and (2.64), we see that 7 = 7; that is, the partial
homomorphism 7" associated with T coincides with the given map 7. This
proves the uniqueness of the construction of T. O

Let T and T’ be ideal extensions of U. A homomorphism 6 : T — 1" is
said to be an U-homomorphism if 0 | U = 1y (see Grillet, page 65). Similarly
a congruence o on T is an U-congruence if the restriction of o to U is identity;
thatis c N U X U = 1y. Recall from Theorem 2.90 that  : U — Q(U) is a
homomorphism which sends u € U to (p,, Au).
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Tureorem 2.103. Let T be an ideal extension of U by S and let 1 = n* be the partial
homomorphism induced by T. Then there is a unique homomorphismt = tr: T —
Q(U) defined for all s € T by

s 1s foralls e S*;
T =
st = (ps,As) forallse U.

T is a U-homomorphism if and only if U is weakly reductive.

Proof. Since S*NU =0 and S*U U =T, 7 is well defined map of T into Q(U).
We must show that

(@a*b)t = (at)(bt) forall abeT @)
We need to verify several cases.

1 s,t € S*and st # 0. Then by the deinitionof 7, we have
(s* )T = (st)T = 5t = 51 = (ST)(ET)-
2 s,te€ S"and st =0. Then forany v € U,

V(s * )T = 0 (%) = (0x8) * t = N1 = 0 (sT)(t1)).

Hence the right translation determined by (s * )t and (s7)(t7) are the
same. Similarly

(s *t)Tv = ns(n0) = ((sT)(t7)) ©

and so, the left translation by (s * f)t and (st)(ft) are also the same.
Therefore (!!) holds in this case.

3seSanducl.
v((s*u)T) =0 ((S*U)T) = VPsey = V* (5% u) = (V*5)*U
=0 (pspu) = v ((sm)(um) = v ((s7)(u7)) -
Similarly,

(sruw))v=(s*u)*v =5 (u+0) = (AA)v = ((57)(u1)) 0.

It follows from these that (s * u)T = (s7)(u7). It can be shown in a similar
way that (1 *s)t = (ut)(s7).

4 u,v e U. Since 7 | U = 7, the equation (!!) is obviousely hold.
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Therefore 7 is a homomorphism of T into Q(U). The uniqueness of 7 follows
from the fact that, by definition, 7 | S*=nand 7| U = 7.

If 7 is a U-homomorphism then 7 | U = 1y = m. Therefore U is weakly
reductive. Comversely, if U is weakly reductive, then 7 | U = m is an isomor-
phism. Identifying U with Imm by 7, Q(U) become an ideal extension of U
and 7 : T — Q(U) a U-homomorphism. (]

It is clear that, given a semigroup U, there is a category i€, with ideal
extensions of U as objects and U-homomorphisms as morphisms. Recall Sub-
section 1.2.3 that from a base F : C — D tod € vP is a natural transformation
from F to the constant functor Ay from C to d. A cone from the inclusion
functor of i€y in the category & of semigroups to the constan functor from
i€y to Q(U) will, for convenience, be called a cone from the base i€ to the
vertex Q(U). Thisisamap 7 : T — tr from v i€ to the morphism class of i€y
making the following diagram commute:

Q) (2.65)

=T

TueoreEM 2.104. Let T and T’ be ideal extensions of U and let 6 : T — T’ is a

U-homomorphism. Then the map t : T v 1t is a cone from the base i€y to the vertex
QU). If U is weakly reductive, then the cone t is universal and so,

Q) = limy i€y

Furthermore, in this case,

QU
1p = 20

whenever T is an ideal extension of U which is a subsemigroup of Q(U).
Proof. Write © = tr and " = 7. Since 0 is a U-homomorphism,
ufotv =um=utr forall uel
Leta € S*. Then for any u € U, since 0 | U = 1y;, we have
u@bot)=ux@0) =ub+ab = u+a)0 =uxa=un,.
Similarly, (a0 o v")u = n,u. Therefore

aBot' =at forall aeS*

i€:The category of ideal extensions

of U
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Consequently 0 o 7’ = 7 and so the diagram 2.65 commutes. Therefore 7 : T
77 is a cone with base i€ and vertex Q(U).
Suppose now that U is weakly reductive and let

T = Toy-

Then Q(U) is an ideal extension of U. Since U is identified with nt(U), v’ is a
U-homomorphism of Q(U) onto itself. We first show that " = 1. If u € U,
we have ut” = um = u. If a € S* where S = Q(U)/U, then a is an outer
bitranslation (bitranslation which is not inner). By the definition of 7" = Tqqy

QU

in Theorem 2.103 and Equation (2.62a) (definition of n*")), we have

u@t’)y=un, =ura=ua forany wuel

Similarly au = (at’)u for all u € U. Since both a and a7’ are bitranslations,
this implies that a2 = at’ for all @ € S*. Therefore " = 1gq). To show that
the cone 7 is universal, let 0 be amy cone from the base i€ to the vertex
V. Tnen ¢’ = oqq) is a U-homomorphism. Then for any T € vi€y, 17 is a
U-homomorphism and so,

orT = TTOO'.

This shows that 7 is universal and so, Q(U) = li_n)liqu. Finally, assume that
UcTcOQU). Since ]?(u) is a U-homomorphism, by the above,

u u

Q Q
T = ]T( °Tow) = ]T(

because Ty = low)- O

An ideal extension D of U is said to be dense if identity is the only non-
trivial U-congruence on D. This is equivalent to the statement that any U-
homomorphism of D is injective. When U is weakly reductive, any sub-
semigroup T of Q(U) containing U is dense. For, let 6 : T — T’ be any
U-homomorphism. Then ¢ = 0 o 1 is a U-homomorphism of T to Q(U).
Then by Theorem 2.104, we have

¢=¢orauw=1r=/7"
which says that ¢ is injective. Hence 0 is also injective. Thus T is dense. In
the same way, it can be seen that an ideal extension D is dense if and only if D
is isomorphic to an ideal extension T € Q(U).

CoroLLARY 2.105. Let D be an ideal extension of a weakly reductive semigroup U.
Then D is dense if and only if it is isomorphic to an ideal extension T € Q(U).
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If S is a semigroup with 0 and U is disjoint from S, then by Theorem 2.102,
an ideal extension of U by S is determined by a partial homomorphism r and
a ramification ¢ satisfying the conditions in Equation (2.63). The condition (2)
in Equation (2.63) shows that the ramification ¢ is uniquely determined by the
partial homomorphism when U is weakly reductive. This simplifies the result
considerably as the following theorem shows.

For convenience, if U is weakly reductive, we shall assume that U has been
identified with m(U) € Q(U) so that a statement that the bitranslation § € U
will mean that f8 is an inner bitranslation sm for some unique s € U.

TueorEM 2.106. Suppose that U is weakly reductive and let n : S* — Q(U) be a
partial homomorphism such that

ne €U forall s,teS with st=0. *)
Then T = S* U U with product * defined, for all s,t € T, by

st ifs, t,st € S*ors,t € U;
nsMe ifs,t €S andst =0inS;
Nt ifseSandtel;

sy ifselandteS".

(2.66)

is the unique ideal extension of U by S such that the partial homomorphism 1" induced
by T coincides with 1. Conversely if T is any ideal extension of U by S, then the partial
homomorphism induced by T satisfies the property (»).

Proof. Assume that n : S* — Q(U) is a partial homomorphism satisfying (»).
We proceed to show that we can define a ramification ¢ such that the pair n
and ¢ satisfies the conditions in Equation (2.63). Define

s, 1) = e forall (s,1) € Z(S). o

By (») ¢(s,t) € U and so defines a ramification of S in U. Since we have
identified U with Imm = m(U), condition (1) of Equation (2.63) follows from
associativity in Q(U). Since m = 1y, condition (2) is the definition of ¢. If
st = 0 = tx, using (<), we have

NsP(t, x) = ns(Nenx) = (Msne)1x = P(S, )1

This proves condition (3). To prove (4), let st # 0 and tx = 0. Then n,n; = 1y
and (st)x = 0. Hence

T]s(P(t/ x) = ns(ntnx) = (nsnt)r]x = Nstlx = ¢(St/ X).
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The statement (5) is proved in a similar way. To prove (6), assume that st #
0 # tx and stx = 0. Then

(s, tx) = NsMex = (MsN)Nx = NstN]x = P(st, X).

Hence partial homomorphism n and ramification ¢ satisfy the six conditions of
Equation (2.63). Also, in view of (<), the definition of * in the statement coincide
with the product * defined by Equation (2.64). Therefore, by Theorem 2.102,
T = UU 5" is a semigroup with respect to * which is an ideal extension of U by
S. The uniquiness of T also follows from Theorem 2.102.

To prove the converse, let T be an ideal extension of U by S where U
is weakly reductive. Since m = 1y, by condition (2) of Equation (2.63), the
ramification ¢” induced by T satisfies (<) and hence the partial homomorphism
n' induced by T satisfies (>). a

Remark 2.18: The result above can be generalized to arbitrary semigroups by
replacing the particular dense extension Q(U) by an arbitrary dense extension
D. Thus an ideal extension of a semigroup U by a semigroup S can be con-
structed by considering a partial homomorphism 6 : S* — D satisfying the
condition (>). Then we can get a partial homomorphism into Q(U) as 0 o nP.
Defining ramification by ¢(s, t) = (s0)(t0) we can show that this pair satisfies
conditions of Equation (2.63). See Grillet for details. Notice that, by Corol-
lary 2.105, this is equivalent to Theorem 2.106 when U is weakly reductive.

Example 2.30: Let S = {e, f,0} be the semilattice with ef = 0 and N = x* be the
free cyclic semigroup. Any partial homomorphism 6 of S to QQ(N) must map f to an
idempotent in Q(N). But Q(N) is isomorphic to N! and so, any idempotent in Q(N)
must be identity which is also the only external bitranslation of N. Hence if 0 exists,
we must have (e0)(f6) = 1y. So, there cannot exist ¢(e, f) € N such that

(0)(£0) = (¢(e, f)) m.

Therefore there cannot exist an ideal extension of N by S.



CHAPTER 3

Biordered sets

In many algebraic systems like semigroups, rings, algebras, etc. idempotents
idempotents are important structural elements. To use them effectively in
analysing the structure of the abgebraic object under consideration, it is nec-
essary to know the nature of the set of their idempotents. In the case of
inverse and orhtodox semigroups the set of idempotents form subsemigroups
of known type. Many authors used this fact to determine the structure of
semigroups in these classes of semigroups. However, these methods cannot
be extend to determine the structure of semigroups in the more general class
of semigroups such as the class of regular semigroups, completely regular
semigroups, etc. since the set of idempotents E(S) of a regular (or completely
regular, etc.) semigroup S is not in general a subsemigroup of S even though
the role of E(S) in the structure of S is transparent. T.E. Hall (1973) made
an attempt to study the the structure of regular semigroup S in terms of the
subsemigroup generated by idempotents. He constructed a universal funda-
mental representation of S using the subsemigroup < E(S) > of 5 generated by
E(S). The concept of biordered set was originally introduced by Nambooripad
[1972,1979] to represent the structure of the set of idempotents of a semigroup
in general and that of a regular semigroup in particular. He identified a par-
tial binary operation on E(S) arising from the semigroup product in S. The
resulting structure on E(S) involving the partial binary operation is abstracted
to the concept of a biordered set.

Historical Background

The idea using of the set E(S) of idempotents of a semigroup S in studying its
structure has a long history. In 1941 Clifford [1941] used E(S) to characterize
certian semigroups which were semilattice of groups. Later in 1966 W.D. Munn
constructed an inverrse semigroup T(E), now called the Munn semigroup,
form an arbitrary semilattice E for which E(T(E)) is isomorphic to E (see Munn
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[1970]). Morever, if S is any inverse semigroup for which E(S) is isomorphic to
E then there is an idempotent separating homomorphism of ¢s : S — T(E) to
a full subsemigroup of T(E). ¢s is an isomorphism onto a full subsemigroup
of T(E) if and only if S is fundamental. This implies that the structure an
inverse semigroup S is determined by its semilattice of idempotents and a
certain family of groups. This turned out to be a landmark contribution
and many people tried to extend the results to wider class of semigroups.
Recall that a semigroup S is orthodox if the set E(S) is a band (a semigroup
of idempotents). Hall [1968] and Yamada [1970] observed that when S is a
regular orthodox semigroup, the structure of S can be described in terms of
E(S). In particular, Hall suitably extended Munn's theory to the class of regular
orthodox semigroups [see Hall, 1968].

For an arbitrary regular semigroup S, E(S) is not a subsemigroup of S.
Consequently it is not clear how one can extend Munn’s theory to this class of
semigroups. Three different approaches to the use of the set of idempotents
E(S) in the study of the regular semigroup can be traced. T.E.Hall(1973) used
the idempotent generated semigroup < E(S) > as the basic object in place of the
set E(S) of idempotents in studying the structure of the regular semigroup S.
Grillet [1974a,b,c] refined Halls results using the theory of cross-connections.
A H. Clifford (1974) introduced the concept of warp which was the partial
algebra W on E(S) with partial binary operation * induced from the semigroup
productin S: fore, f € E(S)

e*fz{ef ifef € E(S);

undefined otherwise.

K.S.S. Nambooripad introduced the concept of a biordered set in Nambooripad
[1972] as an order the structure to represent the set of idempotents of a semi-
group; [see also Nambooripad, 1975]. He identified two quasiorders " and &'
and a set of partial tranofsformations on the set E(S) of idempotents of a semi-
group satisfying certain axioms (see the definition below). Later, followiing
Clfford’s work ([see Clifford, 1974]), he refined the definition of biordered set
by showing that biordered sets are cetain partial binary algebras. Namboori-
pad [1979] showed that any biordered set satisfying the regularity condition
(see below) can be embedded as the set of idempotents of a regular semigroup.
It is known from Nambooripad [1979] that the partial algebra of idempotents
of any semigroup satisfies the axioms in Nambooripad [1979]. David Eas-
down (1985) proved the converse that any biordered set can be embedded as
the biorered set of idempotents of a suitable semigroup and thus showing that
the biorder axioms of Nambooripad [1979] are both necessary and sufficient
in order that the resulting structure represents the set of idempotents of a
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semigroup.

3.1 BIORDERED SETS

As observed above, biordered sets can be viewed either as an order structure
or as a partial algebra. We give below both versions. The first definition
is essentially from Nambooripad [1972] with some rationaizations (see also
Nambooripad [1975]).

Recall from Section 1.1 that given any relation R on the set X and x € X,
R(x) denote the set {x" € X : x’Rx} (see Equation (1.5a)). Also, 1x denote the
identty map (or relation) on X.

DeriniTioN 3.1. Let E be a non empty set and o', " be quasiorders on E. Let
Z=' N, ZL=d'N@)? and w=d N (3.1)
Suppose further that
T ={t"(e):ecE} and T ={7'(e):ecE).

are families of partial transformations of E. Here, by the dual of a statement
involving the quasiorderes w’, &' and partial tranesforfmations 1'(e), 7'(e),
e € E, we mean the statement that result by interchanging " with ' and
7'(e) with 7/(e). The structure < E, ', w’, T,, T" > is called a biordered set if
the following axioms and their duals hold. Here ¢, f, g, etc. denote arbitrary
elements of E.

(BO1) (1) o' N(@) = Nn(@)? =1

(2) Foreache € E, 7'(e) : @'(e) = w(e) is an idempotent partial trans-
formation.

(BO2) (1) fa'e=fZ ft'e)we.
(2) go' f ' e= gt'(f) = (g7 ()T (f).
(BO3) Let f,g € w'(¢e) and g o' f. Then
(1) gt'(e) @ fr'(e) and
@ (97'(H) 7@ = (') T (FT' @) -
(BO4) Letyg, f € w'(e) and g7’ (e) @' f7'(e). Then there exist g; € @' (e) such that
g1 @ fand g17°(e) = g7 (o).

The data required to specify a biordered set E consist of a pair of quasiorders
@" and o' and two families of partial transformations T" and T'. We will refer
to w'right quasiorder of E and, for each e € E, the partial transformation 77 (e) as
the right translation of E. Similarly «' is called the left quasiorder and t'(e),

biordered set
E:biordered set
w":right quasiorder
quasiorder!right
t"(e):right translation
translation!right
w":left quasiorder
quasiorder!left

' (e):left translation



translation!left

biordered set!natural partial order

< E, Dg, * >:partial algebra on E
with domain Dg

Drg:domain of the partial operation
onE

dual

T*:dual of T
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e € E is called the left translation of E. For brevity, we shall often write
E =<E, o, w", T, T" > to mean that E is a biordered set with quasiorders o, "
and translations T', T". The relation @ defined by (3.1) is clearly a quasiorder
and axiom (BO1) implies in particular that

N Cw N =1g.

Hence the relation w on E defined by (3.1) is a partial order. We shall call w,
the natural partial order of the biordered set E.

A. H. Clifford (1974) observed that the data required to specify a biordered
set may be given in terms of a partial binary operation on the underlying set E.
This idea simplified the definition of biordered set a great deal. The definition
of biordered sets given in Nambooripad [1979] used this idea to simplify the
presentation. The following theorem formulates this definition in which we
have also taken into account the reordering of axioms suggested by the work
of 2.

Recall from Subsection 1.2.1 that a partial algebra is a set together with a
partial binary operation. We write < E, Dg,* > for a partial algebra on the
set E with D denoting the domain of the binary operation or < E,Dg > if
the binary operation is clear from the context. If no confusion is likely, we
shall use juxtaposition to denote the product. If E is a partial algebra, we
shall often denote the underlying set by E itself; and the domain of the partial
binary operation on E will then be denoted by Dg. Also, for brevity, we write
ef = g, to mean (¢, f) € Dg and ef = g. The dual of a satatement T about a
partial algebra E is the statement T* obtained by replacing all products ef by
its left-right dual fe. When D is symmetric, T* is meaningful whenever T is.

ProrosiTion 3.1. Let E =< E, &', ", T!, T" > be a biordered set. Define
D =o' Uo U (@)U ()™ (3.2)
and for (e, ) € Dg define e + f by
et’(f) ifea f;
gt Tew S (3:3)

f iffae
et'(f) iffale

Then E(E) =< E, D, * > is a partial algebra such that, for all e, f € E, we have:

ecu]f<=>f*e=e; (3.4)
ew f & exf=e.
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Proof. From the defenition of Dk it is clear that D is reflexive and symmetric.
Now we observe that e f is well-defined. Forlete " fande o' f. Thene w f.
Now by axiom (BO1)(2), 7'(f) is identity on w(f) and so et’(f) = e. Also by
definition of * we have e+ f = et’(f) = e since e " f and e* f = e since e &' f.
Hence the two assignments coinside and so e * f is well defined in this case.
Now suppose that e @” f and f «" e. Then by (BO21), we have

fo'eZet(flw f

which gives f = et’(f) and so, * is welldefined. If e " f and f «' e then
e = f by (BO1)(1) and again the definition of * is consistant. In a similar way,
the remaining cases can be checked for consistancy. Therefore Equation (3.3)
defines a partial binary operation on E with domain Dg.

To prove Equation (3.4), let e " f. Then f *e = e by Equation (3.3).
Conversely if f e = e then (e, f) € Dg and so, one of the statemnts e @" f,
ew f, fw eor fa eholds. If e o f, by Equation (3.3) and (BO2)(1),
e=fre=et(f)w fandso,ew’ f. If faw' e e=fre= f1'(e) Z f by (BO2)(1)
which gives e " f. Finally, if f @' g, by (BO1)(1), g = f and the relation g " f
follows. Therefore, in all cases, the first equation in Equation (3.4) is true. The
second equation can be proved similarly. O

The next theorem characterizes those partial algebras that are induced by
biordered sets as in the proposition above.

!

Tueorem 3.2. Let E =< E, Dg > be a partial algebra. Define o', o', 7" and T as

follows: foralle, f € E,
ew f if fe=e,
ea f if ef=e¢ and
ft'(e)=fe,  forall feda(e),
gtie) =eg,  forall geal(e).

(3.5)

Let T" ={1"(e) : e € E}and T" = {7"(e) : e € E}. Then E =< E, o', &', T, T' > is a
biordered set and the partial algebra E(E) determined as in Proposition 3.1 coincides
with E if and only if E satisfies the following axioms and their duals. In the statements
below %, £ and w denote relations defined by Equation (3.1)and e, f, g, etc., denote
arbitrary elements in E.

(B1) (1) " and &' are quasiorders on E.
(2) Dg = (0" Ua) U (0" U™

(B2) (1) Foralle" f = e Z efwf.
2) go' f " e= gf = (g0)f.
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(B3) Forg, f € w'(e), g f = ge ' feand (fg)e = (fe)(ge).

(B4) If f,g € w'(e) and ge &' fe, then there exists g1 € w'(e) such that g1 &' f and
gie = ge.

Proof. Suppose that E =< E,D > satisfies the given axioms. If ¢ " f and
f @' e, by Equation (3.5), f *e = eand f e = f. Hence e = f and so, E satisfies
axiom (BO1)(1). By Equation (3.5) and (B2)(1), ft'(e) = f *e € w(e) for all
f e a'(e) and f7'(e) = f for all f € w(e). Hence E satisfies axiom (BO1)(2).
The remaining axioms (BOi) are translations of the corresponding axioms (Bi),
i = 2,3,4 obtained by replacing the elements f7"(e) and gt’(h) by appropriate
products given by Equation (3.5). To show that E = E(E) it is clear that from
Equations (3.3) and (3.5) that the underlying sets of E and E’ = E(E) coincide
with E. Let D’ denote the domain of the partial product on E’. If (e, f) € D
implies, by (B1)(2), thate " f, e @' f,faw eorf @' e. If the first case is true,
then by Equation (3.5), fe = ein E and fe = e in E’. Hence (¢, f) € D’. In the
same way, this conclusion holds in all cases so that D C D" and the products
coincide on D in both algebras. Reverse inclusion can be verified in a similar
way using Equations (3.4) and (3.5). Therefore E = E’.

Conversely assume that E is a biordred set and E = E’. Axiom (B1)(1) holds
by hypothesis and (B1)(2) follows from Equation (3.3). The remaining axioms
are obtained by replacing the values f7’(e), f'(e), etc. by products fe, ef, etc.
Hence E satisfies axioms of the statement. O

Definition 3.1 and Theorem 3.2 shows that biordred sets are structures that
affords resentation either as an order structure or as a partial algebra. The
partial algebra representation simplifies the presentation significantly. On the
other hand, any nontrivial discussion of biordered sets will have to deal with
the order structure. We shall therefore use a hybrid approch that combine
both these representations. Notice also that the empty set can be regarded as
a biordered set.

Easdown [1985] proposed yet another way of presenting biorder axioms.

He uses two arrow symbols to denote the relations " and o'

. Combining
these arrows suitably he derives arrow symbols to dente other relations w, %
and .Z. In this way he is able to exibit complex relations between elements of
a biordered set using arrows [see Easdown, 1985, Higins, 1992, Chapter 3].
Since biordered sets are partial algebras, morphisms of biordered sets can
be defined as partial algebra homomorphisms. However, we shall find it

convenient to adopt a more restrictive definition.
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DerintTION 3.2. A mapping 0 : E — E’ of biordered sets is called a bimorphism bimorphismlisomorphism
£ pping P biordered set! biordered subset

bimorphism!embedding

(Dg) 6 C Dg/
and for all (e, f) € D,

(€f)O = (e6)(f0).

A bijective bimorphism 0 : E — E’ is an isomorphism if 6! : E' — E is
also a bimorphism. A biordered set E' =< E’,Dp > is a biordered subset of
E=<E,Dg>if EF CEand

Dp =DgNE XE.

We write £’ C E. A biorder isomorphism ¢ : E — E’ of E onto a biordered
subset of E’ is called an embedding of E in E’.

It is clear that the identity maps on biordered sets are bimorphisms and
that composit of bimorphisms are again bimorphisms. Hence there is a cat-
egory B of biordered sets with objects as biordered sets and morphisms as
bimorphisms. An isomorphism of biordered sets is an isomorphism in ‘B.
The concept of biordered subsets defined above provide a natural choice of
subobjects in B.

Remark 3.1: It may be noted that not all subalgebras of a biordered set are
biordered subsets. For, let E be a biordered set containing e, f and g with
f,g € w'(e), ge ' feand (f,g) ¢ De. Then E’ = {e, f, g, fe, ge} is a subalgebra of
E which is not a biordered subset.

Also if E’ € E, then the inclusion E’ C E is a bimorphism. However, the
converse is not true. For, let E’ =< E’, D’ > be the partial algebra with

E,:{e/flz}/ D’:E’XE'—{(e,f),(f,e)} (M)
and with product ee=e¢, ff=f, e0=0e=0f=f0=0.

It can be seen that E’ is a biordered set. Let E =< E, D > be the partial algebra
with E = E/, D = E X E and the products in E are those given above together
with

ef =f and fe=e.

Then E is also a biordered set and identity mapping on E is a bimorphism. But
E’ is not a biordered subset of E.

Notice that there is a change in the terminilogy from Nambooripad [1979].
A biordered set £’ is a biordered subset of E according to our definition above
if and only if it is a is a biordered subset that is relatively regular in E according
to the definition there [see Nambooripad, 1979, page. 3].
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As shown in theorem below, the set of idempotents of a semigroup is a
biordered set and the restriction of homomorphisms to the biordered set of
the domain are bimorphisms. The concept of biordered sets has evolved as an
abstraction of the structure of the set of idempotents of a semigroup.

Turorem 3.3. For each semigroup S, let E(S) = {e € S : €* = e} denote the set of
idempotents in S and

-1
DE(S) = Uw'U (af U CUI)
where

@ =1{(e, f) €E(S)XE(S): fe=e} and o' ={(e, f) € E(S) X E(S): ef =e}.

Then E(S) =< E(S), Dgsy > is a biordered set with respect to the restriction of the
product in S to Dgs). Further, if ¢ : S — S’ is a homomorphism of semigroups, then
E(¢) = ¢ | E(S) is a bimorphism of E(S) to E(S’). The assignments

S E®S) and ¢ E() (3.6)

is a functor E : & — B from the category of semigroups to the category of biordered
sets.

Proof. First,weshow that E(S)is a partial algebra; thatis, for every (e, f) € Dgs),
ef, fe € E(S). By the definition of D), e 0" f, e @' f, f w" e or f ' e. If the first
possibility hold, fe = e € E(S) by the efinition of " and (ef)* = efef = eef = ef
so thatef € E(S). The remaining cases can be verified in the same way. Axioms
(Bi),i = 1,2, 3, are consequences of associativity of multiplicationin S. To prove
(B4), lete, f, g € E(S) with f,g € e and ge o' fe. Let g1 = gf, the productin S.
Then

gi = 9f9f = (€g)ef)eg)f sincee, f,g € E(S),
=(eg)f =gf since ge ' fe.
Hence g1 € E(S). Also, by associativity,
nf=mn and so, g1 @' f. Again
gie = (gf)e = (ge)(fe) = ge.

This proves that E(S) is a biordered set. The remaining assertions are routine
to verify. O

Easdown [1985] proved the converse of this by showing that each biordered
set can be realised as the biordered set of some semigroup.



3.1. BIORDERED SETS 171

3.1.1 Regular Biordered Sets M(e, f):quasiordered set
(@'(e) Na'(f), =)
sandwich set

We now consider biordered sets arising from regular semigroups. We require
& & & p ! (e, f): Sandwich set

the concept of sandwich sets of a pair of idempotents. ~: equivalence relation < N <
maximum
DerintTiON 3.3. Let E be a biordered set. Fore, f € E let biordered setlregular

bimorphism!regular

Mee, f) = (0'(e) N0’ (f), %)
where < is the relation defined by

g<h & gheaw)naw'(f) and egweh, gf o' hf.
The sandwich set of e and f is defined as

L fy=theMl(, f):g=<h forall geMle,f)

Clearly, < is a quasiorder on '(e) N @'(f). Hence M(e, f) is a quasiodered
set and
a=<n<x! (3.7)

is an equivalence relation on M(e, f). Therefore, if
M(e, f)=1{é:e€E}

denote the quotient set M(e, )/ ~, then M(e, f) is a partially ordered set under
the induced relation defined by

G<h & g=<h

The sandwich set of e and f, if nonempty, is a = class in M(e, f) and represents
the maximum element in the partially ordered set M(e, f). Itis easy to construct
example of a biordered sets E to show that .7 (e, f) = 0 for somee, f € E. Also,
it is clear that . (e, f) and .7(f, e) are in general not the same.

The distinguishing property of a biordered set arising from regular semi-
groups can be seen in the sandwich sets.

DeriniTION 3.4. A biordered set E is said to be a regular if
(R) F(e, f)+0foralle, f €E.
A bimorphism 0 : E — E’ is said to be reqular if it satisfies the following:
(RM1) (e, £)0 € .7(e0, f0); and
(RM2) (e, f) #0 < .7(e0, fO) # 0.

1



biordered subset!relatively regular

B:subcategory of B with
morphisms as regular
bimorphisms

RB:subcategory of B with objects
as regular biordered sets

(e, f):see definition on 172

(e, f):see definition on 172

172 3. BIORDERED SETS

We shall say that a biordered subset E’ C E is said to be relatively reqular in E if
the inclusion /£, is a regular bimorphism.

Note that the sandwich set of every pair of idempotents in a biordered set
need not be non-empty (see the example below). Also we can have regular
bimorphisms of nonregular biordered sets. If E is regular, it is clear that any
bimorphism of 0 : E — E’ is regular if it satisfies the condition (RM1). Thus
axiom (RM2) is relevant only for bimorphisms of nonregular biordered sets.

Clearly compositions of regular bimorphisms are regular and identity on
biordered sets are regular. Hence we have a category B in which objects
are biordered sets and morphisms are regular bimorphisms. Clearly B is a
subcategory of B. Moreover, there is a subcategory RB of ‘B with objects are
regular biordered sets.

We proceed to prove that the biordered set of idempotetns of a regular
semigroup is a regular biordered set.

First we give a different description of sandwich sets for biordered sets of
idempotents of a semigroup. In the following, we write x L y for elemente
x,y of a semigroup S to mean that x € Ay).

ProrositioN 3.4. Let E = E(S) be the biordered set of a semigroup S. Fore, f € E
define

Ale fy={theMl, f):ehf =ef}y and Fle f)={heMle, f):hLef}.

(3.8)
Then we have

(e, f) = 7(e f) € Z(e f) (a)
Moreover, ef is a regular element in S if and only if

(e, f) = Sle, f) = (e, f) # 0. (b)

Proof. Leth € A (e, f). Then h € M(e, f) and so,

h(ef)h = (he)(fh) =hh =h; and (ef)h(ef) = e(fhe)f = ehf = ef.

Hence h € (e, f). If h € A(e, f), ehf = (ef)h(ef) = ef and so, h € (e, f).
Therefore .7 (e, f) = “(e, f).
Againleth € (e, f) and g € M(e, f). Then
(eh)(eg) = (che)g = (ehf)g = efg = eg; and
(g N)f) = (ge)(fhf) = glehf) = gef = gf.

Thus g < hand so, h € Z(e, f). Thus Equation (a) follows.
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Now suppose that ef is a regular element in S and leta € #{ef). If h = fae,
then

W = (fae)(fae) = f(aefa)e = fae = h.

Hence h € (e, f) € (e, f). To complete the proof on Equation (b), it
is sufficient to show that .“(e, f) C Fi(e, f). If g € (e, f), by the above,
h,g € S(e, f). This gives eg #Z eh and gf £ hf so that

egf = (eg)(ef) = (eg)(ehf) = (eg)(eh)f = (eh)f = ef.
Hence g € 71 (e, f). This complete the proof. O

Observe that the sandwich set .#(e, f) of ¢, f € E is defined entirely in terms
of the structure of the biordered set E. On the other hand, the sets .1 (e, f) and
(e, f) depend on the semigroup product ef non-trivially. However, this
distinction is not of any consequence if we are dealing entirely with regular
biordered sets and regular semigroups (see Proposition 3.8).

TueoreM 3.5. The biordered set E(S) of a reqular semigroup S is regular. Further, if
¢ : S — S is a homomorphism of the reqular semigroup S to a semigroup S’, then
S¢ is a regular subsemigroup of S and E(¢) : E(S) — E(S’) is a regular bimorphism
such that

E(5¢) = (E(S) E(9). (39)

In particular, if ¢ is injective or surjective, so is E(¢).

Proof. By Theorem 3.3, E(S) is a biordered set. To show that E(S) is regular,
consider ¢, f € E(S). Then by Proposition 3.4, #(e, f) # 0. Hence, by Defini-
tion 3.3, E(S) is regular. Next, let ¢ : S — S’ be a homomorphism where S is a
regular semigroup. If x € S and if " € #(x), then

(' P)xP)(x'¢) = (x'xx")p = x'¢p
and (xP) (X' P)(xp) = x¢p.

Therefore x'¢ € #s(x¢p). Hence every element of S¢ is regular and so, S¢
is a regular subsemigroup of S’. Let 6 = ¢ | E(S). By Theorem 3.3, 0 is a
bimorphism. If h € (e, f), by Proposition 3.4, h € #i(e, f) and so, h € M(e, f)
and ehf = ef. Since ¢ is a homomorphism, h0 € M(e0, f0) and (e0)(h0)(f0) =
(e0)(f0). Therefore, by Proposition 3.4, h0 € #1(e0, f0). Hence #(e, /)0 C
Z(e0, f0) and by Proposition 3.4, 6 : E(S) — E(S’) is a regular bimorphism.
Clearly E(S¢) 2 (E(S)) 0 where 6 = E(¢). To prove Equation (3.9), let
h € E(S¢) so that x¢p = h for some x € S. Since S is regular, by Lemma 2.38,
thereis x’ € #x). Leth € .7 (e, f) wheree = x’xand f = xx’. Since 0 is a regular
bimorphism h6 € .7(e0, fO). Since e ¥ x # f, we have e0 £ xp = h Z f0.
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An application of Proposition 3.4 gives h € .#(e6, f6). Now suppose that
g € (0, f0). Then by Definiton 3.3, we have

e0j weO and g% e0f &L eOh=e0 L h.

Similarly, § # h which gives § = h. Thus .#(e0, f0) = {h}. Therefore h6 = h.
This proves Equation (3.9).

It is clear that, if ¢ is injective, so is 0. If ¢ is surjective, by Equation (3.9),
0 is surjective. O

Equation (3.9) implies the following important result due to Lallement [see
Lallement, 1967, Proposition 3.5].

CoROLLARY 3.6. Let ¢ : S — S’ be a homomorphism of reqular semigroups. If e € S¢
is an idempotent if and only if there is an idempotent f € S such that f¢ = e. O

It is clear from Theorem 3.5 that there is a functor of the category RS of
regular semigroups to the category 3B of regular biordered sets which is the
restriction E | RS of the functor E : & — B of Theorem 3.3 to the category
RS of regular semigroups. We shall denote this restriction also by E.

Recall that the trace product x * y of x, y € S exists if and only if L, N R,
contains an idempotent. If this is the case, x * y = xy (see Equation (2.48a)).
The partial algebra S(+) on the set S with respect to the trace product represents
the local structure of S. The structure of S(+) is known by Theorem 2.78. Next
theorem shows that arbitrary products in a regular semigroup S can be reduced
to trace products of suitable elements using the structure of the biordered set
E(S).

Tueorem 3.7. Let x and y be regular elements of a semigroup S, x’ € Hx) and
y € Ny). If g € M(x'x, yy’), then
xgy = (xg)*(gy),  y'9x' = ('g)* (9x)

where » denote the trace product in S and xgy L y'gx’. In particular, if h €
A'x, yy'), then
(xh)*(hy)=xy L y'hx

where A1 (e, f) is defined in Proposition 3.4.

Proof. Lete = x’x and f = yy’. By Lemma 2.38, ¢ .¥ x and f # y. Since
g € M(e, f) ge =g = fg and so,

(xg)(9x')(xg) = xggeg = xg and  (gx')(xg)(gx’) = geggx’ = gx'.
Hence gx’ € #(xg) and, again by Lemma 2.38,

g=gx'xg L xg X xgx" L gx' Z g.
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Similarly,

9=y Z gy 2L Yy ZYg.
Consequently, we have

xg L g#gy and ygZLgxgy

It follows by Equation (2.48a) that the trace products (xg) * (gy) and (y'g) * (gx")
are defined. A simple computation shows that y’'gx" € Axgy).

By the definition of .71 (e, f), h € M(e, f) and so chy L y’hy by the above.
Also, ehf = ef (see Proposition 3.4). Hence

xhy = x(ehf)y = x(ef)y = xy.
This completes the proof. O

If S’ C S is a regular subsemigroup of S, then the inclusion is a homomor-

phism of a regular semigroup S’ into the semigroup S. Hence by Theorem 3.5
E(S)

E©)
biordered subset of E(S) which is relatively regular in E(S). Thus a regular

its bimorphism is regular. It is clear that E( ]g,) =7 Hence E(S’) is a regular
biordered subset E’ of E(S) is relatively regular in E(S) if there exist a regular
subsemigroup S’ C S such that E(S’) = E’. The following result shows that the
converse of this also holds under an additional condition.

Prorosition 3.8. Let S be a semigroup such that E(S) # 0 and let E be a reqular
biordered subset of E(S). Then E is the biordered set of a regular subsemigroup of S
if and only if E is relatively reqular in E(S) and for all e, f € E, S1(e, f) # 0. In
particular, if S is regular and if E’ is a regular biordered subset of E(S) then there is
a reqular subsemigroup S’ of S such that E' = E(S’) if and only if E’ is relatively
reqular in E(S).

Proof. If there exist a regular subsemigroup S’ of S such that E(S”) = E’, then
by the remark above, E’ is relatively regular in E(S). Further, if ¢, f € E’, then
ef is a regular element of S and so .#(e, f) # 0 by Proposition 3.4.

Conversely assume that E’ satisfies the given conditions and let S” be the
subsemigroup of S generated by idempotents. Consider ¢, f € E’. Since
(e, f) # 0, by Proposition 3.4, (e, f) = #(e, f). Since E’ is regular and
the inclusion is relatively regular, there exists & € E” such that h € .#(e, f) =
(e, f). It follows from Proposition 3.4 that 1 L ef in S. Since h,ef € S’, we
haveeh,hf € E" and ef € Re, N Lys. Inductively assume that every product x of
n elements in E” has the property that there aree,, f; € E' withe, Z x £ f, and
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let x = egey . ..e,. If x = ye, where y = ¢p...e,-1 then the induction hypothesis
holds for y and so we can find f € E’ with y .Z f. As before, we can find
k € #(f,ex) NE'. Then k @" e, and so, ke, € E’. By Theorem 3.7, x € Ryx N Lge,
and so, x .Z ke,. Dually we can show that there exists g € E’ such that g # x.
This implies in particular that S’ is a regular subsemigroup of S. By definition,
E’ CE(S’). Letu € E(S’). By the above, thereise, f € E' such thate 2 u % f.
Then by Theorem 2.34, ef € R, N L. Leth € #1(e, /)N E’. Thenh " f and
by axiom (B21), hf w f. But by Theorem 3.7, hf £ ef £ f which gives
hf = f. Hence h % f. Duall h £ e. This implies that h and u are .#?equivalent
idempotents in S” and so u = h. Therefore u € E” and so, E’ = E(S’).

To prove the last statement, we observe that when S is regular, ef is a
regular element of S and so, #i(e, f) # 0 for all e, f € E’. Therefore every
regular biordered subset of E(S) which is relatively regular is the biordered set
of a regular subsemigroup of S. This complete the proof. O

3.1.2 Examples
Now we give some examples of biordered sets.

Example 3.1: The empty set with respect to empty relations and translations is a
biordered set. (Observe that if E = 0, all axiom remain valid vacuously.)

Example 3.2: Every semilattice is a biordered set. Let (E,w) be a semilattice. We
assume every semilattice to be a lower semilattice; i.e., for every e, f € E, the greatest
lover bound e A f exists. It is easy to see that A is a commutative and associative
multiplication on E and thus (EA) is a commutative band. We regard E as a biordered
set as follows. The quasiorders are @" = @' = @ on E. The domain D of the partial
binary operation is
De={(ef):ew f or fwel
The axioms are easily verfied. We observe that fore, f € E, if h = e A f, the set M(e, f) is
given by
M, f)={h:hwh} and.Z(e, f) = {h}

is singleton.

Example 3.3: Let I, A be non-empty sets and B = I X A be the rectangular band on I
and A. That is, define multiplication in B by

()G, p) = Go) forall (i, A), () € X A.
This gives B, the structure of a band and by Theorem 3.3, B = EB is a biordered set.
Here the domain Ds is given by

Dg ={(GA)(G,w):i=j or A)=u}b
In this case

(i,A) " (ju) ifandonlyif i=j and
(i,A) @ (ju) ifandonlyif A =p.
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Also the sandwich set is given as follows. For e = (i,A) and f = (j,u) we have

S(E,f) = {(]/ /\)}

Example 3.4: Let E = (X, <) be a partially ordered set. Then one can verify with out
difficulty that E is a biordered set with

W =0 =w=< (1)

Then clearly Dy =< U(<™") and the basic product in E is given by
ef =fe=e ifandonlyif e<f.

Conversely, if E is any biordered set satisfying (1), then E is the biordered set determined
by the partially ordered set (E, w).

Recall that, in any partially ordered set Eand ¢, f € E, e A f denote the greatestlover
bound of e and f in E if it exists. In this case, in the biordered set E determined by the
partially ordered set as above, the sandwich set of ¢, f € E is

{en f} ifeA fexists;

e f) = {0

otherwise.

Therefore, E is a regular biordered set if and only if e A f exists for every pair of elements
e, f € E in which case, the biordered set E coincides with the biordered set of Example
3.2. It follows that E is a regular biordered set if and only if E is a semilattice.

Example 3.5: LetE = {¢, f, g} be a biordered set in which o = o' = {(e, 9), (f, 9)}. In this
case
Dg = {(E, g)r (% E), (fr g)r (%f)}
and the products are determined by partial order as in the example above. Now
M(e, g) = {e} and so, -7 (e, g) = {e}. But M(e, f) is empty so that .#(e, f) = 0.
Again, let X = {e, f} UN. Define partial order on X by

n<e, n<f forall neN

and the restriction of this partial order to N coincides with the natural order on N. In
this case we have M(e, f) = N and so, it is not empty. However .#(e, f) = 0.

Example 3.6 (Example 1.1 in Nambooripad [1979]):  Consider the following bands
Bi, i =1,2 on the same set B = {¢, fi, f», f3} with the multiplication table:

Bile A fH f B, | A £ S
ele fi o f3 ele fh fofs
Al A £ f Al A £ fs
Ll A £ f Ll A £ f
Lls A £ f Ll A £ fs

For each i = 1,2, B; is a band and hence E(B;) = B is a regular biordered set. It is easy
to see that

2]

@' (By) = {(e,e), (fire)/ (fl/f/) : irj =1,2,3} =o' (By)
@'(B1) = 15 U{(fz,0), (f3,0)} = @'(B2).
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where «'(B;) and @'(B;) denote the quasiorders of the biordered set B;. However, the
basic product fie = f, in By and fie = f3 in B,. So By # B,. E; = (E, o) is also a biordered
set. Thus B; and B, are biordered sets with the same underlying quasiorderes and
differ only in basic product. It follows that the quasiorders of a biordered set does not
completely determine the biordered set.

Example 3.7 (Example 1.2 in Nambooripad [1979]): Let

C= {E,f, hllrhlzlh21/h22/g111912/g21/g22}
be the band with the following multiplication table.

C e f hi h ha hx Juu G2 g g

e e hin hin hp han o1 G2 g1 g2

f ha» f hyr hyn hay hx Jo1 G2 g1 g2
hii | hiy hn b hiy b g1 g2 g1 g2
hiy | hio hin hi hi hn o1 G2 g1 G2
hyy | hy hy hy hy ha hx o1 G22 g1 g2
hyp | hay hy h;y hy hy;y hx g1 g2 g1 g2
guu | 9 Y12 g2 Ji2 gz Ji2 gu gz gu g2
Ji2 | 912 12 G122 J12 Ji2 G2 gu gz g g2
go1 | 921 G2 G2 g G G2 g1 G2 G Y
g2 | 92 YG22 G2 G2 G G Ggu G Ga g2

Cis band consising of singleton subbands (Z-classes) (¢) and (f) and rectangular bands

hy hi gu g1z

hy hx g1 g»)
Consider E = C — {hy}. In the partial algebra determined by E, the products which are
not defined are

fe, fha, hae,  hahia.
These are not basic products in C since these pairs are not related by ihe quasi orders
@" or @' in C. Hence the partial algebra E is a biordered subset of E(C) = C. However,

S (Mo, ha1) = {h} inCand  (hiz, hn) = {g2} inE.

Hence E is not relatively regular in C.

Example 3.8 (Example 1.3 in Nambooripad [1979]): Let I = (T, <) be a semilattice
and X be a set such that [X| > 1. Define a partial binary operation on E = X X I as
follows:

(x,ef) if e<f or f<e

undefined otherwise.

(x,e)y, f) = {

It is easy to see that E with this partial product is a regular biordered set such that
@" = w C . Let E° denote the biordered set obtained by adjoining zero 0 to E so that
E° = E U {0} with basic product extended to E° by

(x,)0 =0(x,e) =00=0 forall (xe)€E.

Then the natural partial order EY, of E° is a 0-disjoint union of semilattices isomorphic
to I, the semilattice obtained by adjoining 0 to I'. So EY, is a semilattice and hence a
regular biordered set. However, E° is not a semilattice since |X| > 1. Observe that the
identity map is a bimorphism of E? onto E® which fail to satisfy axioms (RM1) and
(RM2).
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3.2 PROPERTIES OF BIORDERED SETS

Except for reordering, axioms (Bi), i = 1,2,3 of Theorem 3.2 are the same as
those in Nambooripad [1979]. However, axiom (B4) here appears as (B4’)
which is a part of Proposition 2.4 of Nambooripad [1979]. Now we proove
that axiom (B4) for biordered sets in the Theorem 3.2 (or axiom (BO4) in
Definition 3.1) can be replaced by an axiom, stated in Theorem 3.11 below as
axiom (B4’), involving the sandwich sets. Notice that this is the same as [axiom
(B4) Nambooripad, 1979]. We need some elementary properties of biordered
sets in the proof of the equivalence. In the following, we use the abbreviation
(Bij) for the axiom (Bi)(j) of Theorem 3.2.

In the first three results below, we assume that E denotes a partial algebra
that satisfies all axioms of a biordered set except axioms (B4) and (B4)* of
Theorem 3.2. All these atatements about biordered sets have their dual whose
proof is the dual of the original statements. We shall not usually state or prove
these explicitly. Allresultsin this and the next sections are from [Nambooripad,
1979, Section 2].

Prorosition 3.9.If (¢, f) € Dg then ef € (f,e).

Proof. Since (e, f) € D, one of the following is true: ew' f, ew'f, fw'e or fa'e.
Suppose ew’f. Then e #Z ef w f by axiom (B21). So ef € M(f,e). Let
g € M(f,e). Then gw'e Z ef and g,ef €w' f. So by axiom (B3)* (ie dual of
(B3)), fg " f(ef) = ef. Also, ge w e = (ef)e. Hence, by Definition 3.2, g < ef
and it follows that ef € .7 (e, f). Now, let e ' f. Then clearly, ef = e € M(f, e).
If g € M(e, f) then g " e and g,e = ef € w'(e). Hence, by (B3)*, fg ' fe and
ge w e = ee. This gives g < ef and so, ef € #(f,e). The result follows in the
reaining cases by duality. O

Prorosition 3.10.If f " e then for every g € @'(f) we have (gf)e = g(fe) =
(go)(fe).

Proof. By axiom (B21) we have f Z fe. So o'(fe) = @'(f). Let g € @'(f). Then
by axiom (B21) we get g Z gf w f. Since f w" e we have gf " e. Also, from
gf @ f we have gf @' f. Now by axiom (B3) (gf)e @' fe. Again from gf w f
we have gf " f and so by (B21) (9f)e #Z gf " fe. Thus (gf)e w fe. Now
applying (B3) we get

(gf)e = ((gf)e)(fe) = (gf)(fe) = g(fe) = (ge)(fe)- 0

Now we prove the equivalence of the two axioms (B4) and (B4).
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TueoRrEM 3.11. Let E be an idempotent partial algebra satisfying all the axioms (Bi)
of Theorem 3.2 above except (B4) and its dual. Then the following statements are
equivalent:

(B4) Lete € Eand f,g € '(e) with ge &' fe. Then there exist g1 € M(f,e) such
that gie = ge.

(B4’) Lete € E. Then forall f,g € w'(e) we have (f, g)e = .#(fe, ge).

Mpreover, when these hold, the element gy in (B4) is unique.

Proof. Suppose that E satisfies (B4). Let f,g € «'(e) and h € .#(f, g). Then by
axiom (B21) and (B22) he € w'(fe) N '(ge). Suppose that k' € w'(fe) N w'(ge).
Then k" w e and so k’ and f satisfy the hypothesis of axiom (B4). Therefore
there exists k € w'(f) N @' (e) such that ke = k'. Since k Z k' " ge % g we have
k € '(f) N @'(g) and so k < h in M(f, g). Hence

(fok" = (fe)(ke)

= (ke by (B3)
w" (fh)e by (B21) and since k < h in M(f, g)
= (fol” by (B3);
and  K(ge) = (ke)(ge)
= (kg)e by Proposition 3.10
o' (hg)e by (B22) since k < he in M(f, g)
= h'(ge) by Proposition 3.10.

Therefore k' < he € M(fe, ge). This proves that he € .#(fe, ge). Consequently,
S(f,9)e € F(fe, ge).

To prove the reverse inclusion consider b’ € .7(fe, ge). Using (B4) we can
show as before there exists i € M(f, g) such that he = h’. Let k € M(f, g). Then
using axioms (B21) and (B22) we get that k' = ke € M(fe, ge) and since I’ €
7 (fe, ge) we have kK’ < I’ in M(fe, ge). Thatis, (fe)k'w'(fe)h’ and k' (ge)aw'l’ (ge).
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Therefore

fk=((fbef  by(B22)
= ((fe)ke))f by (B3)
=" ((fe)h')f by (B21) since kK’ < h’" in M(fe, ge)
= ((fe)f by (B3) since 1’ = he
=(ff by (B22)
= fh since fh < f;
and kg = ((kg)e)g by (B22)
= ((ke)(ge))g by Proposition 3.10
o' (W (ge))g by (B3)
= ((hg)e)g by Proposition 3.10
= hyg by (B31).
Thus k < hin M(f, g) and so h € Z(f, g). Therefore .#(fe, ge) C .#(f, g)e and
we conclude that .7(f, g)e = .#(fe, ge). Thus (B4’) holds.

Conversely suppose that E satisfies (B4") and let ¢,g,h € E satisfy the
hypothesis of (B4). By the dual of Proposition 3.9 ge € . (he, ge) and so by (B4")
there exists g1 € .7(h, g) such that gie = ge. Clearly g; ' h. Hence (B4) holds.

Now we prove the uniqueness of g; in the statement (B4). Let g, also satisfy
(B4) so that g» € M(f,e) and gre = ge. Then g1 Z gie = ge = gre Z g» by (B21)
so that g1 Z g». On the other hand

fo1=((fgne)f by (B22)
= ((fe)(ge))f by (B3)
= ((fe)(g2)e) f
= fg2.
Therefore g1 £ fg1 = fg» -Z g». Hence by (B1), g1 = g». O

For the remainder of this section, we assume that E, E’, etc. denote
biordered sets.

Prorosition 3.12. Let e £ ¢ and f % [’ wheree, e, f, f" € E. Then M(e, f) =
M(e', f'). Consequently .7 (e, f) = L(¢/, ).

Proof. The hypothesis implies that w'(e) N @'(f) = w'(e) N '(f). Let g,h €
w'(e)Nw'(f) and g < gin M(e, f). Then by the definition, eg @" el and gf ' hf.
Hence by the dual of axiom (B22) and (B3), we have

e'g=e¢(eg) v € (eh) =eh.
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Dually gf’ ' hf’. Therefore g < hin M(¢’, f'). Interchanging e with ¢’ and f
with f” we infer similarly that g < h in M(¢’, f’) implies they are so related in
M(e, f). Therefore the quasiorders on M(e, f) and M(¢’, f’) are also the same.
Thus M(e, f) = M(¢’, f’). The last statement now follows immediately from the
definition of sandwich sets. O

Let S be aregular semigroup and x, y € S. In view of the proposition above
we may write .#(x, y) for (e, f) wheree, f € E(S) withe Z xand f Z y.

If E is a biordered set, it is often necessary to verify whether a subset E’ C E
is a biordered subset or not. Next proposition simplifies this verification.

Prorosrtion 3.13. Let E’ be a subset of the biordered set E. Then E’ is a biordered
subset of E if and only if E’ satisfies the following conditions and their duals.

(1) Foralle, f" € E',(¢/, f') € Dg implies ¢’ f' € E’.

(2) Ife € E', f', 9’ € " (¢')NE and g'e’ o' f'e’ then thereexists g € E'NM(f’, ¢’)
such that gie’ = g'e’.

Moreover, E’ is relatively regular in E if and only if for all ¢, f € E’
(3) 7', f")=2€,f)NE and
(4) (¢, f') = 0 implies (¢, f) = 0

where .7 (¢’, f') denote the sandwich set in E’.

Proof. Let E’ be a biordered subset of E. Then E’ is a partial subalgebra of
E and so, Dpr = Dg N E’ X E’. Hence the condition (1) holds. The condition
(2) is the same as axiom (B4) stated for E’. Conversely let E’ be a subset of E
satisfying (1) and (2). Then by (1) E’ is a subalgebra of E so that the domain
of the partial product on E’ is Dg N E’ X E’. It can be verified that axioms (Bi),
i=1,2,3 hold. Statement (2) is precisely axiom (B4) stated for E’. Hence E’ is
a biordered subset of E.

Suppose that E’ C E is relatively regular so that j£, is a regular bimorphism.
Let 7'(¢/, f') # 0. By (RM1) .Z(¢’, f') € Z(¢/, f') N E’. Since .#(¢’, f’) contain
an element of .’(¢’, f'), it is follows from Definition 3.3 that .’(¢/, f') =
Z(€, f') N E’. Thus the statement (3) holds. If .’(¢/, f’) = 0, by axiom (RM2)
the statement (4) also holds. Conversely, if statements (3) and (4) holds, then
the map ]E, satisfies axioms (RM1) and (RM2) of Definition 3.4 and so ]E, is
a regular bimorphism. Therefore E’ is a relatively regular biordered subset of
E. O

As an immediate application, we have:
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CoroLLARyY 3.14. Let {E; : i € I} be a family of biordered subsets of E. Then biorderlright ideal

biorder!left ideal
E=(E

biorder!w-ideal
i€l

is a biordered subset of E.

Proof. Lete’, f’ € E’and (¢/, f’) € Dg. Thene’, f* € E; and since E; is a biordered
subset, by Proposition 3.13(1), ¢’f’ € E; for every i € I. Hence ¢’f’ € E’ and
so, E’ satisfies condition (1) of Proposition 3.13. Let ¢/, f* and g’ satisfy the
hypothesis of the statement (2) of Proposition 3.13. Then by axiom (B4), there
is g1 € M(f’,¢’) such that g1¢’ = g’¢’. Since E; is a biordered subset, by (2),
g1 € E; for every i. Hence g1 € E’. Thus E’ satisfies (2). O

3.2.1 Biorder ideals

For e € E, the biordered subsets w'(e) will be called the principal biorder right
ideal, @'(e) is called the principal left ideal and w(e), the w-ideal of E generated
by e. A biorder isomorphism «a : w(e) = w(f) is called an w-isomorphism of
E. Since w is a partial order, each w-ideal has unique generator. So, if a is an
w-isomorphism, there is a unique e, € E such that doma = w(e,). Similarly
there is a unique f, € E with cod a = w(fs).

ProrositioN 3.15. For every e € E,
'), w'e) and wle)
are relatively reqular biordered subsets of E and the translations
T(e): f > fe and T(e):g > eg
are regular idempotent bimorphisms of @' (e) and w'(e) respectively onto w(e).

Proof. Let f,g € w'(e) and (f, g) € Dg. Then either

fao'g go'f, fog or gof.

In the first case, f Z fg w g " e by axiom (B21). Hence fg € w'(e). If
g @' f, then by (B21)*, fg @ f " e and hence fg € w'(e). In the remaining
cases the conclusion fg € w'(e) follows from Equation (3.5). Therefore w'(e)
satisfies condition (1) of Proposition 3.13. Let f,g,h € w'(e), g, h € £[r](f) and
gf @' hf. Then by axiom (B4), there exist g1 € M(h, f) such that g1 f = gf.
Then g1 Z g1f = gf w f & (e) which implies that g; €w” (¢). Therefore by
Proposition 3.13, w'(e) is a biordered subset of E. Now, for any g, € w'(e), we
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have M(g,h) C w'(e) and so, .#(g, h) € w"(e). This proves that w'(e) is relatively
regular in E. Proofs for «'(e) and w(e) are entirely similar.

By definition (see Equation (3.5)) T"(e) : @"(e) = w(e) is an idempotent map.
To probe that 7(e) is a bimorphisms, let f, g € w'(¢) and (f,g) € Dg. If f 0" g,
by Proposition 3.10, we have

(f9)T'(e) = (fg)e = (fe)(ge) = (fT'(e)(gT' (€)).

If g " f, then fg = g and ge " fe by axiom (B21). Hence we have (fg)7"(e)
(fT"(e)(gt’(e)). If f o' g, fg = f and fe @' ge by axiom (B3). Thus (fg)e
(fe)(ge). Finally, if g o' f then by (B3), (fg)e = (fe)(ge). This proves, by
definition 3.2, that 7"(¢) is a bimorphism. By condition (B4’) of Theorem 3.11
L(f,9)e = S(fe, ge) for all f,g € w'(e). Hence 7"(e) satisfies (RM1) and (RM2)
and so 7'(e) is a regular bimorphism. Proof for 7'(e) is dual. O

CoRrOLLARY 3.16. For (e, f) € LU % and gwe, define

fg ifeZf;
9f ifeZf.

Then (e, f) : w(e) = w(f) is a biorder isomorphism.

gT(e/f) = {

Proof. Lete Z f. Then 1(e, f) = T'(f)lw(e) and hence it is a bimorphism. Also,
(e, f)™' = (f,e) and so 7(e, f) is a biorder isomorphism. Dually, (e, f) :
w(e) = w(f) is a biorder isomorphism whene £ f. O

Let T} denote the collection of all w-isomorphisms of E. It is easy to see
that T}, is a groupoid under the groupoid composition:

o f= {a[p’ the usual composition, if f, = eg; (3.10)

undefined if f, # ep.

(see Examples 1.21 and 1.22.) Also the usual restriction of w-isomorphisms
defined by:
g.a=alw(g) forall gwe, (3.11)

is a partial order on Ty. With respect to this order, T, satisfies axioms of
Definition 1.6 and hence T}, is an ordered groupoid.

Since Z is an equivalence relation Z is also a groupoid (called the simplecial
groupoid; see Example 1.20) in which v.% = E and morphisms are pairs (e, f)
with e Z f and composition is defined by

eNfrgp=(g it eZfZg. (3.12)



3.2. PROPERTIES OF BIORDERED SETS 185

Define restriction of (e, f) € #Z to g w e as follows:

g-(e,f)=1(e,Nlg = (g, 9f) (3.13)

With respect to the partial order on % induced by this restriction, % is an
ordered groupoid. Furtherife # f % g,and h w e, thenh o" g " f. Hence by
axiom (B22),

ht(e, f)t(f, 9) = (hf)g = hg = ht(e, 9).
Hence (e, f)T(f, 9) = (e, 9).

Also, for all k w h, again by (B22),
kt(h. (e, f)) = kt(h,hf) = k(hf) = (kf)(hf) = (kh)f = kf = kz(e, f).
Thus t(h. (e, f)) = (e, Hlwh).
Since 7(e, €) = 14, the assignments
R:e 1y, and (e f) — (e, f) (3.14)

is an order pteserving functor g : Z — T}.
Dually, the simplecial groupoid .Zis an ordered groupoid in which restric-
tion of (e, f) € Lto gwe is

g f)=( Nlg=(g fg (3.13%)
and the assignments
e lye, and (e f) = (e f) (3.14%)

is an order preserving functor functor 7, : £ — T}.
Finally, since 7r(e) = 7.(e) for all e € E, the following diagram of ordered
groupoids (in the category O&) commutes:

BR—L T (3.15)

lg—Ff—
Here j, : 1g € Z is the inclusion of 1¢ in #. Observe that 1 is trivially an
ordered groupoid and the inclusion j, is an order preserving functor. Dually
71 : 1g € Zis an order preserving functor of 1¢ into .Z. We summorise these
ideas for convenience of later reference:

TR:order preserving functor from X
to Ty

Ty :order preserving functor from £
to Ty
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Prorosrition 3.17. Let E be a biordered set. Then the set Ty, of all w-isomorphisms
of E is an ordered groupoid with respect to the composition and restriction defined by
Equations (3.10) and (3.11). Also simplecial groupoids % and £ are ordered groupoids
with respect to restriction defined by Equations (3.13)and (3.13%) respectively. Finally,
the assignments of Equations (3.14) and (3.14") define order preserving functors
TR : # — Tpand vy : £ — Ty such that the diagram 3.15 commutes in the category
8. O

By an E-array we mean a marix
A = (ei)xpn over Esuchthat e Zejp and e Z eis

foralli,jeIand A, 0 € A. The elements ¢; are called verticesof A. f X CE, A
is an array in X if vertices of A belong to X. An E-subarray B of an E-array A is
an E-array whose vertex set is a subsets of that of A. A 2 x2 E-array is called
an E-square. An E-square of one of the following type

e f e e e e

e f]7 \F £ T e e
is said to be degenerate. If g,h € w'(e) and g .£ h, then by axioms (B21) and
(B3), g # ge £ he # h. Hence we have the E-square

(‘Z Zg) whenever g,hew’(e), and g.Zh.

Such E-squares are said to be column-singular. Dually, we have the E-square

g h I
(eg eh) whenever g,he€w'(e) and g Z h.
An E-square of this form is said to be row-singular. A singular E-square is either
clumn-singular, row-singular or degenerate.

An E-square (; i: ) is said to be T-commutative if the following diagram

commute:

wie) L w(f) (3.16)

T(W)J Ji(f,h)

w(g) ~on’ w(h)

Every degenerate E-square is obviousely t-commutative. Also, we say that an
E-array A is t-commutative if every 2 X 2-subsquare of A is T-commutative.
We have:

Prorosrtion 3.18. Every singular E-square in a biordered set E is T-commutative.
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Proof. Let g,h € w'(e) and g .2 h. To show that (Z ZZ) is T-commutative, let
k w g. Then

kt(g, h)t(h, he) = (hk)(he) = ((hk)h)e by Proposition 3.10
= (hk)e = (he)(ke) by axiom (B3).
Also kt(g, ge)t(ge, he) = (he)(k(ge))
= (he)((kg)e) = (he)(ke) by Proposition 3.10.

It follows that every column-singular E-square is T-commutative. Dually every
row-singular E-square is

t-commutative. The proof is now complete in view of the remark preceed-
ing the statement of the proposition. O

The following proposotion derives some important consequences of axiom
(B4) (and/or condition (B4") of Theorem 3.11).

ProrosiTioN 3.19. Let g,h € w'(e) and ge ' he. Then there exists a unique E-square

G= (;2 n ) such that

(a) W w h;
(b) ge = gie;
(c) goe = h'e = (he)(ge).
When G satisfies these conditions, then G is commutative and we have
(d) h(kg1) = (g2k)h for all k € w(g).
Mpreover, h' = h if and only if ge Z he.

Proof. Since g, h and e satisfies the hypothesis of axiom (B4), thereis g1 € M(h, e)
satisfying the condition (b). Let i’ = hg; so that i’ satisfies (a). Since ge @' ke,
by proprefpr:3bs, (he)(ge) € 7 (ge, he) and by Theorem 3.11(B4’), there is g, €
7(g,h) such that gre = (he)(ge). By axiom (B3), we have h’'e = (hg)e = (he)(ge)
and so, g, and I’ satisfies (c).

We next show that G is an E-square. By axiom (B21) and (b), we have
g % ge = gie Z g1. Similarly from (B21) and (c), we see that g, Z I’ and by
the definition of /" and (B21)*, we have b’ .Z g,. Since g, € (g, h), we have
g2 @' gand

992 % (9g2)e = (ge)(g2¢) by axiom (B3);
= (g¢) (he)(ge)) by (o);
=geZg by axioms (B21) and (B21)*.
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Since gg» w g, we have gg, = g. Therefore g, £ gg, = g and this proves that G
is an E-square. To prove the uniquiness, let G’ = ( ;, Z}, ) be another E-square

satisfying conditions (a), (b) and (c). From (b) and (BZ4’) it follows that g1 = g7.
Now h"” £ g, = g1 & W and by (c), h"" # h"e = 'e # I'. Therefore b’ = I’
and this forces g» = g;. Hence G = G'.

By Proposition 3.18 the column-singular E-squares A = ( pA ;fe) and B =

(Z} Z}E) are commutative. Since ge = gie and goe = h’e, we obtain

(9, 907(g91, 1) = ©(g, ge)T(ge, g1)(g1, ')
= 1(g, ge)t(g1e, We)t(W'e, i) from B;
= 1(g, ge)t(ge, goe)t(h’e, i) by (b) and (c);
= 1(g, 92)1(92, g2€)T(g26,h') by (c);
= 1(g,92)t(92, ).

Hence G is commutative. To prove (d) we first verify a particular case:
goh = (gee)h = (We)h=h'h =1 = hg. (d)
Let k € w(g). Then

kt(g, g1)t(g1,1") = W' (kg1) = (hg1)(kg1) Dby the definition of /’;

= h(g1(kg1)) by Proposition 3.107;
= h(kg).
Similarly  kt(g, g2)7(g2, 1') = (g2k)" = (g2k)(g92h) by definition of &’ and (d%);
= ((92K)1)(g2h) by (B22);
= (g2k)h since (g2k)h w goh.

This proves (d).

If W = hthen gy £ I = h and so, ge = g1e £ he. On the other hand, if
ge Z he, then by (c), h'e = (he)(ge) = he and so, i’ Z h. Since " w h by (a), it
follows that i’ = h. O

The following is a self-dual form of the proposition above. Part of it
appeared as axiom (B5) in Nambooripad [1972]. Recall that M(e, f) is the
quasiordered set (w'(e) N w'(f), <) where g < h if and only if eg " eh and
gf @' hf (see Definition 3.3). Recall also that ~ which is an equivalence
relation on M(e, f) (see (3.7)).

Prorosition 3.20. Let g, h € M(e, f) and g < h. Then there exists a unique E-square

G= (;2 Z?) in M(e, f) such that

(a) W wh;
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(b) eg=egs Zel' =eq, gf =g1f LWf=gf;
(c) hkgq) = (g2k)h  forall k€ w(yg).

In particular G is commutative and

g=g1=h"=g.

Moreover, g = h if and only if i’ = h.

Proof. The given conditions imply that g,/ and f satisfies the hypothesis of
Proposition 3.19 and g, l and e satisfy the dual hypothesis. Hence by Proposi-
tion 3.19 and its dual there exists uniqye E-squares G = ( ;2 ” ) and K = ( ,fz ? )
such that G satisfies (a), (b) and (c) of Proposition 3.19 with respect to g, h and f
and K satisfies (a)*, (b)* and (c)* with respect to g, 1 and e. We show that G = K
thereby proving the proposition; we shall prove that G satisfies the conditions

(a)=(a),
(b)* eg, =eg; and

(Q)" egr = e’ = (eg)(eh).
Since eq1 Z eg " eh and g1 @' h, we have eg; @ eh. Hence
eh’ = e(hg1) = (eh)(eq1) =eg1 andso, egy Z eh’ =eg1 X eg.

Since g £ g, we have ego = eg. This proves (b)". Again eh’ = e(gh) =
(eg2)(eh) = (eg)(eh) and so, (c)* follows. Thus G satisfies (a)*, (b)* and (c)*
with respect to g, h and e and by the uniqueness in Proposition 3.19%, G = K.
Since g,h € M(e, f) gi € M(e, f) fori = 1,2 and so, G is an E-square in M(e, f).
Commutativity of G follows from Proposition 3.19 and relations g =~ g; ~ I’ =~
g> follow from (b). Finally, if g = h, then by the definition of ~, gf .Z hf and
so, i = h by Proposition 3.19. O

Cororrary 3.21.If e, f € E and (e, ) # 0, then (e, f) is a T-commutative
E-array.

Proof. If g,h € Z(e, f) theng =~ h. Soeg # egand gf £ hf. By Proposition 3.20
there is a unique commutatyive E-square G = ( ;2 o ) in M(e, f) such that g ~
g1 = h = g,. It follows that g, g1, h, g2 € .7(e, f) and hence G is a commutative

E-square contained in .7 (¢, f). Therefore .” (e, f) is a commutative E-array. [

The following proposition is the biordered set analogue of [Clifford, 1974,
Proposition 2.14] and is a crusial in associativity proofs.
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ProrositioN 3.22. Let g € (e, f) and h " f. Then

F(g,h) € L(eh) and S(g,h)+0 — S(eh)+#0.

Proof. Suppose thatk € .#(g,h)and i € M(e, h). Since k o' g ' e, i,k € M(e, h) C
M(e, ). Hence i < g and k < g in M(e, f). Hence there is a unique E-square
I= (,12 ;1/ ) in M(e, f) satisfying the conditions (a), (b) and (c) of Proposition 3.20.
Hence u < g for all vertices of G. Now iy # i " h and iy «' g. Hence
i1 € M(g,h) and so i; < k in M(g, h). Since gi; w g o' eand i; < g, we have
gi1 @' e and ei; " eg. Hence e(gi1) = (eg)(ei1) = ei1. Since k < g, ek @" eg so that
e(gk) = (eg)(ek) = ek. Therefore

ei Z eir = e(giy) w" e(gk) = ek since i1 < kin M(g, h)
and so, gi1 " gk. Since i " h @" f, using (B22) we obtain
ih = (if)h = (i1 f)h = irh &' kh since i < k in M(g, h).

Therefore i < k in M(e, h). This proves that k € .#(e, ) and that .”(g,h) # 0
implies .7 (e, h) # 0.
Now let u € .#(e,h). Then u € M(e, h) € M(e, f) and so u < g. By Proposi-

tion 3.20, there exista an E-square H = (,Z Lg'} ) satisfying conditions

@) g wy;

(b) eu=eup Zeg’ =eur, uf=u1f L gf=uf,

(c) glkup) = (u2k)g forall ke w(u).
Since u % u1, eu % euy and uh = (uf)h = (u1f)h = urh. So uy € (e, h). Since
o g, u1 € M(g,h). If v € M(g,h) then v € M(e, h) and so, v < u; in M(e, h).
Hence ev " eu; and so, gv = g(ev) " glew;) = guy. Since vh @' wh, we
conclude that v < 1y in M(g, h). Therefore u; € .#(g, h). This also shows that if
(e, h) # 0, then 7(g,h) # 0. O

As an immediate corollary we have the following [see Nambooripad, 1972,
lemma 3.9].

CoroLLARY 3.23. Lete,g € E and a : w(f) — w(f’) be an w-isomorphism of E. Let
hi e L f) ha e Z(f,9), hi = (h1f)a and b, = (f’hz)a’l. Then we have

S, 1) € (e, hy), Sy, o) € S (e, ), and (S (h, hy)f) e = .7 (hi, o).
Proof. Clearly b, @ f and h] @ f’. Hence from Proposition 3.22 and its

dual we have .7 (h, h}) € 7 (e, hy) and 7 (h], hy) € 7 (e, h}). By axiom (B4)
S, W) f = S (uf hf) = S (hf,h)). Since a : w(f) = w(f’) is a biorder
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isomorphism, it preserves basic products and by Definition 3.3 a induces an
isomorphism of M(h f, h)) onto M((h1f))a, (Wy)a = M(H], f'h2). Therefore

(F(, hy)f)a = S (1, f'ha) = f.5(}, o). O

3.2.2 Bimorphisms and biorder congruences

Here we propose to discuss cetain properties of bimorphisms. We shall be
mostly concerned with regularity properties. We shall also give an intrinsic
characterization of regular congruences on regular biordered sets.

Let (X, p) and (Y, 0) be quasi-ordered sets. Recall that a mapping f : X = Y
is order-preserving if for all x,y € X with xpy, we have xfoyf. f is said to
reflect the quasiorders if for all x,y € X, xpy if xfof; O reflect the quasiorders
weakly if forall y,y’ € Y, y'oy and x € X, xf = y, there exists x’ € X with x"px
and X' f = v'.

Next proposition establish some important properties of regular bimor-
phisms and shows that the category B of biordered sets with morphisms as
regular bimorphisms has images.

ProrositioN 3.24.Let 6 : E — E’ be a regular bimorphism. Then satisfies the
following conditions:

(RM31) Foralle, f € E, themap 0 : M(e, f) — Mi(e0, f0) = M(eO, fO) N EO is
sutjective and quasiorder-preserving.

(RM32) EO is a biordered subset of E’.

In particular, © weakly reflects " and @'

Proof. By Definition 3.2 6 maps M(e, f) into M(e0, f0) and it preserves <. To
show that 6 maps M(e, f) onto M(e0, fO) = M(eO, fO) N EO, consider g’ €
M (€9, f0). Choose g1 € E with 16 = ¢'. Since g’ ' €0, by Proposition 3.9,

I =(e0)g = (eq1)0 € L (g, e0) = % (910, €b).

Hence, by axiom (RM2) of Definition 3.2 .”(g1,¢) # 0. Let h € .”(g1,e). Then
by (RM1), h6 € .#(g10,e0) = .#(¢',e0). Then h0 «' ¢’ @' 0 and hO " €0.
Therefore h0 w €0 so that (he)0 = (h0)(eO) = h0. Thus g £ I’ £ hO. By
Proposition 3.12

Z((he)0, 9:6) = 7 ((he)6,9") = #(g',9") = {9’}

and by (RM2), L(he,g1) # 0. If ki € S(he, 1), than, as above, k0 = ¢
and k; @' he @ e. Dually there exists ky € @'(f) such that k0 = g’. Then

order-reflecting
order-reflecting!weakly
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L(k160,k0) = {g’}, and again by (RM2), L (k1,kz) # 0. If g € Sk, k), g €
M(kq, k) € M(e, f) and g0 = g’. This proves (RM31).

Before verifying (RM32), we shall show that 0 weakly reflects " and &'. If
¢,f €E;=EQ,andife o' f',thene’ € M(f’,¢). Henceife, f € E with e = ¢/,
fO = f’, then there exists e; € M(f, ¢) such that e;0 = ¢’. Therefore 0 weakly
reflects '. Dually 0 weakly reflects w'.

Let e, f* € E; = EO such that (¢, f') € Dp. Then either ¢ " f, ¢ ' 1,
f @ ¢ or f @ ¢. Inall cases, we can find ¢, f € E with e = ¢/, f0 = f’ and
(e, f) satisfies the same relation as (¢/, f). Then (ef)0 = ¢’ f’ € E;. Therefore E;
satisfies condition (1) of Proposition 3.13. To prove (2), let ¢’,I’, ¢’ € E; with
g, i € @'(¢’)and g’¢’ ' We'. Thenby Proposition 3.19 there is an E-square G =
(9 9, 9, ) such that h] @ h" and hije’ = (W'e)(g’¢’). Therefore h] = (W'e')(g'e" )W’
and so, hy € E1by (1). Also #(h],g') = {g;} # 0. Now ife € Ewithe0 = ¢/, since
6 weakly reflects w” and w!, there exists g,h € w'(e) such that g6 = g’, 10 = h].
By (RM2), #(h1,9) # 0. If g1 € S (h1,9), ;10 € S (16, 90) = L (h},9') = {97}
Hence 4160 = g; € E;. This proves (2). Since the proof for (2)* is dual, the
statement (RM32) follows from Proposition 3.13. O

CoroLLARY 3.25. A bijective bimorphism O is an isomorphism if and only if O is
reqular.

Proof. If 6 is regular, by the proposition above 6 reflects »” and o' weakly and
since 0 is bijective, it reflects the quasiorders. Hence if (¢/, f’) € D there exists
x,y € E such that (x,y) € Dg is of the same type as (x’, ') and (xy)0 = x'y’.
Therefore

@Oy =xy=y)o".
It follows that 871 : E’ — E is the inverse of 6 and so, 6 is an isomorphism.
Conversely, if 0 is an isomorphism, it is clear that 0 is regular. O

A partial converse of the above statement is also true: if 0 is any bimor-
phism that satisfies (RM31) and the following,

(RM33) EO is a relativelu regular biordered subset of E’.

then 0 satisfies (RM1) [See Nambooripad, 1979, Proposition 2.14 for a proof].
Example 3.9 shows that conditions (RM31), (RM32) and/or (RM33) are
neither necessary nor sufficient for regularity of a bimorphism.
However, if E is regular, conditions (RM31) and (RM32) completely char-
acterises regularity.

ProrositioN 3.26. Let O : E — E’ be a bimorphism of the reqular biordered set E to
E’. Then O is regular if and only if it satisfies (RM31) and (RM33).
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Proof. Assume that 0 is regular. Then by Proposition 3.24, 0 satisfies (RM31)
and (RM32) so that E; = EO is a biordered subset of E’. Therefore, to prove
(RM33), it is sufficient to show that

A1(e0, f0) = 7’0, fO)NE; forall e feE

where .#] denote the sandwich set in E; and ./ denote the sandwhich set
in E’. Lete,f" € E1 and choose ¢, f € E with ¢’ = e0 and f* = f0. Since
E is regular, Z(e, f) # 0. Let h € .Z(e, f). The regularity of O implies that
W =hoe.” (¢, f). Cearly

7" (e6, f6) N E1 € #(e0, f6)

Therefore b’ € A, f'). If g € S, f'), we have g ~ I’ in E; and so
dg % eh and g'f' Z W f'. Since these relations hold in E’, g’ € 7'(¢/, f').
Therefore the desired equality holds.

Conversely assume that 0 satisfies (RM31) and (RM33). In particular, 6
satisfies (RM32) and so, by Proposition 3.24, 0 satisfies (RM1). Since E is
regular, axiom (RM32) is automatically satisfied. Therefore 0 is regular. O

Let 0 : E — E’ be a bimorphism. Then

k0 =00(0)" =((f,9): f0 = g0) (3.17)

is clearly an equivalence relation on E. k0 is called the biorder congruence of the
bimorphism 6. If 0 is regular, k0 is called a regular biorder congruence on E.

ProrosiTioN 3.27. Let p = k0 be the congruence of a bimorphism 0 : E — E’. For
every e € E, ep is a biordered subset of E. If E is reqular then ep is a reqular biordered
subset of E and is relatively reqular in E.

Proof. Clearly ep satisfies condition (1) of Proposition 3.13. To prove (2), let
f,g.h€ep, g he€w(f)and gf ' hf. Then by (B4), there is g1 € M(h, f) such
that g1 f = gf. Lete’ = e0. Since gf € ep, we have

(710)(f0) = (9:0)¢’ = (91./)0 = (9/)0 = ¢
and

710 = (fg1)0 = €'(910)

and so, g10 % ¢'. Since g1 @' h, 10 @' ¢’. This gives 10 = ¢’ so that g; € ep.
Thus ep satisfies condition (2). By duality (2)* also follows and so, ep is a
biordered subset of E.

x0:the biorder congruence of the
bimorphism 6

biorder congruence

biorder congruence!regular—
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Suppose that 0 is regular and f € ep. Then
(e, f)O C .7(e0, fO) = 7' (¢,¢') = {¢'}.

Then . (e, f) # 0. Therefore ep is a regular biordered subset. Also . (e, f) C ep
which implies that ep is relatively regular in E. O

Next theorem characterises regular biorder congroences on a regular bi-
ordered set. Since we will not have occation to deal with the more general
type of congruences, for brevity, we shall call these as biorder congroences (or
simply congruences if no confusion is likely).

TueoreM 3.28. Let p be an equivalence relation on a reqular biordered set E. Then p
is a congruence on E if and only if p satisfies the following conditions and their duals.
In these statementse, f, g ... etc. denote arbitrary elements of E.

(BC1) epe’, fof’ and (e, f),(¢',f)eDg = efpef.
(BC2) ¢ eple) = L, €)Cple).

(BC3) g,h € w'(e) and p(ge) Nw'(he) # O = there exists g1 € M(h,g) such
that g1g € p(g) and gie € p(ge).

(BC4) ge Mle, f), e'pe and f'pf = M, f)Nplg) #0.

Proof. We observ that, since axioms for biordered sets and the axioms for
comgruences above are self dual, the duality principle applies in this case. We
shall use this observation in the following proof.

Let E; = E/p where p is an equivalence relation on E satisfying the given
conditions. Define a partial binary operation on E; by

p(e f) if there exist e’pe, f'pf with (¢/, f’) € Dg;

1
undefined otherwise. (3.18a)

p@p(f) = {

If epe’pe’ and fpf'pf”, and (¢, f'),(€”, f”) € Dg then by (BC1), p(¢'f") =
p(e” ). Hence the equation above defines a single-valued partial binary
operation on Ej.

Let @ and ! denote the relations on E; defined by Equation (3.5) with
respect to this partial binary operation. We show that

p(f) @1 p(e) & there exists f* € p(f) such that f’ @ ¢; (3.18b)
p(f) @' ple) & there exists f’ € p(f) such that f* o' e. (3.18¢)

If 7 € p(f) with f* @" e, then (¢, f') € Dg and ef’ = f’. Hence by Equa-
tion (3.18a), p(@)p(f) = p(Ap(f) = p(f) = p(f). Thus p(f) @’1 p(e). On the
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other hand if p(f) w"1 p(e), there exist ¢’ € p(e), f* € p(f) with (¢, f’) € Dg and
p(e’f) = p(f) so that ¢’ f* € p(f). Since the basic product ¢’ f* exists, by axiom
(B1) of Theorem 3.2, one of the following relation must hold:

e o f,/ e a)l f,/ f/ W E', f/ wl e

Lete’ 0" f'. Thene' € M(¢/, f) and f'pf. Hence by (BC4), M(¢’, f) N p(e’) # 0.
Lete” € M(¢’, f) N p(e’). Then p(e”’) = p(e) and ¢’ " f so thate” f Z ¢”. Also
pe’f) = pe'f’) = p(f). Hence e”f € M(¢”, f) and e”pe. Therefore, again by
(BC4), there exist fi € M(f,e) N p(e” f). Then fi 0" e and fi € p(e”f) = p(f)
which proves Equation (3.18b) in this case. If ¢ ' f’, then ¢’ f’ = ¢’ and so
p(e) = p(e’) = p(e’ f’) = p(f). Hence Equation (3.18b) holds in this case if we let
f'=elff' @" ¢, then f' € M(f',¢'), epe’ and fpf’. Hence by (BC4), there exists
f1 € M(f,e) N p(f'). Therefore Equation (3.18b) holds with f” = fi. Finally, let
f’ @' ¢ sothate' f’ w e and p(e’'f’) = p(f). Again, the desired result follows if
we take ¢’ f” as f’ in Equation (3.18b). Therefore Equation (3.18b) holds in all
cases. Equation (3.18¢) follows by duality.

It obvious from Equations (3.18b) and (3.18c) that @] and w’l are quasiorders
on Ei. Let (p(e), p(f)) € Dg,. Then by Equation (3.18a) there exist ¢’pe, f'pf
such that (¢/, ') € Dg and p(e)p(f) = p(¢’ f*). We can see using Equation (3.18b)
and Equation (3.18b) that p(e) and p(f) are related by v} and/or a)l1 in the same
way ¢’ and f’ are related in terms of " and «'. This implies that E; satisfies
axiom (B1) of Theorem 3.2. It also follows that the quotient map p* : e — p(e)
of E onto E; preserve and weakly reflect the quasiorders o’ to ! and ' to o/
respectively. To prove (B21), assume that p(e) @1 p(f). By Equation (3.18a)
we may assume that e " f and so, ¢ Z efwf by (B21). Since p* preserves
quasiorders and their inverses, it follows that p(e) %1 p(ef)w,p(f). Similar
arguements can be used to prove axiom (B22) for E;. Let p(g), p(f) € @/ (p(e))
and p(g) @'y p(f). By Equation (3.18b) we may assume that g, f € @’(e). By
Equation (3.18c¢), there is g1 € p(g) with g1 @' g. By (BC2), .7(91,9) S p(9)-
Let g’ € #(g1,9) Then g’ € M(g1,9) € M(f,e) and so, ¢’, f € w'(e). Therefore
g'e @ fe. Further, by Equation (3.18a) and Equation (3.18c) we have

p(g)p(e) = p(g'e) @'1 p(fe) = p(fp(e);

and (p(Hp@) (p(9)p(e)) = p(fe)p(g’e) = p((fe)(ge)) by (3.18a);
= p((fg")e) = p(fg")p(e) by (B3);
= (p(Np(g) p(e)-

This proves axiom (BC3). To prove (B4), let p(g), p(h) € w}(p(e)) and p(g)p(e) ol
p(h)p(e) where g,h € w'(e). Then p(ge) @' p(he) and by Equation (3.18c),
p(ge) N @'(he) # 0. By (BC3) there exists g; € M(g, h) such that g19 € p(g) and
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g1e € p(ge). This implies that p(g1)p(9) = p(919) = p(ge) = p(g)p(e). Since
g1 @' h if follows that p(g1) @'1 p(h) and axiom (B4) follows. Since duals of
these axioms follow, we have shown that E; is a biordered set and p# :E— E;
is a bimorphism.

We proceed to show that p* : E — E; is a regular bimorphism. Since
p" is surjective, (RM33) holds. Since p* is a bimorphism, p* is a map of
M(e, f) into M(p(e), p(f)) that preserve the quasiorder <. Now suppose that
G € M(p(e), p(f)). By Equations (3.18b) and (3.18c) we can find g1,9, € G
such that g1 @' e and g, €w” f. If g € #(g1,92) then by (BC2), g € G and
so p(g9) = G. Further g € M(g1,92) € M(e, f). Hence p* maps M(e, f) onto
M(p(e), p(f)) and thus p* satisfies (RM31). Therefore by Proposition 3.26, p* is
a regular bimorphism. In particular, E; is a regular biordered set.

Comversely, assume that p = k0 where 0 : E — E’ is a surjective regular
bimorphism of the regular biordered set E. Then by Definition 3.2, (RM1) and
(RM31), p satisfies (BC1), (BC2) and (BC4). Let g,/ € o' (e) and p(ge) N @' (he) #
0. Then g0,h6 € w'(e0) and gOeO = (ge)0 @' (he)0 = fOeO. Hence, by
(B4), there exists G € M(h0, e0) such that Gp(e) = p(g)p(e). Thus G Z p(g).
Hence G € M(p(h), p(g)). Then by (RM31), there exist g1 € M(h, g) such that
G = 710 = p(g1). Therefore we have

p(g19) = p(g1)p(g) = Gp(g) = p(9);
p(g1e) = Gp(e) = p(g)p(e) = p(ge).

Therefore p satisfies axiom (BC3) also. O

If 0 : E — E’ is a regular bimorphism of a regular biordered set, then
EO = E; is a relatively regular biordered subset of E’ (by Proposition 3.26). If
p = x0 then p* : E — E/p is a surjective regular bimorphism of E onto the
quotient E/p. Also the map ¢ : E/p — E1; p(e) — €0 is a bijection. Now if
p(e)p(f) exists in E/p, by Equation (3.18a) there exist ¢’ € p(e), f* € p(f) such
that (¢, f*) € Dg and p(e)p(f) = p(¢’f’). Then

(€0)(f0) = (¢ f)0
so that the product (e0)(f0) exists and
(P@)P(p(NY = (e0)(fO) = (' )0 = (p(¢' f))Y.

Similarly, one can see that if (e0)(f0) exists in E; then (p(e))(p(f)) exists in
E/p and we have the equality above. Therefore i) : E/p — E; is a biorder
isomorphism. We have the following isomorphism theorem.
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TueorREM 3.29. Let E be a regular biordered set and let © : E — E’ be a regular
bimorphism. Then there exists an isomorphism 1\ : E/x0 — EO such that the
following diagram commute:

E— . F/xo (3.19)
0 Y
E/

where k0" : E — E/x0 is the quotient bimorphism.

3.3 EMBEDDING OF BIORDERED SETS IN SEMIGROUPS

We have seen that the set of idempotents of any semigroup is a biordered set
and the map induced by a homomorphism ¢ : S — S’ on the biordered set
E(S) is a bimorphism E(¢) : E(S) — E(S’) (see Theorem 3.3). In this section we
consider the converse problem of ebedding a given biordered set E as biordered
set of some semogroup S so that E is isomorphic to E(S) and thus showing that
the original set of axioms for biordered sets [see Nambooripad, 1979, Definition
1.1] are both necessary and sufficient inorder that a biordered set represent
the set of idempotents of a semigroup. It may be noted that this problem
was solved for the particular case of biordered sets of regular semigroups
in Nambooripad [1979] itself using the theory of inductive groupoids which
will be considered elsewhere in this work. Results in this section are due
to Easdown [1985]. In presenting the results we have followed (except for
Easdown’s arrow notations) [Higins, 1992] which provide a good account of
Easdown’s theory.

3.3.1 A representation

We begin by constructing a representation of a given biordered set as biordered
subset of a semigroup of partial transformations. This is the principal tool
Easdown uses to get the desired embbeding [see Easdown, 1985].

Let E be a biordered set and assume that

I° =T U {oo} where I = E/%; and

(3.20a)
A° = AU {oo} where A = E/.¥

where oo does not represent an element in either I or A. For e € E, we write
R, [L.] for the Z-class [.Z-class] of E. Hence for any R € I°, either R = R, for
some ¢ € E or R = o0; similar remarks hold for elements of A°. Now, fore € E,
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define p(e) as follows. For any L € A°,
Ly ifLeAandgeLlna(e);
Lp(e)={c0 ifLeAandLNw'(e) =0; (3.20b)
oo ifL = oo.
The map p(e) : A° — A° is single-valued. For, if L € A and if g,h € L N w'(e)
then by axiom (B3), Lye = Lp.. p(e) is clearly single-valued in other cases.

Notice that Lp(e) takes values in A if and only if L intersects the right ideal
w'(e). Moreover, p(e) is an idempotent in .75. and so, this gives a map

p:E—E(J), e plo).
Dually we define A(e) : [° — [°: For any R € I°,

R, ifRelandgeRNa(e);
RA(e) ={c0 ifReland RN w(e) = 0; (3.20b°)
oo if R = oo.
As above, A(e) : I° — I° is single-valued and RA(e) takes value in [ if and only

if R intersects w'(e). Again A(e) is an idempotent in 7, the left-right dual of
- and we have the map

/\:E—>E(ZZ), e Ale).

We now set
pe(e) = p(e) = (ple), Ale)) (3.20c)
which defines a map
¢ :E— E(Jh x 7).

We proceed to show that the map ¢ is a biorder embedding (see Definition 3.2)
of E into E (% X 9[;‘ ) We divide the proof into lemmas some of which will
be of interest later.

Lemwma 3.30. For (e, f) € Dg, we have p(ef) = p(e)p(f) and Alef) = A()A(f).

Proof. By (B12), it is sufficient to prove the following equations. If ¢ " f then

ple) = p(fe) = p(f)p(e) @)
and plef) = pe)p(f)- (ii)
Ife ' fthen

ple) = plef) = pe)p(f) (iii)

and p(fe) = p(Pp(e). (iv)
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To prove (i), assume that Lp(e) # oo for L € A. Then thereis g € L N w'(e) such
that Lp(e) = Lge. Since g 0" e " f, gf @" e and we have Lp(f) # oo,

Lp(f)p(e) = Lygp(e) = Lgpe # 0.

Since (gf)e = ge by (B22), it follows that Lp(f)p(e) = Lp(e) for all L € A such
that L N w’(e) # 0. Next assume that Lp(f)p(e) # oo. Then by Equation (3.20b),
Lp(f) # oo and so, there is g € L N '(e) with Lp(f) = L, and there is h €
Lyr N @' (e) with
(Lp(f)) p(e) = Lysp(e) = Lup(e) = Lie-

Nowh Z gf w fand h o’ e @" f which givesh w f. Hence g,h € o'(f) and
h=hf £ gf and by (B4), there is h; € L N @"(f) such that ki f = h. By (B22),
(h1f)e = hie which gives

(Lp(f)) p(e) = Lie = Ln, e = Linye = Lp(e)

so that Lp(e) # co. Consequently, Lp(e) = oo if and only if Lp(f)p(e) = oo, so
that equation (i) holds in all cases.

Proof of (ii). Assume that Lp(ef) # oo so that there exists g € L N w'(ef)
such that Lp(ef) = Lycf). Then

gZ glefywef Ze and gewedw f.
Therefore

(Lp(@) p(f) = (Lge)p(f) = Ligeys # oo

On the other hand, if (Lp(e)) p(f) # oo, there is g € L N w'(e) with Lp(e) = Ly
Then ge Z e " f and s0, Lyep(f) = Lige)f- Since g " e Z ef, Lp(ef) = Ly(p). By
Proposition 3.10, g(ef) = (ge)f. Therefore Lp(ef) # oo and Lp(ef) = (Lp(e)) p(f).
Again we have (Lp(e)) p(f) = oo if and only if Lp(ef) = oo and equation (ii)
holds in all cases.

Proof of (iii). If Lp(e) # oo there exists g € L N @' (e) such that Lp(e) = Ly..
Now we have

gZgewew f sothat ge.Z f(ge) w f.
Therefore

Lp@p(f) = Lgep(f) = Lrgop(f) = Lisgens = Lyge) = Lge = Lp(e).

If Lp(e)p(f) # oo, clearly Lp(e) # oo. It follows that equation (iii) holds in all
cases.
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Proof of (iv). Again suppose that Lp(fe) # oo so that there is g € L N o' (fe)
with Lp(fe) = Ly(se)- Then g " fe @ f and so, gf w f. Then gf,e € o'(f) and
f(gf) = gf @ fe. Hence by (B4*), there exists g1 € «'(f) such that g; " e and
fg1=gf. Then g1 .Z gf and gre w e @' f. Therefore

f(ge) = (fg1)(fe) by axiom (B3*)
= (9f)(fe) = g(fe) by Proposition 3.10.
Therefore L)p(fHple) = (Lgf)‘o(e) = (Lgl)P(e)
= Lgie = Lfgie) = Ly(fe)
= (Dp(fe).

Let (L)p(f)p(e) # co. Then there exists g € L with g o” f and there exists
h € Lyr N’ (e) with

(L)p(f)ple) = (Lyp)p(e) = (Lu)p(e) = Lie-

Now ,e €w' (f) and I " e and so, by (B3*), fi «" fe. Also fh,g € «'(f) and
gf Z fh = (fh)f. Hence by Proposition 3.19, there is h; € M(g, f) such that
h £ gand hif = (fh)f = fh. Therefore h; " fe and so, (L)p(fe) = Ly, () # oo.
We conclude that the equation (iv) holds.

We have thus shown that for all (¢, f) € Dg, p(ef) = p(e)p(f). The statement
that for all (e, f) € Dg, A(ef) = A(e)A(f) follows by duality. O

Lemma 3.31. Fore, f € E, e o' f ifand only if p(e)p(f) = p(e) and e " f if and only
FADAE) = Ae).

Proof. The 'if” part of the above statement follows from Lemma 3.30 and so, it
is sufficient to prove the ‘only if” part. So assume that p(e)p(f) = p(e). Then

Le = (Le)p(e) = (Le)p(e)p(f) = (Le)p(f)-

Hence there exists g € L, such that g »” f and

(Le)p(f) = Lys = Le.

Thene .Z gf w f sothate o' f. If A(f)A(e) = A(e) then by dual reasoning, we
havee o f. O

The following theorem is one of the fundamental results in Easdown’s
theory of biordered sets [see ?].

TueoreMm 3.32. Let E be a biordered set and ¢ : E — E* be the map defined by
Equation (3.20c) where

E'=E(h % 7). (*)
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Then @ is a biorder embedding of E into E*. Consequently E is a biordered subset of
E* isomorphic to E.

Proof. We first show that ¢ is injective. If p(e) = @(¢’), then p(e) = p(¢’) and
Ae) = A(¢’). Hence p(e)p(e’) = p(e) so that e @' ¢’ by Lemma 3.31. Similarly
¢ @' eand so e .Z ¢'. Dually, we have e Z ¢’. Consequently ¢ = ¢'.

Let (e, f) € Dg. Then by Lemma 3.30, we have

P@p(f) = (p(e), A@)(p(f), A(f)) = (p(e)p(f), Ale)A(f))
= (plef), Alef)) = plef).

Hence ¢ : E — E* is a bimorphism. Moreover, (p(e), ¢(f)) € Dg- and these are
related in the same way as e and f. On the other hand, if (¢(e), ¢(f)) € D,
by Lemma 3.31 (¢, f) € Dg and the relation between ¢ and f is the same as
the relation between @(e) and ¢(f). It follows that ¢ : E — Eg is a biorder
isomorphism.

For convenience, let us write E’ = E¢. Since

P@E)p(f) = plef) forall (e f) € D,

E’ is a partial subalgebra of E*. Hence E’ satisfies the condition (1) of Propo-
sition 3.13. We now verify condition (2). Lete, f,g € E such that ¢(f), ¢(g) €
@' (p(e)) and p(g9)p(e) @' @(f)p(e). By Lemma 3.31, we have f,g € w'(e) and
ge @' fe. Hence by (B4), there is g1 € M(f,e) such that gie = ge. Then by

Lemma 3.30, ¢(g1) € M(p(f), ¢(e)) and ¢(g1)p(e) = ¢(g9)¢(e). This proves, by
Proposition 3.13, that E is a biordered subset of E*. O

The theorem above gives an embedding ¢ : E — E* where E* is the
biordered set defined by Equation (x) above. We shall call ¢ = @ as the
fundamental embedding of the biordered set E. By Lemma 3.30 the projections

p:E— Ih, e e=ple)
and AE—> 5, e é=Ae)
are bimorphisms which preserve and reflect basic products. Consequently, as

in the last paragraph of the above proof, we can show that Ep is a biordered
subset of E(.7x-). Dually, EA is a biordered subset of E (91: ).

3.3.2 Easdown’s theorem

According to Easdown the following result is due to Hall [see Easdown, 1985,
?]. The following proof is essentially from Higins [1992].

@g: Fundamental embedding of the
biordered set E
fundamental embedding



(E@):The fundamental semiband of
E

letters
words
cover
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Lemma 3.33. Let (Eq) denote the subsemigroup of Tx- X 7, generated by Ep. If a
is an idempotent in (E@) and if p(e) -Z a % @(f) in the semigroup (E@) fore, f € E,
then o € Eq.

Proof. The given condition implies by Theorem 2.34 that

ple) Z p)p(f) £ ¢(f)

in the semigroup (E¢). Taking projections into 7., we have p(e) Z p(e)p(f) £
p(f). Since p(e) Z p(e)p(f) these transformations determine the same partition
of A° (see Example 2.10). Now L.p(e) = L. # oo. Hence the set U in the
partition 71, that contain L, does not contain co. Since (c0)p(e)p(f) = oo and
U € Ttpe) = Tpe)p(s), Lep(e)p(f) # oo. Therefore there is g € L, such that g " f
and L.p(f) = Lys. Againsince p(e)p(f) -Z p(f)in(Ep), we have p(g)p(f) @ p(f).
On the other hand, by Theorem 2.34 p(f) .2 p(9)p(f). Hence p(9f) = p(f) and
so, p(e) £ p(g) Z p(f). This implies, by Lemma 3.31, that

ple) Z p(g) Z ¢(f)-

Therefore a 5 ¢(g). Since both « and ¢(g) are idempotents in (E@), @ = ¢(g).
Thus a € Eg. O

Suppose that E is a biordered set and let E* [E*]denote the free semigroup
[monoid] on the set E. Elements of E are called letters and those of E* are
called words. Symbolse, f, g, h, etc. [u, v, w,etc.] with or without subscripts and
superscripts will denote letters [words]. If & is a letter of the word u, the rank
of 1 is the position of / in u when we count letters of u from left. The length
I(u) of a word u is the number of letters in u.

Multiplication in E* will be denoted by juxtaposition and the basic product
in E will be denoted by -. Thus if (¢, f) € Dg, ef denote a word of length two
while e - f denotes a single letter. We shall say that v is a subword of w if
w = uvu’ for some (possibly empty) u,u’ € E*. Words wy, wy, ..., w, cover a
word w if there are subwords w! of w;, i = 1,2,...,n such that w = wjw; ... wy,.
We may identify E with a subset of E* by identifying every e € E with the
word having the only letter e so that E C E*. Notice that elements of E are not
idempotents in E*; in particular, E is not a biordered subset of E*.

Define the relation ¢ on E* by

o=1{(fg,f 9 :(f 9) € De}.

Let 0" denote the smallest congruence on E* containing o (see Proposition 2.7).
Let

Bo(E) = E*/o". (3.21a)
and xe:E— EBy(E)), e a'(e) (3.21b)
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The semigroup By(E) is called the E-free semigroup (or the free semigroup
generated by the biordered set E). Easdown’s theorem asserts that (see the
theorem below) that the map xr is an isomorphism of biordered sets. xr will
be called the universal isomorphism of the biordered set E.

The following statement is equivalent to Easdown’s theorem [see Easdown,
1985, Theorem 3.3]. Except for minor differences in notation and arrangement,
the proof below is the same as the proof from [Easdown, 1985].

TueoreM 3.34. Let E be a biordered set and let By(E) denote the free semigroup
generated by E. Then the universal isomorphism xg : E — E(Bo(E)) is a biorder
isomorphism such that, given any simigroup S and bimorphism 6 : E — E(S)
there exists a unique homomorphism 0 : Bo(E) — S making the following diagram
commute:

E—— S E(By(E)) (3.22)
0 E()
E(S)

For clarity, we divide the proof into a number of lemmas. Notation estab-
lished in this section so far is taken into account below.

Recall from Proposition 2.7 that (w,w’) € ¢* if and only if there exists a
finite sequence w;, i = 0,1, ...,n of words in E* with wy = w, w, = w’ and for
eachi=1,2,...,n there exist u;, v; € E* such that either

wi-1 = ui(fg)oi, wi=wui(f-goi or wia =uif-gvi, wi=ui(fg)oi

The passage from w;_; to w; is called an elementary o-transition and is indicated
as T : wi-1 — w;. In case when f &’ gor f @' g, we have f #Z f - g and the
corresponding elementary o-transition T is called type (1). If either g @" f or
g ftheng & f-gand T is said to be of type (2). For brevity we shall write

wy = P(f1)@(f2) .- @(fn) (3.23)
foranywordw = fif>... f, € E*.

Lemma 3.35. Let fi, fo, ..., fa, 91,92, -, gmw € Eandu = f1... fp, v =g1... 9. If
o"(u) = 0" (v) then uy = v,

Proof. Since ¢ : E — E@ is a border isomorphism, we have @(f)@(g) = @(f - d)
for all (f,g) € Dg. Consequently if T : w — w’ is an elementary o-transition,
then w, = w(’p It follows from the above remarks that w, = w(’lj whenever

o*(w) = o (w’). O

By(E): Free semigroup generated by
E

free semigroup!E-free sewmigroup
Xe: Universal isomorphism of E
biordered set!universal isomorphism
elementary o transition

elementary o transition! of type
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The following lemma is also due to T. E. Hall.

LemMa 3.36. Suppose that 6*(w) € E(By(E)) and that o*(w) 2 o*(e) for some letter
e. Then the congruence class o*(w) contains a letter.

Proof. Letw = eje, .. .ey. Since 0¥ (w) and o*(e) are Z-related idempotents there
existu = fifa... fuand v = 9195 . .. g, such that o*(u) is an inverse of o*(v) and

d'(w) = " (w)o" @) = 0" (fi... fug1- .- Gm)
and a'(e) = d*()o" () = 0" (g1... gufi .- fn):

It follows from Lemma 3.35 that w,, and ¢(e) are idempotents in (E¢) and
Wy = UypDyp = (UD)y
and P(e) = Vylly.
Hence ple) = p(g1)p(g2) - - - p(gm)p(f1)p(f2) - - - p(fu)-
Since L.p(e) = L, # o0, it follows that
(Lo)p(g1)p(g2) - - - p(gm) # 0.

By Equation (3.20b), there exist k1, k», . . .k, such that

kheLl.N wr(gl)

and ki €Ly 4., Na'(g), 1<i<m.
Then in the semigroup By(E) we have
" (ks - g1) = " (k1)a* (91) L(Bo(E)) o*(e)o" (91) = 0" (eqn).
Similarly

o*(ky - g2) = 0" (k2)0"(92) L(Bo(E)) o* (k1 - 91)0" (92)
L(Bo) o*(eg1)0"(92) = o (eg192)

Repeating the process, we finally arrive at

0" (ki gur) = 0" (k)™ (g) LBo(E)) 0" (k-1 - Gun-1)" (g1)
LB0) 0" (eq1 ... gu1)5"(g) = " (€g102 ... g)

Since

o*(egr-..gn) = 0" @0*(G1 .- gn) = 0*(g1... o) LBy(E)) o* (),
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we have o*(ky, - gm) ABo(E)) o*(w). Since k = ki, - gy is a letter, there is a
letter k with o%(k) A(By(E)) o*(w). Dually, there exists a letter | € E such that
a*(I) Z(Bo(E)) o*(w). It follows from Lemma 3.35 that

p(k) LEp) wy Z{Ep) ().

Hence by Lemma 3.33, ¢(z) = W for some z € E. It now follows from
Theorem 3.32 that

kZz%1

in E. Hence by the definition of 6, we have o* (k) “ABy(E)) o*(z) Z(Bo(E)) o*(I).
Therefore 0%(z) and o*(w) are J#related idempotents in By(E). Consequently
o*(z) = o*(w). O

We next show that xg : E — E(By(E)) is surjective. The lemma above
proves that any idempotent Z-related to an idempotent o*(e), ¢ € E is again
of the same type. Consequently, to prove that x is surjective, it is sufficient
to show that every idempotent o*(w), w = e1e .. .e, in Bo(E) is Z-related to an
idempotent 0*(z), z € E.

Since o*(w) is an idempotent, we have o*(w) = o*(w"). Hence there exist
words wy, k = 1,2,...,N with w; = w, wy = w" and elementary transitions
Tk : wy — Wiy, for 1 <k < N. For each k, 1 < k < N, we shall construct a cover
wi,i=1,2,...,nof w such that each o*(w}) Z(By(E)) o*(f) for some f € E.

We define the subwords wj inductively in terms of the position of letters
from 1 to I(wy). For this purpose, we define three finite sequences of positive
integers {a;,Bi,y} : 1 <i<n, 1<k< N}as follows:

a§=[3§=y§=i for i=1,2,...,n €))]
For each i, 1 <i < n, define inductively in k:

Bi if Ty : ufgo = uf - go where l(u) > i — 1;
or Ty : uf - gv = ufgo where l(u) > f;;

i or l(u) = B, — 1 and Ty is of type (1);

P = B.—1 if Ty :ufgo = uf - go where l(u) < i - 2;

B +1 if Ty :uf-gom ufgowherel(u) <p, —2;

or I(u) = B, — 1 and Ty is not of type (1);

@)
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al ika:ufgvHuf-ngherel(u)za;{—l;
orl(u) = a -2, ai < B, and Ty is not of type (2);
or Ty : uf - gv = ufgo where l(u) > a} - 1;

i
= . , 3
Bent ap =1 if Ty ufgo > uf - go where I(u) < j - 3; ©)
or l(u) = a; — 2 and either a; = B, or Ty is of type (2);
al +1 if Ty :uf-gv— ufgo where l(u) < al - 2;
Vi if T : ufgo > uf - go where l(u) ;y};;
or l(u) = y, — 1, and either y;, = B, or Ty is of type (1);
; or Ty : uf - gv = ufgo where I(u) > yi;
Vil = (4)

yi—1 if Ty :ufgo uf - go where l(u) < y; - 2;
or l(u) =y, — 1, B < y; and Ty is not of type (1);
V;‘(+1 ikaZMf~gv+—>ufngherel(u)Syi—l;

For natural numbers i and j with i < j, let [i, j] denote the set of all integers k
with i < k < j. We now show that

Lemma 3.37. Let {al, B, ;) be finite sequences defined by Equations (1), (2), (3) and
(4) above. Then for all k € [1,N],

Br<Bi< <P (5)
and a, < B < Vi forall ie[l,n]. (6)
Further, [1, I(wy)] = U[a;, 71 forall ke[l1,N]. 7)

i=1
Proof. Let us say, for brevity that the elementary transition Ty : wi > Wi
is expanding if it is of the type u(f - g)v — u(fg)v so that l(wi1) = I(wy) + 1.
Otherwise, Ty will be called reducing.
To prove (5), notice that, by Equation (1), the desired relations hold for

k = 1. Assume inductively that the relations (5) hold for k < N. We consider
two cases and several subcases under each.

Ty is expanding. If [(u) > B; then by hypothesis, I(1) > ;™ and so,
Bior = B2 B = B

by Equation (2). Suppose that (u) = g; —1and that Ty is of type (1). If g = g%,

then we have
i _ pi _ pi-1 _ pi-l
ﬁk+1 - ﬁk —Fk T Fk+1°

If g, > B!, then I(u) > B — 1. So I(u) > pi-*. Hence

P i i1 ill
ﬁ;(+l —‘B;( >‘B;( - ;<+1‘
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On the other hand, if [(u) = ﬁ;; —1 and that Ty is not of type (1), then ﬁ;ﬁl = ﬁ;;ll
if 182 = 2_1 and if ﬁ;( > ,32_1/ I(u) > ,13;(_1 and so,

Bran =B+ 1> B+ 1= +1> B
Let I(u) < B} — 2. If I(u) < B, then
B =B+ 12 B +1 =B}

If I(u) = B! — 1, then B} = i so that

Bn =B+ 12 B +1=fh +12 B
if Ty is of type (1) and if Ty is not of type (1) then

P i i1 i
‘B;(+1_ﬁ;<+12ﬁ;< +1= ;<+1‘

Ty is reducing. If I(u) > i — 1 we clearly have I(u) > i — 1 and so, i, > Bi 1.
If [(u) < ﬁ;; — 2 then again the desired inequality follows if I(1) < ﬁ;:l -2

Otherwise, we have i —2 > I(u) > "' — 1o that g{ —1 = i"'. Hence
B =B 12 B =B
i1

k+1
i=1,2,...,n the proof of (5) is complete.

We have now shown that ,B;( 2 in all cases. Since this holds for all

To prove (6), we again consider two cases.

Ty is expanding. Let [(u) > B;. By inductive hypothesis, I(1) > o — 1 and it
follows from Equation (3) that

“;'m = “;; < :B;; = ‘B;Hr
If we also have I(u) > yf{, then by Equation (4)

‘B;;H = [3;; = 7’;; = 7’;&1‘
If Bi < I(u) <y} then I(u) < y; — 1 and so

i _ i T i
Bre1 =B < Vk = Vi1 = 1 < Vi1

Next, let /() = i — 1 and Ty be of type (1). Then I(u) > & — 1 and I(u) <y} - 1.
Hence from Equations (3) and (4) we have

i _ i i _ opi N i
Gy = 0 S B =P S Ve = Vier =1 <Viar
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If I(u) = p; — 1 and Ty is not of type (1) then
Xy = O B = By — 1 <Py <V =Vir — 1 < Vi
If I(u) < B — 2 then I(u) < yi = 2. If [(u) < oy — 2 then
M = +1<B+1=p, <y+1<y,.
On the other hand, if I(u) > a;; —1, then, as above we have
Wy =0 By = By — 1 <Py V= Vi — 1 < Vi

Ty is reducing. Let I[(u) > ﬁ;{ —1. Then l(u) > a;; 1. If l(u) > y;( then from (3) and
(4), . . . . . .
a;(+1 = a;c s ‘B;c = ‘B;Hl S y;c = y;ﬁl‘
If I(u) = yi — 1 and either y; = B} or Ty is of type (1), the equation above remain
valid. Again if [(u) = yi — 1 and either y} > pi or T} is not of type (1), then
ai+1 = a}; = ﬁ;c = ﬁ;c+1 = 7/;( = 7/;(+1 -1< 7/;(+1'
Assume that [(u) < B; — 2 so that I(u) < y; —2. If l(u) > & — 1, then g =2 >
I(u) > o — 1. Thus B, — 1 = a;. Therefore
a;(+1 :a;csﬁ;c_l :ﬁ;chl Sy;c_l :y;erl‘

If I(u) = af -2, af < B and Ty is not of type (2) then pi > I(u) = af —2

QLS‘BL—1=‘BL+1S)/L—1=)/L+1.

If I(u) = o, — 2 and either a; = B; or Ty is of type (2), then

i
ak+1

a;ﬁl =0(;<—] Sﬁi_l zﬁ;ﬁl 372_1272+1‘
Again, if (u) < o — 3 the desired inequality holds as in the last case above.

To prove (7), first observe that (7) holds for k = 1. Inductively assume that
(7) holds for k < N. This implies that for all ¢ € [1, [(wy)], there is some i € [1, 7]
with al <t < yi;in particular, [(wy) = y,]( for some j.

(a) Suppose that Ty : u(f - g)v = u(fg)v and let s be the rank of h = f - g in
wi. Then every letter in wy with rank less than s appears in wy,; with the same
rank, f and g has ranks s and s + 1 respectively in wy,; and all letters in wy
with rank t > s appears in wy.; with rank ¢ + 1. Since by inductive hypothesis
ai € [1, l(wy)] for all i, and since al | is either ai oral +1, ot € [1,1(wy41)] for
all i. Similarly y, ., € [1, l(wy+1)] for all i. Therefore

n

[ )] 2 | lagy, e - (*)

i=1
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It remains to prove the reverse inclusion. Observe that, for all t € [1, [(wy)],
te [a;;, y;{].

i) Lety; <s. Thenwehavel(u) > yi > a; —1 and 50, &, = =aandy,, =yt

by Equations (3) and (4). Therefore, a; , = a; <t <7y, =y,

ii) Lety} =s. Then /(u) = yk—l>a —~landso, al

Therefore ak 1Ss<s+1=<y,.

_ i P
b = qandy =y +1

iii) Let)/k>s Then l(u)<)/k 2 and so, 7/1;+1 y,;+l If [(u) > a; — 1, then
k+1—a Hence if o <t<yk,thena 1f+1<yk1 Ifl(u)<a —-2,and
if StSykthena+ §t+1§yk+1

It follows that
n . .
[1, M)l € | a1, Vs ] (+0)
i=1
From Equations (%) and (+) we see that (7) holds in this case.

(b) Suppose that Ty : u(fg)v — u(f - g)v and let s be the rank of f in wy. Then
letters in wy with rank t < s appears in wy,; with the same randk, h = f - g
has rank s in wy,; and letters in wy with rank ¢ > s + 1 appears in wy,; with
rank t — 1 so that /(wy1) = I(wy) — 1. Again, as in the proof of the case (a), we
see that Equation (%) holds. Also by inductive hypothesis, for all t € [1, I[(wy)],
t € [af, yi] for some i € [1,n].

i) Lett € [1,s]. If y; < sthenl(u) >y, -12al —1and so by Equations
(3) and (4), te [ak, yk] = [a k+1,yk+1] If )/k >s, then l(u) < )/k 2 so that

i
yk+1_)/k 1 >s. Since a < s, we have &'

P S s —a Hence t € [o

Xhr1/ yk+1]

ii) Lett > s. By induction hypothesis, t+1 € [a;(, y;{] for somei € [1,n]. Then
Yy Zt+12s+2andso, l(u) <y, -3 <y, -2 Thenby (4),yi, =y -1
We consider the following cases:

1. ak < s. In this case, a,ﬁ1 = and so, t € [of, ), — 1] = [ak+1,yk+1]

2. ak = s+ 1. If this holds, we have t > s + 1. Therefore t € [ak+1, )/k+1]
since ak+1 = ak orap — 1.

3. @ > s+ 2. If this is the case, o, | = &} —1y},, = 7, — 1 and hence
te [ak+1’yk+1]

Again we see that Equation (++) holds which proves Equation (7). This com-
pletes the proof of the lemma. O

LemMa 3.38. Let w = eje; . . . e, be a word such that o*(w) is an idempotent in Bo(E).
Then there is e € E such that o*(w) 2(Bo(E)) o*(e).
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Proof. We continue to use all notations established so far in this section. In
particular, wy, k € [1,N] are words in E* such that w; = w, wy = w" and
Ty : Wy — Wiy is an elementary o-transition. Also {aj, B;,7;} denote finite
sequences defined by Equations (1), (2), (3) and (4). Moreover, we will denote
by Z, £, 2, etc. Green’s relations of the semigroup Bo(E) in the following
proof.

Forexchk € [1,N]and i € [1,n], let w}( denote the subword of wy obtained
by removing all letters in wy to the left of a;-th letter and all letters to the right

of the y}-th letter. By Equation (7), the subwords w}, 1 < i < n cover wy for

2

each k € [1,N]. In particular, wy is covered by wll\], wy, - -

that

.wy;. We now claim

forsomei ejer...e; =w; isasubwordof w). (#)

If this is false, w; is not a subword of w}v (or w}v does not cover wy). Inductively

assume that w\, w?, ... w}; does not cover (w:)". Since wit' does not cover wy,

w},, ... wi! does not cover (w1)™*!. By induction w}, w%, ... w?, does not cover
(w1)" = wn. This contradicts the assertion proved in the last paragraph.
Therefore (#) must be true.

Let ¢; be the gi-th letter in wy. By Equation (6), ¢, is a letter of w} and so, we

can write w}( as

w;c = u;(e;{v;; for some (possibly empty) words u;( and v;;. (#1)
We now prove that, for all k and i.

o*(ev}) Z o*(e)) (#2)
and o*(ulel) £ o*(e}) (#3)

by induction on k. If k = 1, by Equation (1), w’1 = ¢; for each i and so (#2) holds.
Assume that (#2) holds for k < N. To prove (#2) for k + 1, we need only to
verify the assertion in the cases in which the elementary transition

. I B4 I ’
Tk : wp = w0 - Weyr = w'w) ;0

has one of the following forms. In the following, the word shown in the bracket

on the left is w! and on the right is w!

k k+1°
(a) u’(ufe;{v)v’ - ' (uf - e;{v)v';
(b) u’(fe;;v)v' - u'(f - e;;v)v';
() u’(ue;{fv)v’ - u’(ufe}; - foy’;

d) u'(uef{f)v' > u'(ue;; -
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(e) u’(ue};v g’ u’(uef{v f-g and Ty is of type (1);

' (uev)f - go’ and Ty is not of type (1);
(f) u’(uef{v)v’ - u'(ufgo)’ where ef{ =f-g
Cases (a) and (b): For these cases, we havee, = f-e; and v}, = v. Hence (#2)

follows since Z is a left congruence.

i

1 = U- Hence

Case (c): We againhavee,  =¢ - fand v
a#(e}'(ﬂviﬂ) = 0#((3;(](2)) X a#(ef().
Also
o(e) # o' (e f) = 0" ()
giving the desired result.

Case (d): (#2) follows immediately since vfﬁl is the empty word in trhis case.

Case (e): If T is not of type (1),
0" (€410ks1) = 07(60) Z 0*(¢}) = o*(¢],,).
If Ty is of type (1) then f % f - g and so,
o*(€},,0t,,) = o*(elof - 9) Z o*(evf) % o*(e)) = o* (e, ).
Case (f): If Ty is of type (1) thenel , = fand ¢l | % e.. Therefore

0" (€fu1¥ir) = 0" (f - g0) Z 0" (¢}) % 0" (e}).

If Ty is not of type (1) thene;,, = gand e,

Z e, Hence
0#(62+1U;;+1) = a*(gv) = 0#(96;;0) z ‘7#(932) =a'(g) = U#(e;;u)‘

This proves (#2) by induction. Proof of (#3) is dual.
By (#) there exists i € [1, 1] such that

w}V =ej...ex(wr)wy(w)e; ...e

for some integers i, j,p and q. Hence, since o* is a homomorphism of : E* to
By (E)

0#(w}'\,) = a#(ej ...eqwier...ex) £ a#(ej ...eqwn) & o (wn);
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that is,
ot (wl) 2 o*(w).
On the other hand, from (#2) and (#3), we have

o' (uiel) £ o*(el) # o' (e v,

so that o*(uiel) Z o* (ujel)o® (e vly) = o* (uieloy) = o (w));

that is, a'(wh) 2 a*(el).

Hence o (w) 2 0'#(65\7)

which proves the lemma. O

We can now prove Easdown’s theorem [see Easdown, 1985].

Proof of Theorem 3.34. We first show that xr = o* | E is a surjective bimorphism
of E onto E(By(E)). If (e, f) € Dg then (ef,e - f) € 0 and so,

(exe)(fxe) = a*(@)a"(f) = o*(ef) = o*(e- f) = (e~ Pxe.

It follows that xr preserve basic products in E and so, it is a bimorphism of E
into E(Bo(E)). Now if w is a word in E* such that o*(w) is an idempotent in
By(E), then by Lemma 3.38, 6% (w) Z o*(e) for some e € E. If this is the case, by
Lemma 3.37 there is g € E such that o*(w) = o%(g). Hence every idempotent
in By(E) is of the form o%(e) for e € E. Therefore the map xr : e — o*(e) is a
surjective bimorphism of E onto E(By(E)).

Now let S be a semigroup and 0 : E — E(S) be a bimorphism. Then 0
extends to a homomorphism 6* of E* into S such that 6*|E = 6. If (¢, f) € Dg
then (ef,e- f) € 0 and so,

(€f)0" = (e0")(f07) = (eO)(fO)
=(e- O =(e-f)O".

since O is a bimorphism. Hence 0 C k¢(60"). Consequently by Theorem 2.5
there is a unique homomorphism 0 : Bo(E) — S such that

PN

6t =5"06.
Therefore

0 = 6*|E = (¢"|E) o (OIE(Bo(E))) = x o E(0)

which shows that the diagram 3.22 commutes.
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In particular, by Theorem 3.32, ¢ is a biorder isomorphism of E onto E¢
which is a biordered subset of E ((Ep)). Hence from diagram 3.22 we see that

¢ = Xe©° E().

Since @ is injective, so is yg. Since x is surjective, it is a bijection. Therefore
the equation above shows that E(¢) : E(Bo(E)) — Eg is a bijective bimorphism
and since ¢ : E — E@ is a biorder isomorphism,

(xe)™ = E@) o ()
is a bimorphism. Thus x¢ : E — E(By(E)) is a biorder isomorphism. (]

Recall (from Theorem 3.3) that the assignments in Equation (3.6) is a functor
from the category & of semigroups to the category B of biordered sets. To
avoid ambiguity regarding the notation for this functor, for the remainder of
this section, we will use the notations E, E’, etc. for arbitrary biordered sets.
Recall also (from Subsection 1.2.3) that a universal arrow from d € vD to the
functor F : C — D is a pair (c, g) where ¢ € vC and g € D (d, F(c)) such that
given any pair (¢’, g') with g’ € D (d, F(c’)), ¢’ € vC, there is a unique f € C(c, ¢’)
such that g’ = g o F(f). The last statement of Theorem 3.34 can be interpreted
as follows.

CoroLLARY 3.39. Let E be a biordered set. Then xg : E — E(Bo(E)) is a universal
arrow from E to the functor E.

Suppose that 0 : E — E’ be a bimorphism. Then 8’ = 0 o xp : E — By(E’)
is a bimorphism. Hence, by Theorem 3.34, there is a unique homomorphism
¢ : Bo(E) — Bo(E)(E’) such that the diagram 3.22 commutes. Since ¢ is
uniquely determined by 6, we may denote ¢ as By(E)(0). Then 3.22 becomes

E 0 E (3.24)
XE XE/
E(By(E)) —EEe) E(Bo(E"))

The uniqueness of the homomorphism By(0) in Theorem 3.34 implies that
Bo(1g) = 1,k and that By(6 o 6") = By(P) o By(6")

for composable bimorphisms 0 : E — E’ and 0’ : E’ — E”. Thus the assign-
ments

E By(E), and 0 By(0) (3.25a)
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is a functor By : 8 — &. The diagram 3.24 above shows that

X :Em xgls = Bo(E)o E (3.25b)

is a natural isomorphism. Thus from Corollary 3.39 and Theorem 1.6 (ii) we
have the following which shows that the construction represented by By satis-
fies the fundamental property of the construction of free objects in a category.
Again [see Nambooripad, 1979, Theorem 6.10] for the particular case of this
result for regular biordered sets.

TueoREM 3.40. The assignments in Equation (3.25a) defines a functor By : 6 — &
which is a left adjoint of the functor E : & — ‘B given by the assignments 3.6.
Moreover, x defined by Equation (3.25b) is a natural isomorphism which is the unit
of the adjunction.

3.3.3 The fundamental semiband

Following fairly widespread use we shall say that a semigroup S is a semiband if
S is idempotent generated. Given any biordered set E we have constructed
two semibands By(E) and (E@). The semiband By(E) is uniquely determined
by E as the free semiband generated by E (see Theorem 3.34) having E as its
biordered set. We wish to obtain a similar characterization of (E¢@) also. Notice
that, in general E is only (isomorphic to) a biordered subset of E((E¢)) and the
embedding may be proper (see Example 3.10). However, if E is regular, then
by Theorem 3.42 below, (E¢) is a semiband with E({E¢})) isomorphic to E.

So we now consider regular biordered sets. We need the following result
due to Easdown [1985]. Recall that .“i(e, f) = {h € M(e, f) : ehf = ef} (see
Proposition 3.4).

Lemma 3.41. Lete, f € Eand h € (e, f). Then

pE)pp(f) = pe)p(f).
in (Ep).

Proof. We shall show that p(e)p(h)p(f) = p(e)p(f). Suppose that Lp(e)p(f) # oo.
Then for some a € LN @' (e), Lp(e) = Lqe and for g € Lo N @' (f), Lp(e)p(f) = Lyy.
Then g € M(ae, f) € M(e, f) so that g < h. Hence by Proposition 3.20 there is
a commutative E-square ( ;2 Z], ) in M(e, f) such that i’ w h, hgy = goh = b’ and
g2f =H f. Then

Lp@p(f) = Lop(f) = Lyf
=Lgr = Lis = Lons
= (L)ple)p(h)p(f) # oo.



3.3. EMBEDDING OF BIORDERED SETS IN SEMIGROUPS 215

On the other hand, if (L)p(e)p(h)p(f) # oo, then for some a € L N w'(e) and

g€ LieNaw'(h),ge€LlyNa(f) S M, f). Then gf = (9f)(hf) = (gh)f by axiom
(B3) since g < hand so, gf ' hf. Therefore

(L)p@)p(f) = (Lae)p(f) = Lyr = Lgpmp) = Lgnys = (L)ple)p(h)p(f)

which implies that (L)p(e)p(f) # co. This also shows that (L)p(e)p(f) = oo
if and only if (L)p(@p(h)p(f) # eo. Thus p(e)p(Wp(f) = p(e)p(f). Dually
MeA(MA(f) = Ae)A(f) and hence p(e)p(M)p(f) = p(e)p(f)- O]

Theorem 3.5 shows that the biordered set of a regular semigroup is regular.
The following result shows that every regular biordered set arises in that way.

TueoreM 3.42. Let E be a regular biordered set. Then (Eq) is a regular semigroup
such that ¢ : E — E((E)) is a biorder isomorphism.

Proof. Let S = (Eg) so that, by Theorem 3.32, Ep = E is a regular biordered
subset of E(S) isomorphic to E. If ¢, f € Eand h € .”(e, f), then by Lemma 3.41
and Proposition 3.4 p(h) € .%1(¢(e), p(f)). Therefore E is a regular biordered
subset of E(S) which is relatively regular in E(S) and such that .1 (¢(e), p(f)) #
0 for all e, f € E. Hence, by Proposition 3.8 there is a regular subsemigroup
S’ C S such that E(S’) = E. Since S is generated by E, we must have §’ = S.
Therefore S is a regular idempotent generated semigroup and ¢ : E — E(S) is
a biorder isomorphism. O

The result above shows that when E is a regular biordered set, Ep =
E({E)); that is, ¢ does not create any new idempotents in (E@). If E is any
finite biordered set, the sets I° and A° are also finite. Therefore the semigroup
(E@) must be finite. Consequently if Ep = E({(E@)) then E is the biordered set
of a finite semigroup. In particular, bythe theorem above, this holds if E is a
finite regular biordered set.

CoroLrrary 3.43. Every finite regular biordered set is the biordered set of a finite
reqular semigroup.

The equality E¢ = E({Eg)) may not true if E is not regular (see Exam-
ple 3.10). We can also see from the theorem above that (E@) is a regular
semigroup when E is a regular biordered set. Example 3.10 shows that By(E)
need not be regular even if (Eg) is regular. However, when E is regular, an ap-
plication of Proposition 3.8 shows that By(E) is indeed regular. Consequently
the restriction of the functor By to the category R*B of regular biordered sets
is a functor to the category RS of regular semigroup. By Theorem 3.5 E(S) is
a regular biordered set for all regular semigroup S and so the restriction of the
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functor E to the category RG is a functor to the category of regular biordered
sets. Thus, as a corollary to Theorem 3.42, we have [see Nambooripad, 1979,
Theorem 6.10].

CoRroLLARY 3.44. Let By and E be functors of Equations (3.25a) and (3.6) respectively.
Then By | 8B is a functor to the category RS of regular semigroups and E | RS is
a functor to the category B of regular biordered sets. Moreover, By | R*B is a left
adjoint of the functor E | RG.

Let S be a semigroup with E = E(S) # 0. If A° denote the sets defined by
Equation (3.20a) then each L € A gives a unique regular .#-class L' of S such
that L NE = L. Let A, denote the set of all regular .Z-classes in S so that
- ¢ L+ L is a bijection of A onto A,. There is an obvious identification of
A° = AU{oo} with A" = A, U{co}. For e € E let p’ be the map defined as follows:
forL' € A,

L., ifL'=L,eA,and x Z xe;
L)yp(e)=4" e ' 3.20b
(Lpe {oo otherwise; and ( )
(c0)p'(e) = 0.

Dually there is a bijection - : R — R sending each R € [ to the unique %-
class in S containing R. We define the set I' = I, U {oo} where I, denote the
set of all regular %#-classes in S and for each e € E, the map A'(e) € 7" as in
Equation (3.20b).

LeMmMmA 3.45. For each L € A° and R € I°, we have

(L)p(e) = (Lp(e)) and (R)A'(e) = (RA(e))
foralle e E.

Proof. We prove the first statement. The second follows by duality. Suppose
that Lp(e) # oo. Then by Equation (3.20b) there is g € L with g " e and so,
g % ge by axiom (B21). Then g % ge in S and so,

(L)p(e) = (Ly)p'(e) = Ly = (Lp(e)) -

Hence, if Lp(e) # oo, then (L)p'(e) # co. On the other hand if (L)p'(e) # oo,
L € A, thenx #Z xeforsomex € L'. Let f € L = L' N E. Since x # xe and since
x € L', x is regular and so, xe is regular. Therefore .”(f,e) # 0. Let g € .7(f, ¢).
Thenxe Z fe = (fg)(ge) £ geand f Z fe #Z fg w f whichimplies that fg = f.
Therefore f .2 g " e and so, Lp(e) = Ly # o0 and

(Lp(e)) = Ly = (L)p'(e).

This completes the proof. O
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The result above shows that we may replace the maps p(e), A(e) and ¢(e)
respectively by p'(e), A'(e) and ¢'(e) and vice-versa when E = E(S) for some
semigroup S. The advantage of this replacement is that the map p’(e) is induced
by the right translation p, of S whereas p(e) is completely determined by the
biordered set. The lemma above ensures that these identifications only amount
to a change in notation. Consequently, henceforth, it will be convenient to
identify A" and A° by the bijection - which will identify the map p'(e) with p(e).
Dually we identify A'(e) with A(e).

Let S be a semiband with E = E(S). Extend the map p : E — E(J)) to
p:S — J- by setting

(L)pw) = (L)pler)p(ez) - - plen) (3.26)

forall w = ejer...e, € S, and L € A°. Let us write L; = (L)p(e1)...p(e) =
L)p(w),i=1,2,...,n,for L € A. If x € L, then by (3.20b*) and Theorem 2.26,
the map p.,,, : ¥ — yei1 is an isomorphism of the leftideal L(xw;) generated
by L; onto the leftideal L(xw;;1) such that y % ye;+1. Hence by the above, py, is
an isomorphism of the left ideal L(x) generated by L = L, onto L(xw). So, by
Theorem 2.25, we have x % xw for all x € L. Consequently, for any L € A°, we
have

if L e Aand x Z xw for some x € L; and

3.27
otherwise. ( )

p(w) = {1;0

This implies that p : S — - isa homomorphism. Dually the map A : e = A(e)
extends to a homomrphism A : S — 7". Therefore

ps:w = (p(w), AM(w)) forall weS (3.20c")

isa homomorphism (representation) of S to (E¢) C Jx- X .7} which extends the
biorder embedding ¢r of Theorem 3.32. Since S is a semiband, ¢s : S — (E@)
is surjective.

A semigroup S is called fundamental if the congruence 7, = 1s (see Propo-
sition 2.7(b)).

ProrosrtioN 3.46. For any semigroup S, let
w(S) = Hy.
Then S/ u(S) is fundamental.
Proof. Let S’ = S/u where u = u(S) and let ¢ = u* denote the quotient ho-

momorphism of S onto S’. If x Z y, x,y € S then clearly x¢ Z y¢ in S’. On
the other hand, if y¢ € (x¢)(S')! then y¢ = (x¢)(rd) for some r € S'. Hence

semigroup!fundamental
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p(y) = w(xr) which implies (y, xr) € u € S It follows that y € xS!. Similarly
xp € (y)(S)! implies x € yS'. Therefore x Z y if and only if xp Z y¢. Dually
x Z yif and only if x¢ .Z y¢ and so, x 7 y if and only if x¢p 57 yo.

Suppose that i’ = % ) where %" denote the /#-relation on S’. Suppose
a,b € S with agpu’bg. Then by Proposition 2.7(b), (xay)¢ 2 (xby)¢d for all
x, € S'. Therefore, by the above remarks, xay 7 xby for all x, y € S! and so
aub. This proves that u’ = 1g. O

A congruence o on a semigroup S is idempotent separating if each congruence
class of o contain atmost one idempotent. This is equivalent to requiring that
the quotient homomorphism ¢* : S — S/o is injective on E(S); that is the
bimorphism E(c*) is injective.

Some authors define a fundamental semigroup S as those for which, the
only idempotent separating congruence is 15. The following result shows that
the two definitions agree on a regular semigroup.

ProrosiTioN 3.47. Let S be a reqular semigroup. A congruence o on S is idmpotent
separating if and only if 0 C A In particular, the congruence u(S) is idempotent
separating. Moreover, a reqular semigroup S is fundamental if and only if the only
idempotent separating congruence on S is the trivial (identity) congruence.

Proof. 1f 0 C #then o(x) C H, for all x € S and since no s#can contain more
than one idempotent (see Proposition 2.40) ¢ is idempotent separating.

Conversely, assume that o is idempotent separating. Let ¢ : S — S/o = S’
be the quotient homomorphism. Then by Theorem 3.5 0 = E(¢) is a regular
bimorphism of E = E(S) onto E’ = E(S’). Since o is idempotent separating,
by Corollary 3.25, 0 is an isomorphism. Let (x,y) € 0. If ¥ € #(x) then
e=xx'oyx’ =u. Let f,g€ E=E(S)with f £ u % gandleth € #(f,g). Then
ho € 7 (f0,90) = {e0} since fO £ e0 % gb. So hO = eO which gives h = e
since 0 is an isomorphism. Then fe w f and so, (fe)0 = (f0)(e0) = fO which
gives fe = f. Hence f .Z e and similarly, ¢ #Z g. Therefore e s u. Now by
Theorem 2.26, p, : L(e) — L(x) is an isomorphism of left ideals and hence, by
Theorem 2.25, x 5# ux = yx'x. Hence x € yS. Interchanging x and y, we get
y € xSand so, x Z y. Dually x £ y. Therefore x J¢ y.

Since u(S) Cs% by definition (see Proposition 3.46), u(S) is idempotent
separating. The last statement follows from Proposition 3.46. O

TueorEM 3.48. Let S be a reqular semiband with E = E(S). Then

i(S) = [(w,w') € X S : ps(w) = ps()).

Consequently, (E@) is a fundamental semiband.



3.3. EMBEDDING OF BIORDERED SETS IN SEMIGROUPS 219

Proof. We have observed that ¢ = @s is a surjective homomorphism of S
onto (E@) which extends the biorder embedding ¢r of Theorem 3.32. Hence,
by definition, ¢ = K¢ is idempotent separating and so, 0 € p = u(S) by
Proposition 3.47. Let 7 be a congruence on S with © € # We show that
7 C 0. Since the quotient homomorphism ¢ = t* : S — S’ = S/ is idempotent
separating, E(y)) = E — E’ = E(S’) is an isomorphism. Hence, identifying E
and E’ by ¢, we have @s(e) = @s(1(e)) for alle € E. Hence ifa = eje; ... ¢, then
by Equation (3.20c”)

ps(a) = ps(en)ps(e2) . .. pslen)
= s (1(e1))ps (1(e2)) - . . s (T(en))
= g (1(a)).

Therefore, if (a,b) € 7, then 7(a) = 7(b) and so,

Ps(a) = s (1(a)) = ¢s (b)) = @s(b)-

Hence (a,b) € k¢ = 0 and thus © C 0. Therefore o is the largest idempotent
separating congruence on S so that ¢ = 1(S) by Proposition 3.47. Since (E¢p) =
Im @s, (E¢) is a semiband isomorphic to S/u(S) and so, (E¢) is fundamental
semiband by Proposition 3.46. O

When E is a regular biordered set, we shall use the notation B (E) to denote
the fundamental semiband of E so that B.(E) is ismorphic to (E@).

By a fundamental representation of a semigroup is a homomorphism ¢ : S —
T such that k¢ = J7,; the semigroup Im¢ = ¢(S) is called the fundamental
image of S. Clearly the fundametal image of S is unique up to isomorphism and
so, we may refer to the fundamental image of S. Also the fundamental image of
a semiband S is uniquely determined by its biordered set E = E(S); in this case,
the fundamental image of S will be referred to as the fundamental semiband
of E. The theorem above shows that @s is a fundamental representation of a
regular semiband S. In particular, if E is any regular biordered set then @g, )
is the fundal representation of Bo(E) onto B (E). Therefore

CoRroLLARY 3.49. For any regular biordered set E, B-(E) is the fundamental regular
semiband of E.

We shall return to fundamental regular semigroups again in the chapter
on inductive groupoids where we will discuss Munn’s theory and various
fundamental representations.

fundamental representation
fundamental image
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3.4 BIORDER CLASSIFICATION OF SEMIGROUPS

Since biordered sets are nontrivial invariants of semigroups it is natural to
consider classification of semigroups in terms of their biordered set of idem-
potents. Several classes of semigroups can be characterised in this way [see
Higins, 1992]. Such classification of the class of regular semigroups will be of
particular interest since structure of regular semigroups are closely related to
their biordered sets of idempotents [see Nambooripad, 1979, §7, page 103-114]

Suppose that P is a property of a class of semigroups. If there is a property
P~ for biordered sets such that, whenever a biordered set E has P* there exists a
semigroup S with E(S) = E having P, then P* will be called a biorder property and
E will be called a P-biordered set. We shall say that the biorder property P is
strict and E a strict P-biordered set if whenever a biordered set E has P* every
semigroup S with E(S) = E has P.

3.4.1 Completely semisimple biordered sets
Let E be a biordered set and
S = (LU R). (3.28)

If there exists a completely semisimple semigroup (see Subsection 2.8.2) with
E(S) =E, then fore, f € E, it follows from Theorem 2.87 that

(e,f)€dy and ew f=e=f. (P1)

Conversely, if E satisfiies the condition above, then any semiband S with
E(S) = E is completely semisimple. For any semiband S we have

o= 2N (EXE)

and so, the desired result again follows from Theorem 2.87. Thus if we define a
completely semisimple biordered set as one that satisies condition (P1) above,
then we see that completely semi-simplicity is a biorder property.

Tueorem 3.50. A biordered set is completely semisimple if and only if there is a
compleletly semisimple semigroup S with E(S) = E.

3.4.2 Solid and orthodox biordered sets

Recall [see ?] that a semigroup is completely reqular if it is a union of groups.
If S is completely regular then every J#class of S is a group and so, S is a
disjoint union of its group-.7#*classes. To characterise the biordered sets of this
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class of semiroups, we introduce the following definition. A biordered set E is
solid[see ?] if E is regular and

LoR =KoL (3.29)

Then 69 = £ o %. This condition is equivalent to the fact thatife .Z f # gin
E, thereish € Eso that A = (j} Z) is an E-square. We have [see Nambooripad,
1979, Theorem 7.2]

TueoreM 3.51. The following conditions are equivalent for a biordered set E.
(1) Eis solid.
(2) Each do-class is an E-array.

(3) There exists a completely regqular semigrop S such that E(S) = E.

Proof. (1) = (2): By (1), Zand # are commuting equivalences and so .Zo%
is an equivalence relation which implies by Equation (3.28) that 6 = £ o Z =
# o . Hence if (e, f) € Op there exists g,h € Esuchthate X hZ f L g Z e
which means that (; ch) is an E-square. It fllows that 0g(e) is an E-array for all
e€E.

(2) = (3): Assume that S is a regular semiband with E(S) = E. By Theo-
rem 3.34 S exists (for example we may choose S = By(E)). Inductively assume
that everyproduct of fewer than n idempotents in S belongs to a group and let
a=eje...e,. Supposethatb =eje;...e,-1 and k € Ewithb L k. Ifh € 7(k,e,)
then / @' e,_1 and so /i = e,,_1} is a basic product and hence h € E. Therefore

c=bh=eier...e,0n

is a product of n — 1 idempotents in 5. Hence by induction hypothesis there
isag € Esuchthatg o7 c. Now ¢ =bh £ hand so, g £ h % he,. Hence
(g, hey) € 6p and so, by (2), thereexists| € Ewith g #Z | £ he, so that! s g(hey).
Then c(he,) = (bh)(he,) € 1. It follows by Theorem 3.7 that a = be, 52 I. The
induction hypothesis clearly holds for n = 2. Therefore every finite product
of idempotents in S belongs to a subgroup of S. Since S is a semiband it is
completely regular.

(3) = (1): If S is completely regular with E(S) = E and ife . f % g, then
here is i € E such that h ¢ eg and so, A = (j} " ) is an E-square. Hence E is

g
solid. O

A more detailed account of completely regular seigroups will be given later
in the next chapter (see Subsection 4.3.2).

biordered set!solid —



biordered set!orthodox —
band!left reqular —
band!right unipotent —

222 3. BIORDERED SETS

Recall that an E-square A is T-commutative if

(e, f)t(f, 9) = (e, W)T(h, g)

(see Diagram 3.15) where (e, f) : w(e) = w(f) is the w-isomorphism defined
in Corollary 3.16. It is readily verified that A is T-commutative if and only if
A is a 2 X 2-rectangular subband of any fundamental semigroup S for which
E(S) = E. Again S exists since, by Theorem 3.48, we may take S = B.(E). We
say that a biordered set E is orthodox if the fundamental semiband B (E) is a
band.

Cororrary 3.52. A biordered set E is orthodox if and only if E is solid and every
E-square in E is t-commutative.

Proof. 1If E = E(B) where B is a band, and ife . f # g, theneg = h € E and
so, A = (; Z) is an E-square in E. By the remarks preceeding the statement
of the corollary, A is t-commutative. On the other hand, assume that E is
solid in which every E-square is T-commutative. By Theorem 3.48 B.(E) is
a fundamental semiband with E(B(E)) = E. Ife,f € E and h € L(e, f),
eh & h % hf. Since E is solid, there is k € E such that A = ("Z’ h’}) is an
E-square. Since A is T-commutative, we have

(eh)(hf) =k inB.(E)sothat ef =k

in B;(E) by Theorem 3.7. Therefore product any two idempotents in B (E) is
an idempotent. It follows that B;(E) is a band with E(B.(E)) = E. O

The biordered set E¢ of Example 3.15 is solid but not orthdox.

Several properties of bands may be described in terms of their biordered
sets. For example, define a band B to be left regular if fef = fefor alle, f € B
[see 22?]. The condition for left reularity of B clearly implies that, ife, f € Band
e Z f then e = f; thus every Z-class of B contain exactly one idempotent. A
left regular band is also said to be right unipotent. The later condition is clearly
a biorder condition. Consequently, we may define a biordered set E to be left
regular or right unipotent if B;(E) is a left regular band. A regular semigroup
S is right unipotent if E(S) is right unipotent.

Tueorem 3.53. The following conditions are equivalent for a reqular biordered set E.
(1) E is right unipotent;
(2) w'ca;

(3) If S is any reqular semigroup with E(S) = E, then S is right unipotent.
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In particular if S is any semiband with E(S) = E, then S is isomorphic to B;(E).

Proof. Condition (1) implies that the relation %= 1¢ which implies that v"=w.
Hence (2) holds.

Now suppose that E satisfies (2) and that S is a regular semigroup with
E(S)=E.Ife,f€E,ande Z fthene #Z f and e o' f and so, e = f. Hence S is
right unipotent; thus (2) implies (3).

If S is right unipotent, then by definition E(S) = E has this property and so,
(3) implies (1).

Finally assume that S is any semiband with E(S) = E. If e,f € E and
he Z(e f)thenh w f and so hf = h. By Theorem 3.7, the product ef in S is

ef = (eh)(hf) = (he)h = he.

It follows that S is a band and hence fundamental. Therefore S is isomorphic
to B.(E). O

3.4.3 Pseudo-semilattices

Similar to the concept of a biordered set, Schein [1972] defined a pseudo-
semilattice E = (E, @, @") as an order structure determined by two quasiorders
@' and " on the set E such that for all ¢, f € E there is unique element i € E
satisfying

w'e)Na'(f) = M(e, f) = w(h) where w =o' Na'. (3.30)
The uniqueness of i implies that w is a partial order and that the map
(e, fymh=/fne (3.31)

is a binary operation on E. The binary algebra E = (E, A) obtained in this
way is also called a pseudo-semilattice. Given the binary algebra, define the
relations w! and !, as follows:

el f & eAf=e and ew|f & fAre=ec (3.32)

Then ' and @} are again quasiorders satisfying Equation (3.30) and it can be
shown [see Schein, 1972] that the binary operation defined by Equation (3.31)
with respect to (E, @, ") and (E, a)ll, w}) coincide. We shall therefore assume
that in all pseudo-semilattices under consideration, the quasiorders and the
binary operation A are related by Equation (3.32). Schein [1972] has shown that
pseudo-semilattices form a class binary algebras defined by a set of equations
(identities). [see Nambooripad, 1981, Schein, 1972] for relevant definitions

pseudo-semilattice
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and results. Some authors call pseudo-semilattices as local semilattices. The
statement (d) of the following theorem shows the relevance of this terminology.

If E is a semilattice with the partial order w, then w'(e) U @'(f) = w(f A e)
for all e, f € E and so, (E,w, w) is a pseudo-semilattice in which the binary
operation of Equation (3.31) coincides with the meet A of the semilattice. Thus
every semilattice is a pseudo-semilattice. It is easy to see that the biordered
set of any completely O-simple semigrup is a pseud-semilattice which is not
a semilattice. However, not all pseudo-semilattices are biordered sets (see
Example 3.16). The reader should refer to Nambooripad [1981, 1982a,b] for
characterisation of the varieties of pseudosemilattices, structure of various
classes of pseudo-inverse semigroups, etc.

We proceed to discuss the exact relations between biordered sets and
pseudo-semilattices. We shall say that a pseudo-semilattice E is a biordered
set if the restriction of the binary operation A to the relation

Di = (o' Ua) N (@' U™

is the basic product of a biordered set. Conversely a biordered set E =<
E, o', @", T!,T" > (see Definition 3.1)is a pseudo-semilattice if the quasiorders
@' and " satisfy Equation (3.30). If this is the case, it follows from Definition 3.3
that

L f)=1{fNe} forall e feE. (3.33)

The following theorem characterizes those biordered sets that are psedo-
semilattices [see Nambooripad, 1979, Theorem 7.6].

TueoREM 3.54. The following conditions are equivalent for a biordered set E.
(a) (E, !, ") is a pseudo-semilattice.
(b) Foralle, f € E, (e, f) contains exactly one element.
(c) Foralle € E, w'(e) is left reqular and «'(e) is right regular.

(d) Foralle € E, w(e) is a semilattice.

Proof. (a) = (b): Follows from Equation (3.33).

(b) = (c): Lete € E. To show that w'(e) is left regular, by Theorem 3.53(2),
it is sufficient to show that the relation % | w'(e) is identity on w'(e). So, let
f,g € @'(e) and f Z g. By Proposition 3.9, fe = f € #(e, f) and g € 7 (e, g). By
Proposition 3.12, L (e, f) = #(e,g) and so, f = g by (b). Dually o’ (e) is right
regular.

(c) = (d): By (c) the relations .Z and # are identity on w(e). Hence, by
Proposition 3.15 w(e) is a biordered subset of E on which the relations @' and
w" coincide. Hence w(e) is a semilattice (see Example 3.2).
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(d)=(a): Lete,f e Eand h € .7 + (e, f). If g € M(e, f), then g < h. Then
eg w" eh and since w(e) is a semilattice, we have eg w eh. Hence g . eg w

eh . hand so, g @' h. Dually, g »" h and so, g w h. Therefore Equation (3.30)
holds. O

Next theorem characterises those pseudo-semilattices that are biordered
sets [see Nambooripad, 1981, Theorem 2].

TuroreMm 3.55. Let E = (E, o', ') be a pseudo-semilattice. Then E is a biordered set
if and only if E satisfies the following conditions and their duals: for all f, g € w'(e),

(PA1) (gheyAf=gAf;
(PA2) (fAe)A(gAhe)=fA(gAhe)=(fAg)Ae.

Proof. First assume that E is a biordered set. Then by Theorem 3.54(c), w'(e)
is right regular for all e € E. Then by the definition of right regular biordered
sets, the basic products in w"(¢) can be extended in such a way that w’(e) be
comes a right regular band B,. Then for any f, g € B,, from Proposition 3.4 that
the product fg in B, belongs to .”(g, f). By Equation (3.33), (g, f) = {f A g}.
Hence fg = f Agforall f, g € B,. Identities (PA1) and (PA2) now follows from
the associativity of A in B.. Duals of these identities are proved similarly.
Conversely let E be a pseudo-semilattice satisfying (PA1), (PA2) and their
duals. Define basic product in E as the restriction of A to Dg. Axioms (B11)
and (B12) are clearly satisfied. If f " e then by Equation (3.32),e A f = f and

en(fAe)=(eNf)rhe=fAe
(fAeyAe=fA(eAe)=fAe and
fA(FA=(fAfAe=fne
by (PA2). Again, by (PA1), we have
(fronf=faf=f

This proves axxiom (B21). (B22) follows from (PA1). To prove (B3) let f,g €
w'(e)and g @' f. Then by (PA2) we have

(Gre)AN(fAe)=gA(fAe)=(gAf)he=gAne
GAfine=(gnre)A(f Ne)

which gives (B3). Againassume that f, g € w'(e)and gAe o' fAe. Letgr = gAf.
Then g1 o' f (by Equation (3.30)) and

gaine=@Afrne=(@Ae)AN(fAe)=gAe.

Hence axiom (B4) follows and the proof is cmplete. O
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If E is a semilattice, the binary operatin specified by the associated pseudo-
semilattice E is the meet A which is associative. Schein observed that the binary
operation * on E need not be associative. [In Nambooripad, 1981] a pseudo-
semilattice E is said to be partially associative if E satisfies (PA1) and (PA2).
Example 3.16 gives a pseudo-semilattice which is not partially associative.
Example 3.17 is a pseudo-semilattice which is partially associative, but not
associative. Schein [1972] shows that a pseudo-semilattice E is associative if
and only if (E, A) is a normal band; that is, E is a band with respect to A and
satisfies the identity

XANyAzAu=xAzAyAu forall x,y,z,u€eE. (3.34)

As above, we shall say that a biordered set E is normal biordered set if B((E) is a
normal band.

CoRroOLLARY 3.56. A biordered set E is normal if and only if it is an orthodox pseudo-
semilattice.

Proof. Let E be an orthdox pseudo-semilattice. Since E is orthodox, B = B(E)
is aband. Hence for all ¢, f € E, the product fe in B belongs to .#(e, f). Hence
by Theorem 3.54, .7 (e, f) = {fel. If f % g, by Proposition3.12, 7 (e, f) = .7 (e, 9)
and so fe = ge. Dually, if f ¥ g, we haveef =eg. Now lete, f,g,h € E. Then
g9f «" g and so, gfg # gf. Hence (gfg)h = (9f)h and dually, e(fg) = e(gfg)-

Therefore

efgh = (e(fg))h = (e(gfg)h
=e((gf)h) = egfh.

Hence B is normal.
Conversely assume that E is normal so that B = B(E) is a normal band.
Then fore, f € B, fe € S(e, f). If g € M(e, f) then

g9=fge=ffge=fgfe=gfe and g= fgee= feg
and so, g w fe. Thus M(e, f) = w(fe) and so, E is a pseudo-semilattice. O

Succeeding chapters we will characterise a number of additional classes of
regular semigroups in terms of biorder properties.
3.4.4 Examples

Here we list a number of examples and counter exaples. Most of these are due
to Easdown [see ?] which appreared in ?.



3.4. BIORDER CLASSIFICATION OF SEMIGROUPS 227

Example 3.9: LetE = {e, flUNwhereN = {0, 1,2, ...} denote the set of natural numbers
(with usual order) and let < be a partial order on E with

x<x, and 0<x forall x€E;
n<e and n<f forall neN

and the usual order between natural numbers. We shall denote by E the biordered set
determined by the partial ordered set (E, <) as in Example 3.4. Let 0 : E — E be defined
by
e0=e, fO=f, and nO=0 forall neN.

Then 0 : E — E is a regular bimorphism such that EO = E; = {e, f,0}. The surjective
bimorphism 0° : E — E; determined by 6 and the inclusion j : E; C E are not regular
even though 0 = 0°;. Thus 0 satisfies (RM31) and (RM32) but not (RM33). Also 6°
satisfies (RM31) and (RM32) but not regular.

Example 3.10 (?): Let Eg = {e,f : ¢ = ¢, f> = fl. This is a biordered set with
Dr, = {(e,e), (f, f)}. The free idempotent generated semigroup By = By(Ey) consists of
words of the form (ef)", (fe)", f(ef)" and (ef)’e wheren = 1,2,.... Also E(By) = {e, f}.
In this case, we can identify A° and I° with the set {e, f, co}. The maps p(e) and A(e) send
e eand x > oo for x # e. p(f) = A(f) is defined similarly and the map

p(Hp(e) = ple)p(f) = Ae)A(f) = A(f)A(e)

is the constant map, denoted by 0, with value co. Then Sy = (Eop) = {¢p(e), p(f), 0}
which is a semilattice having three elements so that Egp # E(S).

Example 3.11 (?): Let E = {e, f, g, 1, k} be a set and define quasiorders " and ' on X
by:

o' ={e}y xE-{fHU{fIxE-{e)U(g hk}x{g hk});
o' ={(e,9), (e, k), (f,h),(f, )} U L.

Suppose that Dg is the relation on E defined by Equation (3.2). A partial binary
operation - with domain D, satisfying Equation (3.4) is specified if we specifly products
h-eand k- f. Let E; = (E,Dg,-) be the partial algebra where - is obtained as specified
above by setting

h-e=g=k-f.

Verify that E; is a biordered set. Completion of the partial binary operation - on E; to a
binary operation by setting ef = fe = g gives a band B, with E(B;) = E;. Hence, E; is, in
particular, a regular biordered set. Also the representation ¢ of Theorem 3.32 extends
to an isomorphism of B; to S; = (E;¢).

Example 3.12 (?): Let E and D be as in Example 3.10. Let let - be the partial binary
operation specified as in Example 3.10 with

h-e=k and k-f=h.

Verify that E; = (E, Dg, -) is a biordered set which is not regular (show that .7 (e, f) = 0).
Let B) be the semigroup B, of Example 3.9 with 0 adjoined. Let B, denote the ideal
extension of B) by the right-zero semigroup R = {I, g, k} (see Subsection 2.10.1). Then
E, = E(B,). Since By is an infinite semigroup, so is B,. In fact E, is not the biordered
set of a finite semigroup. For if it is, a = ef has finite order and there exist an integer n

N:system of natural numbers



228 3. BIORDERED SETS

such that u = 4" is an idempotent. It is clear that f # u # e since u = e would imply that
ef = e which is impossible. Similarly u # f. If u = k, then h = kf = uf = u = k which is
not possible. If u = g, then

g=hg =hef)' = (he)flef™) =h(ef"* =+ =h

and if u = h, we similarly have

h=gh=glef)" =g

and both these are false. Thus E, is a finite biordered set which is not embeddable as
the biordered set of a finite semigroup. However, verify that

Sy = (Exp) = E; U {ef, fe}

where (ef)e = fe and (fe)f = ef is a finite band containing E,¢ as a biordered subset,
but E>p # E(S,). (Here we identify ¢(e) with e for brevity.)

Example 3.13 (?): Again let E and D¢ be as in Example 3.10 and assume that - is the
partial binary operation specified as in Example 3.10 with

h-e=g;, and k-f=h. 3

Verify that E; = (E, Dg, -) is a non-regular biordered set. Let ¢ denote the representation
of E; of Theorem 3.32 and B; = ((E3)¢). Since Ej is finite it is immediate from the
definition that Bj is a finite semigroup. All products of elements in (E3)@ except for
@(e)p(f) belong to (E3)p. Hence Bs is a semigroup with six elements in which five
elements are idempotents and ¢(e)p(f) is not regular. Notice that in this case we have
Ep = E((E@)). Also, E;3 cannot be embedded as a biordered subset of a band. For if
E; C E where E is a band then ef € E and so

g9 = 9f = (he)f = h(ef) = (kf)(ef) = k(ef)(ef) = k(ef) = h

which is not possible. Also E; is the smallest non-regular biordered set which is the
biordered set of a finite semigroup.

Example 3.14 (?): Let
Es=1{e,f,90:e L fR#g, x0=0x=0 forall x=e,f,hj.

Then Es is a regular biordered set such that B.(Es) is a completely 0-simple semigroup
with the non-zero Z-class containing four elements including the non-identity element
a=egwithe Z a .2 g. Show that Es is the smallest regular biordered set which is not
the biordered set of a union of groups.

Example 3.15 (Easdown): Let Eg = 0; U 6, be the biordered with two 0q-classes 61 =
{e, f,g9,h} and O, = {e; : 1 <i < 8}. The relations in E¢ are shown in the figure below; the
horizondal arrows denote % -relations, vertical arrows denote Z-relations and doted
arrows shows w-relatins. Notice that every element in 6; has two elments in 6, which
is w-related to it. Basic products are specified by the relatins shown in the diagram and
the following equatins:

eey = es5, eeg = ey, esh = ey, e;h = eg,

eif = e, esf =es, ger = e3, geg = ey.
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It is easy to verify that E is a biordered set which is clearly solid. However B.(E;) is
not a band. For if &, f_, etc. denote idempotents in (E¢@) corresponding to ¢, f etc. in E,
then we see that f7z € H; in (E¢p) bute # f71. In fact, we have H; = {¢, le} and so H; is a
group of order 2. It follows that (E¢p) and hence B.(E;) is not a band. Thus Es is solid
but not orthodox. Es is the smallest biordered set with this property.

s €1 € (43

|

Q >

|

= >

o + -* TN
[ €g €3 ey

Example 3.16: LetE = {a, b, ¢, d}. Define »" and ' on E by

W' (@) = w'(a) = fa);
@' (b) = &'(b) = {a, b);
@' (€) = @'(c) = {a,b,c);
and ') = a,b,d}; ') ={a,d).

Then " and «' are quasiorderes on E and (E, o', @) is a pseudo-semilattice. Let A
denote the binary operation on E determined by the pseudo-semilattice. Then

(bAd)Ab=a andbA(dAD)=b.

Hence w'(d) is not associative. Hence by Theorem 3.54, E cannot be a biordered set.

Example 3.17 (?): Let N = {0,1, ...} denote the set all non-negative integers and let
E¥ = {e, : n € N}. Define relations %, . and w on E¥ as follows:

L={les,e,): n eNYU{(ey,ep) :m=n+(=1)""!, forall n>0};
X = {(ey,ey) :n €N} U {(e,,m) :m=n+(=1)", forall neN};
and w ={(es,em):n=m and n=m (mod 4).

Moreover,let « =Zow and «' = %o w.

Then show that E¥ = (E¥,0", ') is a pseudo-semilattice and a biordered set (see
the figure below where horizondal arrows dente Z-relations, vertical arrows denote
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Irs-relations and doted arrows denote the w relations.

ey . _(35.

€ «——> €1

|

63 —m > €

€7 €6

Compute the semigroup B,(E¥) and show that it is bisimple. Moreover if a = e;e3, then
a" does not belong to a subgroup of semigroup B.(E¥) for any n > 0 so that it is not
group-bound.



CHAPTER 4

Regular Semigroups

In Chapter Chapter 2 we had given a general discussion of properties of semi-
groups. In this chapter, our aim is to discuss certain properties of regular
semigroups that are of interest in the later development of “>the theory of
regular semigroups. We begin with a study of a partial order on semigroups
which is called, following Mitsch Mitsch [1986], the natural partial order. This
relation has particular relevance for regular semigroups and we pay particular
attention to this case. We then proceed to a discussion of certain properties
of congruences on regular semigroups and decompositions of regular semi-
groups. These naturally lead to the classical theorem of Clifford on semilattice
union of groups. Many of the results given here are quite classical or refinements
of classical results. Wherever proofs can be simplified or results can be refined
using biordered set and other advanced technique, we have not hesitated to
use the same, even though, often, proofs with out using them may be available
in literature.

4.1 THE NATURAL PARTIAL ORDER ON A SEMIGROUP
Let < be a partial order on a semigroup S. We shall say that < is compatible if
a<b, c<d=ac<bd. (4.1)

If < is compatible, we say (S, <) is an ordered semigroup or that S is an ordered
semigroup with respect to <.

Remark 4.1: Every semigroup S can be endowed with a partial order so that
S becomes an ordered semigroup. For, if p is any partial order on S, then the
relation

P = {(x,y) : (axb,ayb) € p ¥ a,b € S').

can be seen to be the largest compatible partial order contained in p. Further, as
observed in Remark 2.8, ! is a faithful left S-set and so, the representation of S
by right translations of S! is faithful. Hence the semigroup S can be embedded

231
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as a subsemigroup of Bs. Since inclusion is a compatible partial order on Bs,
(see Example Subsection 2.1.3) it induces a compatible partial order on S (via
the embedding).

A systematic account of ordered semigroups is not in the scope of this
book. However, there are partial orders on semigroups (which may not be
compatible) whose study throw considerable light on the structure of the
semigroups. Our aim here is to study one such partial order, called the natural
partial order.

The natural partial order was first studied for the class of inverse semi-
groups by Vagner Vagner [1953a]. It has proved to be of great importance in
every area of the theory of inverse semigroups. Later Nambooripad [1980]
extended it to the class of regular semigroups. Finally Mitsch [1986] extended
the concept to arbitrary semigroups ([see also Bingjun]). While the natural
partial order on an inverse semigroup is compatible, this is not the case for
arbitrary semigroups. Even so, the natural partial order is related closely to
the structure of regular semigroups (see Theorem 4.10 below). Our treatment
here is based mainly on Nambooripad [1980] and will emphasize regular case
since we shall find the concept extremely useful in what follows.

4.1.1 Definition and properties

Most of the results in this section is due to Mitsch and Yu Bingjun Bingjun,
Mitsch [1986].

LemMa 4.1. Let < be the relation on a semigroup S defined as follows: fora,b € S
a<b & a<,b andforsomex€S' a=xa=xb (4.2)

where <, is the quasiorder on S defined by Equation (2.36a). Then < is a partial order
on S whose restriction to E(S) coincides with the natural partial order w of E(S).

Proof. The relation < is clearly reflexive. Suppose thata < b and b < c. Then
there exists x, y € S! such that

a=xa=xb, b=yb=yc.
Since a <, b, there is s € S with a = bs. This gives
xyc=xb=a xya=xybs=xbs=xa=a.

Since <, is transitive, this shows that < is transitive. Now assume thata < b
and b < a. As before there is x,y,s € S! witha = xa = xb, b = yb = ya and
a = bs. Hence

b=ya=ybs=bs=a.
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Therefore < is anti-symmetric.

Lete f € E(S). If e w f, then Equation (4.2) clearly holds with x = e.
Conversely if e < f, then, by the definition, e " f and e = xe = xf for some
x€S'. Thenef =xf>=xf =eandsoe @' fandsoew f. |

The partial order < on S defined in the lemma above is called the natural
partial order on the semigroup S. In the following <g (or just < if there is no
ambiguity) will denote the natural partial order on the semigroup S.

The definition of natural partial order above is one-sided; but we show
below that the dual definition also gives rise to the same relation.

ProrosiTioN 4.2. Let < denote the natural partial order on a semigroup S. The
following statements are equivalent for all a,b € S.

(1) a<b;
(2) a < banda = ay = by for some y € S%;

(3) a =xa =xb =ay = by for some x,y € S™.

Proof. By Lemma 4.1, (1) implies that there is x,s € S! such that a = bs and
a=xa=xb. Thena = xb € Sband so, a <; b. Alsoa = xa = xbs = as. Thus (2)
holds.

The proof of (2) implies (1) is dual; thus (1) and (2) are equivalent. Therefore
it is clear that if (1) holds, then (3) also holds. On the other hand, if (3) holds,
then from a = by we have that a <, b and so (1) holds. O

If bis aregular element of a semigroup S, by Proposition 2.39, both E(R;) and
E(Lp) contains idempotents. We use this fact in the following characterization
of natural partial order on regular elements. Clearly, the following proposition
is valid, in particular, for natural partial order on regular semigroups.

ProrosiTioN 4.3. Suppose that b is a reqular element of a semigroup S and a € S.
Then following statements are equivalent.

(1) a<b

(2) forany f € E(Ry) thereis e € E(R,) such that e w f and a = eb;
(3) forany f' € E(Ly) thereis ¢ € E(L,) such thate’ w f’ and a = be’;
(4) a <y, band a = ab’a for some [for all] b" € H(b);

(5) a="be= fbforsomee, f € E(S).

partial order!natural —
<s: The natural partial order on S
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Proof. We shall prove the following:

1)=(2)= 4) forall b’ € Nb);
(4) forsome b’ € #(b) = (5) = (1).

Since the proof of the implications
(1)=(3) = (4) forall b’ € /b)

are dual to the implications in the first line above, it will follow that all state-
ments above are equivalent.

(1) = (2): Let f € E(Rp). Since fb = b, by Corollary 2.27 and Lemma 2.36,
polL(f) = Sf is an isomorphism onto Sb; let p; : Sb — Sf be its inverse. If a < b,
then by Proposition 4.2, there exist x, y € S! with a = xa = xb = ay = by. Hence
a € Sb. Let e = ap; = at. Then by Theorem 2.25,

e#a and € = atat = xbtbyt = xbyt = xat = at = e.
Since

e#a<,bZf and ef =atht=at=e¢,
eis an idempotent with e w f. Also eb = atb = a. This proves (2).
(2) = (4) for all b’ € Hb): Letd’ € #(b)and f = bb’. Thenby Lemma 2.38, f €
E(Ryp). Also, by Corollary 2.27, pp|L(f) : L(f) — L(b) is the unique isomorphism

sending f to b and py is its inverse. By (2), there is e € E(R,) such thate w f
and a = eb = epy,. Hence

ab’ = apy = epppy = e.

Therefore ab’a = ea = a. Sincea Z e <, f #Z band a = eb € Sb, a <;, b. Thus (4)
holds for all b’ € #b).

(4) for some v’ € #(b) = (5): Assume (4) for some b’ € #(b). By Lemma 2.38,
f=bb € E(Ry) and g = b'b € E(Ly). Froma <;, b, we geta € fSN Sg. Also
e =ab’ and I = b’'a are idempotents such that

a=fa=bl'a)=bh and a=ag=@ab)b=ecb

which shows that (5) holds.
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(5) = (1): By (5), there exists ¢, f € E(S) with a = be = fb. Then we have
a=ae=be=fa=fb.

Hence the statement Proposition 4.2(3) holds for 4 and b. Hence by Proposi-
tion 4.2 we have a < b. O

The following are some of the consequences of the proposition above fre-
quently needed in the sequel.

CoRoLLARY 4.4. For semigroups S and T, we have:
(a) Let ¢ : S — T be a homomorphism. If x <s y, then x¢p <t yo.

(b) Let T be a subsemigroup of S. Forx,y € T, ifx <yin T then x < y in S; the
converse holds if y is a regular element of T.

In particular, the natural partial order on a reqular subsemigroup T of a semigroup S
is the restriction of the natural partial order of S to T.

Proof. Since the natural partial order on a semigroup is defined in terms equa-
tions, it is clear that it is preserved under homomorphisms. Thus (a) holds.
The direct part of (b) follows from the fact that the inclusion is a homomor-
phism of T into S. To prove the converse assume that x < y in S and that
y € Reg T. Then y has an inverse y’ in T. Since y’ is an inverse of i in S, by
Proposition 4.3(4), x = xy’x. Hence, again by the same result, we conclude that
x<yinT. (|

If Sis an inverse semigroup, by Theorem 2.44, conditions in Proposition 4.3
can be simplifies considerably. For example, we have the following which is
useful in applications.

CoroLLARY 4.5. Let S be an inverse semigroup. The following statement are equivalent
forx,yeS:

(1) x<y;

(2) x = ey for some e € E(S);

(3) x =yf for some f € E(S);

(4) x <y yand x = xy~ly.

Proof. By Proposition 4.3(2), the statement (1) implies (2). If (2) holds, then
x = eeyy and by Theorem 2.44, ee, € E(S) and ee, < e,. Hence (2) implies (1)
by Proposition 4.3. By left-right symmetry (1) and (3) are equivalent. The
statement (3) above is equivalent to the atatement Proposition 4.3(4) in an
inverse semigroup and so the proof is complete. O
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ProrosITION 4.6. Let b be an element of a semigroup S and let e € E(S). Then
e, b=>eZeb<b. (4.3)

Moreover, if a is a reqular element of S such that a < b if and only if there is a
idempotent e € E(R,) such that e <, band a = eb.

Proof. If e <, b, then e = bu for some u € S! so that e = ¢ = bubu € bubS = ebS.
Since eb € ¢S, we have e #Z eb. Hence eb <, b. Also, if a = eb, a = ea = eb and so,
by the definition of natural partial order, eb = a < b.

The “if” part of the remaining statement follows from the above. Conversely,
assume that a is regular such thata < b. Leta’ € #(a). Then h = aa’ € E(R,)
and so h <, b. Since a < b, there exists x € S! such that a = xa = xb. Then
xh = xan’ = aa’ = h and so e = hx is an idempotent such that he = ¢ and
eh = hxh =h. Hencee Z h % a and eb = hxb = ha = a. O

Recall Equation (1.11b) that a subset Y of a partially ordered set X is an
order ideal if for all y € Y, every z < y also belongs to Y.

ProrositioN 4.7. The natural partial order on semigroup S has the following proper-
ties:

(a) The set Reg S of regular elements and the set E(S) of idempotents of S are order
ideals with respect to the natural partial order on S.

(b) Leta,be Switha <b. Ifeithera Zbora £ b, thena =b.

(c) Letbe Sanda; <b,i=1,2. If a1 <j, ap then ay < ay. In particular, ifa <, b
there exist utmost one ¢ € H, such that c < b.

Proof. If a < b and if b is regular, by Proposition 4.3 a is also regular. Hence
Reg S is an order ideal. If f is an idempotent and if x < f, it follows from
Proposition 4.3(2) that x is also an idempotent; this implies that E(S) is an
order ideal.

To prove (b), suppose that a < b and a # b. Then by definition of the
natural partial order, there is x, s € S such thata = xa = xb and b = as. Then
b=as=xas=xb=a.lfa £ b, dually, we havea = b.

The conditions given in the statement (c) implies that there exist x;, y; € S,

i = 1,2 such that
a; = Xid; = x,-b =a;yi = byi, i= 1,2
and since a; <, 4y, there is s € S* with a; = sa;. Hence

X10p = leyz =a1Y2 = SaxY> = Sdx = a1 = X141.
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Since a <, b, it follows that a1 < ay. In particular, if 2y S ap, then a1 <j, a> and
a, <, a1 and so, by the above a1 < a4, and a; < a;; by antisymmetry of natural
partial order, we conclude that a; = a,. This completes the proof of (c). O

Notice that every [left, right, two-sided] ideal of a semigroup S is an order
ideal with respect to the natural partial order on S. If 2 € S, we denote by
S(a) the principal order ideal of S (with respect to the natural partial order)
generated by a. Clearly, S(a) € L(a) N R(a). Recall (Subsection 2.6.1) also that a
morphism o : L — L’ of left ideals is an inner right translation of S' restricted
to L; thatis o = pylL for t € S'.

ProrositioN 4.8. Let 0 = p¢|L(a) — L(b) be an isomorphism. Then o is an order
isomorphism of L(a) onto L(b). Dually an isomorphism of principal right ideals is
an order isomorphism. Consequently, if a & b, then there is an order isomorphism
0 : S(a) — S(b) such that for all x < a, x 2 x0.

Proof. Letc,d € L(a) and ¢ < d. By Theorem 2.25,co = ct Z cand do = dt Z d.
Since ¢ <, d, we have co <, do. Also, there exists x € S! with ¢ = xc = ¢d and
so co = ct = xct = xdt = x(do). Hence co < do. This proves that o preserves
natural partial order. Similarly, =1 also preserves natural partial order and so
o is an order isomorphism. Clearly this induces an order isomorphism of S(a)
onto S(ao). The proof for right ideals is dual.

If a 9 b, then by Proposition 2.28, there is ¢ € S witha .Z ¢ #Z b. Also, by
Green’s lemma (Theorem 2.26) there is an isomorphism o : L(a) — L(c) with
ac = c and so an order isomorphism of S(a) onto S(c) by the observation in
the previous paragraph. Further by Theorem 2.25, x % xo for all x € L(a) and
hence for all x € S(a) in particular. Dually there exists an order isomorphism
T : S(c) — S(b) such that y .2 yr for all y € S(c). Hence if 0 = ¢ o 7, then
0 : S(a) — S(b) is an order isomorphism such that x & x0 for all x € S(a). O

Let f € E(Ry). Recall from Proposition 2.40 that L contains an inverse of b.
We use this below.

ProrosiTioN 4.9. Let e w f, e,f € E(S). Then for each (b,b") € Ry X L¢ with
b’ € NDb), there is a unique pair (a,a’) € R, X L, with a’ € Ha) such that a’a = b’eb,
a<banda <V.

Proof. Assume that (b,b") € Ry X Ly with b’ € #(b). Then clearly e % eb and
e L Ve. Also

(eb)(U'e)(eb) = e(bb’)eb = efeb = eb, (U'e)(eb)(b'e) =V'efe="be

and so, b’e € #(eb). By Proposition 4.3(2) and (3),eb < band b’e < b’ and clearly
(t’e)(eb) = U'eb. Thus the pair (eb, I'e) satisfies the requirements. To prove the
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uniqueness, let (a,a’) be any pair satisfying the given conditions. Then by
Lemma 2.38,
aa’ = e = (eb)(V'e), a'a="beb= (be)eb)

and so a S eb and ba’ S b'e. Since a < b and eb < b by Proposition 4.7(c),
a = eb. Similarly (dually), a’ = b'e. O

Remark 4.2: The definition of the natural partial order on a semigroup Simplies
certain properties for the categories L(S) and R(S) 2.1 of principal left and right
ideals of S. If a < b, then by Proposition 4.2(3), there exists x,y € S' with
a=xa=xb=ay = by. Then 1, = A,|R(D) is clearly a retraction of R(b) onto
R(a) such that a = t,b (see Subsection 1.3.2). Thus in this case the inclusion
R(a) € R(b) splits. Similarly o, = p, is a retraction of L(b) onto L(a) with
a = bo, and the inclusion L(a) C L(b) splits. Conversely if 7 : R(b) — R(a) is a
refraction, it is easy to see that 7b < b and dually for left ideals. Note that, in
case R(a) has an idempotent generator e, then 7. : R(b) — R(a) is a retraction.
By Proposition 4.6 every retraction of R(b) onto R(a) is induced in this way by
an idempotent generator of R(a). Therefore if S is regular, then every inclusion
in R(S) and every inclusion in IL(S) splits.

Example 4.1: Let S = Jx be the semigroup of all transformations on a set X (see
Subsection 2.1.3). Then f < gin J% (<, being the natural partial order on J%) if and
only if m, C my and for some cross-section Y of 7y, f|Y = g|Y. Similarly f < g in
S =27 (V)if and only if N(g) € N(f) and f|U = g|U for some complement U of N(f)
in V. It is easy to see that the natural partial order is not compatible on 7% or .Z.7 (V).

Example 4.2: Let S be an inverse semigroup. Then S is regular and the conditions of
Proposition 4.3 simplifies considerably in this case. For example, one of the equations
in Proposition 4.3(5) is sufficient to characterize natural partial order on S. For, let
a,b € S. If a = eb for some e € E(S) then since idempotents in S commute, a = ebb™'b =
bbleb = a = bf where f = b~'eb € E(S). Similarly, if a = bf there is an idempotent e
with a = eb. Hence by Proposition 4.3(5),

a<b & either a=eb, ecE(S), or a="bf, feE(S). ()

It follows as a consequence of () that the natural partial order is compatible (which is
also a consequence of Theorem 4.23 below).

Example 4.3: If S is a semigroup with involution (see Subsection 2.1.2) a — 4", then it
follows from Proposition 4.2(3) that a < b if and only if a* < b*; that is the involution is
an order isomorphism. In particular, if S is an inverse semigroup, then the map a — a~
is an involution (which is a consequence of the fact that idempotents in S commute)
and soa < bifand onlyifa™ < b7

Example 4.4: If S is the additive semigroup of positive real numbers then the usual
order on S is compatible; however, it is not the natural partial order on S (which is,
in fact, the identity relation). Similarly, the inclusion is a compatible partial order on
the semigroup By of relations on the set X which is not the natural partial order. On
the other hand, the inclusion is the natural partial order on the symmetric inverse
semigroup Ix of all one-to-one partial transformations on X and it is compatible.
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Example 4.5: The natural partial order on the free semigroup X* or the free monoid
X" on a set X is the identity relation. Note that X* contains no regular element and
identity (empty word) is the only regular element of X".

4.1.2 Trace products and natural partial order

Recall that the trace product x » y Equation (2.48a) of two elements x and y
of a semigroup S is defined if and only if L, N R, contains an idempotent
or equivalently, xy € Ry N L,. This definition can be extended to the trace

product xg * - - - * x,, of a finite sequence x¢, x1,...,%, € S if the trace product

0
Xo

Xi—1 * x; exists forall i = 1,2,...,n. By Lemma 2.77, D} is a semigroup with
respect to the product defined by Equation (2.48b). Therefore the extended
trace product exists and is independent of the grouping of elements. Observe
that trace products exist only for regular elements so that a statement that the
trace product xg * - - - * x, exists would imply in particular that x; is a regular
element in S for all 7.

The following theorem generalizes Theorem 3.7 of Chapter Chapter 3 as
well as Theorem 1.6 of Nambooripad [1980]. It also shows how one can use
the natural partial order to reduce an arbitrary product in a regular semigroup

S to the trace product in 5(x).

TueoreMm 4.10. Let xg, X1, . . ., X, be elements of a semigroup S auch that their product
U = XoX1...Xy is regular. Then there exist reqular elements y; € S, i =0,1,...,n
such that

yi<x;, 1=0,1,...,n, and @)

U=X0X1...Xn = Yo*Y1 % *Yp. (2)

Further if the trace product xg * - - - * X, exists in S(+) and if yo, . .., Yn are elements in
S satisfying (1) and (2), then x; = y; foralli=0,1,...,n.

Proof. The proof is by induction on n. We first prove the case for n = 2.
Let u = xpx; be regular. Then by Proposition 2.39 there exists idempotents
e,f € E(Sywithe Z u 2 f. Thene € uS C xS and so e¢ <, xg. Hence by
Proposition 4.6. u Z e % exo < xo. Dually u £ f 2 x1f < x1. Hence

U € Reyy NLyy and  (exo)(x1f) = e(xox1)f = u.
Therefore, if yo = exp and y1 = x1f, we have
Yo <Xo, Y1<Xx1 and u=yo*Yy.

If the trace product xg * x1 exists and if yy and y; satisfy the above relations,
then yo Z u xp and so, yo = xo by Proposition 4.7(b). Similarly y; = x;.
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Now assume, inductively, that the theorem holds for all r < n and that
U =Xg...X, is regular. Let z = x1x,...x,. Then by the above there is 1y < xp
and zp < z such that u = yg * zg. By Proposition 4.6, there exists g € E(S) with
g% zyp=ygz. Theng <, z <, x1 so that g Z gx1 < x1. Let y; = gx;. Then
20 = gz = Y1X2 ... X, is a regular element which is a product of n elements in S.

Then by induction hypothesis,
Z0 =Yy *Ya*---*Y, where Y <y, yi<x, 1<i<n.

Since y; # z0 # g 1, by Proposition 4.7, y; = y1. Hence zo = y1 * ya * -+ * Yy
and so

U=Yo*zo=Yo*Y1* --*Yy, where y;<x i=0,1,...,n

Assume that the trace product xq * x1 * - - - * x,, exists in S(+) and that yo, ..., y»
satisfies conditions (1) and (2) of the statement. From (2), we have

Xo B X0*X1 % %Xy = Yo*Y1% % Yn X Yo.

Since yo < xo by (1), we have yy = xp by Proposition 4.7. Assume that
Yi-1 = Xk-1 for k > 2. Let ¢ and fi—1 be idempotents such that x_; £
er-1 #Z xx and Yr-1 L fic1 Z Yr. Then ey £ fi-1. Since yx < xr we have
fe-1 Z yx <r X X ex—1. Hence fr1 @" ex—1 and so, e—1 = €1 fk-1 = fr-1. This
implies that yx Z xi. Therefore by Proposition 4.7, xx = y. [l

4.1.3 Green’s relations, congruences and natural partial order

Let X be a partially ordered set. An equivalence relation ¢ is said to reflect the
partial order < on X (or simply, o is reflective, if < is clear from the context) if
forallx,y,€ X,

x<yoz=>x0y <z forsome y €X; (4.4a)

or equivalently, <og C 0go<.

This is again equivalent to the statement that given x < y there exists a map
0 :0(y) — o(x) with 9(z) < z for all z € a(y).
Given the equivalence relation o on X, let

<o={(0(x),0(y)) : for some x’,y € X, xox’ < y'oy}. (4.4b)

Then <, is a relation on the quotient set X/o; <, is called the quotient relation of
< by 0. Note that the relation <, is the image of < by the quotient map
0" : X - X/o. Recall that an order preserving map f : X — Y of partially
ordered sets weakly reflects the partial order on Y in the sense of Chapter
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Chapter 3if ¥ < yin Y and x € X with xf = y, there exist X’ < x in X with
x'f = y'. Itis easy to see that o reflects < if and only if 0* : X — X/o weakly
reflects the relation <, ; if this is the case, then <, is clearly a quasi-order on
X/o. Again a reflective equivalence relation o is said to convex with respect to
the partial order < if <, is a partial order on X/o. Thus ¢ is convex if and only
if it satisfies the following.

x<y, and xoy=[x,y] < a(y) (4.4¢)

where [x,y] = {u € X : x < u < y} is the interval with endpoints x and y (see
Equation (1.11a)). We shall say that o is disjoint (from <) if it is reflective and
every element x € X is minimal in its o-class o(x); that is,

VxyeX x<y and xoy=x=y. (4.4d)
Note that if ¢ is disjoint, then it is convex.

Lemma 4.11. Let X be a partially ordered set and let ¢ be a reflective equivalence
relation on X. Then the relation

7 ={(x,y) : there exist x’, y’" € X with xox’ <y, yoy’ < x}

is the finest convex equivalence relation on X containing o.

Proof. It is clear that G is a reflexive and symmetric relation containing ¢. Let
x6y and ydz. Then there exist x” and y’ such that

xox' < yoy' <z.
Since o is reflective there exists x”” with
xox'ox" <y <z

Similarly, here is z” with zoz"” < x. Therefore x5z and so, G is an equivalence
relation.

Suppose that x < y5z. Then, by definition, there exist z’ such that x <
yoz' < z. Since o is reflective, there is x” with xox’ < z’ < z. Hence x6x’ < z
and so, & is reflective. To prove that & is convex, let x < u < y and x5y. Then
u < yox and so uéu’ < x for some u’ € X. Since x < u, it follows that xGu.

Finally, let p be a convex equivalence relation containing o. If x5y, there
exist x’ with xox” < y and so x’Gy. Hence there exists ' such that yoy’ <x’ <.
Since pis convex, p* : X — X/pis an order preserving map of partially ordered

sets. Therefore, since ¢ C p, we have
p*(w) = p*(y) < p*(x') = p*(0) < p*(W).
Consequently, p*(x) = p*(y); that is, xpy. a

relation!convex —
relation!disjoint —



242 4. REGULAR SEMIGROUPS

Let S be a semigroup. An equivalence relation o on S is said to be reflective,
convex or disjoint if o has the corresponding property with respect to the natural
partial order < on S. In the following, we write x < yif x < y and x # .

ProrosiTioN 4.12. Let K denote one of the relations £, % or 9. Then for x,y,z € S,
x<yKz=xKy <z forsome y €8. (4.5)

Consequently, £ % and 2 are reflective equivalence relations on S.

Proof. Assume that x < y K z. It follows from Proposition 4.8 that there is

an order isomorphism 6 : S(y) — S(z) so that for all ¢ € S(y), ¢ K cO € S(z).

Hence x K x0 < z. The last statement is clear from the definition of reflective
relations. O

From the proposition above and Proposition 4.7, we have the following,.

CorovrLaRry 4.13. The Green’s relations £ and X are disjoint. O

Recall (from Subsection 1.1.2) that an element x in a subset X of S (with
respect to the natural partial order) is minimal in X if ¥ € X and y < x implies

y=x.

CoroLLARY 4.14. Let D be a P-class of a semigroup S. If D contains a minimal
element, then every element of D is minimal.

Proof. Let x,y € D and x < y. If z is an arbitrary element of D, then by
Equation (4.5), there is z’ € D with z’ < z. Hence z is not minimal in D and so
D does not contain minimal elements. O

For regular semigroups we have the following relation between Green’s
relations Z and 7.

TueoreM 4.15. Let S be a reqular semigroup and x,y € S. Then

x€J(y) &= x2y <y forsome y €S.
Consequently 7 = ¢
Proof. If x € J(y) then there exists u, v € S! such that x = uyv. By Theorem 4.10,
there exist u; < u, y; < y and v; < v such that x = u; * y; * v1. By the definition
of trace product, the element y; belongs to Dy. Hence x 7 y; < y. Conversely
if y’ exists withx 2y’ <y, thenx # v’ <;jyand so, x € J(y).

Now x ¢ yif and only if x € J(y) and y € J(x). By the above, this is true if
and only if there exist x’, y’ € S with

x2y <y and yZx <x
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By Lemma 4.11, the statement above holds if and only if xZy. Hence Z = _#.
O

The result above may not hold if S is not regular. For example let S = A
where A is the semigroup of Example 2.13. Then on A 2= 14 and so ¥ =%.
Since A is simple ¢ is the universal relation (A X A). Thus Z #_# on A.
However, it is always true that 2 C_#.

It follows from Lemma 4.11 and Theorem 4.15 that 2 is convex if and only

if 9= _¢; thus:

CoroLLARY 4.16. For a regular semigroup S, the equality 9= _¢ holds if and only zf
9 is convex.

CoroLrLaRY 4.17. Let D be a Z-class of a regular semigroup S. If D contains a minimal
element x, then D = ] and every element of ] is minimal.

Proof. Lety # x. By Theorem 4.15, forsome x’ € S, y 2 x’ < x. Thenx’ 7 «x
and so there is x”” € S with x & x” < x’. Hence x” < x” < x. By Corollary 4.14,
every element of D is minimal and so, x” = x” = x. Therefore y € D and so,
Jx € D. Hence D = J,. O

Recall that a semigroup S is [0-]simple if and only if the set of all [non-zero]
elements form a ¢ -class of S. Hence from Theorem 4.15 we have:

CoroLLARY 4.18. A reqular semigroup S is [0-]simple if and only if for any x,y € S
[x,y €S — {0} thereisx’ € S [x' € S —{0}] such that x 7 x’ < y.

Recall from Equation (2.53) and Lemma 2.86, a semigroup satisfies the
condition My, if and only if every idempotent e € E(S) is minimal in E(D,)
with respect to the partial order w on E. By Lemma 4.1, this is true if and
only if e is minimal in D, with respect to the natural partial order. Hence
by Corollary 4.14, every element of D, is minimal with respect to the natural
partial order. If S is regular, by Proposition 2.39 every Z-class of S contain
idempotents and so a regular semigroup S satisfies M. if and only if every
element in S is minimal in its Z-class or equivalently, the Green’s relation & is
disjoint. Therefore, by Theorem 2.87 we have:

TueEOREM 4.19. A reqular semigroup S is completely semisimple if and only if the
Green’s relation 9 is disjoint. O

We next consider the relation between congruences and natural partial
order on regular semigroups.

By Corollary 4.4(a), homomorphisms of semigroups preserve natural par-
tial orders. If S is also regular we have:
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TueEOREM 4.20. A homomorphism ¢ : S — T of a regular semigroup S into T preserves
and weakly reflect natural partial orders.

Proof. In view of Corollary 4.4(a), it is sufficient to verify that ¢ weakly reflects
natural partial orders. Since Im ¢ is a regular subsemigroup of T by Theo-
rem 3.5 and since, by Corollary 4.4(b), the natural partial order of Im ¢ is the
restriction of the natural partial order of T to Im ¢», we may assume with out
loss of generality that ¢ is surjective. Let,v € T and u < v. Choose y € S with
yp =v. If f € E(R,), then f" = f¢ € E(R,). By Proposition 4.3(2), there exists
e’ € E(R,) withe’ w f" and u = ¢’v. By Proposition 3.24, E(¢) weakly reflects
w". Hence we can find e € E(S) withe w f and ep = ¢’. If x = ey, then, again by
Proposition 4.3(2), x < y and we have x¢ = (e)(yp) = €'v = u. O

Reformulating the result above in terms of congruences, we have:

CoroLrrary 4.21. Every congruence on a regular semigroup S is convex.

Proof. Let o be a congruence on S and let ¢ = ¢* : S — S/o be the quotient
homomorphism. If x < yoz in S, then x¢ < y¢ = z¢. Hence by the theorem
above, there is z’ € S with 2z’ < zand x¢ = z2’¢ < z¢p = x¢p. Then xoz’ < z.
Hence o is reflective. If xoy and x < u < y, then x¢ < u¢p < y¢p and x¢ = y¢.
These imply that x¢p = u¢ = y¢ and so, xouoy. Thus o is convex. O

The theorem above and the corollary may not hold for semigroups that are
not regular. For by Corollary 2.19 any semigroup S is a homomorphic image
of a free semigroup X" for a suitable set X and by Example 4.5, the natural
partial order is the identity relation on a free semigroup. It is therefore clear
that if y* < y in S, it is not possible to find x,x" € X* with ¥’ < x which is
mapped to v and y’ respectively. The corollary above also shows that, if o
is any congruence on S, the natural partial order on S/o coincides with the
quotient order <, defined by Equation (4.4b).

Those congruences on regular semigroups that are disjoint can be charac-
terized as follows.

TueoREM 4.22. A congruence o on the reqular semigroup S satisfies the condition
X<y and xoy=x=y

(that is, ¢ is disjoint) if and only if, for all e € E(S), o(e) is a completely simple
subsemigroup of S.

Proof. First suppose that o is disjoint and let ¢ = ¢* : S — S/o = T be the
quotient homomorphism. Let e € E(S) and x € d(e). If f € E(Ry) and g € E(L,),
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then fO % x¢ = e0 £ gO. Hence by Proposition 3.12
(90, f0) = .7 (e0,e0) = {e0}.

Since by Theorem 3.5 6 = ¢|E(S) : E(S) — E(T) is a regular bimorphism (see
Definition 3.4), we have

(9,16 € (90, f0) = {6}

and so, .”(g, f) € a(e). Hence if h € .#(g, f), then hx,xh € o(e) since o(e) is a
subsemigroup of S. By Proposition 4.3(2) and (3), h Z hx < x and h £ xh < x.
Since o is disjoint, we have xh = x = hxand sox € Hy,. Therefore o(¢) completely
simple.

Conversely assume that o(e) is completely simple for each e € E(S). By
Theorem 2.65 o(e) bisimple, regular and every idempotent in o(¢) is minimal in
o(e) with respect to the natural partial order of o(¢). Hence by Corollary 4.14,
every element of o(e) is minimal. Since, by Corollary 4.4, the natural partial
order of o(e) is the restriction of the natural partial order of S to o(e) every
element in o(e) is minimal in o(e) with respect to the natural partial order of S.
Therefore ¢ is disjoint. O

4.1.4 Compatibility on the natural partial order

We have noted that the natural partial order is not, in general compatible with
the multiplication in the semigroup. We proceed to characterize the class of
regular semigroups for which the natural partial order is compatible.

Recall that a pseudonverse (locally inverse) semigroup is a regular semi-
group S such that E(S) = E is a pseudo-semilattice. If this holds, by Theo-
rem 3.54, w(e) is a semilattice for alle € E. Since E(eSe) = w(e), by Theorem 2.44,
w(e) is a semilattice if and only if eSe is an inverse subsemi group of S. By The-
orem 3.54, this is equivalent to the fact that .”(e, f) contains a unique element
foralle, f € E(S). Recall also that for x, y € S, .7 (x, y) denotes .7 (e, f) for some
[for all] e € E(Ly) and f € E(R,) (see Proposition 3.12).

TueOREM 4.23. The following statements are equivalent for a regular semigroup S.

(a) S is locally inverse.
(b) Ifx,y,u,ve S, x <uandy < v, then xy < uv.
(c) Ifx,y e S,y € Ny)and x <y, then there is a unique x’ € (x) such that

X <y

Proof. (a) = (b): Let f € E(L,) and e € E(R,). Since x < u, by Proposition 4.3,
there is f* w f such that x = uf’. Similarly there exists ¢’ w e with y = ¢’v. By
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(a), we have #(u,v) = {h} and .“(x,y) = {g} for some h, g € E(S). Then by (),
g € M(f,e) = w(h) and so, g w h. Also, by (a), w(f) is a biordered subset of
E(S) which is a semilattice. Hence the relations . and # coincide with the
identity on w(f). Now, f'g £ g £ fgand f'g, fg € w(f). Therefore f'g = fg
and so, xg = uf’'g = ufg = ug. Dually, gy = gv. By Proposition 2.40 we can
find u” € #(u) N Ry so that u'u = f. Then uhu’ € E(R,,) and ugu’ w uhu’. Also
by Theorem 3.7

xy = (x9)(gy) = (ug)(gv) = (ugu’)uv < uv

by statement (2) of Proposition 4.3.

(b) = (c): Letx < yand ¥ € Ay). Then by Proposition 4.3(2), there is
e w f = yy such that x = ey. Since y’ € Ly, by Proposition 4.9, there is
x' =y'e € (x)such thatx’ < y'. If x”” € #(x) with x” < v/, then by (b),

e=xx"<yy =f, and ¢ =xx"<yy =f.
Since ¢, ¢’ € w(f) N E(Ry), it follows by (b) that

¢’ =ee’ <ef =e andsimilarlye’ <e.

Hence e = ¢’ and so x" . x”. Dually x" # x”. Hence by Proposition 2.40,
x" = x"". This proves the uniqueness of x’.

(c) = (a): Itis sufficient to show that for every e € E(S), the biordered subset
w(e) is a semilattice (see Theorem 2.44); this will follow if we show that the
relations .Z and Z coincide with the identity on w(e). Let f, g € w(e)and f % g.
Then f,9 € (f), f < eand g < e. Then by (c), we have f = g. Similarly, if
f 2 g, thenalso f = g by (c). Hence w(e) is a semilattice. O

Remark 4.3: Compatibility of natural partial order on arbitrary semigroups
have been considered in literature Bingjun, Blyth and Gomes [1983], Mitsch
[1986]. Also some generalizations of the concept of compatibility has also been
discussed by Bingjun.

Example 4.6: Recall that a band B is normal if and only if the biordered set of B is a
local semilattice (see Corollary 3.56). Theorem 4.23 gives another characterization of
normal bands: the band B is a normal if and only if the natural partial order (in this
case, the relation w) on B is compatible.

4.1.5 Primitive semigroups

An element x in a semigroup S is said to be primitive if x is a minimal element
in the set of non-zero elements of S. If S has no zero, this means that primitive

ref ch3
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elements of S are minimal elements of S. Since the restriction of the natural
partial order to E(S) coincides with the relation w, this agrees with the earlier
definition of primitive idempotents (see Subsection 2.7.1); that is, an idempo-
tent which is a primitive element according to this definition if and only if it is
a primitive idempotent as defined earlier. A semigroup S is said to be primitive
if every non-zero element of S is primitive.

A semigroup S is called a 0-disjoint union of semigroups S,, a € Q, if S is
obtained by taking the disjoint union of all semigroups S, and identifying all
zeros. That is, we take S to be the set given by

5= {U<sa - {0})] U (o) (4.62)

aeQ)

where U denote disjoint union, and define binary operation in S by

(4.6b)

oy = xy, theproductinS,ifx,y €S, for some a € ;
y= 0, otherwise.

Itis easy to varify that the set S, with the binary operation above is a semigroup.
Observe that in the semigroup S, each S, is an ideal.

If S is completely 0-simple, by Theorem 2.64 it contains primitive idem-
potents. These are minimal in the Z-class of non-zero elements of S. Then
by Corollary 4.14, every non-zero element in S is minimal in the Z-class of
non-zero elements. This implies that every non-zero element in S is prim-
itive. Hence every completely 0-simple semigroup S is a primitive regular
semigroup. More generally we have:

TuEOREM 4.24. A reqular semigroup S is primitive if and only if S is either a completely
simple semigroup or a 0-disjoint union of completely 0-simple semigroups.

Proof. Suppose that S does not have zero and let x,y € S. If S is completely
simple, then it follows from Theorem 2.65 (as in the remarks preceeding the
statement of the theorem), that S is primitive. Conversely assume that S is
primitive. Now by Theorem 4.10, xy = x; * y; where x; < x and since S
is primitive, x = x; and y = y;. Hence the trace product x * y exists in S.
Therefore x 2 y and L, N R, contains an idempotent. Consequently, S is
completely simple.

Let S = S°% If S is a 0 disjoint union of completely simple semigroups
{Sq 1 a € Q}, then by Equations (4.6a) and (4.6b), each S, is a maximal ideal in
S. Henceif x < yin S, then x,y € S, for some a € Q. Also by Corollary 4.4(b),

the natural partial order on S, is the restriction of the natural partial order on

semigroup!primitive —
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S to S,. Since every element in S, is primitive in S, by the remarks preceeding
the statement, it follows that every element in S is primitive.

Conversely, assume that S = S is primitive and that x,y € S — {0}. If
xy # 0, it follows from Theorem 4.10, as in the first paragraph of the proof,
that xy = x = y; in particular, x Z y. If D is a non-zero %-class of S, then it
follows from Theorem 2.64 and this remark that D° is a completely 0-simple
subsemigroup of S and that S is the 0-disjoint union the semigroups D° as D
varies over non-zero Z-classes of S. O

Let T be a subsemigroup of a semigroup S. Then we say that T is naturally
embedded in S if the natural partial order on T is the restriction of the natural
partial order of S to T. Note that, by Corollary 4.4, every regular subsemigroup
T of S is naturally embedded in S.

A semigroup N is said to be reqular-free if N has nonon-zero regular element.
A primitive extension S of a primitive regular-free semigroup N by a primitive
regular semigroup T is an ideal extension of N by T such that N is naturally
embedded in S.

Lemma 4.25. A primitive extension S of a primitive reqular-free semigroup N by a
primitive reqular semigroup T is primitive.

Proof. Letx < yin S, and x # 0. Assume that y € T. By Proposition 4.7(a), x
is also regular. Since N is an ideal in S, any element u € N which is regular in
S must be regular in N and so u = 0. Hence x ¢ N. Since T = (S — N) U {0}, it
follows that x is a non-zero element of T. Since T is primitive, we have x = y.
If y € N, since N is an ideal, x € N. Hence x,y € Nand x < yin S. Since N is
naturally embedded in S, x < yin N. Since N is primitive, we have x = y. Since
S = (T - {0}) UN, it follows that every non-zero element in S is primitive. [

We now proceed to give a classification of primitive semigroups. The
following theorem is due to Bingjun.

THEOREM 4.26. A semigroup S is primitive if and only if S is one of the following
types of semigroups:

(a) a primitive reqular semigroup;
(b) a primitive regular-free semigroup;
(c) a primitive extension of a regular-free semigroup by a primitive regular semi-

group.

Proof. 1f S is one of the type (a), (b) or (c), by definitions and Lemma 4.25, S is
primitive. Hence it is sufficient to show that, if S is primitive and if S is not
primitive regular or primitive regular-free, then it is of type (c).
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Accordingly assume that S is primitive and that S is not regular, but Reg S
contains non-zero elements. Let

S —Reg$, if S has no zero;

(S—RegS)uU {0}, theOofS,ifS =25
Suppose thata € Nand b € S. If ab € S — N, then ab is a non-zero regular
element of S and so, by Theorem 4.10 there exist regular elements a’,b" € S
witha’ <a, 0’ <bandab =a"*b'. Since a € N this implies that 2’ = 0 and so,
ab = 0 which contradicts the hypothesis. Hence ab € N and so, N is a right
ideal. Similarly, N is a left ideal and hence N is an ideal. Since S is primitive,
N is primitive regular-free subsemigroup and is naturally embedded in S. Let
T = S/N be the Rees quotient. Then, it follows from the definition of Rees
congruences (and Rees quotients)Subsection 2.2.1 that T — {0} can be identified
with Reg S — {0}. Since every non-zero element in Reg S is regular in S, it is
regular element of T and so T is a regular semigroup. Ifa,b € T— {0} and a < b,
it it follows from statement (3) of Proposition 4.2, that a = xa = xb = ay = by
for some x,y € T — {0}. These elements satisfy the same equations in S also.
Since S is primitive, a = b. This implies that T is a primitive regular semigroup.
Therefore S is of type (c). O

Example 4.7: Let X be a set. Then it is clear that the free semigroup X* is a primitive
regular-free semigroup and is a naturally embedded ideal in the monoid X*. Also the
Rees quotient X*/X* = H the trivial (one-element) group with 0 adjoined. H is clearly
a primitive regular semigroup. Hence X* is a primitive extension of the primitive
regular-free semigroup X* by the primitive regular semigroup H.

Example 4.8: We give an example, due to Bingjun, to show that an ideal extension
of a primitive regular-free semigroup by a primitive regular semigroup need not be
a primitive extension. Let A = (1) and B = (b) be infinite cyclic semigroups and let
C = {¢;c* = 1) be a cyclic group of order 2. Let S = A U B U C be the disjoint union.
Define product in S as follows:

Ckﬂm — ﬂka — Ckbm — mek — um, and ambn — bnum — am+n

where k = 1,2, m > 1 and n > 1. It is easy to verify that S is a semigroup and that
T =AUBisanideal in S. Now for any x € T, xy = x for y € T' if and only if
y = 1. Hence it follows from the definition of natural partial order that T is primitive.
It is clearly regular-free and S/T is isomorphic to the group with zero, C°. Since C°
is a primitive regular semigroup, S is an ideal extension of a primitive regular-free
semigroup by a primitive regular semigroup. But, sincea = ca =ac =cb =bc,a <b
in S by Proposition 4.2(3). Hence S not primitive. Notice that T is an ideal of S which
is not naturally embedded in S. This also gives an example of a subsemigroup of a
semigroup which is not naturally embedded in it.
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4.2 CONGRUENCES ON REGULAR SEMIGROUPS

In this section we discuss some properties of congruences that applies mainly
to regular semigroups as well as certain basic representations of regular semi-
groups (see Subsection 2.2.1 and Subsection 2.5.1 for general definitions).
These results are of interest in their own right. Furthermore they are also
needed in our development structure theory of regular semigroups.

4.2.1 Admissible and normal families

Let A = {A; : i € I} be a family of pairwise disjoint subsets of a semigroup S.
We say that A is an admissible family of subsets of S if there is a congruence p
on S such that for each i € I, A; is a p-class of S; that is, for each i € I, there is
s;i € S with A; = p(s;); in this case we also say that the congruence p admits A.

Lemma 4.27. Let A be an admissible family of subsets of S. Then the set of all
congruences that admits A is an interval in the lattice £ of all congruences on S.

Proof. As in Proposition 2.7, let R© denote the smallest congruence on S con-
taining the relation R. Consider the relation

@zU{AixAi:ieI}; and let « = @O,

By definition, for any A; € A and x € A; A; € a(x). Since A is admissible,
there is a congruence p which admits A and so ® € p. Then @ C p and
so a(x) € p(x) = A;. Hence a admits A and so is the smallest congruence
admitting A.

Let C denote the set of all congruences that admits A and let § = VC, the
join of C in £. Then it follows from Proposition 2.6 that

®
p= [U p] :
peC
Clearly, A; C B(x) for any A; € Aand x € A;. If y € B(x), by definition, there
existsn € N,p;e Cforj=1,2,...,nandu; € Sforj=0,1,2,...,n withuy = x,
u, = y such that (uj_1,u;) € pj, j =1,...,n. Since p; admits A, u; € A;. If
uj-1 € Aj, we similarly have u; € A;, j = 1,...,n. By induction, it follows that
y € Ajand so f(x) = A;. Hence f admits A and is clearly the largest congruence
that admits A. If p is any congruence on S such that @ € p C f§ then for any
x € A;, we have
Ai = a(x) € p(x) C B(x) = A;.

Thus p also admits A. Therefore C = [a, ]. O
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We say that a family A of subsets of S is normal in S if there is a unique
congruence p that admits A. In this case, the interval [«, f] of congruences that
admits A reduces to a single congruence so that a = p = . For example, if p
is a congruence on a group G, so that p is the coset decomposition of G with
respect to a normal subgroup of G — see Example 2.2. Then any congruence
class of p is normal.

In the following, we use the following notation: if T is a subsemigroup of
S, Reg T denotes the set of elements of T that are regular in T; that is, u € Reg T
if and only if T contains at least one inverse of u. Note that Reg T need not be
a subsemigroup of T. If p is a congruence on S we will refer to those p-classes
that are idempotents in S/p as idempotent p-classes. Note that any idempotent
p-class is a subsemigroup of S. The following lemma shows that these are
precisely p-classes of the form p(e) for e € E(S) (see also (Theorem 3.5). We
need the following lemma.

LemwMma 4.28. Assume that p is a congruence on the reqular semigroup S and let A be
an idempotent p-class. If x € A, x’ € Nx)and h € .7 (x'x, xx’), then h, hxh € Reg A.

Proof. Let ¢ = p* : S — S/p be the quotient homomorphism, and let A = ¢’ €
E(S/p) be the idempotent represented by the idempotent p-class A. If f = x'x
and g = xx’ clearly,

f=foZxp=Zgd=y
and so, by Theorem 3.5, hp € .7 (f",g’) = {¢’}. Hence I € A and since h is an

idempotent, i € Reg A. Also, (hxh)¢ = ¢’ and so hxh € A. Let k € .7 (x"hx, h).
Now,

@hx)p = (' P)(hxp) = (K P)xP) = (' x)p = fp = f'.
Hence we have k¢ € Z(f’,¢’) = {¢’} by Proposition 3.9 since f* .Z ¢’. Also,

since & is an inverse of itself and hx’ is an inverse of xh, by Theorem 3.7,
u = hx’'kh is an inverse of hk(xh) = hxh. Since

u = (hp)(x'p)(khp) = (") (x'P)(€),

by Proposition 2.40(a), u¢ is an inverse of ¢’ in H,.. Since ¢’ is an idempotent,
it is an inverse of itself. Hence by Proposition 2.40(b), u¢ = ¢’ and so u € A.
This proves that hxh is a regular element of A. O

THEOREM 4.29. Let p be a congruence on the regular semigroup S and let A be an
idempotent p-class of S. Then Reg A is a regular subsemigroup of A.

Proof. Asabove we write ¢ = p*. Lete’ = Apand T = Reg A. Ifx,y € T, then T
contains inverses x’ and y’ of x and y respectively. Leth € .7(f, g) where f = x'x

normal
idempotent!— p-class
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and g = yy’. Then by Theorem 3.5 0 = E(¢) is a regular bimorphism so that 0
satisfies (RM1). Since ' = f¢ =2 x¢p = ¢’ Z gp = g’, by Proposition 3.12, we
have

hp e Z(f',q) =7, €)= {e}.

Hence h¢ = ¢’ and by so y’hx’ € A. By Theorem 3.7, y’hx’ is an inverse of xy
and so xy € T. Hence T is a subsemigroup of A. O

For many interesting classes of congruences on a regular semigroup S
the congruence classes containing idempotents are regular subsemigroups.
For example, idempotent separating congruences (see the § Subsection 4.2.2
below), Rees congruences, etc have this property. Also, many subclasses of the
class of regular semigroups have the property that for any congruence p on a
regular semigroup S belonging to one of these class, all idempotent p-classes
are regular. For example, we have:

CoroLrrary 4.30. Let p be a congruence on the regular semigroup S.

(a) If S is primitive then a non-zero idempotent p-class is completely simple and
the 0 p-class is an ideal in S.

(b) IfS/ p is an inverse semigroup, then any idempotent p-class is a reqular subsemi-
group of S. In particular, if S is an inverse semigroup, then every idempotent
p-class is an inverse subsemigroup of S.

Proof. Again, we write ¢ = p* in the following.

Assume that S is primitive and let A be an idempotent p-class. If 0 € A, it
is clear that A is an ideal in S. So, assume that 0 ¢ A. Let x € A, x’ € /(x) and
h € Z(f,g) where f = x’x and g = xx’. Then by Lemma 4.28, 1 € A and so,
h # 0. Since S is primitive and h w* f, we have h . f. Similarly h % g and so,
h 2 x. Let x’ be the inverse of x in Hj,. Then x’¢ is the inverse of x¢ = h¢ in
the J-class Hy in S/p and hence, by Proposition 2.40(b), x'¢ = h¢. Therefore
x’ € A. This implies that A is a primitive regular semigroup with out zero and
hence A is completely simple. This proves (a).

To prove (b), assume that A is an idempotent p-class in the regular semi-
group S and x € A. If ¥’ € #(x), since x¢ is an idempotent, x¢ and (x")¢ are
inverses of x¢ in S/p. Since, S/p is an inverse semigroup, we have x¢p = x’¢.
Hence x" € Aand so A isregular. If Sis an inverse semigroup, by Theorem 2.44,
S/p is an inverse semigroup and so, by the above, A is a regular subsemigroup
of an inverse semigroup. Therefore A is an inverse subsemigroup of S. O

Example at the end of this section shows that shows that idempotent con-
gruence classes may not be regular for congruences on arbitrary regular semi-
groups.
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Next theorem show that any congruence p on a regular semigroup S is
uniquely determined by the set {Reg p(e) : e € E(S)} of regular subsemigroups
of idempotent congruence classes of p; in particular, the set of all idempotent
congruence classes of p form a normal family of subsets in S.

TueEOREM 4.31. Let p and ¢ be congruences on a regular semigroup S. The follow
statements are equivalent.

(a) Foralle € E(S), Regp(e) = Rego(e).
(b) Foralle € E(S), p(e) = o(e).
(c) p=o.
Consequently, given any congruence p on S, the set
Ay =1p(e) : e € E(S))
is a normal family of subsets of S.

Proof. Observe that implications (b) = (a) and (c) = (b) are obvious. So it is
sufficient to prove the implications: (a) = (b) = (c).

(@) = (b) For convenience, let ¢ = p* and ¢ = o*. Choose e € E(S) and
x € p(e). Also let h € #(f,g) where f € E(Ly) and g € E(R:). Then, by
Lemma 4.28, h, hxh € Reg p(e). Then by (a), h, hxh € o(e). Now, (a) implies that
p and ¢ induces the same biorder congruence on E = E(S). Therefore

fo L xp=ep Z g0 = fip L ey Z gy.
Since fip £ xi Z g1 by the choice of f and g, it follows that ey . x1p. Hence

(exe)y = (ep)(xyp)(ey) = xyp

and so exe o x. Since h and hxh are regular elements of p(e), we have h ¢ e and
hxh o e by (a). Therefore
xoexeohxhoe

which implies that x € o(e). Hence p(e) € o(e). Interchanging p and o we
obtain o(e) C p(e) and hence p(e) = o(e).

(b) = (c) Letxpy. Suppose thata € #(x) and b € #(y). Then, using the fact
that p is right compatible, we get xapya. Since xa € E(S), by (b), we have xacya.
Similarly, bxoby. Using these and the fact that ¢ is a congruence, we have

x=xax o yax=ybyax o ybxax

=ybx o yby=y.
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Thus (x,y) € 0 so that p C 0. The arguements can be repeated with p and o
interchanged giving o C p. Hence (c) follows.

The last statement is a consequence of the definition of normal families.
Whence the theorem. O

Aain Clifford and Preston [1967], normal family A = {A, : A € A} of subsets
of the regular semigroup S is called a kernel normal system (a KN-system or even
KNS for short) on S if there is a congruence p on S such that

A=A, ={ple) : e € E(S)}. (4.7a)

Given the congruence p, the family A, = {p(e)} will be called the kernel normal
system of p. The kernel normal system Ay of any homomorphism ¢ : S — T
is the kernel system of the congruence k¢ of ¢. Thus

As ={((@op7)e)) : e € ES)). (4.7b)

We shall consider the problem of characterization of KN-systems of inverse
semigroups in the next chapter. The characterization of KN-systems on regular
semigrous will be considered later later in the chapter on inductive groupoids
(Chapter 6).

Remark 4.4: The last statement (as well as the statement (b)) of the theorem
above is classical ([see Clifford and Preston, 1967, Theorem 7.38]). However,
the statement (a) is considerably stronger. An alternate approach for its proof
is using inductive groupoids; in fact, it is a consequence of the equivalence
of the category RS of regular semigroups and the category J& of inductive
groupoids (see Chapter 6).

In this context, there is considerable variation in terminologies used by
various authors. In Clifford and Preston [1967] the term kernel normal system
is used to denote to denote a family of subsemigroups satisfying the conditions
in Equation (4.7a), especially in the case when S is an inverse semigroup.
However, the KNS of a congruence p on S is called the kernel of p in Clifford
and Preston [1967]. On the other hand ? and Pastijn and Petrich [1985,
1986] uses the term kernel for the union of all congruence classes that contain
idempotents. We will not use these here. We shall define kernels later so that
they are functors on an appropriate domain category (See Equation (4.8b) for
definition of kernels of idempotent separating congruences.)
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Example 4.9: Consider the regular semi- congruencelidempotent separating
group

S = {hy,h1z, ha1,a, J11, 912, 921,!]22}

indicated by the Z-class diagram on the

right in which all elements, except 4, are

idempotents. In the diagram slanted ar- \ \
rows («) represent .Z-relation, horizontal : :

arrows represent Z-relation and the dotted : hyy —————a
(vertical) arrows represent the natural par- : :

tial order. It is easy to see that v : v

g1 ——— <

={(xy):x<yory<x}

P < <
where < denote the natural partial order, is \ \

a congruence on S such that S/p is a rect-
angular band. Here the congruence class
p(922) = {g22,a} is not a regular subsemi-
group of S.

g21 r—

4.2.2 ldempotent separating congruences

A congruence p on a semigroup S is said to be idempotent separating if any
p-class contain utmost one idempotent.

TueorEM 4.32. The following statements are equivalent for a congruence p on a
regular semigroup S.

(1) p is idempotent separating;

(2) pc;

(3) foreache € E(S), p(e) is a subgroup of H,;

(4) the bimorphism E(p*) : E(S) — E(S/p) is a biorder isomorphism.

When p satisfies these equivalent conditions, then for all x € S we have

_ p(e)x, ife € E(Rx);
= {xp(f), i £ € E(L).

Proof. (1) = (2). This follows by Proposition 3.47.

(2) = (3). Ife € E(S), (2) implies that p(e) is a subsemigroup of H,. If u € p(e)
and if v’ is the inverse of u in H,, then u’¢ is the inverse of u¢ = e in Hey,
where ¢ = p*. Hence 1/¢ = ep which implies that u’ € p(e). Therefore p(e) is a
subgroup of H,.
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(3) = (4). Since ¢ = p" is a homomorphism of regular semigroups, by The-
orem 3.5, the bimorphism 0 = E(¢) is regular. Statement (3) implies that any
p-class containing an idempotent is a subgroup and hence contains only one
idempotent. It follows that 0 is injective. By Theorem 2.41, it is surjective.
Thus 0 is a bijective regular bimorphism and so, by Corollary 3.25, 0 is an
isomorphism.

(4) = (1). Statement (4) clearly implies that no p-class contain more than one
idempotent.

Lete € E(Ry). If u € p(e), then (e, 1) € p and so, (x, ux) = (ex, ux) € p. Hence
ple)x € p(x). If y € p(x), and if x’ € H(x) with xx’ = ¢, then yx’ € p(e). Also,
since x 7 y, y £ x’x and so, y = yx'x € p(e)x. Thus p(x) = p(e)x. Dually
p(x) = xp(f) for any f € E(Ly). O

Idempotent separating congruences on semigroups that are not regular,
may not satisfy condition (2), (3) or (4) above (see Example 4.10).

Recall that (see Subsection 3.3.3) a regular semigroup S is fundamental if
there is no non-trivial idempotent separating congruence on S (see Proposi-
tion 3.47). By Proposition 3.46 and Proposition 3.46 1(S) = /(. is the maimum
idempotent congruence on a regular semigroup S and the semigrup S/u(S) is
fundamental.

Let p be an idempotent separating congruence on the regular semigroup S.
By Theorem 4.32(4), E(S) is isomorphic to E(S/p) and hence we may identify
these biordered sets (idetifying e € E(S) with ep®). Therefore the KN-system
A, (Equation (4.7b)) of p may be regarded as a function on E(S) taking values
in the set of all subgroups of S. In this case, more is true: they are group-valued
functors on the preorder (E, w).

Given a biordered set E, let E, denote the preorder (E,w) (see Subsec-
tion 1.3.1 for more details). Suppose that F : E, — C be a functor to a category
C. For e € E, the w-partial functor of F on w(e) is the restriction

F.=Flaw() (4.82)

of F to the preorder on the biordered subset w(e) C E.
Let p be an idempotent separating congruence on the regular semigroup
S.Foralle € E and f <e, define

G(e)=p(e) and uG(f,e)=uf, uecGle) (4.8b)

Since p is idempotent separating, G(e) = p(e) is a subgroup of H, for all
e € E. Also, if f w e and u € G(e), the fact that p is a congruence gives
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fu,uf € G(f) and fu,uf < uin the natural partial order. Hence, fu = uf by
Proposition 4.7(c). It follows that

a(u,u™) =1, forall ue Ge).
Also if u,v € G(e), then we have
uG(f,e)(vG(f,e) = (fu)(fv)
= f(uv) = (uv)G(e, f)
so that G(f, e) : G(e) = G(f) is a homomorphism such that
fu=uGe,f) <u.

Again, for g w f w e, we have G(f,e)G(g, f) = G(g,e); also G(e, e) = 1, for all
e € E. Since, for each f w e, (f,€) is the unique morphism from f to e in the
preorder E,,, it follows that G : E,, — Grp is a contravariant functor.

Let x € S and x’ € #(x). Recall from Lemma 2.67 that a(x,x’) : h +— x’'hx is
an order isomorphism of w(xx") onto w(x’x) so that a(x, x’) is an isomorphism
of the preorder on w(xx’) onto the preorder w(x'x). Again, the fact that p is
a congruence gives that the map cg : u = x'ux is an isomorphism of G(g) to
G(x'gx) = G(ga(x,x")) for all g w xx’. Moreover, if h w g w e, the following
diagram commute:

G(9) —* G (gax, x)) (d.gkr)
G(h,g) \L l G(ha(xx'),ga(xx’))
G(h) —— G (ha(x,x"))
n

For, if u € G(g), we have
uc’;G (ha(x, x), ga(x, x")) = (x'hx)(x"ux) = x"h(xx")ux = x"hux
= uG(h, 9)e,

It follows that to each x € S and x” € #(x), there corresponds a transformation
(see § Subsection 1.2.2)c?(x,x") : G
G = G’ to G, such that

— G,,, of the partial functor G, of

xx’

v (x, 1) = a(x, x'), (4.8¢)

and the component of the natural transformation ¢’(x,x’) at g w xx’ is given
by

uch(x,x’) = X'ux forall ueG(g). (4.8d)

We have thus proved the direct part of the following theorem:
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TueoreMm 4.33. Let p be an idempotent separating congruence on a regular semigroup
S. Then Equation (4.8b) defines a contravariant functor G = GP : E, — Grp
satisfying the following conditions:

(Gkr1) Foralle € E, G(e) is a subgroup of H, such that

Ge)C{ueH,:a(u, u’l) =1y}

(Gkr2) For g w e, we have uG(g,e) < u for all u € G(e).

(Gkr3) Forx € Sand x" € /x), there is a unique a transformation ¢ (x,x’) : G,,, —
G, satisfying Equation (4.8c) and Equation (4.8d).

Conversely, if G is a contravariant group-valued functor on E,(S) satisfying the
conditions above, then

p =1{(x,y) : for some e € E(Ry)  u € G(e) with y = ux} 4.9

is an idempotent separating congruence on S such that GP = G.

Proof. Since we have already proved the direct part, it is sufficient to verify the
converse. Suppose that G is a contravariant group-valued functor on E,(S)
satisfying conditions (Gkri), i = 1,2,3 and let p be defined by Equation (4.9).
First, we note that p CJ#. For, let (x,y) € p. By the definition there is
some ¢ € E(Ry) and u € G(e) C H, such that y = ux. Now, Corollary 2.27,
the translation py : L(¢) — L(x) is an isomorphism of left ideals and so, by
Theorem 2.25, p, is a bijection of H, onto Hy. Hence y = ux € H,. Moreover,

p={(x,y):foralle € E(Ry) du € G(e) with y = ux};

. (4.9
={(x,y):forall f € E(Ly) v € G(f) with y = xv}.

Let o be the relation defined by the first equation above and let (x, y) € p. Then
y = ux for some u € G(e) with e € E(Ry). For any ¢’ € E(R,), e € #(¢’) and so by
(Gkr3), there exist a transformation ¢?(¢/, ¢) : G, — G, whose component ¢’ is
the isomorphism u +— ue’ of G(e) to G(¢’). Since y = ux, we have ue’ € G(¢’) and
(ue’)x = u(e’x) = ux = y. This implies that p C 0. The reverse inclusion clearly
hold and so, p = 0. Again, let 7 be the relation defined by the second equality
in Equation (4.9%). If f € E(L,) and if x’ is the inverse of x in L, "R, then y = ux
if and only if y = x(x’ux). By axiom (Gkr 3), u = x’ux is an isomorphism of the
group G(xx’) = G(e) onto G(x'x) = G(f) and so, x'ux € G(f). Thus p C 7. The
reverse inclusion follows by duality. Therefore p satisfies Equation (4.9).
Clearly p is reflexive. If (x,y) € p, then from y = ux, u € G(e), we have
x = u7ly. By (Gkrl), u™! € G(e) and so, (y,x) € p and so p is symmetric.
Transitivity can be proved in a similar way. Thus p is an equivalence relation.
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If u € G(e) and f w e, then from (Gkrl), fa(u,u™) = f and so fu = uf.
Since fu #Z f £ uf, it follows that fu € H, and fu < u. Since by (Gkr2),
uG(e, f) < u, it follows by Proposition 4.7(c) that fu = uf = uG(e, f).

Now suppose that (x,y) € pand z € S. Let x’ € ¥x. By Equation (4.9%),
y = ux for some u € G(e) with e = xx’. Let f = x'x, g € E(R;) and h € ./ (f, g).
Then ' = xhx’” w e and so uh’ = 'u = uG(e,h’) < u by axioms (Gkrl) and
(Gkr2). By Theorem 3.7,

xz = (xh)* (hz), yz=(yh)+(hz), and h" € E(Ry).

It follows from Corollary 2.27 that the translation py : L(e) — L(x) = L(f) is
an isomorphism of left ideals and so, by Theorem 2.25, p, is a bijection of Hj,
onto (Hy)px = Hyvx. Hence, since uh’ 5 I’, we have h'x ¢ uh’x = h'ux = h'y.
Therefore

yh = uxh = uxhx'x = ul’x ¢ Wx =xh andso, xzJ yz.

Since yz = uh’(xz) and uh’ € G(’), (xz, yz) € p by Equation (4.9).

By Equation (4.9%), the definition of p is selfdual. Hence dualizing the
arguements above, we conclude that (zx,zy) € p. Thus p is a congruence. It
follows from Theorem 4.32(3) and axiom (Gkr1) that p is idempotent separat-
ing. By the definition of p, it is clear that G”(e) = p(e) = G(e) for all e € E(S).
Similarly for all f w e and u € G(e) we have

uGF(e, f) = fu = uGle, f).
Therefore G? = G. O

The contravariant group-valued functor G : E,(S) — Grp satisfying the
conditions (Gkri), i = 1,2,3 will be called a group kernel on S. If p is an
idempotent separating congruence on S, the group kernel G” is called the
kernel of p. Notice that the KN-system A, Remark 4.4 of p is, in this case, a
set of subgroups of S and is the image of the vertex-map of the functor G*.
Consequently, the map vG : ¢ = G(e) completely determine the functor G.

ProrosiTioN 4.34. Let u = u(S) denote the largest idempotent separating congruence
on the reqular semigroup S and let G* denote its kernel. Then for each e € E(S),

G'e)=f{ueH,:a(u,u™) =1up) (4.10)

Proof. Foreache € E = E(S), let C, denote the set on the right of Equation (4.10).
Then by Lemma 2.67,

Co={ueH,:ug=gu forall gw e}

kernel!group —
GP: kernel of p
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It is clear that, if u,v € C,, then uv € C,. If u € C, and g w e, then from

1

ug = gu, we have gu™! = u™'g; hence u! € C,. Thus C, is a subgroup of H,.

Furthermore, if f w e, then the map
Cep:ueCer fu
is a homomorphism of C, to C . We proceed to show that
G:e—C, (fe)=Cep

is a group kernel on S in the sense defined above (that is, satisfies conditions
(Gkri),i=1,2,3).

By the remarks above, G satisfies (Gkrl). For g w ¢, and u € H,, gu # g and
ug £ g. Hence ug = gu implies that ug .2 g # gu and so, v = ug = gu € H,.
It is clear that v commutes with every h w g and so, v € C;. Alsov = gu < u.
Hence C) : u +— gu is a homomorphism of C, to C, that satisfies (Gkr2).

To prove (Gkr3), let x € S and ¥’ € #x). If e = xx" and f = x'x, by
Lemma 2.67 a(x,x’) : h = x’hx is an order isomorphism from w(e) onto w(f).
Now v € C, if and only if hv = vh for all h w e. This is true if and only if

(x’"hx)(x'vx) = x’hox = x'vhx = (X'vx)(x’hx) for allh w e.
It follows that v € C, if and only if x'vx € Cy. Let g w e and u,v € C,. Since
x'(uv)x = (x'ux)(x'vx) forallu,v e C,

the map y, : u — x’ux is an isomorphism of C; onto C, 4. A routine verifoica-
tion shows that for all & w g, the following diagram commutes.

Cy ", Cwgy) (d1.gkr)

Cah l lc(x’ﬂx,x’hx)

C(h) T C(x’hx)

It follows that there is a transformation ¢”(x, x’) of the partial functor : G, of G
to G f such that

v =a(x, x')
and the natural transformation ¢” is the map

gew(e) P y,.

Therefore (Gkr3) holds. Consequently, by Theorem 4.33, G is a group ker-
nel and there is a unique idempotent separating congruence ¢ defined by
Equation (4.9) with G = G°.
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Since u is an idempotent separating congruence, by axiom (Gkr1), u(e) €
C. = o(e). This implies, by Equation (4.32) that y C 0. Since u is the largest
idempotent separating congruence on S, we have y = ¢ and so G = G*. O

Clearly, every group kernel G of S is a subfunctor of G* in the sense defined
by Equations (1.51) and (1.52) and so, G* is the maximum group kernel on S
and is closely related to the structure of S. The following theorem list a number
of equivalent descriptions of the maximum idempotent separating congruence
p = u(S) on a regular semigroup S. The statement (2) below is due to Hall
Hall [1973] and is a straightforward generalization of Howie’s description
Howie [1964] of u(S) on an inverse semigroup S ([Clifford and Preston, 1967,
see also]). Statements (3) and (4) are due to Nambooripad [1979] and Grillet
[1974a] respectively and are related to the fundamental representations of
regular semigroups. We shall come back to this later in this chapter.

TueorEM 4.35. Let S be a regular semigroup. The following statements are equivalent
for (x,y) €.

(1) (x,y) € u(S):;

(2) forall x' € Nx)and g w e = xx’, there exist a unique y' € Yy) such that
xX'gx=y'gy.
(3) there exists x' € Nx) and y' € y) such that a(x,x") = a(y, y’);

(4) foreachz € S, L,y = L,y and Ry, = Ry;

Proof. (1) = (2). Letx’ € (x) and g w e = xx’. (1) implies by Equation (4.9)
that y = ux where ug = gu for all g w e. Now the translation Ay : R(x) =
R(e) — R(x") is an isomorphism of right ideals. Since u™! J# e, x'u™' J# x'.
1

Now y’ = x’u" is an inverse of y = ux in Hy and

Y gy = x'u" (gu)x = X'u" (ug)x = X' (u u)gx = x'gx

forall g w e. If y’ € y) also satisfies this, taking g = e = xx’, we have
x'x = y”y. Hence
1 7 —1 ’

¥ =y'yx =y uxx’ =y’ue=y"u andso, y’'=xu =y

This proves the uniqueness of iy’ € /).

(2) = (3)- This is an immediate consequence of the definition of the map
a(x, x’) (see Equation (2.44)).



262 4. REGULAR SEMIGROUPS

(3) = (4). Letz € S. By (3), there exist x’ € Hx), ¥ € y) such that
a(x,x’) = a(y,y’). Since x S y, S(z,x) = S(z,¥y) (see Proposition 3.12).
If h € #(z,x),e = xx’ and f = x'x, then he w e and so, by (3), we have
x'hx = x"hex = y'hey = y'hy. Now

(hx)(x’h)(hx) = h(xx"Yhhx = hx,  (x'h)(hx)(x'h) = x'hh(xx)h = x'h

and so x'I is the inverse of x in L, N Rypy. Similarly, y'h is the inverse of hy in
Ly N Rypy. Therefore the equality x'hx = y’hy implies that hx 7 hy. Hence

zx = (zh) = (hx) 2 (zh) + (hy) = zy

which gives L, = L. Similarly, Ry, = Ry.

(4) = (1). This is a consequence of the following proposition. O
ProrosiTion 4.36. Let S be a reqular semigroup. Then

wi(S) =1{(x,y): Lox =L,y Yze€S} (4.11a)
is the largest congruence on S contained in .. Dually,

ur(S) =1{(x,y) : Rz = Ry, Yze S} (4.11b)

is the largest congruence on S contained in . Moreover, u(S) = wi(S) Ny, (S).

Proof. Clearly, yu; = pi(S) is an equivalence relation. Let (x,y) € py and u € S.
Then forany z € S,

zx L zy = z(xu) £ z(yu), and
z(ux) = (zu)x £ (zu)y = z(uy)

and so (xu, yu), (ux,uy) € y;. So y; is a congruence. Also for (x,y) € y, x £ ey
where ¢ € E(Ry). Hence x € Sy. Similarly y € Sx and so x .Z y. Therefore
w €. If p is any congruence contained in .Z, then for any (x,y) € pandz € S,
(xz, yz) € p which implies that L., = L,,. Thus p C ;.

Dually u, = u,(S) is the largest congruence contained in %. Now, since
p = uS) CHACL, u C w and similarly, p € u,. Hence u C py N p,. Since
Ny € N Z=5¢, by Theorem 4.32, u; N u, is an idempotent separating
congruence on S. Hence we conclude, by Proposition 3.47, that u = y; Ny, isa
congruence contained in .7’and so y C u(S). On the other hand, it is clear that
u(S) € prand p(S) € p, and so, p(S) € u. Hence u = u(S). O
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By Proposition 3.47 a congruence p on S is idempotent separating if and
only if p C u = u(S). Hence the set of all idempotent separating congruences
on S is the order ideal £(u) of the lattice £ = £5. Hence the lattice £(u) of
all idempotent separating congruences on S is a complete lattice. Further for
p € £(u) and each e € E(S), G”(e) = p(e) is the kernel of the homomorphism
p*|H, of H.. Hence for every e € E(S), G"(e) is a normal subgroup of H,.
Hence G*(e) is a member of the lattice N'(H,) of all normal subgroup of H. (see
Example 1.2). Therefore the map G : ¢ = GP(e) is a member of the product
lattice

N =TT M.
ecE(S)
By Theorem 4.33, the map p +— G is a bijection of the lattice £(u) and the set
all group kernels on S. By Theorem 4.32, the vertex map

vG e G(e) = ple)

of a group kernel G = G completely dertermine it. These functions are in N.
Hence there is a bijection
vG:p i vG’

between idempotent separating congruences on S and functions in N that
are vertex maps of group kernels. Now the order in the product lattice N is
defined componentwise; that is if a, € N, then

a<sp & a,Cp
for all e € E(S). Also for p,0 € £(u)

pCo & GP(e) CGe)

— GF CG".

Hence vG is an order embedding of £(u) into N. Since the A operation is the
intersection in both £(u) and N(H,) (for every e € E(S)), it is clear that vG
preserves A. To see that v G also preserves V, let Q C £(u) and let 0 = VQ). By
Proposition 2.6,

o= uQ)®.
Hence if e € E(S) and u € G°(e) = o(e), then there exists p; € Q,i =1,2,...,r
such that

ue(p1VvpaV--Vpre)
€pi(e)-...pe)
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by Example 1.2

=U1Up ... Uy

where u; € pi(e),i =1,2,...,r. This shows, by the definition of V in N(H,), that
u € Vip(e) : p € Q) where the right-hand side denotes the join in N (H,). Hence

a(e) = Vip(e) : p € Q}
for all e € E(S). Therefore
G'*=G"=VI{G’:peQ]}.

This shows that G : £(u) — N is a lattice embedding. Since each lattice N'(H,)
is modular by Example 1.2, N is a product of modular lattices and so, since
£(p) is isomorphic to a sublattice of NV, £(u) is modular (see § Subsection 1.1.3).
We thus have

TueoreMm 4.37. Let S be a reqular semigroup. Then the lattice (under inclusion) of all
idempotent separating congruences on S is a complete modular sublattice of the lattice
Ls of all congruences on S with 1 = u(S). O

Example 4.10: Let M = X*. Then M is a semigroup with only one idempotent and so,
any congruence on M is idempotent separating. Since any monoid is a homomorphic
image of a free monoid, there are non-trivial congruences on M. But the J# relation on
M is the identity relation and so, no non-trivial congruence on M satisfies condition (2)
of Theorem 4.32.

Example 4.11: Let S = % be the semigroup of all transformations of a set X. Then S is
regular (see Examples 2.10 and 2.15). Suppose thate € E(S). If & € u(e), then @ 5% e and
soIma =Ime = Y and i, = m, = 7 (say). By Proposition 4.34, go = ag for all g w e.
Now, g w e if and only if Img C Y and 7, 2 m,. So, for any x € Im g, xga = xa = xag
which implies that xa € Im g for all x € Img. Now let x € Y and let ¢, be the constant
transformation with value x. Then c, is an idempotent with ¢, @ e and Imc, = {x}. It
follows from the remarks above that xa = x. This is true for all x € Y and so a = e.
Hence pi(e) = {e} and so p is the identity congruence on S; that is, S is fundamental.

Example 4.12: Let S = .2.7(V) be the semigroup of all linear transformations of a
vector space V over a field k. Then S is regular (see Examples 2.11 and 2.15). Suppose
that e € E(S). If & € p(e), then @ S e and so Ima = Ime = U and N(a) = N(¢) = N
(say). By Proposition 4.34, g = ag for all g w e. Suppose thate # 0 and letv € U, v # 0.
Then forany g w e,g # 0and v # 0 € Im g, (v)ga = (v)a = (v)ag and so, va € Im g for all
veImyg. If dimU =1, so that U = (v) for some v € V, there is k € k* with va = kv since
va € U and a is a linear isomorphism of U onto itself. Then for all w € U, w = k'v and
so, wa = k' (va) = k'kv = k(k'v) = kw. Thus a = ke. Here k* denote the set of all non-zero
elements of k. If dim U > 1 we can see similarly that for any v # 0 € U there is k, € k
such that va = (k,)v. Hence if v, w € U are linearly independent, we have

(v +w)a = va + wa = (ky)v + (kp)W = kpro(V + W)
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and the linear independence gives k, = ky1, = k. Thus there is k € k* such that a = ke.
It follows that for all eE(S) with e # 0, u(e) = k'e. By Equation (4.32), if x € S and
e € E(R,), we have

p(x) = k'ex = k'x.

This completely determine the congruence p on S. This equality has a nice geometric
interpretation. Note that S = 2.7 (V) is a vector space over k. Then the congruence
class p(x) can be identified with the projective point of x (or line joining x and 0 in S).

4.2.3 Primitive congruences on regular semigroups

In this subsection, to avoid repeating, by a primitive regular semigroup, we
mean a primitive regular semigroup with zero. Note that by Theorem 4.24,
primitive regular semigroup with out zero is completely simple. Therefore
a primitive regular semigroup with out zero will be referred to explicitly as
completely simple semigroup. Also, recall from § Subsection 2.1.1 that, given
a semigroup S, we write S = S to mean that the semigroup S has zero 0.

A congruence p on a semigroup S is called a primitive congruence if S/p is
a primitive semigroup; p is a completely simple congruence if S/p is completely
simple. Recall § Subsection 2.7.2 that a congruence p on a semigroup S = S” is
O-restricted if p(0) = {0}.

We say that a semigroup S = SU is categorical at 0 if S satisfy the condition

xyz=0=either xy=0 or yz=0 (4.12a)

forx,y,z € S. Anideal ] in S (not necessarily having 0) is called a categorical
ideal if I satisfies the condition

xyz€l = either xyel or yzel (4.12b)

for x,y,z € S. Itis clear that I is a categorical ideal in S if and only if the Rees
quotient S/I is categorical at 0.

Recall that given a surjective homomorphism f : S — T there is a V-
homomorphism f* : £5 — £r and a lattice isomorphism f. : £r — [«kf, 1]
(defined by Equation (2.19)) such that f. o f* = 1¢, (see Proposition 2.8). We
use these in the following statement.

TueoREM 4.38. Let o be a primitive congruence on the semigroup S. Then I = ¢(0) is
a categorical ideal in S and q(o) is a O-restricted primitive congruence on S/I, where
gr : S — S/I is the quotient homomorphism. Conversely if I is a categorical ideal
in S and p is a O-restricted primitive congruence on S/1, then (q1).(p) is a primitive
congruence on S such that (qr).(p)(0) = L

Proof. Let ¢ = o* : S — S/o = T be the quotient homomorphism. If ¢ is
a primitive congruence, then T is a primitive semigroup. Let u € S and

congruencelprimitive —
semigroup!-, categorical at 0
ideal!categorical —
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a € 1 = 0(0). Then (ua)p = upap = ud0 = 0 since a¢p = o(0) is the zero of
S/o. Hence ua € 0(0) = I. Similarly au € I and so [ is an ideal. Suppose
that a,b,c € S and ab,bc ¢ I. Then abp = apb¢ is a non-zero element of a
primitive semigroup and so, by Theorem 4.24, a¢p and b¢ are elements of the
non-zero Z-class of a completely 0-simple semigroup whose product is not
zero. Hence by Theorem 2.66(1) and Equation (2.48a), the trace product ap * b
exists. Similarly, trace product b¢ * c¢ also exists and so the trace product
ad = bpedp = (abc)p exists and is not zero. Therefore abc ¢ I. Hence I is a
categorical ideal. Let p = gj(0). Since the Rees congruence (§ Subsection 2.2.1)
pr € o, by Proposition 2.8(c), S/o and (S/I)/p are isomorphic and so, p is a
primitive congruence on S/I. To show that p is O-restricted, let u € p(0) and let
a € S with ag; = u. Again by Proposition 2.8(c), a = 0 since uo"* = 0. Thus
a € I and so u = aq; = 0. Therefore p is O-restricted.

Conversely, let I be a categorical ideal and p be a O-restricted primitive
congruence on S/I. If o = qrn(p), then, it follows from Proposition 2.8(c) as
above, that ¢ is a primitive congruence on S with ¢(0) = I. O

The theorem above shows that primitive congruences on a semigroups are
determined by categoricalideals in S and O-restricted primitive congruences on
semigroups that are categorical at 0. We proceed to study the later congruences
on regular semigroups.

Recall from Proposition 2.7(a) that, given any relation p on a semigroup
S, p9 denotes the smallest congruence containing p (that is, the congruence
generated by the relation p).

Turorem 4.39. Let S = S° be a reqular semigroup which is categorical at 0 and let
B(S) = {(x,y) : for someze S—{0}, z<x, z<ylU{(0,0)} (4.13)

and let

Bo(S) = B(9)©.

Then Bo(S) is the finest O-restricted primitive congruence on S.

Proof. For brevity, let § = B(S) and By = fo(S). We first show that fy is a 0-
restricted primitive congruence on S. Let ¢ = pf : S — S/By = T be the quotient
homomorphism. Suppose that ¥ < 7, X # 0 in T. Then by Theorem 4.20, for
each y € S with y¢ = 7 we can find x < y, x # 0 such that x¢ = . Then
(x,y) € Band so, ¥ = x¢p = y¢ = . Hence T is a primitive semigroup. To show
that fy is O-restricted, we must show that, if (1, 0) € By, then u = 0. Now, since
B is reflexive and symmetric, By = B© is the transitive closure of the smallest
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compatible relation
B° = {(axb,ayb) :a,b € S' and (x,y) € p}. (4.14)

containing  (see the proof of Proposition 2.7). Hence (1, 0) € fp implies there
is a finite sequence uy = u,uy,...,u, = 0 in S such that (u;_1,u;) € ¢ for
i =1,...,n. Hence, by induction, the desired conclusion will follow if we
show that (1, 0) € ¢ implies u = 0. By Equation (4.14), if (4, 0) € ¢, then there
exist (x,y) € pand a,b € S such that u = axb and 0 = ayb. If (x, y) = (0,0), then
clearly, u = 0. Otherwise, there is z # 0 such that z < x and z < y. Since S is
categorical at 0, ayb = 0 implies either ay = 0 or yb = 0. Assume that ay = 0.
Since z < x, z < y, by Proposition 4.3, there exists f, g € E(L;) withz = xf = yg.
Then axf = az = ayg = 0 and since S is categorical at 0 and xf = z # 0, we have
ax = 0. Therefore u = axb = 0. If yb = 0, we can similarly show that u = 0. We
have thus shown that f is a 0-restricted primitive congruence on S.

Now let ¢ be any 0-restricted primitive congruence on S and let (x, y) € f.
If (x, ) = (0,0), clearly (x, y) € 0. Otherwise thereisz # 0 withz < xandz < .
Lety = o' 1S — S/ be the quotient homomorphism. Since o is O-restricted,
zyp # 0, zip < xp and zi < yi. Since S/o is primitive, this implies xyy = y1p and
so (x, y) € 0. Hence § C 0. Since fy is the smallest congruence containing , we
have, By C 0. O

Many authors have noted that the relation 5(S) is the finest 0-restricted
primitive congruence on an inverse semigroup which is categorical at 0 (see
for example, Hall [1968], McAlister [1968]). This is not true for arbitrary regular
semigroups. We show below that under a mild restriction on the biordered set
E(S) of aregular semigroup S = S which is categorical at 0, f(S) is a congruence
and the classical result mentioned above follows as a consequence.

In what follows by a directed subset of a partially ordered set X we mean a
subset Y of X with the property that for all x,y € Y, thereis z € Y withz < x
and z < y. A directed subset of a semigroup is a subset which is directed with
respect to the natural partial order. Again, for brevity, we write 8 for f(S) and
Bo for Bo(S), if there is no ambiguity.

ProrosrtioN 4.40. For a reqular semigroup S = S° which is categorical at 0, the
following statements are equivalent.

(a) For every e € E(S) — {0}, w(e) — {0} is directed.
(b) B is an equivalence relation.

(c) B = Po.

directed subset
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Proof. (a) = (b): Clearly p is reflexive and symmetric. To prove transitivity
assume that (x,y),(y,z) € B. Then either x = y = z = 0 or none of them
is 0. In the former case, clearly, (x,z) € B. In the latter case, there exist
up, Uy € S — {0} with u; < x, u1 <y, up < yand up <z Choose f € E(R,).
Then, by Proposition 4.3, there exist ¢; € E(R,,) N w(f) such that u; = e;y. Since
ei #ui #0,e #0fori=1,2. By (a), there exists g € w(f) — {0} such that g w e;,
i=1,2. Then g Z gy # 0 and gy = ge1y = guy < uq < x. Similarly, gy < up < z.
Hence by the definition of §, (x,z) € .

(b) = (c): We must show that g is compatible. Let x, y,c € S with x < y and
x # 0. Choose i € Ay) and let f = yy’, f* = y'y. Then by Proposition 4.3(2),
there is e € w(f) with x Z e and x = ey = ye’ wheree’ = yey w f'. If cy =0,
then cx = cfx = (cy)y’x = 0. Conversely, if cx = 0, then cye’ = 0. Since S is
categorical at 0 and ye’ = x # 0, cy = 0. Therefore when either cx or cy is zero,
the other is zero and (cx, cy) € . Next assume that cx # 0 # cy. Let g € E(L,),
he S(g, f)and k € #(g,e). Then, by (Theorem 3.7), cy = (ch) = (hy) and it is
easy to see that i’ = y’hy € E(L.y) N w(f’). Similarly, K = y’ky € E(Lex) N w(f").
By Equation (4.13), every non-zero idempotent in w(f”) is f-related to f’. Since
e,k € w(f')— {0}, we have ¢’h’/gk’ by (b). It follows from Equation (4.13)
that the set F = w(e’) Nw(h’) N w(k’) — {0} # 0. Choose t € F. Thenz = cyt < cy
and z = cyt = cye’'t = cxt < cx by Proposition 4.3(3). Sincez £ k # 0,z # 0.
Hence by Equation (4.13), (cx, cy) € B.

Let (u,v) € fand c € S. If u = v = 0 then clearly (cu, cv) € . Otherwise,
there is z # 0 such that z < # and z < v. Then by the above (cz, cu), (cz, cv) € B.
Since f§ is an equivalence relation we have (cu, cv) € f. In a similar way, we can
prove that (uc, vc) € . Hence f§ is a congruence and so 8 = fo.

(c) = (@): Letee€ E(S)—{0}, f,g € w(e)—{0}. Then we have (f,e),(g,¢) € f and
since f8 is a congruence (f, g) € . Then by Equation (4.13), there is z € S such
thatz # 0,z < f and z < g. Then by Proposition 4.7(a), z € E(S). This implies
that w(e) — {0} is directed. O

The fact that on an inverse semigroup S = S° which is categorical at 0, § is
the finest O-restricted primitive congruence is a consequence of the following
more general result.

CoroLLARY 4.41. Let S = S° be a locally inverse semigroup which is categorical at 0.
Then B is the finest O-restricted primitive congruence on S. O

Proof. Lete € E(S)—{0}, f,g € w(e)—{0}. Since S is categoricalat0,0 = fg = feg
implies either fe = f = 0 or eg = g = 0. Hence fg # 0. Since w(e) is a
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semilattice, fg @ f and fg @ g. Hence w(e) is directed and the result follows
from the theorem above. O

Theorem 4.39 applies to regular semigroups S = S° which is categorical
at 0. For regular semigroups not necessarily having 0, we have the following
weaker form of this result.

THEOREM 4.42. Let I be a categorical ideal in the reqular semigroup S and let q; : S —
S/I denote the quotient map. Let

Bi(S) = (q1)- (Bo(S/D)) (4.15)

where (q1). is the lattice isomorphism of Equation (2.19) determined by q;. Then
Br = Bi(S) is the finest primitive congruence on S such that p1(0) = L

Proof. By Theorem 4.38, f; is a primitive congruence on S such that $;(0) =
I. Let o be any other primitive congruence on S with ¢(0) = I. Then by
Theorem 4.38, 0’ = (q1)*(0) is a O-restricted primitive congruence on T = S5/
and so Bo(T) C o’. Hence, using Proposition 2.8(b), we have

Br = (1)« (Bo(T)) S (q1)-(0")) = 0. ]

Finally, we apply Theorem 4.39 to obtain the finest completely simple
congruence on a regular semigroup S. Notice that the congruence p below is
trivial if S has 0.

THEOREM 4.43. Let S be a reqular semigroup with out 0. Let
p=pS)={(x,y) €SXS:z2<x,z<y forsome z€S}. (4.16)

Then p(S)\ is the finest congruence on S such that S/p(S) is completely simple.
p(S) = p(S)© if and only if every w-ideal in E(S) is directed. In particular, for a
locally inverse semigroup S with out 0, we have p(S) = p(S)®.

Proof. Since S does not have 0, S is a regular semigroup which is categorical at
0 and so By(S°) is the finest O-restricted primitive congruence on S°. Then T =
S%/Bo(SP) is a primitive regular semigroup whose non-zero elements T’ form
a subsemigroup. Now the natural partial order on T” is the restriction of the
natural partial order of T to T” by Corollary 4.4. Since T is primitive, it follows
that T” is a primitive semigroup with out 0 and hence, by Theorem 4.24, T" is
completely simple. Now p = p(S) is the restriction of the relation (S°) defined
by Equation (4.13) to S. Since o(S°) is O-restricted, it is clear that p’ = p© is the
restriction of fo(S°) to Sand T” = S/p’. Hence p’ is a congruence on S such that
S/p’ is completely simple. Moreover if ¢ is any congruence on S such that S/o
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is completely simple, then 0" = cU{(0, 0)} is a O-restricted primitive congruence
on S° and hence By(S°) C o’. Hence p’ C 0. The remaining statements readily
follow from Proposition 4.40 and Corollary 4.41. O

If p is any group congruence on a regular semigroup S, then the identity
p-class contain E(S). Therefore intersection of any set of group congruences
on S is a group congruence. Therefore S has the finest group congruence
kY (S) = ky and let

y(S): S — G(S) = S/xy (4.17)

denote the quotient homomorphism. The minimality of the congruence xy
implies that the homomorphism y(S) = y has the following universal prop-
erty: Given any homomorphism 0 : S — H to a group H, there is a unique
homomorphism 0 : G(S) — H such that the following diagram commute:

H (4.18)

S 3 G(S)

This is an immediate consequence of the third isomorphism theorem (see
Theorem 2.5). The homomorphism y(S) will be called the universal group
homomorphism on S. Furthermore, since by Theorem 2.43, homomorphic
image of an inverse semigroup is inverse and since a completely simple inverse
semigroup is a group, the relation p(S) on an inverse semigroup S is the finest
group congruence on S. Thus, from the remarks above and properties of
natural partial order on inverse semigroups (Theorem 4.24), we have:

ProrosiTioN 4.44. Every regular semigroup S has the finest group congruence xy.
Let y(S) : S — G(S) be the quotient homomorphism. Then y = y(S) has the universal
property that given any homomorphism 6 : S — H to a group H there is a unique
homomorphism 0 : G(S) — H making the diagram 4.18 commute. Further, if S is an
inverse semigroup then

ky(S) =p(S) ={(x,y) €SXS:ex=ey forsome ee€E(S)) (4.19)
where p(S) is the relation defined by Equation (4.16). O

Example 4.13: We give an example to show that a regular semigroup S may not have
the finest primitive congruence; in particular, the congruence f is not the smallest. For
let E = {e, f, g} be the semilattice with ef = g and F = E° = {e, f, g,0} be the semilattice
obtained by adjoining a zero to E. Then = f is the relation with the partition {E, {0}}.
Also I = {g,0} is a categorical ideal in F and the Rees congruence p; is a primitive
congruence on F (so that p; = ;). Clearly, in this case, fy and p; are not comparable.
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4.3 DECOMPOSITIONS OF SEMIGROUPS

Decomposing a given semigroup S into semigroups of knowm type, say T, is
very useful in getting an insight into the structure of the semigroup S. Oftenitis
also an effective method of determining the structure of a semigroup S relative
to the structure of semigroups of type T. For example, if S is completely simple,
then by Theorem 2.65 S has a decomposition into groups and by Corollary 2.80,
it structure is determined relative to groups. In this section we consider two
such decompositions: the band decomposition and semilattice decomposition of
semigroups.

4.3.1 Band and semilattice decompositions

Let S be a semigroup and let
B={S,:a€B} where S,NSg=0 if a#p (4.20)

be a decomposition of S into subsets S, (see Equation (1.9b)). It is called
a band decomposition if and only if 8 is the decomposition associated with a
band congruence Equation (1.9b); that is, a congruence p such that B = S/pis a
band (idempotent semigroup). If this is the case it is clear that the partition
class S, is a subsemigtoup of S for each a € B. Similarly, the decomposition
Y is a semilattice decomposition if it is the decomposition associated with a
semilattice congruence. In general, we shall say that S is a band [semilattice] B
of semigroups S, if there is a congruence o on S such that S/o is isomorphic to
B and for each a € B, the o-class

a1t ={xeS:x* =a}
is isomorphic to S,.

TueEOREM 4.45. The decomposition B = {S, : a € B} of the semigroup S is a band
decomposition if and only if

(A) S, is a subsemigroup of S for each o € B;
(B) for a, B € B, there is a unique y € B such that
S(){Sﬁ g S)/.

Proof. Let B satisfy the given conditions (A) and (B). Since the subsets of S in
M are pairwiase disjoint, the relation

p=pg={(xy):xy€Sy acB}

decomposition!band —
decomposition!semilattice —
congruence!band —
congruence!semilattice —
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is an equivalence relation on S. Let (x,y) € p and z € S. Then there exists
a,B € Bsuch thatx,y € S, and z € Sg. By (B), there exists y € Bwithxz,yz€ S,
which implies that (xz, yz) € p. Similarly, (zx, zy) € p. Hence p is a congruence
on S. The condition (A) implies that every elementin B = 5/p is anidempotent.
Therefore B is a band and so 8 is a band decomposition. Conversely, if 8 is
a band decomposition, and if p = pg is the associated band congruence on
S, then every element in B = S/p is an idempotent and so (A) holds. Given
a,B € B, let y = ap. Since ¢ = p* : S — B is a homomorphism, for any x € S,
and y € Sg,
ap = (D)) = (x)eb.

Since xy € S, = S,, we have
SD,Sﬁ c Saﬁ = Sy.
Hence (B) also holds. O

Notice that the condition (B) implies that for a, € B, thereis y,6 € B such
that
S(XSﬁ - Sy and Sﬁsa C Ss.

It is clear that the band B will be commutative if and only if we always have
y = 0. Since a semilattice is a commutative band, we have the following:

CoroLLARY 4.46. The decomposition B of S is a semilattice decomposition if and only
if B satisfies condition (A) of the theorem above and the following:

(C) for a, B € B, there is a unique y € B such that
SaSﬁ - SV and SﬁSa - Sy.

It may be noted that a decomposition of a semigroup S into subsemigroups
need not be a band decomposition (see Example 4.14 below). Also, any semi-
group has at least one band decomposition since the universal congruence
is trivially a band congruence. If {p;} is any set of band congruences on S,
then 0 = N{p;} is a band congruence. For, if x € S, then o(x) = Ni{pi(x)} is a
subsemigroup of S since each p;(x) is a subsemigroup. It follows that every
element of S/o is an idempotent and so, ¢ is a band congruence. In particular
every semigroup has a finest band decomposition. Similarly, given any set of
semilattice congruences {o;} on S, then o = N;{o;} is a semilattice congruence
on S. Forif x, y € S, then xy, yx € o;(xy) for every i since each o; is a semilattice
congruence. Hence

xy, yx € Ni{oi(xy)} = a(xy)
and so, ¢ is a semilattice congruence. It follows that every semigroup has the
finest semilattice decomposition. Thus we have:
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THEOREM 4.47. Every semigroup S has the finest band decomposition as well as the
finest semilattice decomposition. O

The theorem above gives the existance of the finest band decomposition
and the finest semilattice decomposition of a semigroup. Note that these may
turn out to be trivial; thus for example, the finest semilattice decomposition of a
simple semigroup is trivial. However, in particular cases, such decompositions
turn out to be very useful— see Example 4.15 below. Next section discuss
another important example.

Example 4.14: Let S = Z, U {e, f} where Z, = {1,u} is the group of order 2. Define
multiplication in S so that 1 is the identity, e and f are %Z-related idempotents and

eu=f, fu=e ue=eand uf = f.

Then S can be shown to be a semigroup in which every J#-class is a group and so S
has a decomposition into groups. However,

Zp - He = e, f}

and so does not satisfy the condition (B) of Theorem 4.45. Hence the decomposition of
S into groups does not give a band of groups.

Example 4.15: Let S be a commutative semigroup. Given a,b € S, we shall say that a
divides b, written a | b, if ax = b for some x € S'. Define the relation 7 on S by:

xny < forsomem,n>1, al|b™, bla" (4.21)

Clearly, 7 is a reflexive and transitive relation. If a | " and b | ¢”, then ax = b and
by = ¢ for x,y € S! and so, axy™ = (by)" = ¢" and so, a | ¢"P. It follows that 1
is an equivalence relation. Further, if ax = b", then for any z € S, (az)u = (bz2)™ if
u = xz"1. Hence if (4,b) € 1, then for all z € S!, (az, bz) € n; thus 7 is a congruence on S.
Evidently a 17 2% forany a € S. Since S is commutative, this implies that 1) is a semilattice
congruence on S. If p is any semilattice congruence on S, and if a | b", then we must
have bp* = (b")p"* < ap®. It follows that if (a,b) € 7, then (4,b) € p. Therefore 7 is the
smallest semilattice congruence on S; consequently, S/7 is the maximum semilattice
homomorphic image of S.

A commutative semigroup S is said to be archimedean if for any a,b € S, there ex-
ists integers m,n > 1 such that a | b and b | a"; that is the congruence 1 on S is the
universal congruence. Thus the congruence 1 on S gives a decomposition of S into
maximal archimedeam subsemigroups. These subsemigroups are called archimedean
components of S. Therefore any commutative semigroup S has a unique decompo-
sition into archimedean components and this decomposition is the finest semilattice
congruence on S.

4.3.2 Completely regular semigroups

A semigroup S is said to be completely reqular if S is a union of groups. If S
is completely regular, then each x € S is contained in a subgroup of S and
so Hy is a group. Therefore in a completely regular semigroup every .#-
class of S is a group and it is a disjoint union of groups. Thus a completely

a | b: adivides b
semigrouplarchimedean —
semigroup!completely reqular —
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regular semigroup has a decomposition into groups. In particular, if e and
f are Z-related idempotents in S, then both L, N Ry and R, N Ly contains
idempotents. Hence it follows from the definition of solid biordered sets (see
Subsection 3.4.2) that the biordered set of a completely regular semigroup S is
solid.

Moreover, it is clear that every completely regular S semigroup is regular;
in fact, every x € S has a unique group inverse x* (see Equation (2.40)). The
converse also holds; that is, a semigroup S is completely regular if every
element x € S has a group inverse in the sense of Subsection 2.6.2. For
convenience of later reference, we summerise the discussion as:

ProrosrTioN 4.48. The following statements are equivalent for a semigroup S.

(a) S is completely regular;

(b) every H-class of S is a group;

(c) S is a disjoint union of groups;

(d) every x € S has a group inverse.
In particular, when S is completely regular, E(S) is a solid biordered set. O

The equivalent conditions above are simple consequences of definition of

completely regular semigroups and they do not yield any significant insight
into the structure of these semigroups. The next theorem provide some illu-

mination in this direction. Recall that J = Js (see Subsection 2.1.1) denote the
partially ordered set of all principal ideals of S under inclusion.

TueoreM 4.49. The following statements concerning a semigroup S are mutually
equivalent.

(a) S is completely reqular.
(b) S is completely semisimple and every Z-class of S is a subsemigroup of S.
(c) S is completely semisimple and the Green’s relation 9 is a congruence.

(d) The partially ordered set J is a semilattice with respect to intersection and S is
a semilattice J of completely simple semigroups.

Proof. (a) < (b): Suppose that D is a Z-class of Sand a,b € D. Then L, N Ry
is an #¢-class in S. So if (a) holds, by Proposition 4.48(b), L, N R, contains
an idempotent. Therefore, by Equation (2.48a), the trace product a + b = ab
exists. This implies that ab € D and so, D is a subsemigroup of S. Suppose
thate, f € E(D)and e w f. Then by (a), L, N Ry contains an idempotent g. Since
ew f,ew" g;alsoe £ g. Hence e w g which implies ¢ = g. Similarly, from
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eZ fandew f, wehavee = f. This proves by Lemma 2.86 that S satisfies the
condition My and so, by Theorem 2.87 S is completely semisimple. Conversely
if (b) holds, then by Theorem 2.87 each Z-class D is a regular semigroup in
which every element is minimal with respect to the natural partial order and
so D is a primitive regular semigroup with out 0. Hence, by Theorem 4.24, D
is completely simple and so, S satisfies (a).

(a) & (c): Suppose that S satisfies (a). By (b), S is completely semisimple
and so, to prove (c), it is sufficient to show that & is a congruence. Leta Z b,
ce€ Sand h € (e f) where e € E(L;) and f € E(R;). Then by Theorem 3.7,
h,ch,ha € Dy, ch < c and ha < a. Then by Proposition 4.12, there exists b; € S
with ha 2 b<b. By (a), the J#-class Ly, N Ry, contains an idempotent, say k. If
g € E(Ry), then, by Proposition 4.3(2), there exists g’ € E(Rp,) such that g’ @ g
and b; = ¢’b. Hence k @" g. Similarly, k «' e. Therefore k € M(e, g) and so,
it follows from Theorem 3.7 that ckb 2 k & cb. Since ckb = (ckc’)(cb) for any
¢’ € Hc), we have

J(ca) = J(ckb) C J(cb). Similarly, J(cb) C J(ca).

Hence ca _# cb. Since S is completely semisimple, ca 2 cb by Corollary 2.88.
It can be shown, in a similar way, that ac 2 bc. Therefore & is a congruence on
S. Conversely if S satisfies (c) the fact that S is completely semisimple implies
that the congruence ¥ satisfies the condition

x<y and xZy=x=y.

So, by Theorem 4.22, every Z-class of S is a completely simiple subsemigroup
of S. Thus S satisfies (a).

(a) & (d): Trivially (d) = (a). Suppose that (a) holds. Then by (c)
is a congruence on S. Now let x,y € S and hh € (e, f) where ¢ € E(Ly) and
f € E(Ry). By (a), there is an idempotent k € Ry, N Ly,,. Since xh < x and
hy < y, as in the last paragraph, we see that k € M(f’,e’) where ¢’ € E(R,) and
f’ € E(Ly). Then again by Theorem 3.7, we have

J(xy) = J(ykx) € J(yx). Similarly, J(yx) C J(xy).

Thus xy _# yx and by (b), xy 2 yx. Hence by Theorem 4.45, 7 is a semilattice
congruence on S. Since S is completely semisimple, by Corollary 2.88 the map
¢ : Dy — J(x)is a bijection of S/ & onto J (see Subsection 2.6.1). To prove (d), it
is sufficient to show that ¢ is an order isomorphism. If D, < D, in S/ &, then
D, = DD, and since the map a = D, is a homomorphism, we have D, = Dy,,.



Z(S):center of S
semigrouplcenter of the —

276 4. REGULAR SEMIGROUPS

Hence J(x) = J(xy) € J(y). Conversely, if J(x) € J(y), then x = uyv for u,v € S
and so,
D,=D,D,D, <D,

in the semilattice S/ Z. This proves (d) O

Recall that a semigroup S is a rectangular band if and only if it is a com-
pletely simple semigroup over the trivial group (see Example Subsection 2.1.3).
Therefore as a corollary of the theorem above, we have:

CoRroLLARY 4.50. A semigroup B is a band if and only if it is a semilattice of rectangular
bands.

Similarly, from the observation that a completely simple inverse semigroup
is a group, we obtain:

CoroLLARY 4.51. A semigroup S is a semilattice of groups if and only if S is a
completely regular, inverse semigroup.

The structure of completely simple semigroups are known by Ress Theo-
rem (see Corollary 2.80) relative to groups. By Theorem 4.49(d), a completely
regular semigroup is a semilattice Y of completely simple semigroups S,,
a € Y. This, therefore, enables us to obtain an isight into the structure of
completely regular semigroups relative to groups and semilattices. However,
given a semilattice Y and completely simple semigroups {S, : a € Y}, it is
possible to have more than one binary operation on the set S = U{S,, : a € Y}
that make S, a completely regular semigroup that indues the given semilattice
decomposition on S. Thus Theorem 4.49 does not determine the structure
of completely regular semigroups relative to groups and semilattices. Note
that, by Corollary 4.50, a structure theorem for completely regular semigroups
must yield, as a special case, a structure theorem for bands. However, most
of the existing structure theorems valid for arbitrary completely regular semi-
groups are quite complicated and does not provide any more insight into their
structure than can be obtained from the theorem above.

On the other hand, quite illuminating strutheorems for some subclasses
of the class of completely regular semigroups exists. The classical theorem
Clifford [1941] due to Clifford on the structure of semilattices of groups is an
especially simple example of this type. We need the following lemma.

LemMa 4.52. Let S be a semilattice Y of groups G, and let E = E(S). Then E is a
semilattice isomorphic to Y. Moreover, u(S) =2 and E C Z(S) where

Z(S)={z€S:zs=szforall s € S}

is the center of S.
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Proof. Since S is a semilattice of groups, by Theorem 4.49 and Corollary 4.51,
each Z-class of S is a completely simple inverse semigroup and hence a group.
Therefore =4¢ and so, by Theorem 4.49(c), ¢ is a congruence on S. Hence,
by Proposition 3.46, u(S) ==2.

Since S is an inverse semigroup, by Theorem 2.44, E is a commutative
subsenigroup of S and so ¢ =" is a homomorphism of E onto Y; since Z is
idempotent separating, ¢ is an isomorphism of E onto Y.

To show that E C Z(S),letg € Eanda € S. Thena € H¢for some f € E. Since
E is commutative, e = gf = fg w f and since u(S) =7, by Equation (4.10),
ga=gfa=ea=ae=afg=ag. Therefore g € Z(S). O

Recall Subsection 1.3.1 that any partially ordered set can be regarded as a
category having utmost one morphism between any two vertices. In particular
a semilattice Y is a category. If this is the case, the category Y°P is also a
semilattice; in fact, an upper semilattice if Y is a lover semilattice . Also,
if 0 : Y — Y’ is any semilattice homomorphism, then 0 is a functor of the
category (preorder) Y to Y’ (see Example Subsection 2.1.3). We use these in
the following statement.

TuEOREM 4.53. Let Y be a semilattice and let ® : Y°P — Grp be a functor from Y°P
to the category Grp of groups. Let

S={{a,a):ael, acd(a). (4.22a)
Define product in S by

(o, a)(B,b) = (aB,c) where ¢ = (aD(a, ap)) (bD(B, ap)). (4.22b)

This defines a single valued binary operation in S and S with this product is a semigroup
S(®) which is a semilattice Y of groups O(a).
Conwersely, let S be a semilattice of groups and E = E(S). Then

Ds(e)=H, forecE,and Dgle, f):am fa
forall f < eanda € H,, defines a functor ®g of E°P to Grp such that the map
(s:am (e,a) acH,
is an isomorphism of the semigroup S onto S(Ps).
Proof. Since Y is a semilattice, af is a well-defined element of Y foralla, f € Y.
Since ap < a, (a, ap) is a unique morphism of the calegory Y°P from a to af.
Since @ is a functor of Y°P to Grp, ®(a, af) : P(a) — P(af) is a homomorphism

of groups. Hence for all a € ®(a), ad(a, ap) is an element of ®(ap). Similarly
bd(B, ap) is an element of P(af). Since D(ap) is a group, it follows that

¢ = (a®(a, ap)) (bD(B, ap))
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is a unique element in @(ap) for all a € ®(a) and b € P(B). Hence Equa-
tion (4.22b) gives a well-defined binary operation in the set S defined by
Equation (4.22a). Let (@, a), (B,b) and (y, ¢) be in S. Then

(af)y =a(py) <ap<a and since @ is a functor,
ad(a, afy) = ad(a, af)D(ap, afy)

Using Equation (4.22b) and results similar to those above, we obtain

(@, a)(B, D)) (y, c) = (aPy, d)

where
d = (((a, a)(B, b)) D(aB, apy)) (v, )P(y, aBy))

= ((a®(a, ap)) (bD(B, ap))) P(ap, afy) (cD(y, aBy))

= ((a®(a, ap)D(ap, apy)) (bP(B, ap)P(ap, apy))) (cP(y, apy))

= ((a®(a, apy)) (bD(B, apy))) (cP(y, aBy)) -
Similarly if

d’ = (a®(a, apy)) (bP(B, apy)) (cP(y, aBy)))

we have

(, ) (B, D)y, €)) = (aPy, d’).

Since the binary operation in ®(afy) is associative, it follows that d = d’.
Therefore the binary operation in S defined by Equation (4.22b) is associative
and so, S is a semigroup. Also, it is clear from Equation (4.22b) that the
projection 7 : (a,4) = « is a homomorphism of the semigroup S onto the
semilattice i/ and for each a € Y, an™! = {a} X ®(a) which is isomorphic to the
group ®(«). Therefore S is a semilattice Y of groups ®(a).

Conversely, let S be a semilattice of groups. Since S is an inverse semigroup
(by Corollary 4.51), E = E(S) is a semilattice and by Lemma 4.52, E is contained
in the center of S. Hence fore, f € E with e < f, the map

Os(f,e):ar>ea forall aeHy
is a homomorphism of Hy into H,. It is clear that
Ds(e,e) =1y, forall eeE; Ds(g, f) o Ds(f,e) = Ps(g,e) forall e<f<y.
Hence the assignments

ROs:e— H, (f,e) Ds(f,e) for e<f,
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is a a functor ®g : E°? — Grp. Let T = S(Ps) be the semigroup constructed
by Equations (4.22a) and (4.22b) above. By the first part T is a semilattice of
groups. Let (e,a),(f,b) € T. Then by Equation (4.22b) and the definition of ®g
we get

(e,a)(f,b) = (ef, )

where

¢ = (ads(e ef)) (bDs(f, ef)) by Equation (4.22b)
= (efa)(efb) = (ef)ab ef € E.

Hence it follows that the T = S(®s) is a semilattice of groups isomorphic to S.
By Equation (4.22a), T = {(e,a) : e € E a € H,}. Cearly,a  (e,a) (a € H,) is a
bijection of S onto T which by the above, is an isomorphism of Sonto T. O

Remark 4.5: It is easy to see that the set of all contravariant group-valued func-
tors on semilattices form a subcategory 2)g C [, Grp] of all group-valued small
functors (see § Subsection 1.2.2). The theorem above shows that each functor
¢ € v g determines a semilattice of groups 5(¢). It can be shown that each
morphism (transformation) t : ¢1 — ¢, determine a unique homomorphism
5(t) : S(¢1) = S(¢p2) and viceversa. In fact the assignments

S:p - S(P);, t:>5(t)

is a category equivalence S of the category of contravariant group valued
functors on semilattices on to the category of semilattice of groups.






CHAPTER 5

Inverse semigroups

Recall, from Subsection 2.6.2, that an inverse semigroup is a regular semigroup
such that every x € S has exactly one inverse. The study of this class of
semigroups was started with the publication of the papers Vagner [1953a,b]
Vagner. Later Preston [Preston, 1954a,b, see] also discovered this class of
semigroups, as well as the now famous Vagner - Preston representation of
an inverse semigroup, independently. Since then large number of important
contributions have appeared about inverse semigroups and it has now become
an important branch of both the theory of semigroups as well as the theory of
groupoids. We do not propose to give a systematic eccount of the theory of
inverse semigroups here; the reader may refer to, [for example, Munn, 1970,
?] for such a treatment. However, given the fact that, most of the present
day structure theory for arbitrary regular semigroups is a stright-forward
generalization of the structure theory for inverse semigroups, a discussion of
the later will provide a good model for the more general theory to be given in
the next chapter.

In the first section we define the Schein’s concept of an inductive groupoid
[see Schein, 1966] and show that its category is equivalent to the category of
inverse semigroups. Part of our motivation here is the fact that Schein’s theory
of inductive groupoids provide a simple introduction to the more general
concept of inductive groupoids which will be considered in the next chapter.
Inductive groupoids affords a neat separation of the global and local structure
of an inverse semigroup. This is of considerable help in formulating results
about of regular semigroups and proving them. The remaining part of the
chapter discusses some illustration of the tenique of inductive groupoids.

Recall that Theorem 2.44 provides some equivalent characterizations of
inverse semigroups. In particular, if ¢ : S — T is any homomorphism, Im ¢ =
¢(S) is an inverse subsemigroup of T. Since inclusion clearly provide a choice
of subobjects for the category J& of inverse semigroups, it follows that the
category J& has images.

281
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Throughout this chapter, unless otherwise explicitly specified, S will de-
note an inverse semigroup and E = E(S), its semilattice (biordered set) of
idempotents.

5.1 INDUCTIVE GROUPOIDS OF INVERSE SEMIGROUPS

Recall from Section 1.4 that a groupoid is a small category in which every
morphism is an isomorphism. Here we shall discuss B. M. Schein’s theory of
inductive groupoids Schein [1966]. Schein’s far reaching contribution showed
that the theory of inverse semigroup is equivalent to the theory of ordered
groupoids (see Subsection 1.4.2) that satisfyies the condition that the vertex set
is a semilattice under the induced order.

Suppose that S(+) is the trace of an inverse semigroup S (see Subsec-
tion 2.7.3). By Equation (2.48a) the trace product x + y of x,y € S exists if
and only if L, N Ry contains an idempotent. Since S is inverse, by Theo-
rem 2.44, this is true if and only if x'x = f, = ¢, = yy~'. Also, if e € E and
x € S the trace product e * x exists if and only if e = e, and x * e exists if and
only if e = f,. We can verify the following (see axioms for categories on page
9 of MacLane [1971]):

Tueorem 5.1. Let S be an inverse semigroup. Then the trace S(+) is a groupoid
with objects (identities) E(S), morphism set S with composition as the trace product.
Moreover, the natural partial order on S gives a partial order on this groupoid and

G(S) = (5(), )
is an ordered groupoid such that v G(S) = E(S) is a semilattice.
Proof. Since S is inverse, as noted above, the trace product x * y exists if and
only if the right identity f, of x is the same as the left identity e, of y. Also, in
this case, x * y = xy € Ry N L, by Theorem 2.34. Suppose that the pairs (x, y)

and (xy, z) are composable. Then L, N R, contain an idempotent, say, e and
Ly, N R; contain the idempotent g. Since

z2RgLxy Ly and x LeRyxyz

it follows that the pairs (y, z) and (x, yz) are composable. It follows that S(+) is
a category. Moreover, for any x € 5, we have

x+x '=xx'=e, and x 'xx =fy

which shows that every morphism in S(+) is an isomorphism. Hence 5(+) is a
groupoid.
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We now verify that G(S) satisfies the axioms of Definition 1.6. Let x;, y; € S
with y; < x; and suppose that (x1, x2) and (y1, y2) are composable. Ife € L, NR,,
and g € L, N R,, are idempotents, using Proposition 4.3 and the fact that S is
inverse, we deduce that g < eand y; = x1g, y2 = gx2. Hence y1y, = x1 gxl’lxlxz.

Since

1

-1 B R
xX19x] < X1ex] = X1X] = ey,

it follows that y11» < x1xp. This proves axiom (1) of Definition 1.6. If y < x,
then e, < e, and y = e,x. Hence y™' = x7'¢, and so, axion (2) also hoplds.
To verify axiom (3) of Definition 1.6, let x|g = gx for all x € S and g < e,.
Since gx < x and ey = g, axiom (3) is verified. Therefore G(S) is an ordered

groupoid. O

We have noted that the set V = vG of vertices of an ordered groupoid G
is an order ideal under the induced partial order on V. Schein [1966] defined
an inductive groupoid as an ordered groupoid G in which the orderideal V of
vertices of G is a semilattice. The theorem above says that the trace of an
inverse semigroup S is an inductive groupoid G(S) in the sense above with
respect to the natural partial order. An order-preserving functor f : G — H
of inductive groupoids is called an inductive functor. Thus we have category
53& whose oblects are Schein’s inductive groupoids and morphisms are order
preserving functors. Thus SJ& is a full subcategory of the category D& of all
ordered groupoids. We observe that, even though, the partially ordered set of
morphisms of the inductive groupoid G(S) may not be a semilattice, the order
strcture is closely related to semilattices. In fact, as observed above, its vertex
set E is a semilattice and by Proposition 4.8, every principal order ideal is a
semilattice.

A more general concept of inductive groupoids will be introduced in the
next chapter. We shall see that these are essentially ordered groupoids whose
vertex sets carry the structure of biordered sets. This will reduce to Schein’s
inductive groupoids when the vertex biordered set is a semilattice so that the
former concept is a non-trivial generalization of Schein’s inductive groupoid.
To avoid ambiguity and for brevity we shall call Schein’s inductive groupoid
as Schein’s groupoid.

We proceed to prove the basic result due to Schein [1966] ([see also ?])
that every Schein’s groupoid G arises as the Schein’s groupoid G(S), defined
in Theorem 5.1, for a suitable inverse semigrp S. Here, as for our definition
of Schein’s groupoid, we formulate the result in terms of ordered groupoids.
In the following, except for those explicitly specified, we use notations of
Subsection 1.4.2.

groupoid!inductive —
functor!linductive —
groupoid!Schein’s —
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Tueorem 5.2. Let G be a Schein’s groupoid with the vertex-semilattice E. Suppose
that + denote the composition in G. For x,y € G let

xy=x.q)*(g.y) where g= fie, (6.1)

where x . g [g . yldenote the corestriction [restriction] of x [y] to g (see Definition 1.6
and Equation(1.62)). This defines a binary operation on the set of morphisms of G
making G an inverse semigroup S(G) such that

G (S(G)) =G. Moreover, we also have S (G(S)) = S.
for any inverse semigroup S.
Proof. Since g < fy, by Proposition 1.18, x . g is a unique element og G such
that f,; = g. Similarly, since g < e,, by Definition 1.6, 9.y < y and ¢,., = g.
Therefore (x. g,9.y) is a composable pair in G. Hence Equation (5.1) gives

a well-defined binary operation in the set G. We now show that the product
defined by Equation (5.1) is associative. Consider x, y,z € G. Then

(y)z= (-9 *(g-y) 1) = .2)
where g = fre, and ' = f; e,
=@ h ) (gey) W) * (0 .2)
by Proposition 1.19 where

" = ey
Since (g.y) . W' < g.y <y and e(.y.w = I’, by Proposition 1.18, the element
(9 -y) .l is the corestriction of y to h’. Hence (g.y) .1 =y.h" and so
(xy)z=(x h")x(yH)*(H .z2).
Similarly if h = fye., 9 = ey fr, theng . (y.h) =g .yand

x(yz) = (x.g) (g - ) * (9" «2)

where g” = fy.,. Now y.h" < g.y < yimplies i’ < f,. Since i’ < e, by
definition, we have i’ < h. Hence h"” = e,y < e,.;. Also since b’ < f,.,, by
Proposition 1.20, h”" = e, < €5y = g < fr. Therefore i’ < g’. It can be shown
dually that g” < I’. This implies that g’ < h”” by Proposition 1.20. Thus g’ = h”
and similarly, g =h’. Hence g’ .y = y ./, and

y)z=(x.g)*W.h)=( .2)
=g (g -y .2)
= x(yz).
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Therefore G is a semigroup S(G) with respect to the product defined by Equa-
tion (5.1). If (x,y) is a composable pair in G then f, = e, = g (say) and by
Equation (5.1),
Xy=@.g)*(g.y)=x+y.

Also exx = e, *x = x and xx! = x*x7! = ¢,. Hence ey #Z x in S(G). Similarly
fr Z xin S(G). If e, f € vG it is easy to see that the product ef defined by
Equation (5.1) coincides with their product in the semilattice vG. Therefore
5(G) is an inverse semigroup with E = vG as the semilattice of idempotents.
The arguement above also implies that (x, ) is composable in G if and only if
the trace product of x and y exists in S(G). Furthermore, y < x in the ordered
groupoid G if and only if e, < e, and y = ¢, . x. By Equation (5.1), this is true
if and only if y = e,x. Therefore y < x in G if and only if y < x with respect to
the natural partial order on S(G). It follows from Theorem 5.1 that

G(S©G)=6.

Let S be an inverse semogroup and let G = G(S) be the inductive groupoid of
Theorem 5.1. For x, y € G, let x-yy denote the product defined by Equation (5.1).
If g = frey, by Equation (5.1), we have

x-y=x.9)*(g.y)

By the definition of restriction and corestrictionin G, x.g =xgand g.y = gy.
Since * on the right of the equation above denote trace product in S, we yhave

x-y = (xg9)*(gy) = (x9)(gy) = xgy = xfxeyy = xy.
Therefore S = S (G(S)). O

The constructions of the Schein’s groupoid G(S) from an inverse semigroup
5 (cf. Theorem 5.1) and the inverse semigroup S(&G) from the Schein’s groupoid
G (cf. Theorem 5.2) are functorial in the sense that S — G(S) and G — S(G) are
object maps of functors G : & — SJI®& from the category of inverse semigroups
to the category of Schein’s groupoids and S : SJ® — J& from the category of
Schein’s groupoids to the category of inverse semigroups. For let ¢ : S — &’
be a homomorphism of inverse semigroups. It is clear that ¢ preserves trace
products and natural partial order and so, it is an order preserving functor
of G(S). Thus ¢ determine a unique inductive functor of G(S) to G(S’) which
we denote by G(¢). Notice that, set-theoretically, ¢ and G(¢) denote the same
map of the set S to the set S’. The functorial property of this assignment is
obvious. Similarly, if y : G — H is an inductive fumctor, then

y(x*y) =) *y(y)
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for every composable pair (x,y) of morphisms in G. Further, for x € G and
g <ex, h < f,, we have

y(@.x)=y(@).y(x), y.h)=px).rH).

Hence for any x, y € G, by Equation (5.1),

y(xy) =yx.g)+y(@.y)
= (@) @) * (@ yy)
= y(@)y(y).

Thus y induces a unique homomorphism S(y) : S(G) — S(H). The assignment
S is also functorial. We have thus proved the following.

TueoreMm 5.3. For every homomorphism ¢ : S — S’ of inverse semigroups there is a
unique inductive functor G(¢) : G(S) — G(S’) such that the assignments

S+ G(S) and ¢ — G(¢)

is a functor G : 36 — SI®. Similarly, each inductive functor y : G — H determines
a unique homomorphism S(y) : S(G) — S(H) such that the assignments

G~ S(G) and vy S(y)

is a functor S : SI® — IS. Furthermore, the functors G and S are mutually inverse.

The theorems above shows that inverse semigroups and Schein’s groupoids
are equivalent mathematical structures. Schein’s groupoid G(S) of an inverse
semogroup S afford the separation of the structure of S into the lacal structure
of S represented by the trace groupoid S(x) and the global structure of S
represented by the natural partial order on S.

We illustrate the use of the inductive groupoid technique below by applying
to some important constructions.

5.2 FUNDAMENTAL INVERSE SEMIGROUPS

Many examples of ordered groupoids given in Subsection 1.4.2 (see Exam-
ple 1.24) are inductive groupoids and hence represent inverse semigroups.
Thus Ix is an ordered groupoid with respect to groupoid composition and
“the usual inclusion” (see Example 1.21). Identities in Ix are identity maps
on subsets of X and so vIx may be identified with the set of all subsets of
X which is a semilattice with respect to intersection. Hence by Theorem 5.2,
Ix is an inverse semigroup with the semilattice of idempotents as the set of
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all subsets of X under intersection. The binary operation in Ix is defined by
Equation (5.1):

ap=(ax.q)*(g.p) where g=fueg and a,pe€lx.

The identity g denotes 1codandomp- SO, @ « g denote the range restriction of
to domg = coda N dom . Similarly g. S denote the domain restriction of
to dom g. It follows that, in this case af is the “usual composition” of partial
transformations.

Similarly, if X is a partially ordered set, and if I is any set of order-ideals
in X such that intersection of any two order ideals in I is an order ideal
in I, then, the set I' of all order-isomorpisms of ideals in I is an ordered
subgroupoid OI; of Ix. Also the set Ol is orderisomorphic with I which is a
semilattice under intersection. Hence Ol is an inductive groupoid. Therefore
by Teorem 5.2, T(I) = S(OI;) is an inverse semigroup in which the semilattice of
idempotents E(T(!)) is isomorphic to I. As above it follows from Equation (5.1)
that the binary product in T(I) is the composition of partial isomorphisms of
semilattices.

In particular if E is a semilattice, then

E(ef) =E(e)NE(f) forall ecE

where E(e) = {g € E : g < ¢} denote the orderideal of E generated by ¢ €
E. Hence the set of all principal order ideals {E(e) : e € E} is closed with
respect to intersection. By the remarks above, the ordered groupoid T*(E) of
all isomorphisms of principal ideals of E is an inductive groupoid in which
the semilattice (under intersection)of identities is {E(e) : e € E}. Since e > E(e)
is a semilattice isomorphism of E onto {E(e) : e € E} we shall identify vT*(E)
with E. Therefore, by 5.2,

T(E) = S(T'(E))
is an inverse semigroup with E(T*(E)) = E. T*(E) is called the Munn semigroup
of the semilattice E. The following result is a particular case of 6.28 in Chapter

6 and is equivalent to Munn’s theorem on fundamental inverse semigroups
[Munn, 1970, see].

THEOREM 5.4. Let G be an inductive groupid with vG = E. For x € Gand e € w(ex)
let

ea(x) = fex- (5.2)

Then we have the following:

(1) The map a(x) : w(ex) = w(fy.) is an w-isomorphism.
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(2) Thereis an inductive functor ag : G — T} with vag = 1, and whose morphism
map is x = a(x).

(3) If G is a v-full inductive subgroupoid of Ty then ag is the inclusion of G in T.
In particular, ar, = 1T;:_.

(4) Let TY(G) = Imag. If ¢ : G — G’ is an inductive functor which is a v-
surjection, then

() (ac(v) = ac (¢(x)) (5.3)

defines an inductive functor T*(¢) : T*(G) — T*(G’). Furthermore, if p and ¢’
are inductive v-surjections for which ¢’ exists, then

T(¢¢") = T(P)T'(¢).

(5) If ¢ is a v-isomorphism, then T*(¢) is an injection. In particular, if v = 1g,
then T*(¢) is the inclusion T*(G) € T*(G').

TueEOREM 5.5. Let E be a semilattice. Then the set T(E) of all isomorphisms of principal
ideals of E is an inverse subsemigroup of Ir. Furthermore T(E) is a fundamental inverse
semigroup with semilattice of idempotents isomorphic to E. If S is any fundamental
inverse semigroup with semilattice of idempotents isomorphic to E then S is isomorphic
to a full subsemigroup of T(E).

5.3 CONGRUENCES ON INVERSE SEMIGROUPS

If p is any congruence on an inverse semigroup S, by Corollary 4.30(b), any
idempotent congruence class of p is an inverse subsemigroup of S and by
Theorem 4.31, the set

A, = (Ae) : e € E = E(S))

of these inverse subsemigroups forms a kernel normal system of S (see Equa-
tion (4.7a)). In the case of inverse semigroups, it is posible to characterize the
kernel normal systems abstractly (see Clifford and Preston [1967], § 7.4). Here
we provide a characterization in terms of Schein’s groupoid G(S).

To simplify statement of the desired result we meed the following simple
consequence of the fact that E is a commutative subsemigroup of the inverse
semigroup S (see Theorem 2.44).

LeMMmA 5.6. Let S be an inverse semigroup. For eacha € Sand e € E let
e@(a) = a tea

Then €(a) : e — e&(a) is an endomorphism of E and € : a — €(a) is a representation
of S in the semigroup End E of enomorphisms of E.
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TuEOREM 5.7. Let p be a congruence on the inverse semigroup S. Then the set
Ay, ={ple) : e € E}

satisfies the following:

(K1) e € p(e).

(K2) If, fore, f € E, p(e) N p(f) # O, then p(e) = p(f).

(K3) Foreacha € Sande € E, a~(p(e))a C p(e€(a)).

(K4) Ifa,ab,bb* € p(e) then b € p(e).

Converasely, if A = {Ale) : e € E(S)} is any family of inverse subsemigroup of S
satisfying the conditions above, then the relation

pa=1{(@ab)eSxS: aa”t,bb™!,ab™ € Ale) for some e € E} (5.4)
is a congruence on S whose kernel normal system is A. Moreover the correspondances
p A, and A pa

are mutually inverse bijections of the set of all congruences on S with the set of all
kernal normal systems on S.

To simplify the proof, we shall prove some preliminary lemmas. In the fol-
lowing, we assume that A = {A(e) : e € E(S)} is a set of inverse subsemigroups
of S satisfying conditions (K1)...(K4).

Lemwma 5.8. Suppose that ab™ € A(e) for a,b € S and e € E. Then A(e€(a)) =
A(e€(b)).

Proof. Let f = e€(a) = a~lea, g = e€(b) and u = ab~!. Since A(e) is an inverse
subsemigroup, u™! = ba~! € A(e) and so,

@ Nbat) = uut, (ba V@b ™) = ulu € Ae).

Therefore

@')E) = @ e HE ) = a7 (@) b)) a € A,
and

b)) = (D)@ a)OE) = b7 (e ab ™) b € Alg)
Since E is commutative, we have

@'a)(b7'D) € A) 0 Ay).

By (K2), it follows that A(f) = A(). O
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Lemma 5.9. Ifaa™,bb™!,ab™! € A(e) thena='a,b~'b,a~'b € A(e€(a)). In particular,
(a,b) € pa implies (a1, b7Y) € pa.

Proof. Let f = c€(a) and g = e€(b). The given conditions imply by Lemma 5.8
that A(f) = A(g). Hence, by (K3),

a'a = (aa M)&(a), b b = (bb™HE(b) € A(f).
To show that v = a~b € A(f), we observe that
uo = b~ (ba )b € b \A(e)b € A(g) = A(f),
where 1 = b~'b and
oo™t = a Y (bb")a € a L A(e)a € A(f).

Therefore, u, uv, oo~ € A(f) and so, v € A(f) by the condition (K4). The last
statement now follows from the definition of the relation ps. [l

Lemma 5.10. Ifaa™t € A(e) then A(e(aa™t)) = Ale).
Proof. By Lemma 5.6, we have

Claa™Y) = €@ @™h).
Hence (aa M) A(e)(aa™t) C A(e€(aa™t)).

But since A(e) is an inverse semigroup containing aa?, (aa~)A(e)(aa™t) C Ale).
Hence, by (K2), we have A(e) = A(e€(aa1)). O

Proof of Theorem 5.7. Suppose that A = A,. Conditions (K1) and (K2) are
consequences of the fact that p(e) is the congruence class containing e € E. If
aeS,ecEandu e p(e), then

atua o) alea = e€(a) which implies alua e p(e€(a)).
Therefore (K3) holds. Let a,ab, bb™! € p(e). Then
bb'pa=b=bb"'bpabpe.

Hence A, satisfies (K4).

Conversely let A = {A(e) : e € E(S)} be a collection of inverse subsemi-
groupps satisfying the conditions (K1) ... (K4) and let p = p# be the relation
defined by Equation (5.4).
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p is an equivalence relation: If a € 5, then by the definition of p (Equation (5.4))
and (K1), (a,4) € p and so, pis reflexive. To prove symmetry, let (4, b) € p. Then
by Equation (5.4), aa~!,bb~!,ab™! € A(e) for some e € E(S) and so, A(aa~!) =
ALY = Ae) by (K2). Since Ale) is an inverse subsemigroup of S, we have

aa” ', bb™, ba~t = (b)) € Ae).
Thus (b,a) € p and hence p is symmetric.
Transitivity: Let (a,b), (b.c) € p. Then, by Equation (5.4) and (K2), we have
an”l, bb7, cc7, ab™t, bt € Ale).
Then if f = e€(a), g = e€(b) and h = e€(c), by Lemma 5.8,
A(f) = Alg) = Ah).

Hence to prove transitivity, it is sufficient to show thatac™ € A(e). Letu = ab™*
and v = ca”l. Since be™! € A(e), by Lemma 5.9, b~lc € A(e€(a)) = A(f).
Therefore

uo = (ab~")(ca ") = a(b™'c)a”! € aA(f)a!

By (K3) and Lemma 5.10,

aA(fla~t € A(fe@™) = Ale).
Similarly, by (K3),

vot = (ca Nac™) = c(ata)c .
Since

a”'a = (aa™")€(a) € A(f) = Alh),
by Lemma 5.10, we have

oot = c@ta)c! € AME(cTY)) = Ale)

Thus we have shown that u, uv, vv~! € A(e) and so, v € A(e) by the condition
(K4). Therefore v™! = ac™! € A(e) which proves that p is transitive.
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p is a congruence: Consider (a,b) € p and c € 5. Then we shall show that
(1) (ca,cb) € p, (2) (ac,be) € p.
For, since aa~!,bb~!,ab™! € A(e), by (K3), we have

(ca)(ca)™ = c(aaV)c™ € Aee(cY));
(cb)(ch)™ = c(bb ™)™t € AeC(c));
(ca)(ch) ™ = c(ab)c! € Alee(cY)).

By Equation (5.4), this gives (1). Now the hypothesis gives, by Lemma 5.9 that,
@hvhe p. Hence ((ac)_l, (bc)_l) = tat e P

by the proof above. Again, using Lemma 5.9, we conclude that (ac, bc) € p.
Thus p is a congruence.

The kernel of p is A: Suppose that e € E. If u € p(e) then (e,u) € p. By
Equation (5.4), e,uu™!,eu”! € Ale). Hence by (K4), u € Ale). Conversely, let
u € Ae). Then Afe) is an inverse subsemigroup of S which contain u. By
(K1), e € A(e). Hence e,uu!,eu"! € Ale) and so u € p(e) by Equation (5.4).
Therefore p(e) = Ale) for all e € E so that A = A,.

Finally, consider the maps

0:p— A,

from the set of all congruences on S to the set of kernel normal systems of S
and

¢ AP pa

from the set of all kernjel normal systems to the set of all congruences on S.
The proof above shows that

Ap, = A thatis PpoOA)=A

and hence ¢ o 0 is identity on the set of all kernel normal systems of S. Now
if p is any congruence on S and if p” = p#,, then p and p’ are congruences
having the same congruence classes containing idempotents. Therefore p = p’
by Theorem 4.31. This gives that 0 o ¢ is identity on the set of all congruences
onS. O

The theorem above gives a direct characterization of kernal normal systems
independent of the congruence it determines on S. This allowas us to study
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unitary!left —
. . . . . unitary!right —
by their kernal normal systems can be simplified condiserably in the case of ynitary/E-unitary

congruences in terms kernel normal systems The description of congruences

idempotent separarting ongruences (see Subsection 4.2.2). A characterization
of idempotent separating kernels is provided by Theorem 4.33 which holds for
all regular semigroups. Some further notational simplifications are possible in
the case of inverse semigroups. In this case, the biordered set E(S) is completely
determined by the partial order w of the semilattice and so the group kernel
G on S (cf. Theorem 4.33) are contravariant group-valued functors on E
satisfying axioms (Gkr1), (Gkr2) and (Gkr3). The uniquiness of the inverse
implies that the transformation ¢”(x, x") of axiom (Gkr3) depends only on x € S.
As observed in Subsection 4.2.2, any group kernel G on S is a subfunctor of
G", the group kernel associated with the maximum idempotent separating
congruence p(S). Also G* is closely related to the structure of S.

5.4 CONJUGATE EXTENSIONS

Composition of transformations ¢ : F — G and 7 : G — H can be defined as
the transformation o o T with

v(o o 1) = (v0) o (b7) (5.5a)
and for any ¢ € vdomF,
(0oT), =0.01; (5.5b)

where ¢ = vo(c). It is easy to vereify that ¢ o 7 is a transformation from F to H.

5.5 e-UNITARY INVERSE SEMIGROUPS

A subset U of a semigroup S is left [right] unitary if u € U and ux € U [xu € U]
for x € S together implies x € U. U is [two-sided] unitary if U is both left and
right unitary. We say that the semigroup S is [left, right, twosided] E-unitary if
E(S) is a [left, right, twosided] unitary subset of S.

Lemwma 5.11. Let S be a regular semigroup which is left [right or two-sided] E-unitary.
Then S satisfies the following condition:

(EU) Ifxe Sand g < x for g € E then x € E.
For an inverse semigroup S, the consdition above is also sufficient for S to be E-unitary.
Proof. If S is left E-unitary. If g < x for g € E and x € S, then by Corollary 4.3,

g = ex for some e € E. Since S is left unitary, we have x € E. So, S satisfies (EU).
Similarly S satisfies (EU) if S is rignt unitary or unitary.
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Now suppose that S is inverse and satisfies (EU). Let x € S and ¢,ex € E.
Then ex < x by Corollary 4.3 and so x € E by (EU). Therefore S is left unitary.
Similarly, S is right unitary. Consequently S is unitary. O

A useful characterization of an E-unitary inverse semigroups S is is in terms
of the universal group homomorphism y(S) on S (see Proposition 4.44).

ProrositioN 5.12. For an inverse semigroup S the following statements are equiva-
lent.

(a) Sis E-unitary;
(b) E is a congruence class of a congruence on S;

(c) Foreachx € S, the universal group homomorphism y(S) is injective on Ly [R.].

Proof. (a) = (b): Notice that E is contained in a single congruence class C of
p = xy(S) where y(S) is the universal group homomorphism. Hence xpe for
any x € C and ¢ € E. By Equation (4.19), gx = ge for some g € E. Then gx € E
and gx < x. Hence it follows from (a) that x € E. Therefore C = E.

(b) = (c): Suppose that x . y and xpy. Then

fi=xx=yly=f, and e =xx' Lyx".
Since yx'pxx~! = ey and ey £ yx~! € E, by (b), ex = yx~!. Therefore
y= yy‘ly = yx‘lx =xxx = x.

This shows that y(5) is injective on every .#~class. Similarly y(S) is injective
on every Z-class.

(c)=>(a): Letx € S,e € Eandex € E. If g = ex, then g < x and so xy(S)g
by Equation (4.19). Also, gf, = g and so, g < f; which implies again by
Equation (4.19) that gy(S) fx. Therefore xy(S) fy and since x .Z f;, x = fy € Eby
(c). Similarly it can be shown that if xe € E, then x € E. Thus S is E-unitary. O



CHAPTER 6

Inductive groupoids

In this chapter we discuss one approach to the structure theory of regular
semigroups using inductive groupoids defined in Section 6.1. We refer the
reader to the introduction of Chapter 3 for a discussion of development of
structure theory of regular semigroups.

In Chapter 5 we discusses inductive groupoids of inverse semigroups due
to Schein [1966]. Notice that inverse semigroups may be classified in terms of
biordered sets as those regular semigroups whose biordered sets are semilat-
tices (see Chapter 3). This is the starting point of our discussion of inductive
groupoids. We can see that inductive groupoids of regular semigroups is a
far-reaching generalization of Schein’s theory. We show that the category of
inductive groupoids is naturally equivalent to the category of regular semi-
groups. Consequently, one can replace regular semigroups by their inductive
groupoids or vice-versa. The inherent symmetry of the groupoids could be
exploited to simplify formulation as well as proof of results. In particular, this
technique enable one to formulate and prove many results for general regular
semigroups that are available for inverse semigroups.

In section 3, we apply the theory of inductive groupoids to discuss the fun-
damental regular semigroups. This leads to a generalization of Munn’s theo-
rem for fundamental inverse semigroups. In section 3, is devoted to regular
semibands. We determine all regular semibands generated by a given regular
biordered set. We also obtain an alternate constructions of the free semiband
By(E) and fundamental semiband B.(E) generated by a regular biordered set
E in terms of their inductive groupoids. The last section discuss some special
classes of semigroups and their inductive groupoids.

In this chapter S will denote a regular semigroup and E will be a regular
biordered set unless otherwise made explicit.

295
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6.1 DEFINITION AND BASIC PROPERTIES

We noted in Chapter 5 (see Theorem 5.1) that, given an inverse semigroup S,
G(S), the algebra on the set S with trace product (see )and the natural partial
order, is an ordered groupoid (see Theorem 6.28). However, for a regular
semigroup S the partial algebra S(+) (see (??) and (??)) is not, in general, a
groupoid. To overcome this problem, we consider the relation

G(S) ={(x,x'):€S, ' € Nx){(x,x') :€ S, ¥ € Nx)}.}. (6.1)

Several authors, among them [Schein, 1966], considered this relation. Schein
observed that G(S) is a semigroup under the multiplication

X )y, y') = (xy, y'x’)

if the semigroup is orthodox (see Theorem 2.43). However, this clearly does
not work for arbitrary regular semigroups.

On the other hand, when S is inverse, the relation defined above can be
identified with S(+) by identifying (x,x™!) < x which is an isomorphism of
groupoids. Nambooripad [1979] showed that it is possible to extend this
definition of G(S) for inverse semigroups to arbitrary regular semigroups.
Our aim in this section is to present the definition of inductive groupoids,
its morphisms and certain basic properties. We begin with some auxiliary
definitions and results needed for the definition of inductive groupoids.

6.1.1 The groupoid of E-chains

Let E be a (regular) biordered set. By Equation (3.1), the relations .2 = .&
and Zr = Z are equivalence relations on E and hence represents simplecial
groupoids with vertex set E (see Example 1.20). Observe that in .# the com-
posite (e, f)(g, h) exist if and only if f = g; in particular (e, e) is the unique left
identity of (e, f) and (f, f) is the unique right identity so that we may identify
the set of vertexes of . with E. Similar observations are valid for & also (see
Example 1.20).

LemMma 6.1. Let E be a biordered set. For (e, f), (g, h) € £ define
(e )<(gh) & ewy, and h=fg.

This defines a partial order on £ and £ is an ordered groupoid. If 0 : E — E’ isa
bimorphism, then
Zo: (e, f) (e6, fO)
is an order-preserving functor £y : g — Zr. Furthermore, the assignments
L E> Y% and 00— %

is a functor £ : KB — OG.
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Proof. First consider .. Since w is a partial order and since fg is the basic
product, it is clear that the relation < is reflexive and antisymmetric. If (k,[) <
(g,h) < (e, f), then kwgwe and I = hk = (fg)k = f(gk) = fk. Hence (k,1) < (e, f)
and so < is a partial order on .Z.

We now verify axioms (OGi), i = 1,2,3. Suppose that (e, f), (f, 9), (€, f')
and (f’,g’) are morphisms in .Z such that (¢, f') < (e, f) and (f",9’) < (f, 9).
Then

g =gf =9(fe') = (gfe' = g¢.
whichimplies that (¢, f)(f', ¢') = (¢, ¢') < (e,9) = (¢, f)(f, 9). Hence Zsatisfies
axiom (OG1) of Definition 1.6. If (g, h) < (e, f) then itis clear from the definition
of < above and axiom (B2) for biordered sets thath w f. Alsoeh = e(fg) = eg =
g. Hence (h, g) < (f, €) and so, axiom (OG2) holds. If we set restriction in .Z as

g.e,f)=(@€fNlg=( f9), (6.2)

then g . (e, f) is a unique morphism in .Z such that g. (¢, f) < (¢, f) and the
left identity of g. (e, f) is (g, g). Hence axiom (OG3) also holds. Thus . is an
ordered groupoid. If 0 : E — E’ is a bimorphism, it is clear that the assignment
(e, f) = (e0, f0) is functor. Also, since 60 is a bimorphism, we have

(9 (e, /))0 = (96,(f9)0) = (90, (f6)(96)) = (90) - (0, 6).

Therefore, the functor % : £ — ZF is order preserving. Finally, it is routine
to check that the given assignment is a functor. O

It is clear that the dual of the above lemma also holds. Thus for each
biordered set E, the relation < defined by the equation dual to Equation (6.2)
is a partial order on Zr = # and Z is an ordered groupid with respect to <.
Further, for each bimorphism 0 : E — E’, the map

Ro : (e, ) (e6, fO)
an order preserving functor %g : Zr — % such that the assignments
Z:E— X and 06— H

is a functor Z : KRB — OG.

In the following discussion, we follow MacLane [1971] for concepts such as
a graph, free category generated by a graph, etc. Suppose that G = (E, £r U %)
be the graph with vertex set G = E and edge set EG = %5 U % [see MacLane,
1971, Page 10]. Notice that any edge in G may be represented uniquely as a
pair (e, f) € £F U % since Zr and Zr are simplecial groupoids. We say that
two edges (¢, f) and (g, h) in G are composable if and only if f = g. A pathin G

graph
free category
path
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is a finite sequence s = (a1, az, ..., a,) of edges in which adjacent edges a;, a1
are composable; that is cod a; = dom ajyq fori=1,2,...,n.

Let F = Fg be the free category generated by G [see MacLane, 1971, Page
50]; that is F is the category with vF = E and fore, f € E, the home-set F(e, f) is
the set of all paths in G from e to f. Since edges in G are represented as pairs
of vertexes, a path in G from e to f can be represented as a finite sequences of
vertexes

5= (6 =€0,€1,---,6n :f) = (6,61)(61,62)...(6n71,f)

where (ej_1,¢;) € ZgUZE foralli =1,2...,n. Here the vertexese;, i =0,1,...,n
will be called the vertexes of the path s. We shall say that a vertex ¢; of s is
inessential if both edges (e;-1, ¢;) and (e;, ¢i+1) belongs to £ or both belong to
Ze. If e; is inessential, the sequence

s'=(e=ey,€1,...,6i-1,€i+1,--.,6n = f) where 0<i<mn,

is also a path in G from e to f. We shall write s <> s’ to mean that the path
s’ is obtained by removing from s or introducing into s an inessential vertex.
This clearly defines a symmetric relation on the morphism set of F. Let o
denote the transitive closure of this relation. The symmetry of < implies
that o is an equivalence relation (see the discussion of equivalence relations in
Subsection 1.1.1). Then by Equation (1.8a) we have

s=¢ or
sos < {ds;eF suchthatsy=s, s, =5 (6.3)
and si1 s, 0<i<n.

Notice that when s and s’ are related in this way, then s € F(e, f) if and only
if s € F(e, f). It follows that the restriction of ¢ to F(e, f) is an equivalence
relation for every e, f € F. Moreover, for u, v € F if the product usv exists in F,
then

sos = usvous'v.

Consequently o is a congruence on the category F in the sense of [MacLane,
1971, Page 52]. It is easy to see that F/o is the morphism set of a category for
which composition is defined by

o(s)a(s’) = a(ss”) (6.4)

for all s,s” € F such that ss’ exists in F. Now identities in F are trivial paths
of the form s(e, e) so that identities in F/o are o(s(e, ¢)), e € E. Consequently,
we have a small category ¢(E) in which morphisms set is F/c and v&(E) = E.
Since o is a congruence, the quotient map ¢* preserves composition and hence
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there is a functor from F to ¢(E), also denoted by o* with vo* = 1z. Now if
s =(ee1)...(en-1, f) is a path in F(e, f), it is clear that s* = (f,e,-1)...(e1,€) is a
path in F(f, e) such that ss* ¢ s(e,¢) and s*s o s(f, f). Hence, by Equation (6.4),
a(s)a(s*) = a(s(e, e)) and a(s*)a(s) = a(s(f, f)). Therefore o(s*) = (a(s))~! in &(E)
and so, €(E) is a groupoid. We have thus proved the following.

Lemma 6.2. F/o is the morphism set of a (small) category €(E) such that v€(E) =
vF = E. The composition in €(E) is defined by

a(s)a(s’) = a(ss’)

for all s,s" € F such that the composite ss’ exists in F. Also there is a functor
o* : F — @(E) which sends each s € F to o(s) and vo* = 1p. Moreover €(E) is a
groupoid. O

For any s = s(eg, €1, . .., ¢,) € F, we write

0(5(60/ €1,y 671)) = C(eOI €1,y 671)‘

o(s) is called an E-chain in E and the groupoid €(E) is called the groupoid of E-
chains of the biordered set E. Since we have identified vertexes and identities
(see Subsection 1.3.1), each e € E will also stand for the corresponding identity
c(e,e). In particular, for any ¢ € €(E), e, = ¢y will stand for the domain of
c = c(eg,...,e,) in €(E) as well as the left identity; similarly, f, = e, will
denote the co-domain as well as the right identity of c. Recall also that for
each (¢, /) € .Z, (e, f) (see Corollary 3.16) is an w-isomorphism of w(e) onto
w(f) such that the assignments of Equation (3.14) is a functor of .Z to the
the ordered groupoid T;, of w-isomorphisms of E. Dually the assignments of
Equation (3.14%) gives a functor of % into T}.

We now show that we can define restriction in €(E) which makes it an
ordered groupoid. Equations (6.5a) and (6.5b) below define operations that
are more general than necessary for the present purpose. However, they will
be needed in the sequel for discussing inductive groupoids and associated
semigroups.

LemMmA 6.3. Let ¢ = c(ep, €1, ..., en) € C(E). If h " ey then

heoc=ch ho,h,..., h,) where hy = hey

6.5
andfor i=1,2,...,n, h;i="hi_17(ei-1,€). (6:52)
is a well-defined E-chain. Dually, ifk ' f, then
c.k=clkoki,... ki k) where k,=-ek
(ko, k1 ) (6.5b)

andfor i=0,1,...,n=1, ki =kii1t(eir1,6).

E-chain
groupoid of E-chains
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is a well-defined E-chain. Now define
c<d = ewes and c=e..C. (6.5¢)

Then < is a partial order on €(E) such that €(E) is an ordered groupoid.

Proof. By axiom (B2), h Z hey = hy w eg. Since fori =1,...,n,if (ei1,¢) € £
then by Corollary 3.16, (hi—1, h;) € £ and dually, if (e;-1,¢;) € L then (hi—1, h;) €
Z. Hence h.cis an E-sequence. To show that /. c is a well-defined E-chain we
must show that when c(s) = ¢(s’), h.c(s) = h.c(s"). Suppose that ¢; is inessential
in c so that e;1 Z e; Z e (or ei-1 £ e; £ ei1). Then by Equation (3.14) (or
Equation (3.14")),

hiv1 = hit(e;, eiv1) = himit(ei-1, ei)t(e;, eiv1) = him1t(ei-1, €iv1).

It follows that h; is inessential in fi.c. Consequently if s & s/, then h.c(s) = h.c(s’).
By finite induction we conclude that 1. c(s) = h.c(s’) if sos’. It follows that the
E-chain h . c is well-defined. Dually, for k @' ey, ¢k is a well-defined E-chain.
The relation < defined by Equation (6.5¢) is clearly reflexive and anti-
symmetric. Suppose that g w h @ e. where ¢ = c(eg,e1,...,e,). Then by
Equation (6.5a), h . ¢ has the form c(h = ho,h1,...,h;) and h.c < c. Let
g.c=cg=go,.--,gn)and g.(h.c) = c(gy, 97, 9y)-  eieg Z e then

g; = gi_1hi = gi_(himei) = (g;_1hi-1)ei = g;_je +i.

If ei1 £ ei, we similarly have g/ = e;g!_,. Since g; = go = g, it follows by
induction from the above that g, =9i foralli=1,2,...,n. Therefore

gec=g.(h.c) forall ce@E) and gwhwe,.. (6.6)

This in particular shows that < is transitive and so, a partial order on ¢(E).
Suppose that ¢; < d;, i = 1,2 and assume that products cic; and dqd» exists
in €E). Then f,, = h = e, and f;, = I’ = ey,. Since c; < dy, by definition,
h=e,wfs, =h. Alsosince c; <di, wegaveg=e, w ez =g Let
gedi=cg=go,...,9n=h), h.dy=cth=hy,..., h,) and
g.didy =c(g=ko, ... kn kns1, ., Knsm)-

Then by Equation (6.5a), we have

o gt(eg,e1)t(er, e2)...t(ei-1,6) =g; if 1<i<m;
"\ k(e £) - T(finen, fin) = hiw i m<i<m+n

Therefore

g dldz = (g . dl)(h . dz) (6.7)



6.1. DEFINITION AND BASIC PROPERTIES 301

It follows that &(E) satisfies axiom (OG1). Againlet g w e, g.c = c(g =
go,---gn = h)and if h.c™' = c(h = hy,...,h,) where ¢ = c(ey, ..., e,), then by
Equation (6.5a), we have

hi = hT(eVl/ 671*1) s T(en7i+1/ enfi)
=gt(ep, 1) ...7(en-1,€n)T(€n, Cn-1) - . . T(€n—i+1,Cni)

= gt(eo,e1) ... T(€n-i-1,€n-i) = Gn-i-
It follows that

hocl=(g.0)7% (6.8)

By Equation (6.5¢) axiom (OG2) holds. Axiom (OG3) also follows if we define
restriction of c € €(E) to g w e as g . c. Therefore €(E) is an ordered groupoid
with respect to the partial order defined by Equation (6.5¢). O

Notice that if g w e. then the left restriction g . c is the restriction in the
ordered groupoid €(E) (see 1.6, axiom (OG3)) and so, there is no ambiguity in
the notation defined in the lemma above. Similarly, if & w f. then c ./ is the
co-restriction or the co-domain restriction in €(E) (see Subsection 1.4.2).

The groupoid of E-chains can be characterized as a push out in the category
06 (see Example 1.6).

ProrosiTIiON 6.4. Let E be a biordered set and let
Iri 1l €% and j;:1p C k.

Then there exists order preserving functors Lg : g — €(E) and Rg : %r — €(E)
such that the following diagram is a push-out in O®.

1 L«@E (6'9)

| [

£ —— €(E)
Lg
Consequently €(E) = 2 [ 1;, Zk.

Proof. Since v.2r = E = v%, and 1 is trivially an ordered groupoid with
vlg = E, the inclusions j, and j; are order preserving functors with vy, = 1g =
vrt];. Let Rg be defined by the assignments

Rp:(e, fyeZr—clef), er—e.
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By Equation (6.2) and Equation (6.5c), Rg : Zr — €(E) is an order preserving
functor with vRg = 1¢. Dually the assignments

Le:(e,f)e Lecle f), eme.

is an order preserving functor Lg : % — €(E) with vLg = 1. Itis clear from
the definitions that the given diagram commutes.

To prove that the diagram above is a pushout, consider order preserving
functors F, : Zg —» G and F;: % — G such that

JroF, = 0F orequivalently, uF, = vF.
Define F : ¢(E) — G by
vF =0F, =vF, and F(c) = Fi(e,e1)F2(e1,€2)...Fulen-1,en)
for all ¢ = c(eg, 1, - . .,e,) € €&E), where

Fi(ei-1,e) if ei1 Zej;

F‘ i-1,€i) =
(eare) {Fl(ei—lzei) if e Zei

Since vF, = vF), the compositions in the expression for F(c) exists in G. If ¢; is
inessential, Fi(ej-1, ¢;) and Fj.1(e;, i+1) are images of composable morphisms in
Hr or £k and hence
Fi(ei-1,e)Fi1(ei, ei41) = Fiv1(ei1, €i41)-
Consequently F(c) is well-defined. It is clear that
RgoF=F, and LgoF=F,.

These equations also shows that F is the unique functor satisfying these equa-
tions.

Let ¢ = c(eg,e1,...,6n) € €(E) and h @ e). Then by Lemma 6.3 h.c =
ctho, 1,..., hy) < c. Also, since h; w ¢; for all i, by the dual of Lemma 6.1,
(hifl, I’lz) = hifl . (6,;1, 61') < (61;1,6,‘) in %E if (6,;1, 61') € # and similarly for .%.
Then

Fi(hi-1, hi) = Fi(hi-1 « (ei-1,€)) = Fi(hi-1) « Fi(ei-1, €:) = F(hi-1) « F(ei-1, €:)
since both F, and F; are order preserving and since vF, = vF; = vF. Therefore

F(h.c) = (F(ho) « F(eg, 1)) . ..(F(hy-1) « F(en-1,€n))
= F(ho) . (F(eo, €1) ... F(ey-1,6n)) by Proposition 1.19(2)
= F(h) . F(c).

Thus F is order preserving. O
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The proposition above constructs the ordered groupoid ¢(E) for every
biordered set E. Let 6 : E — E’ be a bimorphism. Then by the dual of
Lemma 6.1, %o : Zr — % is an order preserving functor. Hence by the above
Ko o Rp is an order preserving functor of Zg to €(E’). Dually, £poLp : £ —
€(E’) is an order preserving functor. Also since v(%g o Rp') = v(ZLpoLp) =0,
we have

Jro%ooRp =j10ZLpolp.

Since the diagram 6.9 is pushout, there is a unique order preserving functor
&(0) : €(E) — €(E’) such that

HopoRp =Rpo@(0) and ZLpolLp =Lgo&0).
These equations imply that
&(0)(c) = c(egb, €10, . .., e,0) (6.10)
for all ¢ = c(ey, . ..,e,) € €(E).
ProrosiTioN 6.5. The assignments
C:E— &E) and O &0) (6.11)
is functor € : BB — OG.

Proof. The vertex map of € is well-defined by Proposition 6.4 and for each
0 :E — E’, €(0), defined above, is a unique order preserving functor of €(E)
to €(E’). It is clear from Equation (6.10) that €(1g) = 1¢g). If 6 : E — E’ and
0’ : E’ — E” are bimorphisms, using Equation (6.10), we have
€(0 0 0')(c) = c((e0)60", ..., (ex)06)
= €(0") (c(egH, . .., e,0))
= &(6") (&(6)(c)) = €(6) o &(O')(c)

for all c € €(E). Hence
&(00") = €(0) o €(O")

Therefore ¢ : RB — O is a functor. O

6.1.2 Definition and basic properties of inductive groupoids

The ordered groupoid G(S) is the inductive groupoid of S when S is an inverse
semigroup so that we can reconstruct S from G(S) (see Theorem 5.2). In
general the local structure of the regular semigroup S is represented by a
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suitably constructed ordered groupoid G(S) (see Subsection 6.2.1) while the
the global structure of S is not adequately reflected in it. In particular, the
relation between the the biordered set E(S) = E and G(S) is not strong enough
to be able to recover the biordered set of S from G(S). We therefore add a new
layer of structure to the ordered groupoid G(S) by defining an evaluation of the
groupoid €(E) in G(S).

Recall that an E-square in a biordered set E is a 2 X 2-matrix A = (; { ) (see
Section 3.2) wheree Z f £ h % g £ e. Moreover if g,h € w'(e) and g .Z h or
if g, h and e satisfy the dual conditions, then we have an E-squares (Z Zg) and

( gge :e) respectively; these are called singular E-squares (see Section 3.2).

Recall also that a v-isomorphism of ordered groupoids is an order preserv-
ing functor that induces an order isomorphism of the set of vertexes (see Sub-
section 1.4.2). Let E be a biordered set and € : €(E) — G be a v-isomorphism
of &(E) to an ordered groupoid G. We say that an E-square A = ( e f

g h) is
e-commutative if the following equality holds in G:

ee, fe(f, 1) = e(e, 9)e(g, h).

Here, for brevity, we have written e(e, f), (e, ) € 25 UZk for e(c(e, f)). We shall
use such simplifications whenever it is convenient.

DeriniTION 6.1. Let E be a biordered set and ¢¢ : €(E) — G be a v-isomorphism
of €(E) to an ordered groupoid G. We say that the pair (G, ) is an inductive
groupoid if the following axioms hold:

(IG1) Let x € G and ¢;, f; € E such that eg(e;) < ex and eg(fi)) = feo(e)x fOr
i=1,2.

(a) Ife; @" ep then f1 @" f, and
ecler, e1e2) (eclere2) « ) = (ecler) - x) ec(f1, fifo)-
(b) Ife; @' ey then f; @' f, and
ecer, e2e1) (ec(eaer) - x) = (eglen) - X) ec(f1, 2 o)-
(IG2) All singular E-squares in E are eg-commutative.

E is called the biordered set of the inductive groupoid (G, e¢) and &g is called
the evaluation of €(E) in G (or the evaluation of (G, €¢g)).

To simplify the notation we shall avoid the pair notation for inductive
groupoids if no ambiguity is likely. We write G, G’, etc. for inductive groupoids
with biordered sets E, E’, etc. and evaluations ¢, ¢’ etc. Since eg = ¢ is a v-
isomorphism, it naturally induces a biorder structure on vG which makes it a
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biordered set isomorphic to E. We shall identify G with E by ¢ and consider
oG itself as the biordered set of G; moreover, be = 1. From now on, we shall
follow these conventions (if no ambiguity is likely).

DeriniTION 6.2. Let G and G’ be inductive groupoids. An inductive functor ¢ :
G — (' is an order preserving functor such that

(WG ——— G (6.12)
¢(vg) ¢
¢(oG) —(——— G

v : vG — G’ is a regular bimorphism making the diagram 6.12 is commu-
tative.

It is clear that for every inductive groupoid G, the identity 1¢ : G —
G is an inductive functor. Further, if ¢ : G - G and 0 : G — G” are
inductive functors, then an easy verification with the diagram 6.12 above
shows that ¢ o ¢ : G — G” is inductive. It follows that inductive groupoids
with inductive functors as morphisms form a category J&. An inductive
groupoid G’ is an inductive subgroupoid of an inductive groupoid G if G’ is an
ordered subgroupoid of G and the inclusion G’ C G is inductive; thatis G’ is a
subobject of G in J&. Also G’ is a v — full inductive subgroupoid of G if G’ = vG.
An inductive functor ¢ : G — G’ is an isomorphism of inductive groupoids if
¢ is an isomorphism of ordered groupoids and v¢ is a biorder isomorphism.
It is easy to see from Diagram 6.12 that, in this case, ¢! : G’ — G is also an
inductive functor and hence an isomorphism in J&. Our aim in this chapter
is to prove that the category J& is naturally equivalent to the category RG of
regular semigroups.

Remark 6.1: Clearly there exists a forgetful functor U, : & — ©O® (that forgets
evaluation) to the category of ordered groupoids. Again the assignments

b:G— G, and ¢ v

is a functor v : J& — RB. Therefore, if € : RVB — OB is the functor defined
in Proposition 6.5, 8 0 € : J& — O is a functor. The diagram 6.12 shows that

the evaluations are components of a natural transformation ¢ : U, Spoc.

The following facts about inductive groupoids are immediate consequences
of the definitions.

ProrosiTiON 6.6. For an inductive groupoid G we have the following.

inductive functor

J3&:The category of inductive
groupoids

inductive subgroupoid

v — full inductive subgroupoid

inductive groupoid!isomorphism of



h . x:Left restriction
X « h:Right restriction
restriction!left —
restriction!right —
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(1) An inductive groupoid G’ is an inductive subgroupoid of G if and only if G’ is
an ordered subgroupoid of G such that

e =¢€¢ | Q:(UG,).

(2) Imeg is an inductive subgroupoid of G with respect to the evaluation ec.
Furthermore, a v-full ordered subgroupoid G’ of G (so that vG' = vG) is an
inductive subgroupoid if and only if

Imeg CG.

(3) The lattice of all v-full inductive subgroupoid of G is a complete lattice with
Im &g as the 0-element. O

Let G be an inductive groupoid, x € G, h " exand g @' f,. Asin the ordered
groupoid €(E) (see Lemma 6.3), we define the morphisms /.x and x.gin G as
follows:

h.x =e(h, hey)(hey . x) = €(h, hey)(x|hey) (6.13)

where he, . x = x|he, denote the restriction of x to he, w e, in the ordered group
of G; and

x.g=(x.f9)e(fxg,9) (6.13%)

where x . frg denote the co-restriction of x to frg w fx.

For h o ex [h @' f,] the morphism /. x [x . h] defined by Equation (6.13)
[by Equation (6.13)*] is called the left restriction[the right restriction] of x to
h. Clearly, if h w ey then the left restriction k. x is the usual or the domain
restriction of x to h and if g w f; then x. g is the co-restriction or the co-domain
restriction of x to g (see Subsection 1.4.2).

ProrosiTiON 6.7. Let ¢ : G — G’ be an inductive functor and v = 0.
(1) Let x € G. Ifh " ex then

d(h . %) = hO. H(x)
and if g &' fy, then
P(x . g) = P(x). (99).

(2) Im ¢ = H is an inductive subgroupoid of G'.

(3) If ¢ is v-bijective, then it is a v-isomorphism agnd if ¢ is a bijection, then ¢ is
an isomorphism.
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Proof. (1) Since ¢ is an order preserving functor such thatv¢p = 6 : E — E’
is a regular bimorphism, by Equation (6.13),

B+ x) = Ple(h, hey)) ((he)0 - p()),
= ¢/ (C(E)(O)(h, he,)) (hBe,6 . () since ¢ is inductive,
= &'(h0, hOeyy) (h@em . (p(x)) since ex0 = ex() = ey
= h6 . P(x).

The remaining part of (1) follows by duality.

(2) Letx’,y’ € Hand that x"y’ exists in G’ so that f» = e,/. Letx,y € G with
o(x) = X', ¢(y) = ¥y and h € .7(f,e,). Since O is a regular bimorphism, we
have

ho € y(fxer eye) = y(ﬁj)(x)/e‘?(y)) = y(fx’/ ey’)

and so, h0 = fv = e,. Therefore by Equation (6.13), its dual and (1), we have

& ((c 1) y) = (P 1)) (2 )

= (9(x) . 16) (6 . §(1)
= (' fo)ey - y) = XY

Therefore x'y’ € H. Since u™! € H for all u € H, H is a subgroupoid of G’. Let
¥ € Hand leth w ey where h € E; = vH. Let x € G with ¢(x) = x’ so that
ex0 = ey. Since 0 is a regular bimorphism E; = Im 0 is a regular biordered
subset of E’ = vG’. It follows from Proposition 3.24 that there is g € E with
g w exand g0 = h. Since ¢ is order preserving, we have h.x’ = g0.¢(x) = p(g.x)
and so, . x" € H. Therefore H is an ordered subgroupoid of G".

Since vH = Ej, to prove that H is inductive, by Proposition 6.6, it is sufficient
to prove that ¢; = ¢’ | €(E;) maps ¢(E;) into H. If c € ¢(E;) we have by 6.12,

£ (€(0)()) = P(e(0))-

Hence we must show that every E-chain ¢’ € €(E;) there is ¢ € €(E) such that
€(0)(c) = ¢’. Assume inductively that every E-chain in E; with n vertexes
satisfy this and let ¢’ = c(e[, ¢, . .., €;) be an E-chain with n + 1 vertexes. Then
by hypothesis there is a chain

c=cley,...,eq) € C(E) with &€(0)(c) =cley, ..., en)

so that ¢! = ¢;0 fori = 1,2,...,n. Let ey # ¢|. Then, by Proposition 3.24,
there exists i @" e; such that h6 = ¢). Then, by Equation (6.5a), h.c = c(h =
ho, 1, ..., hy,) is the left restriction of ¢ to h and by Equation (6.10),

CO)h.c)=c(hyhy, ... hy) where hi=h0, i=0,1,...,n
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Now by the choice of i = hy,
hoO = hy =¢j, hy = (he1)0 = eje; = ¢}
and for eachi =2,...,n, by Equation (6.5a)

b = hi0 = (hi-17(ei-1,€:)) 0
= (hi-10)7(ei-10,€:0) = hi_;1(e_,, €)).

Inductively, k! = ¢/ foralli = 0,1,...,n. Therefore &0)(h.c) =" Ilf ej £ ¢,
again by Proposition 3.24, there is k @' e such that kO = ey- Then (e1k)0 =
eje+; = ¢; and, as before, we can show that

€(0) (c(k, erk)(erk . c)) = .

(3) If ¢ is a v-bijection by Corollary 3.25, v¢ = 0 is a biorder isomorphism.
If ¢ : G — G’ is a bijection, it is clearly an isomorphism of groupoids. By the
above, b = 0 is a biorder isomorphism. Let x’ < vy’ for ',y € G’. Then
¢(x) = x" and ¢(y) = y’ for x,y € G. Since " < V', e,0 = ev @ e, = ¢,0.
Therefore e, w e,. Also we have

P(x) = ex0 - P(y) = Plex - y)

and so, x = e, . y. Therefore x < y and hence ¢ is an order isomorphism.
Therefore, by definition, ¢ is an isomorphism of inductive groupoids. O

6.2 THE INDUCTIVE GROUPOID OF A REGULAR SEMIGROUP

We proceed to show that we can associate a unique inductive groupoid with ev-
ery regular semigroups. This is similar to the situation for inverse semigroups
even though the relation between a regular semigroup S and its inductive
groupoid G(S) considerably subtler.

We begin by constructing the ordered group of G(S).

6.2.1 The ordered groupoid G(S)
Lemma 6.8. Let G(S){(x,x") :€ S, x’ € Hx)} (see Equation (6.1)). For (x,x"),(y, y’) €
G(S) define

XNy, y) = (xy, Yy =x) if Xx=yy. (6.14)
Then G(S) is a groupoid with respect to the composition defined above. For (x,x’) €

G(S), ey = (xx’, xx’) is the left identity, fu ) = (x'x,x’'x) is the right identity and
(x’, x) is the inverse.
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Proof. First observe that when the condition x’x = yy’ is satisfied, the trace
products x *y and y’ *x’ exist and (x, x")(y, ¥") € G(S) by Theorem 3.7. Suppose
that (u, u’) is a left identity of (x, x”). Then we must have

wWu=xx', ux=x and x'u’ =x".

These give u=uw'u=uxx'=xx', and u’ =xx'u’ =xx"

Hence (xx’, xx’) is the unique left identity of (x,x’). Similarly (x'x, x'x) is the
unique right identity of (x,x"). Associativity of the composition defined by
Equation (6.14) is a consequence of the associativity of trace products. Hence
G(S) is a groupoid in which the inverse of the morphism (x, x) is (x’, x). O

In what follows, we denote by G(S) the groupoid in which morphisms
are pairs (x,x’) with x € S and ¥’ € #(x) and with composition defined by
Equation (6.14). It is clear that the map g — (g, g) is a bijection of E(S) onto
vG(S). Therefore, in the following, we shall regard G(S) as a groupoid with
vG(5) = E(S).

LemMmAa 6.9. Let G(S) be the groupoid defined in Lemma 6.8. Then
xxX)<y) if x=xx)y, ¥ =y'(xx') and xx'wyy’. (6.15)

defines a partial order on G(S) with respect to which G(S) is an ordered groupoid such
that vG(S) is order isomorphic with (E(S), w).

Proof. The relation < defined by Equation (6.15) is clearly reflexive and anti-
symmetric. If (x,x") < (y, ') < (z,2") then xx’wzz’ and

x=(x")y=(@@x)yy)z=(xx")z and x" =2z'(xx").

Therefore (x,x’) < (z,z'). Thus < is a partial order on G(S). From Equa-
tion (6.14) we see that the partial order induced by this order < on vG(S) = E(S)
coincide with w.

Let (x,x") < (y,y’). Then we have

Xx =y xx)axx"y =y (xxyw y'y.
Therefore x=x)y = (yy)(xx)y = y(y' (xx')y) = y(x'x)

and X =xx)y.

Consequently, (x,x)™! = (x',x) < (v,y) = (v,y¥)"'. Hence axiom (OG2) of
Definition 1.6 hold. Axiom (OG3) hold if we define restriction in G(S) as
follows.

e.(x,x)=(x,x)le = (ex,x’e) forall (x,x)eG(S) and ew xx’. (6.15%)
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Now let (u,u") < (x,x") and (v,v") < (y,v'). If products (u,u’)(v,v’) and
(x, x')(y, y') exists in G(S), then
(wo)(W'u') = u(vo' ' = u@'u)u’ = uu’
w xx’ = (xy)(y'x’);

(uo)(@'u')xy = (uu')xy = uy = u(vv’)y = uv;

and similarly, (' XY uo)(w'u') =v'u’.
Therefore (u, u')(v,v") = (uo,v'v’) < (xy, y'x") = (x, X )y, y').
Therefore axiom (OG1) also holds. O

6.2.2 The inductive groupoid

We now define an evaluation (see Definition 6.1) of €(E(S)) in G(S) so that G(S)
becomes an inductive groupoid.

LemMma 6.10. There is an order preserving functor eg : €(E) — G(S) with veg = 1
and morphism map defined as follows: For each ¢ = c(eg, e1, . . ., e,) € €(E)

ES(C) = (wCl wcfl) (616)
where w. = eyey . . . ey_16y.
Proof. First notice that w1 € Hw,). For either e;_; % e; so that e;_1e; = ¢; or
ei-1 2 e; so that e;_1¢; = ¢;_1. Hence
WeWe1 = €0e1 .. .Cenen—1 ...0 = € and
We-1We = €p€p—1...€0€0€01 ...65 = €y.
It follows that w.w 1w, = w. and W-1w. w1 = we1. This proves that (w,, w.1) €

G(S). Also,
We #ey=e L W Xey = fo L we.

Suppose that ¢,d € €(E) and that cd exists. Then f. = ¢; and so, w.-1w, = f, =
eq = wgwg1. Therefore, by Equation (6.14) the composite (w, w1 )(wg, wy-1)
exists in G(S). Moreover wg; = w.wy and Weg1 = Wg1we1. Therefore
es(s)es(d) = (we, wer)(wa, wy-)

= (WWa, Wi-1We-1) = (Wed, Weay1)

= &5(sd)
by the definition of €s. Since e5(c(e, €)) = (e, €), €5 : €(E) — G(S) is a functor
such that ves = 1g. Let ¢ = c(eg, e1,...,6,) € €(E) and h w e. If

hec=ch hy,...,h,) then h;=ehi1e; forall i=1,...,n.
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This gives
I’ll’llhz e ]’ln = h(6160h60€1) e (67167171 . 60]’16061 e hn)
= hepey ...e, and similarly,
hnhnfl . h1h =eyly-1... 60]’1.
Therefore
65(”1 . C) = (l’lhll’lz . hn,hnhnq e I’llh)

= (hepey . ..ey, epep-1 . . . €0h)

=h.(epe1...€4,:4-1...€0)

=h. €5(C).
Thus €5 : €(E) — G(S) is an order preserving functor. O

THEOREM 6.11. Let S be a reqular semigroup and let E = E(S).

(a) Let G(S) be the ordered groupoid of S and es be the order preserving v-
isomorphism defined in the lemma above. Then (G(S), €s) is an inductive
groupoid.

(b) Let ¢ : S — S’ be a homomorphism of regular semigroups. Then there exists
an inductive functor G(¢) : G(S) = G(S’) such that

vG(¢) = E(¢) and

G(p)(x, x') = (xp,x'p)  forall (x,x') € G(S). (6.17)

(c) The assignments
G:5= G(S) and ¢+ G(¢)

is a functor G : RG — J&

Proof. (a) By Lemmas 6.8 and 6.9, G(S) is an ordered groupoid. Lemma
6.10 constructs an evaluation ¢ = €5 : €(E) — G(S) (see Equation (6.16)) where
E = E(S). So, to show that G(S) is an inductive groupoid, it is sufficient to verify
axioms (IG1) and (IG2). So, let (x,x") € G(S), e1,e2 € w(ewy)). If fi = forur),
then by Equation (6.15%)

fi = fexxey = (Xei)(eix) = X' (er)x

so that fi @ f, if and only if e; @” e,. Similarly f; @' f» if and only if e; @' ep.
Also, if e @" e,, then

(e, e1e2) (ere2 « (x, X)) = (e1e2, e1)(e1e2x, X'e102)

= (e1e2x,X'e1);
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and
(e1.(x, X)) e(f1, ffo) = (e1x, X'e1)(fifo, 1) = (e1xfifo, frxer)

= (e1(xx")e1(xx")exx, x'er (xx")er)

= (e1e2x, x'e1).

This proves axiom (IG1)(a). (IG1)(b) is proved dually. Now suppose that (Z e )
be a column singular E-square so that g,/ € w'(e) and g .Z h. Then

e(g, h)e(h, he) = (g, h)(he, h) = (ge, h)
¢(g, ge)e(ge, he) = (ge, g)(ge, he) = (ge, ).

Dually all row singular E-squares also commute.
(b) Equation (6.17) shows that G(¢) maps G(S) to G(S"). If (x,x")(y,v’)
exists in G(S), then x’x = yy’ and so

)PP = (NP = Yy )P = WSy )P-

Therefore the product

(@ x)6@) (W, 1)G@) = (¢, ¥ D)y, y'§)
exists in G(S’) and

(@ x)G(@)) (v, YIGP)) = (xpyeh, ' px'P) = ((xy)p, (' x'))

= ((x,x") (v, v)) G(¢)
Thus G(¢) : G(S) — G(S') is a functor. Also, for any gwe, v, (x,x’) € G(S),
(g - (x,x") G(¢) = (9x,x'7)G(¢)
= (999, ('9)9)

= (90)(x), (X$)(90)) where 0 = E(¢)
= (90) - (v, X)G(@).

This shows that G(¢) is order preserving. If c = c(ey, 1, . .., e4) € €(E) then
Wed = Wep.
Therefore

(e5(c)) G(¢) = (we, w1)G(P)
= (Wep, (We1)P) = (Wep, Wico)1)
= eg(cH).

This proves that G(¢) : G(S) = G(S’) is an inductive functor.
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(c) By (a) and (b), given assignments are single valued. Suppose that
¢:S— S and ¢ : S” = S§” be homomorphisms of regular semigroups. Then
for any (x,x’) € G(S) we have

(x,X)G(PY) = (xdpy, X' ¢Y) = ((x, ) G(9)) G-

Hence G(¢y) = G(¢) o G(¢) and so G is a functor as desired. (]

By the convention established above, we have E(S) = vG(S) for every
regular semigroup S and E(¢) = vG(¢) for all homomorphism ¢ : S — S of
regular semigroups. Thus the following diagram of categories and functors
commute:

RS — 76 (6.18)

RDB

6.2.3 Exercise

Exercise 6.1: Determine the inductive groupoid G(S) in the fallowing cases.
1. S = 9% where X is a set.

2. S=_2.7(V)where V is a vector space over a field k.

Exercise 6.2: Let G be an ordered groupoid. Show that it is possible to have more than
one biorder structure on E = vG which makes G an inductive groupoid.

Exercise 6.3: Let S be an orthodox semigroup (see ??). Show that G(S) be comes an
orthodox semigroup S if we extend the composition in G(S) by:

(6, X )y, ¥) = (xy, y'x).

Find the biordered set E(S). Can you characterize all those orthodox semigroups that
arise as S for some orthodox semigroup S ?

6.3 STRUTURE OF REGULAR SEMIGROUPS

In Section 6.2 we have associated an inductive groupoid with every regular
semigroups. Here we shall show that we an construct a regular semigroup S(G)
from an inductive groupoid G and a hmomorphism S(¢) from an inductive
functor ¢ such that these assignments gives a functor § : J& — RG. Moreover,
S is the adjoint inverse of the funcctor G of Theorem 6.11 so that G is an
equivalence of the category RS of regular semigroups with the category J&
of inductive groupoids.
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6.3.1 The regular semigroup of an indutive groupoid

In the following G denotes an indutive groupoid with vertex biordered set
E and evaluation ¢. By convension established for cateories in Section 1.2,
Chapter 1, G itself denote the set of morphisms of the groupoid G (see also
Section 1.3).

On G define the relation p as follows:

xpy &= exZey fr £ fyand xe(fy, fy) = elex, ey)y. (6.19)

In view of the conditions e, # e, and f, .Z f, the last equality is equivalent to

Xofy=exsy. (6.197)

It is easy to see that the relatin p is reflexive and symmetric. Also,ifx p y p z,
it follows from Equation (6.13) and Lemma 6.14 that

Xofi=(xufy)fi=exa(Yofi) =eraleyz)=eruz.

Hence x p z. Thus p is an equivalence relation. It is clear that no two dustinct
morphisms in a home-set G(e, f) can be p equivalent. In particular, no two
identities are p equivalent.

LemMa 6.12. The relation p on (the morphism set) of an inductive groupoid G defined
by Equation (6.19) is an equivalence relation such that x, y € G(e, f) and x p y implies
x = y. In particular, no two identites are p-equivalent.

Next theorem gives the basic cconstruction of a regular semigroup from
inductive groupoids.

TueorEM 6.13. Let G be an inductive groupoid and let S(G) = G/ p. Foreach x € G,
let X denote the p-lass containing x. For x,y € Gand h € .7 (f,, e,) let

7 =@o . (6.20)

This defines a binary operation on S(G) and S(G) is a regular semigroup with respet to
this operation. Furthermore, the map xc : e — € is a biorder isomrphism of vG = E
onto E(S(G)).

We shall divide the proof into a number of preliminary lemmas. Recall
for all x € G, the map a(x) : w(ex) = w(fy) defined by Equation (6.27) is an
w-isomorphism and that the map ag : x = a(x) is a v-isomorphism of G to T}
(see Theorem 6.28).

LeEMMA 6.14. Let x € G and suppose that h " e, and k o' f, such that fi, = fik.
Then
(hex) k=h.(x.k)
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where h . x and x . k are left and right restrictions of x defined in Equation (6.13) and
its dual.

Proof. 1t is clear from Equation (6.13) and its dual that the codomain of /. x
and he, . x are the same. Hence

fh.x = fhex.x = (hex)a(x) = ka

by Equation (6.27). Similarly

Cxk = Ex.fik = f, feku() 1 = (ka)ﬂ(xfl) = he,.

Therefore f., £ k and eyx # h. Thus the expressions (h.x).kand h.(x.k) are
defined by Equations 6.13 and its dual. Again it follows from these that

(hex) ok =((hex) . (frxk)) €(frak, k)
= ((h+2) « fnx) €(firx k)

(h )¢ (fik, k)

e(h, hey) (heyx « x) (fik, k).

e, hex) (x « fik) e(fik, b).

Similarly he(x.k)

Now heyx.x < x, x. ftk < x. Also, by the given condition, the codomains of he.x
is fvk so that
cod(hey . x) = frk = cod(x . fk).

Hence by the dual of axiom (OG3), we have hey . x = x. fyk. This proves the
lemma. O

If h and k satisfy the conditions of Lemma 6.3 then the common value of
the expressions (1. x).kand h. (x.k) will be denoted by i . x . k.

LemMma 6.15.Let x € Gand g,h € E. If g " h " e, and gex w hey, then
g.(h.x)=g.x. Ifga' ha' frand fg 0 fih, then (x .h).g=x.g

Proof. By Equation (6.13) and Proposition 1.19(2), we have

g.(h.x)=¢(g,gh) (gh.c(h, hey)) (k.x)

wherek = fy,.c (i e,)- Since ¢ is order preserving, and h Z he, by Equation (6.2),
we have
gh.e(h, hey) = e(gh . (h, hey)) = e(gh, (gh)(hey))
so that
k = (gh)(hex) = g(hex) = (gex)(hex) = gex.
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Since g Z gh Z ge,, we have

g+ (h.x) = (g, gh)e(gh, gex)(gex - x) = (g, gex)(gex » x) = g . x.
The second statement follows by duality. O
Lemma 6.16. For x,y € G and h € ./ (fy, e,), define
(xoy)y = (x.h)h.y). (6.21)
Then we have

ke(xoyh=(k.x.g)(g.y) if g € M(fx, h), k @ ex and fix = frg
and xoyhk=(x.g)g.x.k) if g€ M(h,ey), k o' fiy amd e,k = gey.

Proof. By Equations (6.21) and the dual of (6.13), we have ey, f; = exn = €(xoy),-
Then by Proposition 1.19, we have

k. (xoy) = ek ki) (khy « (1) (g1« (he 1))

where 1y = e, s, and g1 = fig,.xn)- By Proposition 1.19, hy . x = x . fyh and so,
by Equation (6.27) f;h = (h1)a(x). Again, by Theorem 6.28 ag : G — Ty is an
inductive functor and so, we have

g1 = (khy)a(x . h) by Equation (6.27)
= (kh1)a(x . fch)a(e(fih, h)) by Equation (6.13)"
= (kh1)a(hy « x)t(fch, h) since diagram 6.30 commutes
= (kh1)a(x)t(f:h, h)
= (k)a()(h)a(x)T(fh, h)
= h(frg)(f:h) by the given conditions

= h(f:(gh)) = gh.

By Proposition 1.19(1) khy . (x.h) = (x.h).g1. Since g1 @ h o' frand g1 0 h " ey,
by Lemma 6.14

(x.h)egi=x.g1 and g1.(h.y)=g1.y.
Therefore k.(xoy) = ek khi)(x.g1)(g1.Y)

=(kex.eg1)(g1+y)
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using Equation (6.13).Again, since g % g1, by Equation (6.13) we have

g-y=¢e(g,90(g1+Y)
and kix.g=(k.x.fr9)e(fxg,9)
= (k- x. frg1)e(fg1, fe9)e(f29, 9)
= (k. x. frgi)e(frg1, 90 (91, 9) by axiom (IG2)
= (k.x.g1)e(g1, 9)-
Hence kixoyn=(k.x.9)e(g,91)e(g1,9)(g . Y)
= (k-x.9)(g-y)-

2 OR R R R OR

The second statement follows by dualiity. O

Lemma 6.17. Let x,y,z € G, hy € S (fy,ey) and hy € F(fy, e;). Write h} = fy,.,, and
W, = ey.n,- Then there exist h € Y(fx,hé) and h' € 7 (h}, e;) such that

((x oY 02w = (x 0 (y © Z)n, -
Proof. Since h| = fu,.y = fhlgy_y, and i), = ey, f,i, by Equation (6.27),

W) = (mey)a(y) and I, = (fyh)a(y™)
By Corollary 3.23 there is h € (1, h}) C S (fy,hy) and I' € (], ha) C
(h},e;) such that (he,)a(y) = f,h’. Then we have f,., = f,h’. Since b’ €
M(fy, h2), by Lemma 6.17,
he(yoz)y, =y W)H .2).
Therefore
(xo (yo D = (X h)(hey. J)(H .2).
Since hy, b}, h and I’ satisfy the dual hypothesis, we obtain by dual arguements
that

((xo Y 0D = ()b y YW . 2).
This proves the lemma. O
LeEmMma 6.18. Let x p y in G. Tnen
hoxphoy  forallh @ e,
and dually, X.gpy.g forallga' f.
Proof. By Equation (6.13) h . x = &(h, hex)(hey . x). Let hy = fy... Then by
Proposition 1.19,
hex « (xe(fe, £,)) = (hex ) (I < (fi, ) = (hex < X)e (B, fyn);
hey . (e(ex, ey)y) = &(hey, hey)(hey « y).



318 6. INDUCTIVE GROUPOIDS

Since xe(fy, fy) = €(ex, e,)y, we have

(h+x)e(h, fyln) = e hes)(hey  x)e(h, fh)
= &(h, hex)e(hey, hey)(hey, « v)
= e(h, hey)(hey . y) = h.y.

Clearly hy £ f,h1 and so, h.x p h.y. The second statement is the dual of the
first. O

LemMma 6.19. Letxp x', y p y' inGand h € .7 (fy,e,) in E. Then (xoy), p (X' oy ).

Proof. Given conditions imply that f, .2 fv and ex Z e,. Hence by Proposi-
tion 3.12, .7(fy, ey) = (fv, ey, ). Hence the expression (x" o y'); is defined by
Equation (6.21). By Lemma 6.18, x . i p x’ . h. Since the codomains of there are
the same, by Equation (6.19), we have

x' wh=e(hy, hi)(x.h)

where 1 and h] are domains of x. & and x" . h respectively. Dually, if h; and I,
are codomains of /1. y and & . ' respectively,

hey' = (h.y)ehy, hy).

Therefore
X oy=&h)h.y)
= e, ) (x « h) (0« y)e o, 1)
= e(hy, )(x o yue (ha, ).
Since h} % hy and h}, £ hy, the lemma follows from Equation (6.19). O

Lemma 6.20. Let x,y € Gand h,h’ € /(f,,ey). Then (x o y), = (x 0 Y)p.

Proof. Let hy = ey and hy = fy,,. Then by Equation (6.27) hy = ( th)a(x’l) and
hy = (hey)a(y). Similarly let 1] = ey = (feh")a(x!) and h, = (W'ey)a(y).

First suppose that i % h’. Then he, = h’e, and so, h; = h}. Moreover, by
Lemma 6.15,

W.y=h.h.y
=¢e(W, h)e(h, he,)(he, . y) = (W', h)(h.y).
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Now, by Proposition 1.19, 1 . x = x. fxh and hi.x=x. fih' and so,
x b= (x. il )e(fh 0

= (), . e (£l 1)
= e(hy, h)(hy - x)e(fch, fch)e(fh', 1) by axiom (IG1)
= e(hy, hn)(x. fih)e(fih, h)e(h, 1) by axiom (IG2)

= e(hy, h)(x . h)e(h, 1').
Therefore

(xoyh = (x.H)NH .y)
= e(hy, h)(x . h)e(h, W )e(W', h)(h. y)
=e(hy, h)(x h)(h.y)
= e(hiy, h)(x o Y.
Since h] # hy and h;, = hy, it follows that (x o y), p (x o y)r in this case. In
the case when I .2 I, the same conclusion follows dually. If h, k" € .7(f{e,)

are arbitrary, by Corollary 3.21, there is h; € .”(fy,e,) auch thath % hy 2 I'.
Consequently the desired equality holds in all cases. O

Proof of Theorem 6.13. Lemmas 6.19 and 6.20, show that Equation (6.20) defines
asingle valued binary operation on S(G). Letx, y,z € G, h; € .7(fy,ey) and h; €
Z(fy,ez)- Then by Lemma 6.17 there is h € .7(fle(yoz),,) and I’ € 7 (fixoy), , €2)
such that

((c oy 02w = (x 0 (Y © 2)n, -
Now by Equation (6.20),
(xH)z = ((x o Yy © 2);
X(y2) = (x o (¥ © 2)p, -

It follows that S = S(G) is a semigroup. If the product xy exists in G, then

fx = ey and so, ./ (fy,e,) = {fx}. Therefore xj = (xoy)s, = xy. In particular,
taking y = x! we have
1% =xx"lx =% andsimilarly x1xx1=x71.

Therefore S is regular.

We now verify that xy : 8G = E — E(S) is a biorder isomorphism. By
Lemma 6.12 each p-class of G ontain utmost one identity and so the map yx is
injective. If h @" e by Proposition 3.9, h € .#(h,e) and he € .7 (e, h). Then

e(h,he)yp he and e(he h) p h.
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Hence by Equation (6.20)

eh = (e o h)ye = (e . he)(he . h)
= ¢e(he, h) = I
he = (h o e)pe(h, he) = he.

If h o' e, dually we have
eh=eh and he=h
It follows that yx is a bimorphism. If h € (e, f), then
of = - )

= (e(eh, h)(e(h, hf))
= ehhf since e(eh, h) p eh and e(h, hf) p hf
= (eh)(hf) = ehf by the abve

By Proposition 3.4 i € .7(¢, f) in E(S). Therefore x is an injecctive regular
bimorphism. Finally we show that y : E — E(S) is surjective. Suppose that
x € G such that x € E(S). If h € .7(fy, ex) then (x o x);, p x. Hence

ex # C(xox), = Cx.h = (th)a(x_l)'

Therefore (ex)a(x)fx Z fih @ f. which implies that f, = fih. Thus f. 2 h.
Dually e, % h. Since y is a bimorphism, & % h . f, in S. Further #x~! = ¢,
&% = ¥ and so, & # % in S. Similarly f, % . Consequently, the hypothesis
that ¥ is an idempotent implies that ¥ and & are ./#-equivalent idempotents in
the semigrup S. Therefore ¥ = /i and so yx is surjective. By Corollary 3.25 y is
a biorder isomorphism. O

We proceed to show that the construction of Theorem 6.13 can be extended
to a functor § : 36 — RG. The following theorem constructs the morphism
map of the desired functor S.

THEOREM 6.21. For an inductive functor ¢ : G — G’, define

(®)S(¢) = p(x) forall z e S(G). (6.22)

Then S(¢p) : S(G) — S(G’) is a homomorphism of the semigroup S(G) to the semigroup
S(G’) such that the following diagram commute:

G —< 5 E(S(G)) (6.23)

0 lE (5@

G’ —XG’> E(S(G,))



6.3. STRUTURE OF REGULAR SEMIGROUPS 321

where xg : ©G — E(S(G)) and x¢ : ©G" — E(S(G")) are biorder isomorpisms of
Theorem 6.13 and 0 = v¢.
Moreover S(¢) is injective [surjective] if and only if ¢ has the corresponding

property.

Proof. We first show that S(¢) : S(G) — S(G’) is a single valued mapping. To
this end, assume that x,y € G and x p y. Then by Equation (6.19) xe(fs, f) =
(ex,ey)y where e, #Z e, and f, £ f,. Now v = 0 : E — E’ is a regular
bimorphism and so, e,0 = exy # e,0 and f,0 £ f,0. Since ¢ is inductive,

(PN, £,6) = (DENP(e(fo fy)) = ¢ (xe(fe £))
= ¢ (e(er e))y) = (ex0,¢,0)(P(v))

Therefore ¢(x) p ¢(y). Hence S(¢) is single valued. Again, let x,y € G
and h € .7(fy,ey). Since 0 is a regular bimorphism h0 € . (f.0,y,0). By
Proposition 6.7(1) ¢(x . h) = ¢(x) . hO and ¢(h.y) = h0 . P(y). Hence

P((x o yIn) = (P(x) © P(Y)ho-

Therefore

x7)S(¢) = ¢ ((x © Yn)
= (@() ° p(W)no
= 0(0) ¢(y) = (®)S(O)(W)S().

It follws that S(¢) is a homomrphism. The definition of S(¢) immediately
imply commutativity of 6.23.

Suppose that ¢ : G — G’ is injective and that ¥S(¢) = 7S(¢p). Then, by
the definition of S(¢), ¢(x) p ¢(y) and so ex0 # e,0 and £,0 £ f,0 where
0 = v¢. Sincce 0 is a regular injective bimorphism, it is an isomorphism onto
EO by Proposition 3.24 and Corollary 3.25. Therefore e, Z e, and f, .2 f,. If
z = &(ex, ey)ye(fy, fx) thenz p yand so, P(z) p P(y) p P(x). Since ey = eg(z) and
fow) = fow), we have ¢(x) = ¢(z). Since ¢ is ono-to-one, x = z. Therefore x p y
and so ¥ = §J. Conversely suppose that S(¢») is one-to-one and let p(x) = ¢(y).
Then

(®S(9) = b(x) = P(y) = (7)S(¢)

which implies that ¥ = 7. Also E(S(¢)) is injective and so, by ??, 0 = v¢ is
injective. Since ey = ex0 = ey = e,0, we have e, = ¢,. Similarly f, = f,.
Since ¥ = , it follows from Lemma 6.12 that x = y.

If ¢ is surjective, it is clear from Equation (6.22) that S(¢) is surjective. So
assume that S(¢) is surjective. By Proposition 6.7, G; = Im ¢ is an inductive
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subgroupoid of G’. Since §(¢) is surjective, by Theorem 3.5 E(5(¢)) is surjective

and hence by 6.23, 0 = v¢ is surjective. Hence if ¢’ denotes the evaluation of

G, Im¢ C Gy. Letx’ € G’. Then x’ € S(G’) and since S(¢) is surjective, there

exists x € G with (¥)S(¢) = x’. By the definition of S(¢b), ¢(x) p x’. Therefore
x = g’(exr, e¢(x))d)(x)€’(f¢(x), fx’)-

Since €' (ex, €p), €' (fow), frr) € Ime” C Gy and ¢(x) € Gy it follows that x” € G.

Hence Gi = G’. This completes the proof. O

Equation (6.22) shows that S(1g) = 1g). Moreover, if ¢ : G — G’ and
Y : G" = G” are composable inductive functors, then for all x € G
(@)S(@Y) = Y(P(x))
= (®8(¢)) S(w).
by Equation (6.22). Thus we have the following:
THEOREM 6.22. For each inductive groupoid, let S(G) denote the reqular semigroup

constructed in Theorem 6.13 and for each inductive functor ¢ : G — G’, let S(¢) :
S(G) — S(G’) be the homomrphism of Theorem 6.21. Then the assignments

S:G— S(G), ¢ — S(9)
is a functor S : J& — RG. O

Notice that the diagram ?? shows that the map
X G x¢ isanatural isomorphism x:v 5 SoE.

As for the functor G (see Theorem 6.11), here also it may be convenient to
identify G = E(S(G)) for all inductive groupoid G by identifying e € vG
with ¢ = ey. It follows from Equation (6.22) that this identification forces
the identification v¢ = E(S(¢)) for all inductive functor ¢. Consequently the
following diagram commute:

6 —> RS (6.24)
lg
v
RB

Remark 6.2: Given any inductive groupoid G, Theorem 6.13 constructs a regu-
lar semigroup S(G) with vG is isomorphic to E(S). Given any biordered set E,
by Proposition 6.27 the set of all w-isomorphisms of E is an inductive groupoid
T} with v T}, is isomorphic to E. Therefore, by Theorem 6.13, S(T}) = T(E) is a
regular semigroup with biordered set isomorphic to E. This gives an alternate
proof of the fact that any regular biordered set is the biordered set of a regular
semigroup (see also Theorem 3.42).
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6.3.2 The equivalence of J& and RS

Suppose that G is an inductive groupoid and x, y € G. If xy exists in G, clearly
y~tx7! also exists. It is immediate from Equation (6.20) that

¥y =2xy, and F x 1= yx L
In particular, xl=¢, % f. = X = &,X. Hence
G AL fr

and x~1 is an inverse of ¥ in S(G). When xy exists in G, the above equalities
show that trace products ¥+ 7 and F +x~1 exists in S(G) (see Equation (2.48a)).
Conversely, if X, 7 € S(G) and if trace products ¥ * § and F « x~1 exist then
there exist g, € E(S(G)) such that

X ZgAY and y ' LhRxT
Then f, £ g # ey and f, £ h % e,. Hence if

u=-¢ehe)xe(fr,g9) and v =e(g,e)ye(fy,h)

then by Equation (6.19) x p u, y p v and uv exists in G. To prove uniqueness,
assume that u p v, v p v’ and that products uv and u'v" exists in G. Then
ey = fu L fw =ey. Since v p V', e, # ey which implies that f, = e, = ey = fi.
Similarly we have f, = e, = e,y = fr. Therefore u,u’ € G(ey, fu) and v,v" €
G(ey, fv). By Lemma 6.12, u = ' and v = v".

For convenience of later reference, summarize the discussion above as:

LemwMma 6.23. For x, y € G if the product xy exists in G then the trace products x + y
and y=1 + x~1 exists in S(G). If this is the case, we have

X+y=xy, and ylex1=ylxl

Conversely, if the trace products X = i and F « x~1 exists in S(G), then there exists
unique u,v € G such that it = X, 0 = §j and uv exists in G. In particular,

for all x € G. Consequently xle NX) for all X € S(G). O

Theorems 6.11 and 6.22 constructs functors G : RG — J& and S : I& —
ARG respectively. These constructions shows, in particular that, we can con-
struct an inductive groupoid from a regular semigroup and conversely a reg-
ular semigroup can be constructed from any inductive groupoid. We proceed
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to show that every inductive groupoid is isomorphic to an inductive groupid
of the from G(S) constructed from a regular semigroup S and every regu-
lar semigroup S is, upto isomorphism, a regular semigroup of the form S(G)
constructed from an inductive groupoid G. Thus the mathematical structures
inductive groupoids and reqular semigroups are structurely equivalent (notequal).
Here we prove this by showing that the functor S is the adjoint inverse of the
functor G (see Subsection 1.2.4). It may be noted that our functorial approch
gives a result considerably stronger than the structural equivalence of induc-
tive groupoids and regular semigroups; in fact our result also includes the
equivalence of inductive funtors and homomrphisms of regular semigroups.
We shall illustrate some of the consequences of these equivalences later in this
section.

We divide the proof of the equivalence of categories J& and G into the
following two propositions.

ProrosrTiON 6.24. For any indutive groupoid G, there is an inductive isomorphism
vG : G = G(S(G)) defined as follows:

ve(x) = (x, F) for all morphism x € G
and brg = X.
Furthermore
v: 15 i>SoG; G g

is a natural isomorphism.

Proof. For brevity, let us write S = S(G). We first observe that the morphism
map of the functor v¢ given in the statement is single valued. Indeed, if x p v
then it follows from Equation (6.19) that y=! p x~!. By Lemma 6.23, x"! € /(%)
and so, by Equation (6.1), (¥, F) is a morphism in G(S). Hence v is a well

defined map of the morphism set of G to the morphism set of G(S(G)). If xy
exists in G, by Lemma 6.23,

T foey =3y
and so, vg(x)vg(y) exists in G(S) by Equation (6.14). Moreover,

ve(ve(y) = & x )@ y )
= (@7, ylexl) by Equation (6.14)
= @7,y x 1) = (&7, (xy)) by Lemma 6.23
Therefore ve(X)ve(y) = ve(xy).

1

If e € G is an identity, (that is ¢ € ¥G) we have e™ = e and so,

vG(e) = (2,2).
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This shows that v¢ preserves identities and hence v : G — G(S) is a functor.
Moreover by Theorem 6.13 the map x : e — € is a biorder isomorphism and
the map e — (¢,¢) induced by v on the set of identities of G is a biorder
isomorphism of vG onto vG(S). In view of the identification vG(S) = E(S) we
may choose vvg = .

To show that v, is order preserving, consider x € G, and g @ e,. Then by
Proposition 3.9, g € .7 (g, ex) N .#(ex, ). Hence by Equation (6.21)

(gox)y, =g.x and (x7! °g)y =x! g= (g.x)’l.
Therefore by Equation (6.20)

gt=g.x and xlg=(g.x)7"!

Consequently, for all x € Gand g w ey,

ve(g-x) = (g.-%,(g.-0)7")

= (9%, x7'9)

=7.(x, F) by Equation (6.15%)

=7.vg(x).
We next verify that v¢ is inductive. Thus we must show that the diagram 6.12
commutes when we take vg = ¢. Since vvg = x = v&(E)(¢), the diagram
of vertex maps in 6.12 commutes. To show that the diagram commutes also
for morphism maps, it is sufficient to verify the commutativity for generating

chains of ¢(E)(E) = €(E)(vG); that is chains of the type c(e, f) with either e Z f
ore Z f.Lete Z f. Then

vo(e(e, f)) = (e(e ), £(fe)

= (7/5) since e(e, f) p fand e(f,e)pe
= (fx,ex) since vvg = x

= es(clex, fX)) by Equation (6.16)

= es(C(E)(c(e, f)))-

This proves the ommutativity in the case when the chain is c(e, f) withe Z f.
The proof for the casee £ f is dual.

This completes the proof that vg : G — G(S(G)) is an inductive homomor-
phism. To prove that v is injective, assume that vg(x) = v5(y) where x, y € G.
Thenx p yand x™! p y~' so thate; Z e, and ex = f1 £ f,-1 = e, which gives
ex = ey. Similarly f, = f,. Hence x and y are p-related morphism in the same
home-set of G and so, by Lemma 6.12 x = y. To prove that v is surjective, let



326 6. INDUCTIVE GROUPOIDS

(u,u") € G(S) where S = G/ p (see Theorem 6.13). Since the map x + X is sur-
jective from the morphism set of G onto S, thereisx € Gwithu = %. Leté = uw’
and f = u'u. Tnen by Lemma 6.23 ¢, Z e and f. . f. Soif y = (e, ex)xe(fy, f)
then 7 = u and y! = &(f, fi)x 'e(er,€). Again, by Lemma 6.23, it follows
that y~! is an inverse of 7 = u in the .#-class Ry N L;. Thus y~' and u’ are
¢ -equivalent inverses of u and so, u’ = y~!. Consequently v¢(y) = (u,u’).
This proves, by Proposition 6.7 that v is an inductive isomorphism.

Finally we show that v : G — v is a natural isomorphism. Thus we
must show that the following diagram commutes for all inductive functors
¢:G—-G":

G—+50G(G) (6.25)

¢ lSOG@T))

G ——S0G(G)

v

Letx € G. Then

(vo o (S0 G)(@)) () = (S o G(P)E )
= (G(S(@)) & x )

= (@), = )S(9)) by Equation (6.17)
= (x¢, (x¢) ) by Equation (6.22)
= (¢ ove ) ().

This complete the proof of the proposition. O

ProrositioN 6.25. For each regular semigroup S, define the mapping ns : S —
(G o S)(S) by
xns = (x,x’)

forall x € G and x’ € x). Then ns is an isomorphism of reqular semigroups and
ﬂ!S!—)]]lem@gcos

is a natural isomorphism.

Proof. We first show that 75 is single valued; that is, for any x’,x” € #(x), we
have (x,x") p (x,x”). It follows from Proposition 2.40 that ¢ = xx” Z ¢’ = xx”
and f = x'x £ x"x = f'. Hence ey =€ Z € = exyyand fuoy = f L f' =
fixy In G(S). Also, by Equations (6.14) and (6.16), we have

es(e’, o)(x, xX)es(f, f) = (e, €)(x, X)(f, f') = (x, fx'e’) = (x,x")
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using Proposition 2.40. Therefore (x,x’) p (x,x”’) in G(S) and so s is single
valued. If ns(x) = ns(y), then (x,x") p (v, y’) in G(S) and so xx’ Z yy', x'x £
y'y. Hene by Proposition 2.40, there is y* € #(y) such that y” ¢ x’. Then
xx)p vy) p (yy”). Since y’ J¢ x’ it is easy to see that (x,x") and
(y, y”’) are morphisms in the home-set G(S)(xx’, x'x) and hence (x,x") = (y,y")
in G(S). Therefore x = y. This shows that ng is injective. If u € S(G(S)).
By Theorem 6.13, there is (x,x’) € G(S) such that u = (x,x’) = ns(x) and so
ns is surjective. Hence s is an isomorphism. Suppose that x,y € S. Let
X € Nx), ¥y € Ny) and h € Z(x'x,yy’). Then by the definition of restriction
and evaluation in G(S) (see Equations (6.15%) and (6.16)) we have

ho(y,y') = es(h, hey) ((hey) (y, y')) by Equation (6.21)

= (hey, h)(heyy, y'he, = (hy, y'h).

Dually (x,x") < h = (xh, hx').

Hence  (xs)(yns) = (6, x') (v, )
= ((x, x") o (¥, y')n by Equation (6.20)
=((x,x)h)y(ha(y,y) by Equation (6.21)
= (xh, hx")(hy, y'h)
= (xy, y'hx’) = ns(xy) by Theorem 3.7.

Therefore 1s is an isomorphism.

Finally, to prove that the map S +— 15 is a natural isomorphism we must
prove that the following diagram commutex for all homomorphism ¢ : S — S’
of regular semigroups:

s— " (Gos)S) (6.26)

¢ l(c‘osxqﬁ)

§ (G oS)S)

Suppose that x € S. Then

(x) (T]S °o(Go S)(d))) = ((x, x))(G © S)(¢h) for some x’ € #(x)
= () (s(6(@))
= G(¢)(x, x’) by Equation (6.22)
= (x, X'¢) by Equation (6.17)

= (xP)ns = ()(pons). O
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Recall from Subsection 1.2.4 that an equivalence < F,G,n,v >: C = D of
categories consist of a pair of functors F: C —» D and G : D — C and natural
isomorphsms 1 : 1¢ = Fo G and v : 1p - G o F. The Propositions 6.24 and
6.25 proves the following.

THEOREM 6.26. Let G, S, 1 and v be as above. Then
<G,S;n,v>: RS = TG
is an equivalence of the categories RS and IB. O

Remark 6.3: As already noted, the equivalence proved above enables one to
replace regular semigrups by its inductive groupoids and vice versa according
to the contest. Since functors G and S are equivalences they preserves all
concepts defined categorically. However, since the categories we are concerned
with are set-based and concrete, often we need preservation of properties such
as injectiveness whose definition is set-theoretic rather than categoric. In the
present context many such properties are also preserved. Thusif ¢ : G — G’
is an inductive functor, Theorem 6.21 shows that ¢ is injective or surjective if
and only if S(¢) has the corresponding property. The reverse implication is
also true. Thusif o : S — S’ is a homomorphism of regular semigroup, G(o) is
injective or surjective according as o is injective or surjective. For by diagram
6.26, 0 is injective or surjective if and only if S(G(0)) is injective or surjective.
By Theorem 6.21 this is true if and only if G(o) is injective or surjective. This
in particular, enables us to define the concept of a congruence on an inductive
groupoids (treating inductive grouoids as partial algebras).

6.3.3 Exercise

Exercise 6.4: Prove the following preservation properties of the functors G and S:
Given any homomorphism 1 : S — S’ of regular semigroups, the morphism map of
the inductive functor G(¢) : G(S) — G(S') is injetive [surjective] if and only if ¢ has the
corresponding property.

6.4 THE FUNDAMENTAL REPRESENTATION

Recall that a semigroup S is fundamental if J7{,) = 1s; that is, the only con-
gruence contained in the relation /#is the identity on S (see Proposition 3.46).
Suppose that S is a regular semifroup. By Proposition 3.47 S is fundamental if
and only if the only idempotent separating congruence on S is 1. Therefore
S is fundamental if and only if every idempotent separating homomorphism
h:S — S (that is homomorphism h : S — S’ such that k¢h is idempotent
separating) is injective.

Let E denote a regular biordered set. Recall that an w-isomorphism is a
biorder isomorphisms of w-ideals (see Subsection 3.2.1). By Proposition 3.17,
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the set T}, of all w-isomorphisms of E is an ordered groupoid. Moreover, we
have the commutative diagram 3.15 in the category O® of ordered groupoids.
By Proposition 6.4 the diagram 6.9 is a push-out in the category O&. Hence
there exists a unique order preserving functor 7 = 1 : €(E) — T}, such that

Rpot=1r and Lgot=r1y.
Furthermore, we have:

ProrosiTioN 6.27. The groupoid Ty, of all w-isomorphisms of the biordered set E is
an inductive groupoid with evaluation T = T.

Proof. Since bR = v1g = 1¢ by definition, bt = 1. Hence to show that (T%, 1)
is an inductive groupoid, it is sufficient to verify axioms (IG1) and (IG2) of
Definition 6.1. To verify axiom (IG1)(a), let @ € Ty and e;,ex € w(ey) with
e1 @" e;. By Equation (3.11) we have f; = (e))a = fo.a, i = 1,2. Since a is a
biorder isomorphism, f; @ f, and for g w e;

gt(er,erer)(erer « @) = (glerer)) a
= (ga) f1fo = g(alw(er))T(f1, fLf2)
= g(er - )t(f1, fifo)-

This proves that (IG1)(a) holds. (IG1)(b) is proved dually. Thus T} satisfies
axiom (IG1). Axiom (IG2) holds by Proposition 3.18. Therefore T} is an
inductive groupoid with evaluation 7. O

Recall that OIx is an ordered groupid of all isomorphisms of order ide-
als of a partially ordered set X with vOIx as the partially ordered set of all
order ideals of X under inclusion (see Example 1.24). Now there is an order
isomorphism of the set of principal order ideals of X with X so that the set
OI of all isomorphisms of principal order-ideals is an ordered subgroupoid
of OIx whose vertex set can be identifies with X. In particular, if E is a regu-
lar biordered set T7 is an ordered subgroupoid of OI;. If G is any inductive
groupid with vG = E, and x € G, by Proposition 1.20 there is an order iso-
morphism a(x) : w(ex) = w(fy) and the map x — a(x) is an order preserving
v-isomorphism of G into OIr. The next theorem shows that a¢ is an important
representation of G in T}.

THEOREM 6.28. Let G be an inductive groupid with vG = E. For x € Gand e € w(ey)
let

ea(x) = fex- (6.27)
Then we have the following:



T*(G):Fundamental image of
inductive groupoid G

T*(¢):Fundamental image of the
inductive functor ¢

330 6. INDUCTIVE GROUPOIDS

(1) The map a(x) : w(ex) = w(fy) is an w-isomorphism.

(2) There is an inductive functor ag : G — T} with vag = 1, and whose morphism
map is x = a(x).

(3) If G is a v-full inductive subgroupoid of T}, then ag is the inclusion of G in T.
In particular, ar. = 1r..

(4) Let TY(G) = Imag. If ¢ : G — G’ is an inductive functor which is a v-
surjection, then

T'(9) (a6(x)) = ac: (4(x)) (6.28)

defines an inductive functor T*(¢) : T*(G) — T*(G’) such that the following
diagram commutes:

7(G) — 2 (&) (6.29)

o

Lo

G—¢>G’

Here af, [al, ] denote the epimorphic compunent of ag [ac/]. Furthermore, if ¢
and ¢’ are inductive v-surjections for which ¢’ exists, then

T (¢¢") = T(P)T(¢)-

(5) If ¢ is a v-isomorphism, then T*(¢) is an injection. In particular, if v = 1g,
then T*(¢p) is the inclusion T*(G) € T*(G').

Proof. (1) By Proposition 1.20(2), the map a(x) is an order isomorphism of
w(ey) onto w(fy). Letey, ex € w(ey) and e1 @™ €. Let f1 = e1a(x) and fo = a(x).
Then by (IG1)(a),

fi=fox @ fox=f and
(elez)a(x) = felez.x = flfz.

Similarly, by axiom (IG1)(b), the map a(x) preserves @' and the associated
basic product. Therefore a(x) is a bimorphism. Similarly a(x™!) is a bijective
bimorphism of w(fy) onto w(ey). Since a(x™!) = (a(x))fl, a(x) is a biorder
isomorphism of w(ey) onto f;.

(2) By Proposition 1.20(3), a : G — Ol is a v-isomorphism. In view of (1),
the map x — a(x) takes values in T;. Hence the given assignments gives an
order preserving v-isomorphism ag : G — T} with vag = 1z. We now show
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that the following diagram commutes.

&6l

¢(E) ————G (6.30)

Ty

Let c € ¢(E) and e € w(e:). By Equation (6.5a), f... = e7E(c) and since the
evaluation ¢ = &¢ is order preserving, we have

(€ o ag)(c) = ag (&(c))

= fe.s(c) = fs(e.c) = ﬁ.’.c = ETE(C).
Therefore

goag =1Tg

which proves that 6.30 commutes. Sine vag = 1, it follows that ag is inductive.

(3) Suppose that G be a v-full subgroupoid of T;. Then for a € G and
e € w(e,), e.a = alw(e). Therefore, for all @ € G and e € w(e,), we have
eac(@) = fe.n = ea and so, ag(a) = a.

(4) By Proposition 6.7(2), T*(G) is a an inductive subgroupoid of T, where
E = vG which is v-full since vag = 1. Similarly T*(G’) is a v-full inductive
subgroupoid of T;, where E’ = vG. Since ¢ : G — G’ is a v-surjection,
v = 0 : E — L' is a surjective (regular) bimorphism. We now show that
T*(G) is well defined by Equation (6.28). Assume that ag(x) = ag(y). Then by
Theorem 6.28(1), x and y are in the same home-set of G so that e, = e, and
fx = fy. Moreover, for all e € w(ey),

(€0)ac (P()) = fovupw = fotew) = (four) 0
= (eag(x)) 6 = (eac(y)) 0
= (e0)ac: (¢(y))-
Since 0 is surjective, w(e)0 = w(eO) and it follows that ac (qb(x)) = ag (qb(y)).
Since ag, ac and ¢ are order preserving functors, it is immediate from Equa-

tion (6.28) that T*(¢) is an order preserving functor. We also have the following
commutative diagram:

¢E) —— G —5TG) (6.31)
C(G)l ¢ T‘(q‘))l
¢(E) G’ T(G)

e ag
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The first square commutes since ¢ is inductive and the second square com-
mutes by Equation (6.28). By 6.30,

egoag =T and &g oag = Tp.

Therefore T*(¢) is inductive. Suppose that ¢ : G - H and ¢’ : H — K be
v-surjections in J&. Then for any x € G, we have

T (p9") (ag(x)) = ax (qbtb'(X)) = ag ((1)’ (@(x)))
= T'(§") (an (0()) = T'@") (T"(9)(ac(x)))
= (T (@) (a6(x)).-

Therefore T*(¢p¢") = T*(p)T*(¢").

(5) Assume that¢ : G — G’ is a v-isomorphism so thatvg =0 : E — E’isa
biorder isomorphism. Let ac(x), ag(y) € T*(G) and T*(¢) (ac(x)) = T*(¢) (ac(y)).
Then ac (d)(x)) = ac (d)(x)) and so, ey = (ex)0 = epqy) = ()0 and fy) =
(f)0 = fow) = (fy)0. Since 0 is an isomorphism, we have e, = e, and f, = f,.
Now, for any e € w(ex)

T'(9) (ac(e - x)) = ac: (9(e . x))
= (€0) . ac: (¢(1)) = (¢0) » ac ($(v))
= ag (p(e. ) = T'(¢) (ac(e+ ).

Hence eacg(x) = fex = fey = eag(y) for all e € w(ey). Therefore ag(x) = ag(y).
Thus T*(¢) is injective. If v¢p = 1, then for all x € G, ex = ey and fx = fy). It
follows that ag(x) = ac/(¢p(x)) forall x € G. Therefore T*(¢p) : T*(G) € T*(G’). O

We shall say thataninductive groupoid G is fundamental if any v-isomorphism
¢ : G — G’ is injective. That is, G is fundamental if, for any inductive functor
¢ : G — G’, the morphism map of ¢ is injective whenever v¢ : ¥G — vG’ is
an isomorphism.

If G is fundamental, ag is injective and as in the proof of (5) above, we see
that G = T*(G) in this case. By (3) above, any v-full inductive subgroupoid
of T} is fundamental. Hence fundamental inductive subgroupoids G with
vG = E are precisely v-full inductive subgroupoids of T7.

Remark 6.4: Notice that T* defined in (4) above is not a functor on J&. For, it
is easy to construct an example to show that the morphism T%(¢) is not well-
defined by Equation (6.28). However, T* : 3&" — J&' is a functor if J&’ is the
category with inductive groupoids as objects and v-surjections as morphisms.
In particular, if J&¢ is the inverse fiber of the functor v : & — RS at E (that
is, J&¢ is the category with objects as inductive groupoids G with vG = E and
with morphisms ¢ with v = 1¢) then T" is a functor of J&f to the preorder
under inclusions of all v-full inductive subgroupoids of T.
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6.4.1 Exercise

Example 6.1: Suppose that G is an inductive groupoid in the sense of Schein (see
Theorem 5.2). Prove that G is an inductive groupid according to Definition 6.1.

Example 6.2: Let G be a groupoid. Prove that there is a partial order on G which make
it a Schein’s groupoid if and only if either vG is infinite or there is a component of G
which is a group [see Schein, 1966]. However, on any groupoid G is the groupoid of an
inductive groupoid; that is, a partial order can be defined on G making it an ordered
groupoid, a biorder structure on vG = E and an evaluation of €(E) in G making making
G an inductive groupoid [see Nambooripad, 1979, Page 55].

Example 6.3: Prove that there are ordered groupoids that does not arise as the ordered
groupoid of an inductive groupoid. Also it may be possible to define more than one
inductive groupoid structure on a given ordered groupoid.

Example 6.4: Prove that a groupoid with evaluation G = (G, ¢) satisfies the condition
(IGT") of Remark 6.5 if and only if it satisfies the axiom (IG1) of Definition 6.1.

6.5 EXTENSIONS

In general by an extension of an inducctive groupoid G, we mean a pair (G, ¢)
where G’ is an inductive groupoid and ¢ : G — G’ is an embedding of the
inductive groupoid G into G’; identifying G with the subgroupoid Im ¢ we can
regard the extension as the inductive groupoid G’ containing G as an inductive
subgroupoid.

In this section we study several classes of extensions of a regular semigroup
S using the concepts of extensive families. Study of these extensions were
originally done by [Pastijn and Petrich, 1986]. The version of these results
presented here is due to [?] which illustrate the use of inductive groupoids in
such constructions.

6.5.1 v — full extensions of inductive groupoids

We continue to use the notation G for an arbitrary inductive groupoid with
E = vG and evaluation €. An inductive groupoid G’ is a v — full extension of G
if G is a v — full inductive subgroupoid of G’. In this section, unless otherwise
stated, by an extension, we shall mean a v — full extension.

We begin by discussing some local properties of inductive groupoids. Call
an inductive subgroupoid H of G to be an w-subgroupoid if vH = w(e) for e € E;
we write H = H(e) and e is called the generator of H. Let ¢ : H(e;) — H(f;)
and 7 : H(e;) — H(f:) be inductive isomorphisms of w-subgroupoids of G. If
the groupoid composite (that is, H(f;) = H(e:); see Example 1.21) of ¢, T exists,
then it is clear that o7 : H(e;) — H(f:) is an inductive isomorphism. Also
1) : H(e) — H(e) is an inductive isomorphism. Therefore it is clear that there

extension
extensive families
w-subgroupoid
generator
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is a groupoid &G of inductive isomorphisms of w-subgroupoids which is a
subgroupoid of the groupoid I¢ of all partial bijections of G. Again if 0 € &G
then vo : w(e;) = w(fs) is an w-isomorphism of E = vG. If H(g) € H(e,), then

© = (alH(9))°

is an inductive isomorphism of H(g) onto Im(c|H(g)) = H(h) where h = (g)lo.
It follows that we can define a partial order on &G as follows:

0<1 & Gle) CG(fr) and o = (7|G{es))° (6.32)

It is easy to verify that < is the restriction of the partial order on I; to G
and hence the inclusion &G C I¢ is an order-embedding of &G into I¢.
Conequently we have:

LemMma 6.29. There is a groupoid &G in which v®G is the set of all w-subgroupoids of
G and morphisms are inductive isomorphisms. Moreover &G is an ordered groupoid
with respect to the relation < defined by Equation (6.32). O

Recall that for any u € G, a(u) : w(e,) = w(f,) is an w-isomorphism (see
Theorem 6.28). The following proposition is due to ?.

ProrosiTioN 6.30. For e € E = vG suppose that
Ne)={veG:ey, f, € wle)). (6.33a)
Then n(e) is the morphism set of an inductive subgrupoid of G with
oN(e) = w(e)

and evaluation eNG) = &6lI€(w(e)).
For u € G define N(u) : N(ey) — N(fu) by

ON) = (we)x(feeu) forall x € Ney). (6.33b)
Then N(u) : N(ey) — N(f) is an inductive isomorphism with

on(u) = ag(u).

Proof. If u,v € N(e) and uv exists, then e, = ¢, w e and f,,, = f, w e and so,
uv € N(e). Alsoe, 1 = f, w eand f,1 = e, w e so that u™! € G(e). Hence ~(e) is
a subgroupoid of G. Further, if g w e, with u € ~(e) then f,., @ f, w e. Hence
e.u € N(e). It follows that ~(e) is an ordered subgroupoid of G with va(e) = w(e).
Since €(w(e)) is an ordered subgroupoid of €(E) and since ¢(c) € ~(e) for all
c € €(w(e)), it is clear that ~(e) is an inductive groupoid with respect to the
evluation ¢’ = ¢|€(w(e)).
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By Proposition 1.18, v™! . e, is the unique morphism with v™!.e, <v™! and
foie, = eu. Hence v v, = (e,.0) ' and e,1,,, @ €1 = fo. Since fyw) @ fo it
follows that ~(v)(u) € ~(e) for all u € n(e). If w = (u)n(v), an easy computation
using the definition of ~(v) shows that (1)~ (v) = w if and only if u = (w)N (v ™)
and so, N(v) is a bijection with ~#(v)™! = N(v71). If u, w € N(e) and if uw exists,
then

N@)@INMD) = (O eulfu - 0)) (@ ew)w(f - 0))
= ((el, v)” u(fu . v)) ((ew . v)’lw(fw . v))
= ((el, v)lu futw(fw - v)) since f, = ey
= ( (eyw « V)~ (uw)( fuw v)) since e, = e, and f;,
= (uw)n(v).

Also, if g € ~(e) is an identity then g w e,. Hence
(@N@) = (9.9)7'9(g.0) = foo = gac(v)
by Theorem 6.28 and so

oN(0) = ag(v)

Hence ~(v) preserves composition and identities. Thus ~(v) is a functor. Since
N(v) is a bijection, it is an isomorphism of groupoids. To show that ~(9v) is
order preserving, let u,u’ € ~n(e)[e,] and u < u’. Then we have ¢, w e, and
fu @ fu. Thereforee,.v < ey .vand f,.v < fr . v by axiom (0G3). Also
(eu +0)! < (ew « v)7! by axiom (OG2). Hence by axiom (OG1),

(N () = (e 0) " (W)(fu » 0)
< (ew «0) (W) (fur +0) = (WIN(D)

Thus ~(v) is order preserving. Moreover, since b~(v) = ag(v), by Theorem 6.28,
bA(v) is an w-isomorphism and hence a biorder isomorphism of bn(e,) onto
vA(f,). Now cconsider e1,ex € w(ey) = vN(ey). If &1 Z e, and if fi = (e;)a(v),
i=1,2then fi Z f, and

&' (e1,e2)(e2 . v) = €(er, e2)(e2 - 0) where ¢ = ¢|n(ey)
= (e1.0)e(f1, f2) by axiom (IG1)
= (e1.0)e"(f1, f2). where ¢” = ¢|N(fy)

Similarly, if e; .Z e, then fi .Z f, and

&' (e1,e2)(e2 . v) = (e1 . 0)E"(f1, f2)-

= fuw
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Consequently, for any ¢ € €(w(ey))

&' (c)(ez . v) = (€1 . 0)e” (ca(v)).

Itisnow clear that the diagram 6.12 commutes for #(v) and so, by Definition 6.2,
N(v) is an inductive isomorphism. O

Remark 6.5: Notice that, the proof that ~(v) is an order preserving functor
of the ordered groupoid w(e,) to ~(f,) does not use evaluation in any way
and so the result is true for all ordered groupoids. However, the proof that
~N(v) is inductive uses evaluation. In fact the statement that »(v) is inductive
for all v € G is equivalent to (IG1). For, call a pair (G, Ec) a groupoid with
evaluation where G is an ordered group such that vG = E is a biordered set and
€ : €(E) — Gis an evaluation; that is, an order preserving v-isomorphism. As
for inductive groupoids, we shall abbreviate the notation of the groupoid with
evaluation to G and denote the corresponding evaluation by ¢¢ and vG = E.
A morphism ¢ : G — G’ is an order preserving functor ¢ : G — G’ of ordered
groupoids such that 6 = v¢ : E — E’ is a (regular) bimorphism making the
diagram 6.12 commutative. The morphism ¢ is an isomorphism if ¢ is an
isomorphism of ordered groupoids and 6 = v¢ is a biorder isomorphism.
This defines a category &€& which can be identified as a subcategory of the
morphism category of the category D& of ordered groupoids or the functor
ccategory [2,D®] where 2 denote the category - — - with two objects and
one morphism [see MacLane, 1971, Page 40]. For e € E = uG, if we define
subgropoid ~(e) as above, it is a groupoid with evaluation ey = eg|n(e). Itis
not difficult to prove that a groupoid with evaluatin is an inductive grupoid if
and only if it satisfies axiom (IG2) and the following;:

(IG1)* For each u € G, ~(u) : N(ey) = N(fy) is a local isomorphism.

(see also examples at the end of this section.)

For each e € E the inductive subgroupoid ~(e) € G will be called a local
subgroupoid of G at e. An iductive isomorphism ¢ : ~N(e;) = N(fs) is called
a local isomorphism of G. The Proposition 6.30 above shows that, for v € G,
N(v) : N(ey) = N(fy) is a local isomorphism of G. ~(v) is called a local inner
isomorphism of G.

The following is a useful consequence of Proposition 6.30

Prorosrtion 6.31. Let G be an inductive groupoid with vG = E. Then the assign-
ments
N:ie Ne)=nN(e) and v N(D)

is an order preserving v-isomorphism N : G — BG.

Proof. By Lemma 6.29, &G is an ordered groupoid and by Proposition 6.30,
N 10 = N(v) is a map of G into BG. Let v, w € G such that vw exists. Then for
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any x € N(ey), extensive family
morphism

ON@NW) = (h.w) ey v)_lx(fx .0)(k.w) whereh = (e;)a(v) and k = (fy)a(v)
= ((ex » 0)(h e w)) " x(f » 0)(k . W)
= (ex » vw)x(fr « vw) = (x)N(vw) by Proposition 1.19(2).

Also, taking u = e in Equation (6.33b), we have x~n(e) = x for al x € ~(e).
Therefore v : G — &G is a functor. If v < w then ~(e;) € N(ew) and for any
x € N(ey) we have

XN(D) = (er « 0) ' X(fr 2 0) = (ex « (€0« ) X (fi o (fir « W)
= (e « W) ' x(fr « W) = ()N (W).

Therefore ~(v) < N(w) by Lemma 6.29 and so w is order preserving. Sincee w f
if and only if ~(e) C ~(f), the map e — ~(e) is an order embedding of E = vG
onto b &G (see Lemma 6.29). This completes the proof. O

Recall that a functor F : C — D to a category D with subobjects is a
subfunctor of H : C — D if F(c) € H(c) for all ¢ € vC and the map

H . H(c)
JE 1€ P T

is a natural transformation of F to H (see Equation (1.52)); we write F C H.

DEeriNITION 6.3. Let G be an inductive groupoid. An extensive family of G is an
order preserving v-embedding 7 : G — &G such that

(a) v(r(e)) = w(e) foralle € E; and
(b) 7 C ~.

An indutive isomorphism ¢ : 7(e;) = 7(f5) is called an #-morphism if for all
g w e, the restriction of o to #(g) in G is an isomorphism of #(g) to #(h)
where h = (g)vo.

Notice that v is, in particular, an extensive family and every local morphism
of G is an N-morphism.

TueOREM 6.32. Let 7 be an extensive family for the inductive groupoid G. Then
there exists an inductive groupoid Ax(G) = A such that vA¢s = {7(e) : e € E} and
morphisms are 7- morphisms. Furthermore, with respect to this inductive structure
on Ag, the functor 7 : G — Ag is an inductive v-isomorphism.

Proof. Let 0 = vr and E = {#(e) : e € E}. The given condition implies that the
map 0 : e > & = 7(e) is an order isomorphism of (E,w) onto E. Fore, f € E
define

ef = ef. (6.34a)
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This defines a partial binary operation on E which makes it a biordered set such
that 0 : E — E is a biorder isomorphism. Moreover, since # is a b-embedding,
the original partial order on E becomes the relation w of the biordered set E.

Let 0 and 7 be 7-morphisms and assume that 07 exists in 8G. Then for any
7(g) € dom o = 7(e;), by Definition 6.3 above

o =olF(g) : 7F(g) > #(h) where h=gvo
is a morphism in &G. Thenh w f; = e; and so, again by the definition above
v =1lF(h) : F(h) > (k) where k=hvt

is a morphism in &G. By Proposition 1.19, we have o7|r(g) = 0’1" which is a
morphism in &G from #(g) to #(k). Hence o7 is an #- morphism. Similarly,
since

o lr(h) = (a|¢(g))’1 where gwe;, h=gvo

it follows that o is an #-morphism if and only if 07! is an #-morphism. There-
fore there exists a groupoid A# in which morphisms are #-morphisms and
vAy = E. Again if 0 is an #-morphism so is o|7(g) for all g w e,. Therefore Ay
is an ordered subgroupoid of &G with

g.o=olF(g) forall ceAr gwe,. (6.34b)

Since 0 : E — E is an isomorphism, every E-chain in ¢(E) has the form
¢ = €(0)(c) for a unique ¢ € ¢(E). Define

E(@@) =7(e(c)) forall ce &E). (6.34¢)

Taking ¢ = c(g, g) = g in the above we see that

E@)=7(g) =g forall geLE.

Thus ¢ : €(E)(E) — &G is a functor satisfying the condition
E(B)oE=co¥F. (6.34¢%)

Since ¢, €(0) and # are order-preserving v-isomorphisms, so is & We now
show that (A, &) satisfies axioms (IG1) and (IG2). Accordingly assume that
0 € Ar and & w €;, 1 = 1,2. Then there exists unique ¢; w ¢,, i = 1,2, such
that & = (e:)0. Let f; = (e;)a where a = vo is an w-isomorphism. Then fl " f
if and only if é; @ & in E. To verify (IG1)(a), suppose that e; @ e, so that
€1 % ee5. Since o is an w-isomorphism we have f; @” f, and ﬁ K74 fffz. Then
by Definition 6.3 7(e1) € ~(e1) and

7(e(e1, eie2)) = N(e(er, eiez))|7(er)-



6.5. EXTENSIONS 339

Therefore, for any u € 7(e1), ey, fu € w(e1) and

(u)&(é1, e1e2) = ()7 (e(e1, ere2)) by Equation (6.34c)
= (e, « €(e, elez))_1 u(fu.e(er,e1e2)) by Equation (6.33b)
= (E(EMEZI eu)) u (E(fu, quZ))

using Equation (6.5a) and the fact that ¢ is order preserving. Therefore, since
o is an inductive functor, again using Equations (6.34b) and (6.34c) we have

(W)&(é1, erez) (ere2 « 0) = ((e(euez, eu)) u ((fu, fue2)) o
= (e(euo f2, o)) (U0) (& (fuo, fuo f2)
= (uo)r (e(f1, fif2))
= (W) @ . 0) (2(fi, fif2))-

Since this equality holds for all u € 7, axiom (IG1)(a) is proved. Proof for
axiom (IG1)(b) is dual. Hence A# satisfies axiom (IG1). To prove (IG2), let
A= (Z ZS) be a column-singular E-square in E (so that g,/ €w" (¢) and g £ h).
Then A’ = (Z Zﬁ) is a column-singular matrixx in E so that A’ is e-commutative
in G. Since ¥ is a functor, it follows that

&(7, ge)& (ge, he) = 7 (¢(g, ge)) 7 (&(ge, he)) by (6.34¢”)
=7 (e(g, ge)e(ge, he)) since ¥ is a functor
=7 (e(g,H)e(h, he)) by (IG2) for G
= #(g,h)E(h, he) again by (6.34c").

Hence A is &-commutative in Ag. The proof of &-commutativity of row-
singular E-squares in A is similar. Therefore axiom (IG2) also holds in Ag.
Thus A is an inductive groupoid.

Since G and Ag are inductive groupoids, and ¥ is an order preserving
functor, Equation (6.34c") shows that 7 is an inductive functor of G to Az. [
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Ls, Ra, Ha, Dy, Jo: equivalence class of Green’s relations, 85
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R o R’: composite of Rand R’, 1

S/I: Rees quotient semigroup of S by ideal I, 64

S/p: quotient semigroup, 62

S xy Tfibered product of S and T over U, 72

S: semigroup obtained by adjoining 0, 51

S!: monoid obtained by adjoining 1 to S, 51

S'x :cyclic left S-set generated by x, 81

5°P: Left-right dual of S, 50

5): symmetric group of degree a, 104

S; : left regular S-set, 82

S, : right regular S-set, 82

T*:dual of T, 154
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X": Cartesian product of n copies of X, 49
Y:Yoneda equivalence, 20

Z(S):center of S, 254
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By(E): Free semigroup generated by E, 187

C: complex numbers, 49

Cat:The category of small categories, 13
x0:the biorder congruence of the bimorphism 6, 178
A:D—[C D] 21

Aj:constant functor with value d, 21
Grp:category of groups, 12

Js, As, Is: partially ordered set of principal ideals, 52
Ap: Kernel normal system of p, 234

ﬂp:The kernel normal system of p, 264
MC:subcategory of monomorphisms, 25

N: natural numbers, 49

N:system of natural numbers, 209

N*, Q*, R*, C*: set of non-zero numbers, 49
Q(S) :translational hull of S, 132

Q: rational numbers, 49

R: real numbers, 49

Byx: set of relations on X, 3

Ab:category of abelian groups, 12

g(H): Schiitzenberger group of H, 103

@w <o My :direct sum of representations M,,, 141
E(S): the biordered set of S, 52

E(S): the biordered set of idempotents of S, 97
E(S):set of idempotents of S, 110

C(—, —):the hom-functor, 17

C(—, ¢):contravariant hom-functor, 14
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C(c, —):covariant hom-functor, 14
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C°P:the opposite category of C, 12

-, +,*,0: symbols for binary operations, 50

cod f: codomain of f, 2

cod f:codomain of f, 10
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;e Si :free product of {S;}ics, 73

(A; {w; = w;,i € I}):semigroup presented with generators A and relations R, 76
AP : anti-representation of S by partial transformations on D, 134

A, :partial left translation by a, 135

A:representation by partial left translations, 135

li_n} F:direct limit of F, 22

dom R: domain of R, 1

dom f:domain of f, 2,10

M7,:The dual Schiitzenberger representation of with respect to D, 140
n(a) :component of the natural transformation 7, 15

1 :d > F:cone to the base F from vertex d, 21

Ec:evaluation functor, 20

(E@):The fundamental semiband of E, 186

X*: Free semigroup on X, 74

X*: Free monoid on X, 74

@g: Fundamental embedding of the biordered set E, 186

7(S):the universal group homomorphism on S, 248

G?: kernel of p, 239

Gl (k): general linear group of degree a, 104

L, %, 7,9, 7: Green's relations, 85

Hc, HC:contra, co-variant representations, 19

G(S):Inductive groupoid of S, 260

i€ ;:The category of ideal extensions of U, 147

Js: lattice of ideals, 52

Im R: image of R, 1

j%inclusion of ¢ in d, 29

lig’l F:inverse limit of F, 22

oP :Representation of S by partial transformations on the Z-class D, 133
oP :representation of S by partial transformations on the Z-class D, 134
o,-partial right translation by a, 135

o:representation by partial right translations, 135

LL(S):I-category of S, 84

DA :isodomain of A,, 135

<g: The natural partial order on S, 215

<s:quotient of < by g, 222

<1, <1, < quasi-orders induced by principal ideals, 85

£3s: lattice of left ideals, 52

Ag : left regular representation, 82

sSet:category of left S-sets, 81
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2c:Yoneda functor, 20

M} minimum condition on idempotents in a ¢ -calss, 127
M;
Mj: minimum condition on #-classesina _# -class, 127

: minimum condition on .Z-classes in a _# -class, 127

Nat(S, T):natural transformations from S to T, 16

w"left quasiorder, 153

w":right quasiorder, 153

¥ 4(S): Principal factor of S ata, 125

[1e; Si :Direct product of the family {S;} of semigroups, 69
MB:subcategory of B with objects as regular biordered sets, 159
R(S):r-category of S, 84

Do :isodomain of p,, 135

Tis: representation of S by bitranslations, 132
p":composite of 1 copies of p, 4

MTs: lattice of right ideals, 52

MO(G; I, A; P): Rees I x A-matrix semigroup over G°, 59
pg :right regular representation of S, 82

Sets:category of right S-sets, 81

(e, f): Sandwich set, 158

(e, f):see definition on 172, 159

(e, f):see definition on 172, 159

Set:category of sets, 12

&: category of semigroups, 54

o : F 5 d:cone from base F to vertex d, 21
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~: equivalence relation < N <71, 158

Ha): The set of inverses of a, 94

Mp:The Schiitzenberger representation of with respect to D, 140
@:partial symmetric representation of on S, 135
@®P:partial symmetric representation of S on D, 134
7!(e):left translation, 153

7" (e):right translation, 153

7:0order preserving functor from .Z’to T}, 171

Tg:order preserving functor from % to T}, 171
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vF:The vertex map of F, 13

vC:vertex class of C, 10
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AN, 6
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a~!: unique inverse of a, 100
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e . x or x, e:restriction of x to e40
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kernel
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lattice, 7
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direct —, 22
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local structure, 161
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order preserving, 6
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Schiitzenberger —, 140
representations, 19

direct sum, 141

equivalent —, 140
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