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Abstract
An implication semigroup is an algebra of type (2, 0) with a binary operation → and a 0-
ary operation 0 satisfying the identities (x → y) → z ≈ x → (y → z), (x → y) → z ≈[
(z′ → x) → (y → z)′

]′ and 0′′ ≈ 0 where u′ means u → 0 for any term u. We completely
describe the lattice of varieties of implication semigroups. It turns out that this lattice is
non-modular and consists of 16 elements.
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1 Introduction and summary

In the article [8], the second author introduced and examined a new type of algebras as
a generalization of De Morgan algebras. These algebras are of type (2, 0) with a binary
operation → and a 0-ary operation 0 satisfying the identities

(x → y) → z ≈ [
(z′ → x) → (y → z)′

]′ and 0′′ ≈ 0,

where u′ means u → 0 for any term u. Such algebras are called implication zroupoids. We
refer an interested reader to [8] for detailed explanation of the background and motivations.

The class of all implication zroupoids is a variety denoted by IZ. It seems very natural to
examine the lattice of its subvarieties. One of the important and interesting subvarieties of
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IZ is the class of all associative implication zroupoids, that is algebras from IZ satisfying
the identity

(x → y) → z ≈ x → (y → z).

It is natural to call such algebras implication semigroups. The class IS of all impli-
cation semigroups forms a subvariety in IZ. This subvariety was implicitly mentioned in
[8, Lemma 8.21] and investigated more explicitly in the articles [3–5]. (Incidentally, we
should mention here that implication zroupoids are referred to as “implicator groupoids”
in [4].) But only the location of IS in the subvariety lattice of the variety IZ and “interac-
tion” of IS with other varieties from this lattice were studied in those articles. The aim of
this paper is to examine the lattice of subvarieties of the variety IS. Our main result gives a
complete description of this lattice.

For convenience of our considerations, we turn to the notation generally accepted in the
semigroup theory. As usual, we denote the binary operation by the absence of a symbol,
rather than by →. Since this operation is associative, we will, as a rule, omit brackets in
terms. Besides that, the notation 0 for the 0-ary operation seems to be inappropriate in the
framework of examination of implication semigroups, because it is associated with the oper-
ation of fixing the zero element in a semigroup with zero. For this reason, we will denote
the 0-ary operation by the symbol ω which does not have any predefined a priori meaning.
In this notation, implication semigroups are defined by the associative law (xy)z ≈ x(yz)

and the following two identities:

xyz ≈ zωxyzω2, (1.1)

ω3 ≈ ω. (1.2)

To formulate the main result of the article, we need some notation. As usual, elements
of the free implication semigroup over a countably infinite alphabet are called words, while
elements of this alphabet are called letters. Words rather than letters are written in bold. We
connect two sides of identities by the symbol ≈. We denote by T the trivial variety of impli-
cation semigroups. The variety of implication semigroups given (within IS) by the identity
system � is denoted by var �. Let us fix notation for the following concrete varieties:

B := var {x ≈ x2},
K := var {xyz ≈ x2 ≈ ω, xy ≈ yx},
L := var {xyz ≈ x2 ≈ ω},
M := var {xyz ≈ ω, xy ≈ yx},
N := var {xyz ≈ ω},

SL := var {x ≈ x2, xy ≈ yx},
ZM := var {xy ≈ ω}.

The lattice of all varieties of implication semigroups is denoted by IS.
The main result of the article is the following

Theorem 1.1 The lattice IS has the form shown in Fig. 1.

In [8, Problem 5], the second author formulated the question of whether the lattice of
all varieties of implication zroupoids is distributive. The following assertion immediately
follows from Fig. 1 and provides the negative answer to this question.
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Fig. 1 The lattice IS

Corollary 1.2 The lattice IS is non-modular.

This article consists of three sections. Section 2 is devoted to the proof of Theorem 1.1,
while Section 3 contains several open problems.

2 Proof of theMain Result

To verify Theorem 1.1, we need a few auxiliary assertions. If u and v are words and ε is an

identity then we will write u
ε≈ v in the case when the identity u ≈ v follows from ε.

Lemma 2.1 The variety IS satisfies the following identities:

ω2 ≈ ω, (2.1)

ωx ≈ xω, (2.2)

xyz ≈ xyzω. (2.3)

Proof The following three chains of identities provide deductions of the identities (2.1)–
(2.3) from the identities that hold in the variety IS:

(2.1) : ω2 (1.2)≈ ω10 = ω2ωωω2ω2ω2 (1.1)≈ ωω2ω2 = ω5 (1.2)≈ ω,

(2.2) : ωx
(2.1)≈ ωωx

(1.1)≈ xωωωxω2 (2.1)≈ (xωωωxω2)ω

(2.1)≈ (ωωx)ω ≈ ωωxωωω2 (1.1)≈ xωω
(2.1)≈ xω,

(2.3) : xyz
(1.1)≈ zωxyzω2 (2.1)≈ (zωxyzω2)ω

(1.1)≈ (xyz)ω.

Lemma is proved.

An idempotent e of a semigroup S that commutes with every element in S is said to be a
central idempotent. The identities (2.1) and (2.2) show that if S is an implication semigroup
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then the distinguished element ω of S is a central idempotent. This explains our interest in
the following assertion which is a part of semigroup folklore. We provide its proof here for
the sake of completeness.

Lemma 2.2 If e is a central idempotent of a semigroup S then S is a subdirect product of
its ideal eS and the Rees quotient S/eS.

Proof Clearly, eS is an ideal of S and the natural homomorphism η : S → S/eS has the
property that η(x) = η(y) if and only if either x = y or x, y ∈ eS. On the other hand,
the map ϕ : S → eS given by the rule ϕ(x) = ex is a homomorphism of S onto eS and
ex = ey implies x = y for x, y ∈ eS. Therefore, if x, y ∈ S are such that η(x) = η(y)

and ϕ(x) = ϕ(y), then x = y. We see that ϕ and η are surjective homomorphisms from S

onto eS and S/eS respectively, and the intersection of kernels of these homomorphisms is
the equality relation. Hence S is a subdirect product of eS and S/eS.

Recall that a semigroup is called a band if it satisfies the identity x2 ≈ x. We call a
variety of implication semigroups V a monoid variety if the identities xω ≈ ωx ≈ x hold
in V. Obviously, this means that every semigroup in V has an identity element and the
operation ω fixes just this element in each semigroup from V.

Lemma 2.3 A variety of implication semigroups is a monoid variety if and only if it is a
variety of bands.

Proof Any monoid variety satisfies the identities x ≈ ω2x
(1.1)≈ xω3xω2 ≈ x2, while any

variety of bands satisfies the identities ωx
(2.2)≈ xω ≈ x3ω

(2.3)≈ x3 ≈ x.

Lemma 2.4 If V is an implication semigroup variety then V = (V ∧ B) ∨ (V ∧ N).

Proof We can assume that the variety V is generated by an implication semigroup S. In
view of Lemmas 2.1 and 2.2, the set ωS is an ideal of S and S is a subdirect product of ωS

and the Rees quotient S/ωS. Clearly, ωS is an implication semigroup with the distinguished
element ω and ωx = xω = x for every x ∈ ωS. Then ωS ∈ B by Lemma 2.3. Note

also that S/ωS is an implication semigroup with the distinguished element ωS and xyz
(2.3)=

xyzω
(2.2)= ωxyz ∈ ωS for every x, y, z ∈ S. This implies that S/ωS satisfies the identity

xyz ≈ ω and therefore, is contained in the variety N. Thus, we have proved that S is a
subdirect product of the implication semigroups ωS ∈ B and S/ωS ∈ N. This implies the
required conclusion.

As usual, we denote by L(X) the subvariety lattice of the variety X.

Proof of Theorem 1.1 According to Lemma 2.3, B is a monoid variety. Therefore, it satis-

fies the identities xyx ≈ xωyxω2 (1.1)≈ ωyx ≈ yx. The lattice of varieties of band monoids
is completely described in [11]. In view of [11, Proposition 4.7], the lattice L(B) is the
3-element chain T ⊂ SL ⊂ B.

The variety N satisfies the identities ωx
(2.2)≈ xω

(2.1)≈ xω2 ≈ ω. Hence every semigroup
from N contains the zero element and the operation ω fixes just this element in each semi-
group from N. This means that N is nothing but the variety of all 3-nilpotent semigroups.
The subvariety lattice of this variety has the form shown in Fig. 1. This claim can be easily



Order

verified directly and is a part of semigroup folklore. It is known at least from the beginning
of 1970’s (see [7], for instance).

Recall that commutative bands are called semilattices. We fix notation for the following
semigroups:

A := {0, 1} — the 2-element semilattice,

B := 〈e, f, 1 | ef = f 2 = f, f e = e2 = e〉 = {e, f, 1},
K := 〈a, b, 0 | ab = ba, a2 = b2 = 0〉 = {a, b, ab, 0}
L := 〈a, b, 0 | ba = a2 = b2 = 0〉 = {a, b, ab, 0},
M := 〈a, b, 0 | ab = ba, a2 = ab2 = b3 = 0〉 = {a, b, b2, ab, 0},
Z := 〈a, 0 | a2 = 0〉 = {a, 0}

where 0 and 1 have the usual sense in semigroup context (the zero element of a semigroup
and the identity one, respectively). All these semigroups can be considered as implication
semigroups. Indeed, it is easy to see that putting ω = 1 in A, B and ω = 0 in K , L,
M , Z, we achieve the fulfillment of the identities (1.1) and (1.2). The variety generated by
an implication semigroup S is denoted by var S. It is well known and easily verified that
B = var B, K = var K , L = var L,M = var M , SL = var A and ZM = var Z.

Now we are going to prove that the lattice L(SL ∨ N) has the form shown in Fig. 1.
Clearly, the implication semigroups A, L and M satisfy the identity xyω ≈ yxω. So, this
identity holds in SL ∨ N. Since it is false in B, we have that (SL ∨ N) ∧ B = SL. This fact
and Lemma 2.4 imply that V = (V∧SL)∨ (V∧N) for every subvariety V of SL ∨ N. Then
SL ∨ N has at most 12 subvarieties, namely, the ones shown in Fig. 1. We need to verify that
these subvarieties are different from each other. For a class X of implication semigroups, let
X stand for the class of all semigroup reducts of implication semigroups in X. Since ω ≈ x3

in N, we see that V is a subvariety of N whenever V is a subvariety of N. Now let V andW
be two different subvarieties of N. Then the semigroup varieties V and W are different as
well. It is well known that the semigroup variety SL of all semilattices constitutes a neutral
element of the lattice of all semigroup varieties (it is proved explicitly in [10, Proposition
4.1]), whence V ∨ SL �= W ∨ SL. Any semigroup identity that differentiates V ∨ SL from
W ∨ SL will also differentiate the implication semigroup varieties V ∨ SL andW ∨ SL.

Further, we are going to prove that the lattice L(B ∨ ZM) has the form shown in Fig. 1.
First of all, we note that the identity xy ≈ xyω holds in B and Z but fails in K . Therefore,
(B ∨ ZM) ∧ N = ZM. This fact and Lemma 2.4 imply that V = (V ∧ B) ∨ (V ∧ ZM) for
every subvariety V of B ∨ ZM. Then B ∨ ZM has at most 6 subvarieties, namely, the ones
shown in Fig. 1. We need to verify that these subvarieties are different from each other. In
view of the observations made in the first, the second and the fourth paragraphs of the proof
of Theorem 1.1, it remains to show that SL ∨ ZM ⊂ B ∨ ZM. This follows from the fact
that the identity xy ≈ yxω holds in SL ∨ ZM but fails in B.

Lemma 2.4 with V = IS implies that IS = B∨N. Since B has exactly 3 subvarieties and
N has exactly 6 ones, we have that IS has at most 18 subvarieties. Now we aim to show that
B ∨ K = B ∨ L and B ∨ M = B ∨ N. The subset I = {(e, 0), (f, 0), (1, 0)} of the direct
product B × K forms an ideal of B × K . The Rees quotient (B × K)/I is a 3-nilpotent
implication semigroup that satisfies the identity x2 ≈ ω but violates the commutative law.
Indeed, (e, a)(f, b) = (f, ab) �= (e, ab) = (f, b)(e, a). We see that (B × K)/I lies in L
but does not lie in K. Note that K is the only maximal subvariety of L. Whence (B × K)/I

generates the variety L. Since (B × K)/I ∈ B∨K, we have that L ⊆ B∨K. We conclude
that B ∨ L ⊆ B ∨ K, and the converse inclusion is clear. Thus B ∨ K = B ∨ L. Further,
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B ∨ M ⊇ B ∨ K = B ∨ L. Therefore, L ⊆ B ∨ M, whence N = M ∨ L ⊆ B ∨ M. We get
that B ∨ N ⊆ B ∨ M. The converse inclusion is clear, whence B ∨ M = B ∨ N. Thus, we
have proved that IS has at most 16 subvarieties, namely, the ones shown in Fig. 1. We need
to verify that these subvarieties are different from each other. In view of what is said in
the fourth and the fifth paragraphs of the proof of Theorem 1.1, it remains to show that
B ∨ K ⊂ IS. This follows from the above-mentioned equalities IS = B ∨ N = B ∨ M and
the fact that the identity xω ≈ x2 holds in K and B but fails in M .

3 Open Problems

We denote by IZ the lattice of all varieties of implication zroupoids. Theorem 1.1 shows
that the lattice IZ is non-modular but the following problem still remains open.

Problem 3.1 Determine whether the lattice IZ satisfies any non-trivial lattice identity.

Recall that a lattice 〈L; ∨,∧〉 with the least element 0 is called 0-distribuive if it satisfies
the implication

∀x, y, z ∈ L : x ∧ z = y ∧ z = 0 −→ (x ∨ y) ∧ z = 0.

Lattices of varieties of all classical types of algebras (groups, semigroups, rings, lattices
etc.) are well-known to be 0-distributive. The following question seems to be interesting.

Problem 3.2 Determine whether the lattice IZ is 0-distributive.

This problem is closely related to knowing the set of all atoms of the lattice IZ. This
set is known but not yet published. Indeed, it is well known that any non-trivial variety
of algebras contains a simple algebra, i.e. algebra without congruences except the trivial
and the universal ones (see [1, Theorem 10.13], for instance). The complete list of simple
implication zroupoids is provided by [2, Theorem 5.8]. The variety generated by one of
these algebras contains either ZM or SL or the variety BA of all Boolean algebras. On the
other hand, it is easy to see that these three varieties are atoms of IZ. Combining these
observations, we have the following

Remark 3.3 The varieties ZM, SL and BA are the only atoms of the lattice IZ.

Returning to Problem 3.2, it is easy to see that this problem is equivalent to the following
claim: if A is an atom of the lattice IZ and X, Y are varieties of implication zroupoids with
X,Y � A then X ∨ Y � A. We have a proof of this fact in the case when A is one of the
varieties SL or BA. But the case when A = ZM still remains open.

An element x of a lattice L is called neutral if, for any y, z ∈ L, the elements x, y

and z generate a distributive sublattice of L. Neutral elements play an important role in the
lattice theory. If a is a neutral element of a lattice L then L is a subdirect product of the
principal ideal and the principal filter of L generated by a (see [6, proof of Theorem 254]).
So, the knowledge of the set of neutral elements of a lattice gives significant and important
information about the structure of this lattice. Figure 1 shows that the varieties SL and ZM
are neutral elements of the lattice IS. The following problem seems to be very interesting.

Problem 3.4 Determine whether SL, ZM and BA are neutral elements of the lattice IZ.
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Note that the varieties of all semilattices and of all semigroups with zero multiplication
considered as simply semigroup varieties are neutral elements of the lattice of all semigroup
varieties (see [10, Proposition 4.1] or Theorem 3.4 in the survey [9]).
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