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INTRODUCTION

By aninvariantof a semigroupS, we mean an objectA(S) (such as a group, a partially ordered
set or some other mathematical structure) associated withS in some natural way such that the
assignmentS 7→ A(S) is functorial. For example, the partially ordered setΛS of principal
left ideals, the partially ordered setIS of principal right ideals and the setE(S) of idempotents
are invariants of the semigroupS. Many existing structure theorems for semigroups give an
explicit procedure for contructing the required semigroupfrom a given set of its invariants. The
semigroup so constructed depends not only on the invariantsthemselves, but also on certain
relations between them. The construction of the maximum fundamental regular semigroupU =
U(I,Λ; Γ,∆) from the invariantsI = IU andΛ = ΛU is an example of such a result (see
[6, 7, 8]). HereI andΛ are regular partially ordered sets and the relation betweenthem is
specified by thecross-connectionΓ,Λ.

In this article, we wish to present another analysis of the structure of regular semigroups
usinginductive groupoidswhich can be described as a combination of a groupoid representing
the local structure of the semigroup and abiordered setthat determine the global structure. In
this paper by agroupoidwe mean a small category in which every morphism is an isomorphism.
More information about groupoids and some of the natural examples of groupoids can be found
in [9, 12, 14].A brief description of biordered sets is givenin the second section of this paper.
More details can be found in [14].

It was Schein [21] who introduced inductive groupoids to determine the structure of inverse
semigroups. The first section discusses the work of Schein oninductive groupoids of inverse
semigroups. The second section discuss the generalizationof Schein’s definition of inductive
groupoids of inverse semigroups to inductive groupoids of regular semigroups [14, 15]. The last
section discuss some applications of inductive groupoids to congruences on regular semigroups,
extensions, etc. Also some concrete examples of inductive groupoids are given.

The notation and terminology used here regarding semigrouptheory follow [2]. detailed
descriptions of the concepts mentioned can be found in [2] or[10]. Notation and terminology
regarding category theory are as in [14]. Details can be had from [9] and [15] also.
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2 E. KRISHNAN AND K.S.S. NAMBOORIPAD

1. INVERSE SEMIGROUPS

A semigroup is defined as a set with an associative binary operation and as such is a general-
ization of a group. It is difficult, if not impossible, to havea reasonable theory of so general
a structure and hence to develop a satisfactory structure theory, we must restrict ourselves to
semigroups satisfying some additional conditions. With this in mind, we first consider the class
of inverse semigroups, which is closest to the class of groups. For notation and terminology we
follow [2] and for groupoids, we follow [9, 14].

By definition, a semigroupS is said to be an inverse semigroup, if for eachx in S, there
exists a unique elementx−1 in S such thatxx−1x = x andx−1xx−1 = x−1 (see [2]). We first
note that just as the set of all bijections of a set onto itselfis a “universal” model of a group,
the set of all ‘partial injections’ of a set is such a model of an inverse semigroup. Let us briefly
consider the details of this assertion.

By a partial injection (or a partial symmetry) of a setX , we mean an injection from a subset
ofX toX . Thus a partial injectionα of X is a bijectionα : Y → Y ′ of a subsetY ofX onto a
subsetY ′ of X . In the following, we denote the domain ofα by dom(α) and the range ofα by
ran(α). Also we denote the set of all partial injections ofX by I (X). Note in particular that
∅ is a subset ofX and consequently, the empty relation∅ is a member ofI (X).

Now forα andβ in I (X), we defineα ◦ β by x(α ◦ β) = y iff there existsz ∈ X such that
xα = z andzβ = y. It is not difficult to see that this is equivalent to the condition y = (xα)β
wherex ∈ (ran(α)

⋂

dom(β))α−1. Thus

dom(α ◦ β) =
(

Dαβ

)

α−1 ran(α ◦ β) =
(

Dαβ

)

β(1.1)

where

Dαβ = ran(α)
⋂

dom(β).(1.2)

It is not difficult to show thatI (X) with this binary operation is an inverse semigroup.
Note that the binary operation◦ defined onI (X) is just the usual composition of relations,

if partial injections are regarded as binary relations on the setX . Note also that the usual
composition ofα andβ as functions (defined as

(

α ◦ β
)

(x) = α
(

β(x)
)

is the left-right dual of
the relational compositionα ◦ β defined above. We use the relational composition As in [14],
unless stated otherwise.

Conversely, ifS is an inverse semigroup, then for eacha ∈ S, the mapαa : Saa
−1 → Sa−1a

defined byxαa = xa is a partial injection ofS and it can be shown that the mapa 7→ αa is a
monomorphism ofS to I (S). Thus we have the following analogue of Cayley’s theorem [2]
for groups.

THEOREM 1.1 (Vagner–Preston Representation Theorem).Any inverse semigroupS is isomor-
phic to a subsemigroup ofI (X) for a suitable setX .

Recall that agroupoidis a small category in which every morphism is an isomorphism(see
[14] or [9] for details). As in [14], when we say thatG is a groupoid, we mean thatG is the
morphism set of a groupoid and that the setvG of vertices (objects) of the groupoid is identified
with the set of identities inG. Thus eachx in G has a unique inversex−1 in G such that
ex = xx−1 andfx = x−1x are identities inG corresponding to the domain and codomoain of
x.

Now since the elements ofI (X) are partial maps of subsets ofX , it naturally has the
structure of (the morphism set of) a category with (partial)composition defined by

(1.3) α ∗ β =

{

α ◦ β if ran(α) = dom(β);

undefined otherwise.

Moreover, since each element ofI (X) is a bijection onto its range, this category is in fact a
groupoid. We shall denote this groupoid byI∗(X).
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We next see how this groupoid structure ofI∗(X) can be described in semigroup theoretic
terms. For this, first note that the productα ∗ β is defined if and only ifα−1α = ββ−1.
Sinceα−1α is the unique idempotent in theL class ofα andββ−1 is the unique idempotent
in the R class ofβ(see [2]), the above condition holds if and only if theH classLα

⋂

Rβ

contains an idempotent and by Clifford–Miller theorem (see[2], page 59), this is equivalent to
the condition that the productα ◦ β in the semigroupI (X) is in theH classRα

⋂

Lβ. Now
in any semigroup, and in any inverse semigroup in particular, we can define the trace product as
the partial product

(1.4) x ∗ y =

{

xy if xy ∈ Rx

⋂

Ly

undefined otherwise

If S is a semigroup, then the partial algebra onS with the trace product is called the trace ofS
and is denoted byS∗. It follows that the productα ∗ β in the groupoidI∗(X) is just the trace
product ofα andβ in the semigroupI (X). More generally, it is not difficult to show that the
trace any inverse semigroup is a groupoid. In fact, in view ofthe discussions above it is hardly
surprising that we have the following

PROPOSITION1.2.LetS be an inverse semigroup. Then the traceS∗ ofS is a groupoid. More-
over, ifθ : S → I (X) is the Vagner–Preston representation ofS, thenθ is also an embedding
of the groupoidS∗ in the groupoidI∗(X).

We next see how the product◦ in the semigroupI (X) can be recovered from the partial
product∗ in the categoryI∗(X). Since we are using the relational composition, it is natural to
write the restriction ofα to a subsetD of dom(α) byD|α; thusD|α is the element ofI∗(X)
with

dom(D|α) = D and y(D|α) = yα for all y ∈ D.(1.5a)

ForE ⊆ ran(α) we define the range-restriction ofα toE, denotedα|E, by

α|E =
(

E|α−1
)−1

(1.5b)

Note that for anyα andβ in I (X), we can write

(1.6) α ◦ β = α1 ∗ β1 where α1 = α|Dαβ and β1 = Dαβ |β

using the notations introduced in Equations (1.1), (1.5a) and (1.5b). The equation above shows
that the the product of anyα andβ in the semigroupI (X) is equal to the composite ofα1 and
β1 in the groupoidI∗(X) whereα1 is the range-restriction ofα to the subsetDαβ ⊆ ran(α)
andβ1 is the (domain) restriction ofβ toDαβ ⊆ dom(β).

To describe this equation in terms of category theory, we first note that the operation of
restricting a map to a subset of its domain induces a partial order on the groupoidI∗(X)
defined by

(1.7) α ≤ β ⇐⇒ dom(α) ⊆ dom(β) andα = dom(α)|β.

In view of Equation (1.5b), the range-restriction also defines the same relation onI∗(X). Note
that if subsets ofX are identified with the corresponding identity maps inI∗(X), then the
inclusion of subsets ofX is just the restriction of this partial order to the collection of identities
in the groupoidI∗(X). Moreover, this partial order satisfies the following conditions:

(1) If α ≤ β andλ ≤ µ and ifα ∗ λ andβ ∗ µ are defined, thenα ∗ λ ≤ β ∗ µ

(2) If α ≤ β, thenα−1 ≤ β−1

Thus Equation (1.6) shows that product in the semigroupI (X) can be recovered from the
composition of the groupoidI∗(X) and the restriction order onI∗(X). This motivates the
following definition.
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DEFINITION 1.1. LetG be a groupoid and≤ be a partial order on the setG. ThenG is said to
be an ordered groupoid with respect to≤ if the following conditions are satisfied.

(a) If x ≤ u andy ≤ v and ifxy anduv are defined inG, thenxy ≤ uv

(b) If x ≤ y, thenx−1 ≤ y−1

(c) For eachx ∈ G and for each identitye in G with e ≤ ex, there exists a unique elemente|x
such thate|x ≤ x and(e|x)(e|x)−1 = e.

Fore ≤ ex, the unique elemente|x is calledrestrictionof x to e. Forf ≤ fx, thecorestric-
tion of x to f is defined by:

(1.8) x|f =
(

f |x−1
)−1

It is clear that axioms (a) and (b) are (left-right) self-dual. The dual of (c) can be stated as
follows:

(c)* For eachx ∈ G and for each identityf in G with f ≤ fx, there exists a unique element
f |x such thatf |x ≤ x and(f |x)−1(f |x) = f .

It can be shown that for any partial order on a groupoid satisfying (a) and (b), statements (c) and
(c)* are equivalent.

A morphismφ : G → H of an ordered groupoids is a functor which is also order preserv-
ing.Such a morphism preserves restriction and corestriction; that is, for eachx ∈ G, e ≤ ex and
f ≤ fx, we have

φ(e|x) = φ(e)|φ(x), φ(x|f) = φ(x)|φ(f).

In particular, the restrictionvφ of φ to vG is an order preserving map tovH . The morphism
φ : G → H is an embedding of ordered groupoids ifφ is a faithful functor which is an order
isomorphism onto its range andφ is an isomorphism ifφ is an embedding whose morphism
map is surjective (see [14]). We thus have a categoryOG with objects as ordered groupoids and
morphisms defined above.

Ordered groupoids are interesting objects on their own right. Any groupoidG is an ordered
groupoid with respect to the trivial partial order (identity relation onG). More generally, ordered
groupoids arise as the set of all partial symmetries of structures having appropriate concept of
subobjects and isomorphisms. For example, isomorphisms ofsubgroups of a group and analytic
isomorphisms of regions of the complex plane are examples ofordered groupoids.

It follows from our discussion above thatI∗(X) is an ordered groupoid with respect to
restriction. The ordered groupoidI∗(X) has a “universal” property similar to the property of
the inverse semigroupI (X) given by Theorem 1.1. It can be shown that given any ordered
groupoidG, there is an embeddingθ : G→ I∗(G) of ordered groupoids.

Remark 1.1: The definition of an ordered groupoidG can also be formulated in terms of the
primitive operationrestriction instead of the partial order onG. In this approach, the definition
is based on a groupoidG, a partially ordered setE and an identification ofE as the setvG (a
bijectionφ : E → vG). The relation betweenE andG can be stated in terms of restrictions.
Also, the partial order onG can be defined in terms of the restriction by

x ≤ y ⇐⇒ ex ≤ ey, and x = ex|y.

Morphisms between ordered groupoid can then be defined as functors that preserve restrictions.

We have noted that the ordered groupoidI∗(X) is the trace of the inverse semigroupI (X).
However, not all ordered groupoids arise as trace of inversesemigroups; for example, the or-
dered groupoid of analytic isomorphisms of regions of the complex plane is not the trace of any
inverse semigroup. To characterize those ordered groupoids that arises this way, we again look
at the structure of the universal ordered groupoidI∗(X). Note that the set of identity maps
in I∗(X) with this partial order is isomorphic to the poset of subsetsof X under set inclusion
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and so is a semilattice. Now Schein defines aninductive groupoidas an ordered groupoid in
which the identities form a semilattice [21]. Since the definition of an inductive groupoid as
given by Nambooripad in his study on regular semigroups [14]is more general, we will refer to
an inductive groupoid as defined by Schein as aSchein groupoid.

DEFINITION 1.2. An ordered groupoidG in which the set of identities is a semilatiice with re-
spect to the order induced byG is called a Schein groupoid. A morphismφ : G→ H of Schein
groupoids is a morphism of ordered groupoids such thatvφ : vG → vH is a homomorphism of
semilattices.

Thus the categoryI∗(X) is a Schein groupoid. Now for eachα in I∗(X), let us denote the
identity maps on the domain and range ofα by ǫα andφα respectively. Also, for identitiesǫ1
andǫ2 in G, we denote the identity map ondom(ǫ1)

⋂

dom(ǫ2), which is in fact the meet ofǫ1
andǫ2, by ǫ1 ∧ ǫ2. By the definition of relational composition, we have

(1.9) ǫ1 ∧ ǫ2 = 1dom(ǫ1)
⋂

dom(ǫ2) = ǫ1 ◦ ǫ2 = ǫ2 ◦ ǫ1.

Again for eachα in I∗(X) and an identityǫ with ǫ ≤ ǫα, we denote the restriction ofα to
dom(ǫ) by ǫ|α. Further, for an identityφ in I∗(X) with φ ≤ φα, the corestriction ofα to φ is
defined by

α|φ =
(

φ|α−1
)−1

.

Henceα|φ = α| dom(φ) by Equation (1.5b). Thus corestriction is the same as range-restriction.
Using these notations and Equation (1.9), we can rewrite Equation (1.6) as

(1.10) α ◦ β =
(

α|(φα ∧ ǫβ)
)

∗
(

(φα ∧ ǫβ)|β
)

=
(

α ◦ (φα ◦ ǫβ)
)

∗
(

(φα ◦ ǫβ) ◦ β
)

In other words, forα andβ in I (X), if we define

ψ = φα ◦ ǫβ = φα ∧ ǫβ

then we have

(1.11) α ◦ β = (α ◦ ψ) ∗ (ψ ◦ β) =
(

α|ψ
)

∗
(

ψ|β)

Note also thatφal = α−1α andǫβ = ββ−1.
Next we see how these ideas can be generalized to an arbitraryinverse semigroup. First note

that forα andβ in I∗(X), we haveα ≤ β if and only if α = αα−1β in I (X). Now in any
inverse semigroupS, the relation≤ defined byx ≤ y if and only if x = xx−1y, is a partial
order with the property that the setE(S) of idempotents ofS is a semilattice in which the meet
e ∧ f of two idempotents is the productef = fe. It is called the natural partial order onS.
We have also observed that the traceS∗ of S is a groupoid. The following result describes the
relation between inverse semigroups and inductive groupoids.

THEOREM 1.3 (Schein [21]).LetS be an inverse semigroup. Then the traceS∗ of S is a Schein
groupoid with respect to the trace product∗ and the natural partial order≤. Also, forx andy
in S,

xy = (xh) ∗ (hy)

where

h = (x−1x)(yy−1)

Conversely, if(G, ∗, ≤) is a Schein groupoid, thenG is an inverse semigroup with respect to
the product defined by

xy = (x|h) ∗ (h|y)

where

h = x−1x ∧ yy−1
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Now for an inverse semigroupS, we denote the Schein groupoid arising from the trace prod-
uct and the natural partial order byG(S). If h : S → S′ is a homomorphism of inverse
semigroups, thenh preserves trace products, natural partial order and the semilattice product on
its set of idempotents. Henceh is also a morphism of Schein groupoids; we denote this mor-
phism byG(h). Again, we denote byS(G), the inverse semigroup determined by the Schein
groupoidG. Definition 1.2 and the definition of products inS(G), it follows that any morphism
φ : G→ H of Schein groupoids induces a unique homomorphismS(φ) of S(G) to S(H). Thus
we have

THEOREM 1.4.For each inverse semigrouoS let G(S) denote the Schein groupoid defined in
Theorem 1.3 and for each homomorphismh : S → S′ of inverse semigroups, letG(h) : G(S) →
G(S′) be the morphism of Schein groupoids as above. Then the assignments

(1.12a) G : S 7→ G(S), h 7→ G(h)

is a functorG : IS → SG of the categoryIS of inverse semigroups to the categorySG

of Schein groupoids. On the other hand, for a Schein groupoidG, let S(G) denote the inverse
semigroup defined in Theorem 1.3 above and for each morphismφ : G→ G′ of Schein groupoid
let S(φ) : S(G) → S(G′) denote the honomorphism of the inverse semigroups determined byφ.
Then the assignments

(1.12b) S : G 7→ S(G), φ 7→ S(φ)

is a functorS : SG → IS.

It can be shown that for any inverse semigroupS and any homomorphismh : S → S′ of
inverse semigroups, we have

S
(

G(S)
)

= S, S
(

G(h)
)

= h.(1.12c)

Similarly, for any Schein groupoidG and any morphismφ : G → H of Schein groupoids, we
have

G
(

S(G)
)

= G, G
(

S(φ)
)

= φ.(1.12d)

In fact we have following relation between the categoryIS of inverse semigroups and the
categorySG of Schein groupoids.

THEOREM 1.5.The functorG : IS → SG defined by assignments of Equation(1.12a)is an
isomorphism of categories such that

G
−1 = S : SG → IS

is the functor defined by the assignments in Equation(1.12b).

The discussion above, in particular, Theorem 1.3 shows that, as mathematical structures,
inverse semigroups and Schein groupoids are equivalent. The representation of an inverse semi-
group as its Schein groupoid is quite useful in analyzing itsstructure. We mention one example
to illustrate the fact.

LetE be a semilattice and letT ∗(E) denote the set of all isomorphisms of principal ideals
of E. ThenT ∗(E)) is easily seen to be an ordered subgroupoid ofI∗(E) and by definition, the
identitities ofT ∗(E) are the identity maps on principal ideals ofE. For e ∈ E, if we denote
by ω(e), the principal ideal generated bye, thene 7→ ω(e) is an order isomorphism ofE onto
the set of identitiesT ∗(E). It follows thatT ∗(E) is a Schein groupoid. We denote the inverse
semigroupS(T ∗(E)) by T (E).

Now an inverse semigroupS is said to be fundamental, if every non trivial congruence on
S identifies at least one pair of distinct idempotents. Since acongruence onS is idempotent
separating iff it is contained in the Green’s relationH , it follows thatS is fundamental iff
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the relationH on S contains no non trivial congruences. It is not difficult to show that the
semigroupT (E) constructed above is fundamental. To see this, letρ be a congruence inT (E)
with ρ ⊆ H and letα ρ β in T (E). Thenα H β from which it follows thatdom(α) =
dom(β). If we write dom(α) = dom(β) = ω(e) andǫ = 1ω(e), then we haveǫ = αα−1 ρ

βα−1. Letψ = βα−1. Thenψ H ǫ, sinceρ ⊆ H , and sodom(ψ) = dom(ǫ) = ω(e). Also,
for f ∈ ω(e), if we write φ = 1ω(f), thenφǫ = φ, sincef ≤ e. Henceφψ ρ φǫ = φ, from
which we haveω(fψ) = ran(φψ) = ran(φ) = ω(f) and sofψ = f . It now follows that
βα−1 = ψ = ǫ so thatα = β.

Now in any inverse semigroupS and for eachx ∈ S, the mape 7→ x−1ex is an isomorphism
of ω(ex) ontoω(fx). If we denote this map byaS(x), thenaS(x) ∈ T (E) for eachx ∈ S
and the mapaS : x 7→ aS(x) is in fact a homomorphism ofS into T (E). Now idempotents
in T (E) (identites inT ∗(E)) are of the form1ω(e) = aS(e) for somee ∈ E(S). Hence
E(T (E)) ⊆ im aS = aS(S) and soim aS is a full subsemigroup ofT (E). ( We say thatS is
a full subsemigroupof T if S is a subsemigroup ofT with E(T ) = E(S)). It follows from the
definition ofaS that if aS(x) = aS(y) for x, y ∈ S, thenex = ey andfx = fy and so,x H y.
Thus the kernel of the homomorphismaS is contained inH . In other words, if we denote the
kernel ofaS byµS , then we have

µS = {(x, y) ∈ S × S : aS(x) = aS(y)} ⊆ H .

In particular, ifS is fundamental, thenµS = 1S and soaS is injective. Thus, as a consequence
of Theorem 1.3, we have the following result.

THEOREM1.6 (Munn [13]).LetT (E) be the set of all isomorphisms of principal order ideals of
a semilatticeE. ThenT (E) is a fundamental inverse subsemigroup ofI (E) whose semilattice
of idempotents is isomorphic toE. Moreover, ifS is any fundamental inverse semigroup whose
semilattice is isomorphic toE, thenS is isomorphic to a full subsemigroup ofT (E).

2. INDUCTIVE GROUPOIDS OF REGULAR SEMIGROUPS

We thus see that the structure theory of inverse semigroups can be reduced to the theory of
Schein groupoids. We have also seen that the Schein groupoidof an inverse semigroup is deter-
mined by the groupoidS∗ (the trace ofS) representing the local structure ofS and the semilat-
ticeE(S) of idempotents ofS with the relation between these structures specified by axioms in
Definition 1.1

There are several difficulties in trying to extend the notionof Schein groupoids to regular
semigroups. The first thing that we note is that a regular semigroup with the trace product is not
a category, since left and right identities of an element cannot be uniquely defined. This is due
to the fact that in a regular semigroup, theL -class and theR-class of an element may contain
more than one idempotent. One way out is to blow up the semigroupS by considering for each
elementx of S, all pairs(x, x′) wherex′ is an inverse ofx in S. Note that every idempotent of
S is uniquely determined by one such pair. Also, the trace product of x andy in S is defined
if and only if there exist inversesx′ andy′ of x andy such thatx′x = yy′. We thus have the
following result [14].

PROPOSITION2.1.LetS be a regular semigroup and define

(2.1) G(S) = {(x, x′) : x ∈ S, x′ ∈ V ()(x)}

whereV ()(x) denote the set of all inverses ofx in S. Define a partial binary operation onG(S)
by

(2.2) (x, x′)(y, y′) =

{

(xy, y′x′) if x′x = yy′;

undefined otherwise.

ThenG(S) is a groupoid whose identities are pairs(e, e) wheree is an idempotent ofS.
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Remark 2.1: The idea of considering the setG(S) of pairs of the form(x, x′) with x′ ∈ V ()(x)
occures both in [21] and [?]. It was noted by both Schein and Rielly-Scheliblish that the relation
G(S) is a subsemigroup ofS × S if and only if S is orthodox (that is, if and only ifE(S) is a
band). However, as far as we are aware, the first systematic study of the structure ofG(S) for
arbitrary regular semigroups and its use in structure theory appeared in [14].

We callG(S) the groupoid ofS. Because of the bijectione 7→ (e, e), the set of identities of
G(S) can be identified with the setE(S) of idempotents ofS. ThusG(S) is a groupoid whose
set of identities is equal toE(S). In fact,G(S) is an ordered groupoid. To describe the order in
G(S), first note that as in the case of an inverse semigroup, the setE(S) is a poset with order
defined bye ≤ f if and only if ef = fe = e. In the case of regular semigroups, we denote
this order byω, following the notation in [14]. Also, in the case of an inverse semigroupS, for
x ∈ S ande ∈ E(S) with e ≤ xx−1, the restriction ofx to e in the Schein groupoid ofS is
defined bye|x = ex. Analogously, we can define for(x, x′) in the groupoidG(S) of a regular
semigroupS ande ω xx′, the restriction of(x, x′) to e by

(2.3) e|(x, x′) = (ex, ex′)

The partial order onG(S) induced by this operation is given by

(2.4) (x, x′) ≤ (y, y′) ⇐⇒ x = (xx′)y, x′ = y′(xx′) andxx′ ω yy′.

We then have the following

PROPOSITION 2.2.Let S be a regular semigroup and letG(S) be the groupoid ofS. Then
G(S) is an ordered groupoid with composition defined by Equation(2.1)and order defined by
Equation(2.4).

When we try to recover the semigroup products from the groupoid products as in the case
of inverse semigroups, we encounter several difficulties. First note that in the case of a regular
semigroupS, the underlying set of the groupoidG = G(S) is notS itself, as in the case of an
inverse semigroup. However, this is easily remedied by taking the quotient ofG by the equiva-
lence relation which identifies all elements ofG with the same first coordinate. Next recall that
in the case of an inverse semigroup, the semigroup productxy is equal to the groupoid product
(xh) ∗ (hy), whereh = (x−1x)(yy−1) = x−1x∧ yy−1; but in the case of a regular semigroup,
the set of idempotents is not a lattice. This difficulty is overcome in [14], by considering for two
idempotentse andf in a regular semigroupS, theirsandwich setdefined by

(2.5) S(e, f) = { fxe : x is an inverse ofef }.

Note that ifS is an inverse semigroup, thenS(e, f) = {ef} for any pair of idempotents inS.
In the case of a regular semigroupS, it can be easily seen thatS(e, f) ⊆ E(S). Moreover, forx
andy in S and any of their inversesx′ andy′, it can be shown that ifh ∈ S(x′x, yy′), then

xy = (xh) ∗ (hy)

and also thaty′hx′ is an inverse ofxy with

y′hx′ = (y′h) ∗ (hx′)

We thus have the following result.

THEOREM 2.3.LetS be a regular semigroup andG = G(S). Define the relationp onG by

(2.6) (x, x′) p (y, y′) ⇐⇒ x = y.

Thenp is an equivalence relation onG. and if the equivalence class containing(x, x′) is
denoted by(x, x′), then the quotient setG/p with product defined by

(2.7) (x, x′) (y, y′) = (xh, hx′)(hy, hy′)
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whereh ∈ S(x′x, yy′), is a semigroup isomorphic withS.

We next see how the groupoidG(S) can be abstractly characterized and the above construc-
tion of a regular semigroup can be effected in such a general setting. For this, we will have
to first give an abstract characterization of the algebraic structure of the set of idempotents of
a regular semigroup. (Note that in the case of an inverse semigroupS, the algebraic structure
of E = E(S) is completely determined by its order structure, sinceef = e ∧ f for any e
andf in E). Also, the relation between this structure ofE = E(S) and the structure of the
groupoidG(S) must be made explicit. For example, the product of two idempotents in a regular
semigroup may not be an idempotent (which is not the case in aninverse semigroup) and such
products cannot be described in terms of the products in the groupoid, since no two identities in
a category are composable.

An abstract characterization of the set of idempotents of a regular semigroup, as a partial
algebra satisfying certain axioms, is given by one of the authors [14], where such a structure
is called aregular biordered set. More generally, Easdown [5] has shown that a partial algebra
E satisfying axioms of Definition 1.1 of [14] (that is, a biordered set) if and only ifE can be
embedded as the setE(S) of all idempotents of a semigroupS and it is shown in [14] thatE(S)
is a regular biordered set if and only ifS is a regular semigroup. We may therefore assume
with out loss of generality that every [regular] biordered setE is E(S) for a suitable [regulsr]
semigroupS. Note that in the setE(S) of idempotents of a regular semigroupS, the partial
orderω is equal to

(2.8) ω =ωl
⋂

ωr

whereωl andωr are defined by

(2.9) ωl= {(e, f) ∈ E × E : ef = e} and ωr= {(e, f) ∈ E × E : fe = e}

These relations can easily seen to be quasiorders onE(S). Also, the Green’s relationsL and
R in E(S) are related to these orders by

(2.10) L =ωl
⋂

(ωl)−1 and R=ωr
⋂

(ωr)−1

Further, for any relationR onE ande ∈ E, we writeR(e) for {f ∈ E : (f, e) ∈ R} ⊆ E. In
particular, we write

(2.11) ωr(e) = {f : f ωr e}, ωl(e) = {f : f ωl e}, and ω(e) = {f : f ω e}.

These subsets are calledωr, ωl andω ideals respectively. Note that these are regular biordered
subsets ofE (cf. [14]).

One of the axioms for a biordered setE is that the relationsω l and ωr in E defined by
Equation (2.9) are quasiorders and that the product of two elements ofE is defined in the
biordered setE if and only if they are comparable under one of these relations. Moreover, in a
biordered set we can define the partial orderωby Equation (2.8) and the equivalence relations
L andRby Equation (2.10). Moreover the sandwich set of two idempotents can be described
in terms of the partial product or equivalently, in terms of the quasiordersωl andωr in the
biordered set [14].

Next we see how we can describe in the language of groupoids, the fact that certain elements
of S are products of idempotents. For this, we make use of the factthat any product of idem-
potents inS is also equal to the product of a finite sequence of idempotents in which successive
terms areL or R related. Also, the length of any such sequence can be “minimized” without
affecting the product. These ideas can be precisely formulated as follows.

Let S be a regular semigroup and letE = E(S) be the set of idempotents ofS. We define
anE-sequenceas a finite sequenceσ = (e1, e2, . . . , en) of elements ofE such thatei(L

⋃

R

)ei+1 for i = 1, 2, . . . , n − 1. Two E-sequences of the form(e, f) and(g, h) are similar if
these pairs are related by the same relation (L or R). In theE-sequences = (e1, e2, . . . , en),
elementsei are called vertices and subsequences(ei−1, ei), i = 2, 3, . . . , n are called edges of
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s. In anE-sequence(e1, e2, . . . , en), a vertexei is said to be inessential if edges(ei−1, ei) and
(ei, ei+1) are similar, (that is,ei−1 L ei L ei+1 or ei−1 R ei R ei+1). Given anE-sequence
s, the producte1e2 . . . en of vertices ofs in S is called thethe productof s. Notice that we
can introduce or remove an inessential vertex without affecting the product of anE-sequence.
An introduction [or removal] of an inessential vertex into [or from] anE-sequenceσ is called
an elementary reduction ofσ. Define the relation∼ on the set of all finiteE-sequences inE
by σ ∼ σ′ if σ′ is obtained fromσ by a finite sequence of elementary reductions. Then it is
clear that∼ is an equivalence relation on the set of allE-sequences ofE. The equivalence
classes ofE-sequences are calledE-chains. TheE-chain determined by theE-sequenceσ =
(e1, e2, . . . , en) is denoted byc(e1, e2, . . . , en). Also, everyE-sequence is∼-equivalent to a
uniquereducedE-sequence having no inessential vertex and we may assume that c(e1, . . . , en)
represents the reducedE-sequence determined by theE-sequenceσ = (e1, . . . , en). Clearly
edges(ei−1, ei), i = 2, . . . , n of σ are reduced. Hence the edges areE-chains. AnE-cycle in
E is anE-chainc with ec = fc. AnE-cycle with four edges (or four distinct vertices) is called
anE-square. Ife, f ∈ ωr(g) ande L f , then it follows from biorder axioms that

e L f R fg L eg R e and so, c(e, f, fg, eg, e)

is anE-square. Similarly ife, f ∈ ωl(g) ande R f , thenc(e, f, gf, ge, e) is anE-square.
E-squares formed in this way are calledsingularE-squares.

It can be shown that any product of idempotents inS is the product of elements in anE-
chain (see [14], Theorem 1.2). Note also that ifx = e1e2 · · · em and y = f1f2 · · · fn in
S, wherec1 = c(e1, e2, . . . , em) and c2 = c(f1, f2, . . . , fn) areE-chains withem = f1,
thenxy = e1g2 · · · fn, where(e1, g2, . . . , fn) is the reducedE-chain corresponding to the
juxtaposedE-chain (e1, e2, . . . , em, f1, f2, . . . , fn). In view of this, it is natural to define a
product in the setC(E) of all E-chains on an arbitrary biordered setE as follows: forc1 =
c(e1, . . . , em), c2 = c(f1, . . . , fn) ∈ C(E) let

(2.12) c1c2 =

{

c(e1, . . . , em, f1, . . . , fn) if em = f1;

undefined otherwise

where the right-hand side represents the chain determined by the juxtaposition of sequences
(e1, . . . , em) and(f1, . . . , fn). It is easy to see thatC(E) with this product is a groupoid.

Also, the identities inC(E) areE-chains of the formc(e, e) with e ∈ E and these can be
identified with the elements ofE itself.

Again, if x = e0e1 · · · en in S, wherec(e0, e1, . . . , en) is anE-chain ande ω e0, then
ex = ee1 · · · en, but (e, e1, . . . , en) is not anE-chain. However, it is not difficult to see that if
we define

h0 = e and hi = eihi−1ei for i− 1, 2, . . . , n,

thenc(h0, h1, . . . , hn) is anE-chain withex = h0h1 · · ·hn. Moreover, it can be shown that if
we define

(2.13) e|c(e1, . . . , en) = c(h0, h1, . . . , hn)

then this defines a restriction operation inC(E) under which it is an ordered groupoid.
The ordered groupoid ofE-chainsC(E) can also be characterized in the following way.

SinceL andR are equivalence relations onE, we may regard these as groupoids with vertex
setE. Morphisms ofL are edges inC(E) of the formc(e, f) with e L f (see [9]). Similarly,
R is a groupoid withvR = E and morphisms as edgesc(e, f) with e R f . These becomes
ordered subgroupoids ofC(E) if we define restrictions inR by

g|(e, f) = (g, gf) for g ω e R f.(2.14a)

and the restriction inL by

g|(e, f) = (g, fg) for g ω e L f.(2.14b)
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The above construction ofC(E) can be given a ‘categorical’ description. Not that the defini-
tion of products ofE-chains above shows that

c(e0, e1, . . . , en) = c(e0, e1)c(e1, e2) . . . c(en−1, en).

This fact that everyE-chain is a finite product of edges implies thatC(E) is “generated” byL
andR in the (rather strong) sense that the diagram (D1) below is a push-out in the category
OG.

(D1) 1E
jr

//

jl

��

R

ηr

��

L ηl

// C(E)

Here, the various arrows indicate the corresponding embeddings. ThusC(E) is theamalga-
mated productof L andR, amalgamating1E .

Since the construction ofC(E) involves only the vocabulary and syntaxof a biordered set
it can be done on any abstract regular biordered set. (The precise details of such construction
within category theory can be found in [14]). Recall that we have a categoryRB of regular
biordered sets [14] with morphisms as regular bimorphisms.The construction ofC(E) de-
scribed above constructs the object function of a functorC : RB → OG. For each regular
bimorphismθ : E → E′ andE-chainc = c(e0, . . . , en), let

cθ = c(e0θ, e1θ, . . . , enθ).

It is clear thatcθ ∈ C(E′) and so

(2.15) C(θ)(c) = cθ for all c ∈ C(E).

is a well defined map of the morphism set ofC(E) to the morphism set ofC(E′). From Equa-
tion (2.12) and the definition ofcθ above, it is clear that

C(θ)(c1c2) = C(θ)(c1)C(θ)(c2) and C(θ)
(

c(e, e)
)

= c(eθ, eθ).

SettingvC(θ) = θ, we have a functorC(θ) : C(E) → C(E′). Sinceθ : E → E′ preserves
biorder products, it follows from Equation (2.13) that the functorC(θ) preserves restrictions
and henceC(θ) is a morphism ofOG. It is easy to verify that the assignments

(2.16) C : E 7→ C(E), θ 7→ C(θ)

is a functorC : RB → OG.
Next note that if in a regular semigroupS, x = e1 · · · en, wherec(e1, e2, . . . , en) is anE-

chain inE = E(S), thenx′ = enen−1 · · · e1 is an inverse ofx in S. Hence we have a map
ε : C(E) → G(S) defined by

(2.17) ε
(

c(e1, e2, . . . , en)
)

= (e1e2 · · · en, enen−1 · · · e1)

and it is easy to see thatε induces an order isomorphism of the identities ofC(E) onto the set
of identities ofG(S). Moreover, it can be shown thatε : C(E) → G(S) preserves composition
and partial order so that it is an order-preserving functionwhich is av–isomorphism.

Thus for any regular semigroupS, the set of idempotentsE = E(S) is a regular biordered
set and there are two ordered groupoidsG(S) andC(E) with a morphismε : C(E) → G(S) of
ordered groupoids. Also, the relations between the algebraic structure ofE and the groupoid
structure ofG(S) can be described using the mapε.
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For this, we first observe that we are justified in using the category terminology in groupoids.
Thus if have morphisms in a groupoidG forming the following diagram,

e
α //

β

��

f

γ

��

g
δ

// h

then the diagram is commutative if morphismsα ◦ γ andβ ◦ δ are equal. Given a regular
semigroupS we may thus consider diagrams inC(E) whereE = E(S) as well as inG = G(S).
In the following, we adopt the convention of using vertical [horizontal] arrows to denoteε-
imagesε(c(e, f)) = ε(e, f) of edgesc(e, f) with e L f [e R f ]. Other morphisms will be
denoted by dotted arrows. Note that forα = (x, x′) ∈ G ande ∈ E with e ω xx′ = eα, we
have

fe|α = x′ex ∈ E with x′ex ω x′x = fα

so thatfe|α ∈ ω(fα). Also, the map

(2.18) aS(α) : ω(eα) → ω(fα), e 7→ fe|α

is easily shown to be a biorder isomorphism ofω(eα) ontoω(fα) (see [14]). Moreover, for
e1, e2 ∈ E andf1 = e1α, f2 = e2α, if e1 ωr e2, thenf1 ωr f2 with (e1e2)α = f1f2, since
α is a biorder isomorphism. Also in this case, if we writeg = e1e2 andh = f1f2, then for any
k ω e1, using the definition of restriction Equation (2.3), we have

(k)ε(e1, g)(g|α) = x′kgx = (x′kx)(x′gx)

= (k)(e1|α)ε(f1, h)

= (k)(α|f1)ε(f1, h).

Dually, if e1ωle2, and ifg = e2e1, h = f2f1, then we can similarly show that

ε(e1, g)(g|α) = (α|f1)ε(f1, h).

Thus we have:

(IG1) Forα ∈ G ande1, e2 ∈ ω(eα), let fi = fei|α, i = 1, 2. Suppose that eithere1ωre2 or
e1ω

le2 and letg = e2e1e2, h = f2f1f2. Then the following equality

ε(e1, g)(g|α) = (α|f1)ε(f1, h)

holds inG. That is, if e1ωre2, then the first diagram below commutes inG and if
e1 ω [l]e2, then the second diagram commutes:

e1
ε(e1,g)

//

α|f1
  

e2

g|α

��

f1
ε(f1,h)

// h

e1

ε(e1,g)

��

α|f1

  

f1

ε(f1,h)

��

g

g|α

  

h
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A diagram inC(E) is said to beε-commutative if its image underε is commutative inG. It
can be seen that anE-squareε-commutative inG if and only if it is a rectangular band inS. In
particular it can be easily seen that:

(IG2) For allf, g ∈ ωr(e) with f L g [or f, g ∈ ωl(e) with f R g] the singularE-square
c(f, g, ge, fe, f) [c(f, ef, eg, g, f)], represented as the first [second] diagram below, is
commutative:

f oo
ε(f,fe)

//
OO

ε(f,g)

��

f
OO

ε(fe,ge)

��
g oo

ε(g,ge)
// ge

f oo
ε(f,g)

//
OO

ε(f,ef)

��

g
OO

ε(g,eg)

��

ef oo

ε(ef,eg)
// ge

Thus every singularE-square inC(E) is ε-commutative.

The foregoing discussion shows that given an ordered groupoid G and a biordered setE,
in order that there exists a regular semigroupS such thatG(S) is isomorphic toG andE is
isomorphic toE, it is necessary that there is av–isomorphismε : C(E) → G satisfying (IG1)
and (IG2). These conditions can also be shown to be sufficient. To describe this, we first make
the following

DEFINITION 2.1. Suppose thatG is an arbitrary ordered groupoid and thatε : C(E) → G is a
v–isomorphism whereE is a biordered set. Then the pair(G, ε) is called aninductive groupoid
or thatG is an inductive groupoid with respect to theevaluationε if the conditions (IG1) and
(IG2) hold.

The discussion preceding the definition above shows that theordered groupoidG(S) is an
inductive groupoid with respect to the evaluationε = εS defined by Equation (2.17). Conversely
given any abstract inductive groupoidGwith evaluationε, we can construct a regular semigroup
S by a method suggested by Theorem 2.3. First define the relation p onG as follows:

(2.19a) α p β ⇐⇒ eα R eβ, fα L fβ and ε(eα, eβ)β = αε(fα, fβ).

Thenp is an equivalence relation onG. Notice that in the case of the inductive groupoidG(S),
(x, x′) p (y, y′) if and only if x = y so that there is a natural bijection ofS with the quotient set
G(S)/p. In the case of arbitrary inductive groupoidG, we see that the desired semigroup is the
setG/p with suitable definition of binary operation [14]: Forᾱ, β̄ ∈ G/p, define

ᾱ · β̄ = (α ∗ h)(h ∗ β)(2.19b)

whereh ∈ S(fα, eβ) and

α ∗ h = (α|fαh)ε(fαh, h), and h ∗ β = ε(h, heβ)(heβ|β)(2.19c)

(see [14], § 4 for a detailed discussion of these including the proof of the following).

THEOREM2.4.LetS be a regular semigroup. Then the setG(S) defined by Equation(2.1) is an
inductive groupoid in which composition, partial order andevaluation are defined by Equations
(2.1), (2.4)and (2.17)respectively.

Conversely, letG be an inductive groupoid withvG = E and evaluationε : C(E) → G.
Define the relationp onG by Equation(2.19a). Then Equation(2.19b)defines a single valued
binary operation· onG/p such thatS(G) = (G/p, ·) is a regular semigroup andE(S(G)) is
isomorphic toE.
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The theorem above associates with each regular semigroupS an inductive groupoidG(S)
and a regular semigroupS(G) with every inductive groupoidG. By Theorem 2.3, the regular
semigroupS

(

G(S)
)

constructed from the inductive groupoidG(S) is isomorphic toS.
Let h : S → S′ be a homomorphism of regular semigroups. By Theorem 1.1 of [14],

θ = E(h) : E → E′ is a regular bimorphism whereE = E(S) andE′ = E(S′). For any
(x, x′) ∈ G(S), it is clear that((x)h, (x′)h) ∈ G(S′) and it is easy to see from Equation (2.1)
that the map

(2.20) G(h) : (x, x′) 7→ (xh, x′h)

is a functorG(h) : G(S) → G(S′) such that the vertex map ofG(h) is vG(h) = θ. By Equa-
tion (2.3) (or Equation (2.4)),G(h) is an order preserving functor. Letε andε′ denote evalua-
tions ofG(S) andG(S′) respectively as defined by Equation (2.17). For anyc = c(e0, . . . , en) ∈
C(E), by Equation (2.15) and (2.17), we have

ε′
(

C(θ)(c)
)

= ε′
(

c(e0θ, . . . , enθ)
)

=
(

(e0)θ . . . (en)θ, (en)θ . . . (e0)θ
)

=
(

(e0 . . . en)h, (en . . . e0)h
)

= G(h)
(

e0 . . . en, en . . . e0
)

= G(h)
(

ε
(

c(e0 . . . en)
))

.

Hence the diagram (D3) commutes (withφ = G(h). We are thus led to the following definition
of morphisms of inductive groupoids.

DEFINITION 2.2. LetG andG′ be inductive groupoids with evaluationsε : C(E) → G and
ε′ : C(E′) → G′ respectively. Suppose thatθ : E → E′ is a regular bimorphism. An an order
preserving functorφ : G → G′ is called aninductive functorwith respect toθ (or that the pair
(φ, θ) is inductive) if the diagram

(D3) C(E)
ε //

C(θ)

��

G

φ

��

C(E′)
ε′

// G′

commutes; that is,εφ = C(θ)ε′. The mapφ : G → G′ is an inductive isomorphismif φ is
an inductive functor (with respect to someθ : E → E′) which is an isomorphism of ordered
groupoids (which implies thatθ is a biorder isomorphism as well).

Sincevε = 1E andvε′ = 1E′ it follows from the diagram (D3) thatθ = vφ. Thus for any
inductive functorφ, the mapvφ is always a regular bimorphism. Ifφ : G→ H andψ : H → K
are inductive functors with respect toθ : vG → vH and η : vH → vK respectively, then
φ ◦ ψ : vG→ vK is easily seen to be inductive with respect toθ ◦ η. Also,1G is inductive with
respect to1vG. Hence there is a categoryIG with objects as inductive groupoids and morphisms
as inductive functors. The definition ofIG implies that there are twoforgetfulfunctors

G : IG → OG and v : IG → RB

The functorG sends each inductive groupoid to the underlying ordered groupoid and each in-
ductive functor to the corresponding order preserving functor. Similarly vG : IG → RB is a
functor which sends inductive groupoidG to the biordered setvG and inductive functorφ to the
bimorphismvφ so thatφ is inductive with respect tovφ.

If φ : G→ H any inductive functor then

α p β in G implies φ(α) p φ(β)
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in H . Henceφ induces a map

(2.21) S(φ) : ᾱ 7→ φ(α)

of S(G) to S(H) which is a homomorphism. We can now extend the construction of Theo-
rem 2.4 to morphisms of inductive groupoids and regular semigroups (see [14], § 3,4 for details
of the construction and proofs).

THEOREM 2.5.Let h : S → S′ be a homomorphism of regular semigroups. Then Equa-
tion (2.20)defines an inductive functorG(h) : G(S) → G(S′). Also, the assignments

G : S 7→ G(S), h 7→ G(h)

is a functorG : IG → RS.
Similarly, if φ : G → H is an inductive functor, then the map defined by Equation(2.21)is a

homomorphismS(φ) : S(G) → S(H) of regular semigroups. Moreover, the assignments

S : G 7→ S(G), φ 7→ S(φ)

is a functorS : IG → RS.

The functorsG : RS → IG andS : IG → RS are mutually inverse up to equivalence. We
have (cf. [14], § 4)

THEOREM 2.6.For any regular semigroupS, define

xΦS = (x, x′) for all x ∈ S, x′ ∈ V ()(x).(2.22a)

ThenΦS : S → S(G(S)) is an isomorphism and the mapS 7→ ΦS is a natural isomorphism

Φ: 1RS ≅ G ◦ S.

Similarly, for any inductive groupoidG, let

νG(α) = (ᾱ, α−1) for all α ∈ G.(2.22b)

ThenνG : G → G(S(G)) is an inductive isomorphism and the mapG → νG is a natural
isomorphism

ν : 1IG ≅ S ◦ G.

In particular categoriesIG andRS are naturally equivalent.

Recall that every semilatticeE is a regular biordered in which the relationsωr andωl defined
by Equation (2.9) coincide so that we have

(2.23) ωr = ωl = ω.

Conversely every regular biordered set satisfying this condition is a semilattice. In this case
the groupoidC(E) coincides with the trivial groupoid and an evaluation of a semilatticeE in
an ordered groupoidG is simply a an order isomorphism ofE onto vG. Hence an inductive
groupoidG (in the sense of Definition 2.1) is a Schein groupoid (cf. Definition 1.2) if and only
if vG is a semilattice. It follows that Theorems 1.3, 1.4 and 1.5 are particular cases of Theorems
2.4, 2.5 and 2.6 respectively.
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3. SOME APPLICATIONS OFINDUCTIVE GROUPOIDS

We now discuss the significance and the use of the representation of regular semigroups as
inductive groupoids and the consequences of the category equivalence of the categoryRS of
regular semigroups and the categoryIG of inductive groupoids. The category equivalence
implies that any statement about regular semigroups can be suitably translated as a statement
regarding inductive groupoids and vice-versa. Consequently, in any discussion, it is possible to
replace one by the other according to convenience.

Recall that an element in a semigroup is regular if and only ifit has at least one (semigroup)
inverses. Regularity is a significant concept both in the theory of semigroups and the applica-
tions of this theory. An inverse semigroup has the addditional property that every element has a
uniqueinverse. This fact has strong influence on the structure of inverse semigroups. Some of
the consequences of the uniqueness are that the traceS∗ of an inverse semigroup is a groupoid
and that the mapx 7→ x−1 is an involution onS One may say that the uniqueness of inverses
gives the structure of inverse semigroup an intrinsic symmetry. Many of the existing results
about inverse semigroups exploit this symmetry significantly.

Though every element in a regular semigroup has an inverse, the inverse may not be unique.
Consequently, the symmetry that exists in the case of inverse semigroup, does not exist in the
case of arbitrary regular semigroups. This presents substantial problems in formulating and
proving results on regular semigroups. On the other hand, inductive groupoid does possess some
of the symmetry that is lacking in semigroups. Therefore many results can be formulated and
proved much more simply and elegantly in terms of inductive groupoids rather than semigroups.
We discuss some examples below to illustrate this.

LetE be a regular biordered set and letT ∗(E) denote the set of allω-isomorphisms (biorder
isomorphisms ofω-ideals § 2). As in § 1, it is clear thatT ∗(E) is an ordered subgroupoid of
the symmetric ordered groupoidI∗(E) in which identities are identity maps onω-ideals. For
all e, f ∈ E with e R f or e L f , let

(3.1) gτ(e, f) =

{

gf if e R f ;

fg if e L f .

Then it follows directly from biorder axioms thatτ(e, f) is anω-isomorphism ofω(e) to ω(f).
Also we havev–isomorphisms of ordered groupoidsτR :R→ T ∗(E) andτL :L→ T ∗(E)
defined by

τR : (e, f) ∈R 7→ τ(e, f); vτR = 1E

τL : (e, f) ∈L 7→ τ(e, f); vτL = 1E

and so, since the diagram (D1) is a push out, there is a uniquev–isomorphism

τ : C(E) → T ∗(E) such that τR = ηr ◦ τ, τL = ηl ◦ τ.

For c = c(e0, . . . , en) ∈ C(E), we have

τ(c) = τ(e0, e1) ◦ τ(e1, e2) . . . τ(en−1, en)

Hence from Equation (3.1) and the definition of restriction in C(E), for all c ∈ C(E) and
g ∈ ω(ec) we have

(3.2) gτ(c) = fg|c

It is also easy to verify that thev–isomorphismτ : C(E) → T ∗(E) satisfies axioms (IG1) and
(IG2). Hence the ordered groupoidT ∗(E) is inductive with respect toτ . By arguments similar
to those in § 1, we can prove (see § 5, [14]):

THEOREM 3.1.Let E be a (regular) biordered set and letT ∗(E) denote the groupoid of all
ω-isomorphisms ofE. Then Equation(3.2)defines av–isomorphismτ : C(E) → T ∗(E) and
T ∗(E) is inductive with respect toτ . The semigroupT (E) = S

(

T ∗(E)
)

is fundamental and
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regular. Moreover, ifS is any fundamental regular semigroup withE(S) isomorphic toE, then
S is isomorphic to a full subsemigroup ofT (E).

We observe that the theorem above has close similarity with Munn’s theorem (Theorem 1.6);
in fact the above statement is formally obtained from Munn’stheorem by replacing semilattice
by biordered sets.

Another class of regular semigroups whose inductive groupoids can be characterized natu-
rally in terms of their biordered sets are idempotent generated regular semigroups. In this case
inductive groupoids of such semigroups can be obtained as quotients of the ordered groupoid
C(E) (see [14], § 6 for details). In particular cases, these inductive groupoids have interesting
properties. Thus ifE is the biordered set of all idempotentn × n-matrices then the semigroup
S generated byE (under matrix multiplication) is the set of all singularn× n-matrices [4, 11].
In this caseE is a finite dimensional manifold and the inductive groupoid of S is the groupoid
of all polygonal paths inE.

Often results about inverse semigroups can be extended naturally to regular semigroups using
inductive groupoids. For example, consider the construction of essential and normal extension
of inverse semigroups. Recall that an essential extension of an inverse [regular] semigroupS is
an inverse [regular] semigroupT ⊇ S such that any homomorphismφ : T → U which is injec-
tive onS is injective on the whole ofT ;again,T is a conjugate extension ift−1St ⊆ S for all
t ∈ T and it is a normal extension ofS if T is a full (that is,E(S) = E(T )) and conjugate exten-
sion ofS [20]. T is also maximal if it is not properly contained in any extensionT ′ of the same
type asT . Petrich [19] has given a construction of the maximal, essential-normal extension of
inverse semigroups. In [16] the inductive groupoid of the maximal, essential-normal extension
of regular semigroup was constructed by a method quite analogous to Petrich construction for
inverse semigroups. Petrich and Pastijn later generalizedthe construction to obtain a class of ex-
tensions. They did not use inductive groupoids explicitly and their methods are quite involved.
Radhkrishnan Chettiyar [1] later obtained a much more intuitive and elegant construction of
inductive groupoids of extensions. Notice that once we havethe inductive groupoids, we can
always obtain the corresponding semigroups using Theorem 2.4 (see [14], § 4 for details).

We give a brief description of the inductive groupoids of extensions as follows (see [1],
Ch. 4). LetS be a regular semigroup and letF = {Se : e ∈ E(S)} be a family of regular
subsemigroups ofS such that

(EX1) E(Se) = ω(e) for all e ∈ E(S);

(EX2) Se ⊆ Sf if e ω f ; and

(EX3) for eachx ∈ S andx′ ∈ V ()(x), the mapθ(x, x′) : s 7→ x′sx is an isomorphism of
Sxx′ ontoSx′x.

ThenF is called an extensive family [18] ofS. An isomorphismσ : Se → Sf is called
an F -isomorphism if for allg ω e, the mapσ|Sg is an isomorphism ofSg onto Sgσ. It is
easy to see that the setAF (S) of all F -isomorphisms is an ordered groupoid under the obvious
composition and partial order. As shown in [1], there is a natural evaluation ofE(S) in AF (S)
making it an inductive groupoid. Furthermore, there existsan identity separating inductive
functorq : G(S) → AF (S). The semigroup̂AF (S) = S

(

AF (S)
)

is an essential extension of

S if and only if q is injective or equivalently, the homomorphismθF = S(q) : S → ÂF (S) is
injective.

It is well-known that a congruenceρ on a regular semigroupS is determined uniquely by the
set of congruence classesKρ = {ρλ : λ ∈ Λ} that contain idempotents or thatKρ is the kernel-
system ofρ [3]. As in [3], we shall refer toKρ as a kernel-normal system inS. If S is inverse,
eachρ-classρλ ∈ Kρ that contain idempotents is an inverse subsemigroup ofS and so, the
kernel-normal systemKρ is a collection of inverse subsemigroups ofS. Kernel-normal systems
for inverse semigroups can be characterized axiomatically(see [3], Chapter 7, page 60). For
regular semigroups it is known that subsemigroups belonging toKρ may not be regular and this
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makes a direct characterization of kernel-normal systems for regular semigroups difficult. How-
ever, if we consider congruences on inductive groupoids, then congruence classes containing
identities are inductive subgroupoids and the collection of all such inductive subgroupoids form
a normalsystem. In this case a characterization kernel-normal system for inductive groupoids,
similar to those for inverse semigroups, is possible.

Other applications of the method of inductive groupoids include the construction of an impor-
tant class of subdirect products, calledS∗-direct products; see [17] for definitions and various
applications of the construction. Inductive groupoids arealso useful in studying congruences,
homomorphism, extensions and co-extensions of regular semigroups (see [15] for more details).
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