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INTRODUCTION

By aninvariantof a semigrou, we mean an object(.S) (such as a group, a partially ordered
set or some other mathematical structure) associatedSnithsome natural way such that the
assignmentS — A(S) is functorial. For example, the partially ordered dgt of principal
left ideals, the partially ordered s&¢ of principal right ideals and the sé&{(S) of idempotents
are invariants of the semigroufr Many existing structure theorems for semigroups give an
explicit procedure for contructing the required semigrénop a given set of its invariants. The
semigroup so constructed depends not only on the invaribataselves, but also on certain
relations between them. The construction of the maximurdduomental regular semigrodp =
U(I,A;T, A) from the invariantd = Iy andA = Ay is an example of such a result (see
[6, 7, 8]). Herel and A are regular partially ordered sets and the relation betviieem is
specified by theross-connectioir, A.

In this article, we wish to present another analysis of thecttire of regular semigroups
usinginductive groupoidsvhich can be described as a combination of a groupoid reptiage
the local structure of the semigroup an@liardered sethat determine the global structure. In
this paper by g@roupoidwe mean a small category in which every morphism is an isohisnp.
More information about groupoids and some of the naturaingptas of groupoids can be found
in [9, 12, 14].A brief description of biordered sets is givarthe second section of this paper.
More details can be found in [14].

It was Schein [21] who introduced inductive groupoids tcedetine the structure of inverse
semigroups. The first section discusses the work of Scheinductive groupoids of inverse
semigroups. The second section discuss the generaliz#ti®ohein’s definition of inductive
groupoids of inverse semigroups to inductive groupoidegtifar semigroups [14, 15]. The last
section discuss some applications of inductive groupoidshgruences on regular semigroups,
extensions, etc. Also some concrete examples of inductivgppids are given.

The notation and terminology used here regarding semigtioepry follow [2]. detailed
descriptions of the concepts mentioned can be found in [P1@ Notation and terminology
regarding category theory are as in [14]. Details can be rad 9] and [15] also.
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2 E. KRISHNAN AND K.S.S. NAMBOORIPAD

1. INVERSE SEMIGROUPS

A semigroup is defined as a set with an associative binaryatiparand as such is a general-
ization of a group. It is difficult, if not impossible, to hagereasonable theory of so general
a structure and hence to develop a satisfactory structe@ythwe must restrict ourselves to
semigroups satisfying some additional conditions. With ithmind, we first consider the class
of inverse semigroups, which is closest to the class of ggobpr notation and terminology we
follow [2] and for groupoids, we follow [9, 14].

By definition, a semigroup is said to be an inverse semigroup, if for eacin S, there
exists a unique element ! in S such thattz~'x = x andz—txz~! = = (see [2]). We first
note that just as the set of all bijections of a set onto itiself “universal” model of a group,
the set of all ‘partial injections’ of a set is such a model ofiaverse semigroup. Let us briefly
consider the details of this assertion.

By a partial injection (or a partial symmetry) of a Sét we mean an injection from a subset
of X to X. Thus a partial injection of X is a bijectiona : Y — Y of a subset” of X onto a
subseft” of X. In the following, we denote the domain afby dom(«) and the range ok by
ran(«). Also we denote the set of all partial injectionsXfby .# (X). Note in particular that
() is a subset of{ and consequently, the empty relatibis a member of7 (X).

Now for a andg in .# (X)), we definex o 8 by x(« o ) = y iff there existsz € X such that
za = z andzf = y. Itis not difficult to see that this is equivalent to the cdiatiy = (z«)8
wherez € (ran(a) () dom(3))a~!. Thus

(1.2) dom(co f3) = (Daﬁ)a_l ran(ao fB) = (Daﬁ)ﬁ
where
(1.2) Dyp = ran(a) () dom(p).

It is not difficult to show that# (X') with this binary operation is an inverse semigroup.

Note that the binary operatiandefined on# (X) is just the usual composition of relations,
if partial injections are regarded as binary relations om $btX. Note also that the usual
composition ofx and3 as functions (defined gsv o 3) (z) = «(B(x)) is the left-right dual of
the relational composition o 5 defined above. We use the relational composition As in [14],
unless stated otherwise.

Conversely, ifS is an inverse semigroup, then for each S, the mapy, : Saa™! = Sa~'a
defined byra, = za is a partial injection ofS and it can be shown that the map— «, is a
monomorphism of5 to .#(S). Thus we have the following analogue of Cayley’s theorem [2]
for groups.

THEOREM 1.1 (Vagner—Preston Representation Theorémy.inverse semigrouf is isomor-
phic to a subsemigroup of (X) for a suitable sefX.

Recall that agroupoidis a small category in which every morphism is an isomorphisee
[14] or [9] for details). As in [14], when we say thét is a groupoid, we mean thét is the
morphism set of a groupoid and that the w@tof vertices (objects) of the groupoid is identified
with the set of identities irG. Thus each: in G has a unique inverse~! in G such that
e, = xzz~ ! andf, = 'z are identities inG corresponding to the domain and codomoain of
x.

Now since the elements of (X)) are partial maps of subsets 4f, it naturally has the
structure of (the morphism set of) a category with (partabnposition defined by

(1.3) ok f = aofs if ran(a) = dom(5);
' undefined otherwise.

Moreover, since each element.gf(X) is a bijection onto its range, this category is in fact a
groupoid. We shall denote this groupoid g% (X).
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We next see how this groupoid structure8f(X) can be described in semigroup theoretic
terms. For this, first note that the product: 3 is defined if and only ifa='a = BB~1.
Sincea~!a is the unique idempotent in the class ofa and 33! is the unique idempotent
in the Z class ofg(see [2]), the above condition holds if and only if th€ classL, () Rs
contains an idempotent and by Clifford—Miller theorem (Eepage 59), this is equivalent to
the condition that the produeto g in the semigroup? (X) is in the.#Z classR, (| Ls. Now
in any semigroup, and in any inverse semigroup in particularcan define the trace product as
the partial product

(1.4) ray = Yy - If:z:yG]-%IﬂLy
undefined otherwise

If S'is a semigroup, then the partial algebra®with the trace product is called the trace%f
and is denoted by.. It follows that the product * § in the groupoid#,(X) is just the trace
product ofa and in the semigroup? (X ). More generally, it is not difficult to show that the
trace any inverse semigroup is a groupoid. In fact, in viewhefdiscussions above it is hardly
surprising that we have the following

PROPOSITION1.2.Let S be an inverse semigroup. Then the treteof S is a groupoid. More-
over, ifg: S — #(X) is the Vagner—Preston representation®fthend is also an embedding
of the groupoidS. in the groupoid.#, (X).

We next see how the produetin the semigroup# (X)) can be recovered from the partial
productx in the categoryZ, (X ). Since we are using the relational composition, it is natiora
write the restriction ofx to a subseD of dom(«) by D|«; thusD|« is the element o7, (X)
with

(1.5a) dom(D|a) =D and y(D|a) =ya forally € D.

For E C ran(«) we define the range-restriction afto E, denotedy| E, by

(1.5b) alE = (Ela=) ™
Note that for anyy andg in .#(X), we can write
(1.6) aofl=a*p where ay =a|Dasg and [y = Dyglf

using the notations introduced in Equations (1.1), (1.5d)@.5b). The equation above shows
that the the product of any and;3 in the semigroup? (X)) is equal to the composite af; and
B1 in the groupoid#, (X ) wherea is the range-restriction af to the subseD,s C ran(«)
andp; is the (domain) restriction gf to D3 C dom(f).

To describe this equation in terms of category theory, we ficde that the operation of
restricting a map to a subset of its domain induces a part@groon the groupoid?, (X)
defined by

(1.7) a < B <= dom(a) C dom(B) anda = dom(«)|S.

In view of Equation (1.5b), the range-restriction also defithe same relation oA, (X ). Note
that if subsets ofX are identified with the corresponding identity maps4i(X), then the
inclusion of subsets aX is just the restriction of this partial order to the collectiof identities
in the groupoid, (X ). Moreover, this partial order satisfies the following cdiutis:

(1) If a < pand) < pandifax Aandg « u are defined, then « A < 8 *
(2) If o < B, thena™! < g1
Thus Equation (1.6) shows that product in the semigrgUpY) can be recovered from the

composition of the groupoid?, (X) and the restriction order oi#..(X). This motivates the
following definition.
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DEFINITION 1.1. LetG be a groupoid angl be a partial order on the sét ThenG is said to
be an ordered groupoid with respecttdf the following conditions are satisfied.

(@) If x <wandy < v and ifxy anduv are defined irG, thenzy < uv

(b) If z <y, thenz=! <y~ !

(c) For eachr € G and for each identity in G with e < e,, there exists a unique element:
such thak|r < x and(e|x)(e|x) ™! =e.

Fore < e,, the unique elementz is calledrestrictionof = to e. For f < f,, thecorestric-
tion of x to f is defined by:

(1.8) alf = (fla=) "
It is clear that axioms (a) and (b) are (left-right) self-Hughe dual of (¢) can be stated as
follows:

(¢)* For eachr € G and for each identity in G with f < f., there exists a unique element
flz suchthatf|x < z and(f|z)~t(f|x) = f.

It can be shown that for any partial order on a groupoid satigf(a) and (b), statements (c) and
(c)* are equivalent.

A morphism¢ : G — H of an ordered groupoids is a functor which is also order pwese
ing.Such a morphism preserves restriction and coresinicthat is, for each € G, e < e, and
f < fz, we have

dlelz) = dle)lp(x),  o(x|f) = o(@)o(f).
In particular, the restrictiom¢ of ¢ to vG is an order preserving map tdf. The morphism
¢ : G — H is an embedding of ordered groupoidsifs a faithful functor which is an order
isomorphism onto its range angis an isomorphism ity is an embedding whose morphism
map is surjective (see [14]). We thus have a categudywith objects as ordered groupoids and
morphisms defined above.

Ordered groupoids are interesting objects on their owrt.righy groupoidG is an ordered
groupoid with respect to the trivial partial order (ideytiélation onG). More generally, ordered
groupoids arise as the set of all partial symmetries of &ires having appropriate concept of
subobjects and isomorphisms. For example, isomorphissishafroups of a group and analytic
isomorphisms of regions of the complex plane are examplesd&fred groupoids.

It follows from our discussion above thaf,(X) is an ordered groupoid with respect to
restriction. The ordered groupoid. (X ) has a “universal” property similar to the property of
the inverse semigrouy’ (X)) given by Theorem 1.1. It can be shown that given any ordered
groupoidG, there is an embeddir): G — .#,(G) of ordered groupoids.

Remark 1.1: The definition of an ordered groupo@@ can also be formulated in terms of the
primitive operatiorrestrictioninstead of the partial order ad. In this approach, the definition
is based on a groupoid, a partially ordered sef and an identification oF' as the setG (a
bijection¢ : E — vG). The relation betweelr andG can be stated in terms of restrictions.
Also, the partial order o7 can be defined in terms of the restriction by

r<y < e, <e,, and x=e,ly.

Morphisms between ordered groupoid can then be defined awfgrihat preserve restrictions.

We have noted that the ordered groupgid X) is the trace of the inverse semigrouf( X ).
However, not all ordered groupoids arise as trace of inveesaigroups; for example, the or-
dered groupoid of analytic isomorphisms of regions of th@glex plane is not the trace of any
inverse semigroup. To characterize those ordered grospioéd arises this way, we again look
at the structure of the universal ordered groupgid X'). Note that the set of identity maps
in .7, (X) with this partial order is isomorphic to the poset of subsétX under set inclusion
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and so is a semilattice. Now Schein definesraductive groupoidas an ordered groupoid in
which the identities form a semilattice [21]. Since the dé&bn of an inductive groupoid as
given by Nambooripad in his study on regular semigroupsid #jore general, we will refer to
an inductive groupoid as defined by Schein &chein groupoid

DEFINITION 1.2. An ordered groupoid in which the set of identities is a semilatiice with re-
spect to the order induced lgyis called a Schein groupoid. A morphistn G — H of Schein
groupoids is a morphism of ordered groupoids suchtbatvG — vH is a homomorphism of
semilattices.

Thus the category, (X)) is a Schein groupoid. Now for eachin .7, (X), let us denote the
identity maps on the domain and rangexoby ¢, and¢,, respectively. Also, for identities;
andez in G, we denote the identity map elom(e; ) () dom(ez2), which is in fact the meet of;
andes, by €1 A e2. By the definition of relational composition, we have

(19) €1 Nég = 1dom(51)ﬂdom(52) = €1 0€2 =€20¢€].
Again for eacha in 7, (X) and an identitye with ¢ < ¢,, we denote the restriction ef to

dom(e) by e|a.. Further, for an identity in .7, (X) with ¢ < ¢, the corestriction of to ¢ is
defined by

—_1\—1
alg = (¢la™t) .
Hencex|¢ = «| dom(¢) by Equation (1.5b). Thus corestriction is the same as raegiiction.
Using these notations and Equation (1.9), we can rewritafou(1.6) as

(1.10)  aof = (al(¢a Aep)) * ((¢a Aep)|B) = (a0 (¢ao€p)) * ((da 0 €p) 0 )

In other words, forx andg in .7 (X), if we define

Y =0a0eg = da N e€g
then we have

(2.12) aoff=(aotp)x(¢pof) = (a|1/1) * (1/1|6)

Note also thap,l = o~ ta andes = 371.

Next we see how these ideas can be generalized to an arliitvarge semigroup. First note
that fora and 3 in .#,(X), we haven < B if and only if « = aa™!3in .#(X). Now in any
inverse semigrou®, the relation< defined byz < y if and only if z = xzz 'y, is a partial
order with the property that the sE{.S) of idempotents of is a semilattice in which the meet
e A f of two idempotents is the produef = fe. Itis called the natural partial order gh
We have also observed that the trateof S is a groupoid. The following result describes the
relation between inverse semigroups and inductive gralgoi

THEOREM 1.3 (Schein [21])Let S be an inverse semigroup. Then the trateof S is a Schein
groupoid with respect to the trace productaind the natural partial ordeK. Also, forz andy
in S,
zy = (zh) * (hy)
where
h=(z""2)(yy™")
Conversely, if G, *, <) is a Schein groupoid, thef¥ is an inverse semigroup with respect to
the product defined by
zy = (x[h) * (hly)
where

h=z"tzAyy !
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Now for an inverse semigrou$, we denote the Schein groupoid arising from the trace prod-
uct and the natural partial order W§(S). If b : S — S’ is a homomorphism of inverse
semigroups, theh preserves trace products, natural partial order and théatéoe product on
its set of idempotents. Hendeis also a morphism of Schein groupoids; we denote this mor-
phism byG(h). Again, we denote b(G), the inverse semigroup determined by the Schein
groupoidG. Definition 1.2 and the definition of products${G), it follows that any morphism
¢ : G — H of Schein groupoids induces a unique homomorpt8éy) of S(G) to S(H). Thus
we have

THEOREM 1.4.For each inverse semigrous let G(.S) denote the Schein groupoid defined in
Theorem 1.3 and for each homomorphismS — S’ of inverse semigroups, I&(h): G(S) —
G(S’) be the morphism of Schein groupoids as above. Then the assigs

(1.12a) G:S— G(9), h— G(h)

is a functorG: J& — & of the categoryJS of inverse semigroups to the catega®®
of Schein groupoids. On the other hand, for a Schein grouphitkt S(G) denote the inverse
semigroup defined in Theorem 1.3 above and for each morghisth— G’ of Schein groupoid
let S(¢): S(G) — S(G’) denote the honomorphism of the inverse semigroups detedrbiyy.
Then the assignments

(1.12b) §:G— 8(G), ¢~ 8(¢)
is a functorS : 66 — J6.

It can be shown that for any inverse semigrdtipnd any homomorphisi : S — S’ of
inverse semigroups, we have

(1.12c) S(G(S)) =S,  S(G(h)) =h.

Similarly, for any Schein groupoi@ and any morphism : G — H of Schein groupoids, we
have

(1.12d) G(S(G)) =G,  G(S(¢)) = ¢.

In fact we have following relation between the categf§ of inverse semigroups and the
categoryS® of Schein groupoids.

THEOREM 1.5.The functorG : 76 — && defined by assignments of Equatidnl2a)is an
isomorphism of categories such that

G'=5:66 1716
is the functor defined by the assignments in Equatloh2b)

The discussion above, in particular, Theorem 1.3 shows #samathematical structures,
inverse semigroups and Schein groupoids are equivaleptrefitesentation of an inverse semi-
group as its Schein groupoid is quite useful in analyzingtitscture. We mention one example
to illustrate the fact.

Let £ be a semilattice and 1&t*(E) denote the set of all isomorphisms of principal ideals
of E. ThenT™*(E)) is easily seen to be an ordered subgroupoig’ofF) and by definition, the
identitities of 7*(F) are the identity maps on principal ideals Bf Fore € E, if we denote
by w(e), the principal ideal generated laythene — w(e) is an order isomorphism df onto
the set of identitieg™*(E). It follows thatT*(F) is a Schein groupoid. We denote the inverse
semigroupS(7™*(E)) by T(E).

Now an inverse semigrou§ is said to be fundamental, if every non trivial congruence on
S identifies at least one pair of distinct idempotents. Sinceragruence or$ is idempotent
separating iff it is contained in the Green'’s relatigfi, it follows that S is fundamental iff
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the relationZ on S contains no non trivial congruences. It is not difficult tayghthat the
semigroupl’( E') constructed above is fundamental. To see thig ke a congruence ifi(E)
with p C 7 and leta p g in T(E). Thena s g from which it follows thatdom(a) =
dom(f3). If we write dom(a) = dom(8) = w(e) ande = 1, then we have = aa™" p
Ba~t. Lety = Ba~t. Theny 7 e, sincep C 2, and sadom(vp) = dom(e) = w(e). Also,
for f € w(e), if we write ¢ = 1), thenge = ¢, sincef < e. Hencepy p ¢e = ¢, from
which we haveu(fvy) = ran(¢y) = ran(¢) = w(f) and sofy = f. It now follows that
Ba~! = = e so thatw = S.

Now in any inverse semigroup and for eachr € S, the mape — z~lex is an isomorphism
of w(e,) ontow(f,). If we denote this map bys(z), thenag(z) € T(E) for eachz € S
and the mams: © — ag(z) is in fact a homomorphism of into 7'(E). Now idempotents
in T(E) (identites inT*(£)) are of the forml,, ) = as(e) for somee € E(S). Hence
E(T(F)) C imag = ag(S) and soim ag is a full subsemigroup of'(E). ( We say thatS is
afull subsemigroupf 7" if S is a subsemigroup df with E(T") = E(S)). It follows from the
definition ofag that if ag(z) = ag(y) for z,y € S, thene, = e, andf, = f, and sox 5 y.
Thus the kernel of the homomorphista is contained in7Z. In other words, if we denote the
kernel ofag by ng, then we have

ps = {(z,y) € S x S:ag(z) =as(y)} C .

In particular, ifS is fundamental, theps = 15 and soag is injective. Thus, as a consequence
of Theorem 1.3, we have the following result.

THEOREM1.6 (Munn [13]).LetT'(E) be the set of allisomorphisms of principal order ideals of
a semilatticeF. ThenT'(E) is a fundamental inverse subsemigroup®fE) whose semilattice
of idempotents is isomorphic #. Moreover, ifS is any fundamental inverse semigroup whose
semilattice is isomorphic t&, thenS is isomorphic to a full subsemigroup 61 E).

2. INDUCTIVE GROUPOIDS OF REGULAR SEMIGROUPS

We thus see that the structure theory of inverse semigroap$e reduced to the theory of
Schein groupoids. We have also seen that the Schein groapaidinverse semigroup is deter-
mined by the groupoid. (the trace ofS) representing the local structure 8fand the semilat-
tice E(S) of idempotents of with the relation between these structures specified bynesia
Definition 1.1

There are several difficulties in trying to extend the notidrSchein groupoids to regular
semigroups. The first thing that we note is that a regulargemp with the trace product is not
a category, since left and right identities of an elemenhoabe uniquely defined. This is due
to the fact that in a regular semigroup, théclass and thez-class of an element may contain
more than one idempotent. One way out is to blow up the semigfdoy considering for each
elementz of S, all pairs(x, 2’) wherez’ is an inverse of in S. Note that every idempotent of
S is uniquely determined by one such pair. Also, the trace pebdf x andy in S is defined
if and only if there exist inverses’ andy’ of z andy such thatt’z = yy’. We thus have the
following result [14].

PROPOSITION2.1.Let S be a regular semigroup and define
(2.2) GS)={(x,2'):z€8, 2e?v((x)}
where” ()(x) denote the set of all inversesofn S. Define a partial binary operation oG(.S)
by
e f ﬂCIﬂC — yy/
22 / / — (:’ry7 y x ) I ’
@22) (@2)(5,9) {undefined otherwise.

ThenG(S) is a groupoid whose identities are paifs, ¢) wheree is an idempotent of.
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Remark 2.1: The idea of considering the s&{.5) of pairs of the form(z, 2') with 2’ € ¥'()(z)

occures both in [21] and]. It was noted by both Schein and Rielly-Scheliblish that itblation
G(S) is a subsemigroup of x S if and only if S is orthodox (that is, if and only iE(S) is a
band). However, as far as we are aware, the first systematly sf the structure oG(S) for

arbitrary regular semigroups and its use in structure thappeared in [14].

We call G(.S) the groupoid ofS. Because of the bijection— (e, ), the set of identities of
G(S) can be identified with the s&(.S) of idempotents of5. ThusG(S) is a groupoid whose
set of identities is equal tB(.S). In fact, G(S) is an ordered groupoid. To describe the order in
G(95), first note that as in the case of an inverse semigroup, thE(s8tis a poset with order
defined bye < fifand only ifef = fe = e. In the case of regular semigroups, we denote
this order byw, following the notation in [14]. Also, in the case of an ingersemigrouy, for
x € Sande € E(S) with e < zz~1, the restriction ofr to e in the Schein groupoid aof is
defined bye|x = ex. Analogously, we can define f¢r, ') in the groupoidG(S) of a regular
semigroupS ande w za’, the restriction of z, z’) to e by

(2.3) el(z,2') = (ex,ex’)

The partial order oii(,S) induced by this operation is given by

(2.4) (v, 2") < (y,y) &= x=(x2')y, 2’ =y (z2') andzz’ w yy'.
We then have the following

PROPOSITION2.2.Let S be a regular semigroup and |&§(.S) be the groupoid of5. Then
G(S) is an ordered groupoid with composition defined by Equathf) and order defined by
Equation(2.4).

When we try to recover the semigroup products from the gri@lpmducts as in the case
of inverse semigroups, we encounter several difficultiést Rote that in the case of a regular
semigroupS, the underlying set of the groupo@ = G(5) is notS itself, as in the case of an
inverse semigroup. However, this is easily remedied byntaktie quotient of7 by the equiva-
lence relation which identifies all elements@fwith the same first coordinate. Next recall that
in the case of an inverse semigroup, the semigroup praduict equal to the groupoid product
(zh) * (hy), whereh = (z~'x)(yy~') = 2~ ' Ayy~!; butin the case of a regular semigroup,
the set of idempotents is not a lattice. This difficulty is mgme in [14], by considering for two
idempotents and f in a regular semigrouf, theirsandwich setlefined by

(2.5) S(e, f) ={ frxe:zisaninverse otf }.

Note that if S is an inverse semigroup, théte, f) = {ef} for any pair of idempotents if.
In the case of a regular semigrofpit can be easily seen th&te, /) C E(S). Moreover, forz
andy in S and any of their inverses andy/, it can be shown that it € S(z’z, yy’), then

zy = (zh) * (hy)
and also thay’hz’ is an inverse ofy with
y'ha' = (y'h) * (ha')
We thus have the following result.

THEOREM2.3.Let S be a regular semigroup an@ = G(.5). Define the relatiop on G by

(2.6) (z,2")p(y,y) <= z=y.
Thenp is an equivalence relation of¥. and if the equivalence class containifg, «’) is
denoted by(z, z’), then the quotient st /p with product defined by

(2.7) (x,2") (y,9') = (wh, ha')(hy, hy')
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whereh € S(a’z,yy'), is a semigroup isomorphic witi.

We next see how the groupo(S) can be abstractly characterized and the above construc-
tion of a regular semigroup can be effected in such a genetéihg. For this, we will have
to first give an abstract characterization of the algebraiccture of the set of idempotents of
a regular semigroup. (Note that in the case of an inversegsenp S, the algebraic structure
of E = E(S) is completely determined by its order structure, siafe= e A f for anye
and f in E). Also, the relation between this structure 8f= E(S) and the structure of the
groupoidG(S) must be made explicit. For example, the product of two ideteyuts in a regular
semigroup may not be an idempotent (which is not the case invanse semigroup) and such
products cannot be described in terms of the products inrthepgid, since no two identities in
a category are composable.

An abstract characterization of the set of idempotents afgalar semigroup, as a partial
algebra satisfying certain axioms, is given by one of théanst [14], where such a structure
is called aregular biordered setMore generally, Easdown [5] has shown that a partial algebr
E satisfying axioms of Definition 1.1 of [14] (that is, a biordd set) if and only if£' can be
embedded as the sE(S) of all idempotents of a semigroupand it is shown in [14] thaE(.S)
is a regular biordered set if and only §fis a regular semigroup. We may therefore assume
with out loss of generality that every [regular] biordered § is E(.S) for a suitable [regulsr]
semigroupS. Note that in the seE(S) of idempotents of a regular semigrogp the partial
orderw is equal to

(2.8) w=w Nw"
wherew! andw” are defined by
(2.9) Ww={(e,f)EExE:ef=¢} and w'={(e,f) €ExE: fe=¢e}

These relations can easily seen to be quasiordeEs 8 Also, the Green’s relationg” and
Z in E(S) are related to these orders by

(2.10) Z =w'NWH)™' and Z=w" N(w")!

Further, for any relatiot® on E ande € E, we write R(e) for {f € E: (f,e) € R} C E. In
particular, we write

(2.12) Wie)={f:fw' e}, Je)={f:fuw'e}, and wle)={f:fwe}.
These subsets are callet], w' andw ideals respectively. Note that these are regular biordered
subsets of7 (cf. [14]).

One of the axioms for a biordered sEtis that the relationssl and wr in E defined by
Equation (2.9) are quasiorders and that the product of temehts ofF is defined in the
biordered sef if and only if they are comparable under one of these relatidoreover, in a
biordered set we can define the partial ordby Equation (2.8) and the equivalence relations
ZandZby Equation (2.10). Moreover the sandwich set of two ideraptst can be described
in terms of the partial product or equivalently, in terms loé tyuasiorders)’ andw” in the
biordered set [14].

Next we see how we can describe in the language of groupbielftt that certain elements
of S are products of idempotents. For this, we make use of thalfat&any product of idem-
potents inS' is also equal to the product of a finite sequence of idempstanthich successive
terms areZ or Z related. Also, the length of any such sequence can be “naeiiiwithout
affecting the product. These ideas can be precisely fotieai@s follows.

Let S be a regular semigroup and [Et= E(S) be the set of idempotents 6f We define
an E-sequencas a finite sequenee= (ey, es, . . ., e,) of elements o2 such thae; (¥ | #
Jeir1 fori = 1,2,....,n — 1. Two E-sequences of the forite, /) and (g, k) are similar if
these pairs are related by the same relatigha #). In the E-sequence = (e1,e2,...,6,),
elements:; are called vertices and subsequenegsi,e;), i = 2,3,...,n are called edges of
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s. InanE-sequencéey, es, . .., €,), a vertexe; is said to be inessential if edgés_1, e;) and
(es,€i41) are similar, (thatisg;—1 £ e; £ e;41 0re;—1 Z e; Z e;+1). Given anE-sequence
s, the produck;es . . . e, of vertices ofs in S is called thethe productof s. Notice that we
can introduce or remove an inessential vertex without &ffgdhe product of arfP-sequence.
An introduction [or removal] of an inessential vertex intw from] an E-sequence is called
an elementary reduction of. Define the relation- on the set of all finiteF-sequences i

by o ~ ¢’ if ¢’ is obtained fromr by a finite sequence of elementary reductions. Then it is
clear that~ is an equivalence relation on the set of Bsequences off. The equivalence
classes of’-sequences are callddichains The E-chain determined by th&-sequence =
(e1,€e2,...,e,) is denoted by(e, es, ..., e,). Also, everyE-sequence is--equivalent to a
uniquereducedE-sequence having no inessential vertex and we may assumgdha. . , e,,)
represents the reducddtsequence determined by tliesequence = (ey,...,e,). Clearly
edged(e;—1,¢;), i = 2,...,n of o are reduced. Hence the edges Brehains. AnE-cycle in
E'is anE-chainc with e, = f.. An E-cycle with four edges (or four distinct vertices) is called
anE-square. Ife, f € w"(g) ande & f, then it follows from biorder axioms that

eLfRfg L egZe andso, cle, f, fg,eg,e)

is an E-square. Similarly ife, f € w!(g) ande Z f, thenc(e, £, gf, ge,e) is an E-square.
E-squares formed in this way are callgidgular F-squares.

It can be shown that any product of idempotentsSirs the product of elements in affi-
chain (see [14], Theorem 1.2). Note also thatif= ejex---e,, andy = fifo---fn In

S, wherec; = c(eq,ea,...,en) andes = c(f1, fo,..., fn) are E-chains withe,, = fi,
thenzy = eigs--- fn, Where(es, go, ..., fn) is the reducedt-chain corresponding to the
juxtaposedE-chain (eq, ea, . .., em, f1, f2,.-., fn). In view of this, it is natural to define a

product in the se€(E) of all E-chains on an arbitrary biordered g8tas follows: forc; =
cler,...,em)yca =c(f1,..., fn) € E(E) let

{C(ela"'7emaf17"'afn) |f€m:f1,
Ci1Cy =

(2.12) ! .
undefined otherwise

where the right-hand side represents the chain determipelebjuxtaposition of sequences
(e1,...,em)and(f,..., fn). Itis easy to see that(F) with this product is a groupoid.

Also, the identities in(E) are E-chains of the forme(e, ) with e € E and these can be
identified with the elements df itself.

Again, if x = egey---e, in S, wherec(eg, e1,...,e,) is an E-chain ande w ey, then
er = eey -+ ey, BUt(e,e1,...,e,) is Not anE-chain. However, it is not difficult to see that if
we define

hozeandhi:eihi,lei for i71,2,...,n,
thenc(hg, h1, ..., hy,) is anE-chain withex = hohy - - - h,,. Moreover, it can be shown that if
we define
(2.13) ele(er, ... en) =clho, hi,...,hy)

then this defines a restriction operatior¢if¥’) under which it is an ordered groupoid.

The ordered groupoid ofE-chains€(FE) can also be characterized in the following way.
Since.Z andZ are equivalence relations di, we may regard these as groupoids with vertex
setE. Morphisms of¥ are edges i€(E) of the formc(e, f) with e .Z f (see [9]). Similarly,

Z is a groupoid withv#Z = E and morphisms as edgeg&, f) with e Z f. These becomes
ordered subgroupoids € E) if we define restrictions iz by

(2.14a) gl(e, f) = (g9,9f) for gweZ f.

and the restriction inZ by

(2.14b) gl(e, f) = (g, fg) for guwelZf.
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The above construction @f{ F) can be given a ‘categorical’ description. Not that the defini
tion of products off-chains above shows that

cleg,e1,...,en) =c(eg,e1)cler,ea)...clen—1,en).

This fact that everyZ-chain is a finite product of edges implies titgi&) is “generated” by?
andZ in the (rather strong) sense that the diagram (D1) below igshqout in the category
O6.

(D1) p—L
Ju r
% ——— ¢(E)

Here, the various arrows indicate the corresponding enibgdd Thus€(E) is theamalga-
mated producbf . and%, amalgamating r.

Since the construction af(E) involves only the vocabulary and syntaxof a biordered set
it can be done on any abstract regular biordered set. (Thasprdetails of such construction
within category theory can be found in [14]). Recall that vexdr a categoryR®s of regular
biordered sets [14] with morphisms as regular bimorphisffise construction off(E) de-
scribed above constructs the object function of a func¢tor:?B — ©&. For each regular
bimorphismd : E — E’ andE-chainc = ¢(ey, ..., e,), let

cd = c(epl, e10,. .., e,0).
Itis clear thaif € €(E’) and so
(2.15) C@)(c) =ch forall ce €(FE).

is a well defined map of the morphism set&{fF’) to the morphism set af(E’). From Equa-
tion (2.12) and the definition aff above, it is clear that

€(0)(c1e2) = €(0)(c1)€(0)(c2) and €(0)(c(e,e)) = c(eb, ed).

Settingv&(d) = 60, we have a functo€(f): €(E) — €(E’). Sinced: E — E’ preserves
biorder products, it follows from Equation (2.13) that then€tor €(9) preserves restrictions
and hence&(#) is a morphism oD ®&. Itis easy to verify that the assignments

(2.16) ¢:Em €(E), 0 ¢(h)

is a functor®: RB — OG.

Next note that if in a regular semigrodf) x = e - - - e,,, Wherec(e, es,...,¢,) is anE-
chain inE = E(S), thenz’ = e,e,—1---e1 is an inverse ofc in S. Hence we have a map
e: €(E) — G(S5) defined by

(2.17) e(cler, e,... en)) = (€162 €n, Enepn_1---€1)

and it is easy to see thatinduces an order isomorphism of the identitiesoF’) onto the set
of identities ofG(.S). Moreover, it can be shown that: €(E) — G(S) preserves composition
and partial order so that it is an order-preserving functwbich is av—isomorphism.

Thus for any regular semigrou the set of idempotent®& = E(S) is a regular biordered
set and there are two ordered groupd®{s) and@(E) with a morphisme: €(E) — G(S5) of
ordered groupoids. Also, the relations between the algebktaucture ofF and the groupoid
structure ofG(.S) can be described using the map
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For this, we first observe that we are justified in using thegaty terminology in groupoids.
Thus if have morphisms in a groupdaigéiforming the following diagram,

f
%
h
then the diagram is commutative if morphisms v and 5 o § are equal. Given a regular
semigroupS we may thus consider diagramsdQF) whereE = E(S) as well as inG = G(5).

In the following, we adopt the convention of using vertichbfizontal] arrows to denote-
imagess(c(e, f)) = (e, f) of edgesc(e, f) with e £ f [e # f]. Other morphisms will be

denoted by dotted arrows. Note that for= (z,2') € G ande € E with e w 22’ = e,, We
have

(e

—

™
Q&

)

fela = 2'ex € Ewith 2'ex w 2’z = fq
so thatf,|, € w(fa). Also, the map
(218) as(Oé)Z w(ea) - w(foz)7 e fe\a
is easily shown to be a biorder isomorphismugfe,) ontow(f,) (see [14]). Moreover, for
€1, €2 € FE andf1 = e1q, f2 = e, if el w” €9, thenf1 w” f2 with (6162)0& = flfg, since
« is a biorder isomorphism. Also in this case, if we wrjte= e;e; andh = f; f, then for any
k w ey, using the definition of restriction Equation (2.3), we have
(k)e(er, 9)(gla) = z'kga = (2'kz)(2'gz)
= (k)(er]a)e(f1,h)
= (k)(alfi)e(f1, h).

Dually, if e;w'eq, and ifg = eze1, h = fof1, then we can similarly show that

e(er, 9)(gle) = (alfr)e(f1, ).
Thus we have:
(IG1) Fora € G andey, ez € w(ea), let f; = fe,ja, @ = 1,2. Suppose that eithefw”e; or
ewles and letg = egeqea, h = fof1fo. Then the following equality

e(er,9)(gla) = (alf1)e(f1, h)

holds inG. That is, if e;w”es, then the first diagram below commutes@hand if
e1 w [l]e2, then the second diagram commutes:

e(e1,9)
€1 €2 €1

~. gla . alf
alfi k
o - o

fi TS h e(e1,9) fi

g i} e(f1,h)

gla ™
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A diagram in€(E) is said to be:-commutative if its image underis commutative inG. It
can be seen that dti-squares-commutative inG if and only if it is a rectangular band ifi. In
particular it can be easily seen that:

(IG2) Forallf,g € w"(e) with f .Z g [or f,g € w!(e) with f Z g] the singularE-square
c(f,g,9e, fe, f)[c(f,ef,eq, g, f)], represented as the first [second] diagram below, is
commutative:

¥ e(f.fe) ¥ f e(f.9) g
E(f-,g)[ [e(feyge) 8(f,ef)[ Es(g,eg)
g ge of s ge
e(g,9¢€) e(ef,eq)

Thus every singulaFE’-square in®(E) is e-commutative.

The foregoing discussion shows that given an ordered gidugaand a biordered sef,
in order that there exists a regular semigraiguch thatG(.S) is isomorphic toG andE is
isomorphic toFE, it is necessary that there isvaisomorphism : €(E) — G satisfying (IG1)
and (1G2). These conditions can also be shown to be sufficientlescribe this, we first make
the following

DEFINITION 2.1. Suppose thdF is an arbitrary ordered groupoid and that¢(E) — G is a

v—isomorphism wher& is a biordered set. Then the pé&iF, ) is called arinductive groupoid
or thatG is an inductive groupoid with respect to teealuations if the conditions (IG1) and
(1G2) hold.

The discussion preceding the definition above shows thabrithered groupoidi(S) is an
inductive groupoid with respect to the evaluatioa g defined by Equation (2.17). Conversely
given any abstract inductive groupditwith evaluatiore, we can construct a regular semigroup
S by a method suggested by Theorem 2.3. First define the nelata G as follows:

(2.19a) apf <= ey Zes, foL fz and ce(eq,es)8 = ac(fa, f3)

Thenp is an equivalence relation d&. Notice that in the case of the inductive groupGicb),
(x,2") p (y,y") ifand only if z = y so that there is a natural bijection 8fwith the quotient set
G(S)/p. In the case of arbitrary inductive groupdit] we see that the desired semigroup is the
setG /p with suitable definition of binary operation [14]: Far 3 € G /p, define

(2.19b) a-f=(axh)(hxp)
whereh € S(f,,es) and

(2.19c¢) a*h = (a|foh)e(foh,h), and hx B =e(h,heg)(heg|B)
(see [14], 8§ 4 for a detailed discussion of these includiegattoof of the following).

THEOREM2.4.Let S be a regular semigroup. Then the &tS) defined by Equatio(R.1)is an
inductive groupoid in which composition, partial order aedaluation are defined by Equations
(2.1) (2.4)and (2.17)respectively.

Conversely, letG be an inductive groupoid withG = E and evaluatiore: ¢€(E) — G.
Define the relatiorp on G by Equation(2.19a) Then Equatior{2.19b)defines a single valued
binary operation- on G/p such thatS(G) = (G/p,-) is a regular semigroup an(S(G)) is
isomorphic toE.
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The theorem above associates with each regular semigfarpinductive groupoidi(.S)
and a regular semigrou(G) with every inductive groupoid:. By Theorem 2.3, the regular
semigroupS(G(S)) constructed from the inductive groupd®{.S) is isomorphic tasS.

Leth : S — S’ be a homomorphism of regular semigroups. By Theorem 1.1 4} [1
6 = E(h) : E — E'is a regular bimorphism wher® = E(S) andE’ = E(S’). For any
(xz,2") € G(9), itis clear that((x)h, (z')h) € G(S’) and it is easy to see from Equation (2.1)
that the map

(2.20) G(h): (z,2") v (zh,2'h)

is a functorG(h) : G(S) — G(S’) such that the vertex map &{(h) is vG(h) = 6. By Equa-
tion (2.3) (or Equation (2.4))a(h) is an order preserving functor. Letands’ denote evalua-
tions of G(S) andG(S’) respectively as defined by Equation (2.17). Foraryc(eg, ..., e,) €
¢(E), by Equation (2.15) and (2.17), we have

e'(€(0)(c)) = &'(c(eqh, ..., enb))
= ((e0)0 ... (en)0, (en)0...(e0)b)
= ((eo-.-en)h, (en...eq)h)
= G(h)(eo...en,en...eo)
= G(h)(e(cleo...en))).

Hence the diagram (D3) commutes (with= G(). We are thus led to the following definition
of morphisms of inductive groupoids.

DEFINITION 2.2. LetG and G’ be inductive groupoids with evaluatioas €(E) — G and
e’: €(E’) — G respectively. Suppose thét E — E’ is a regular bimorphism. An an order
preserving functop : G — G’ is called aninductive functowith respect t@ (or that the pair
(¢, 0) is inductive) if the diagram

(D3) ¢(F) ———— @G

¢(9)l ¢

CE) —— &

commutes; that iss¢p = €(0)e’. The mapp : G — G’ is aninductive isomorphisnif ¢ is
an inductive functor (with respect to sorle E — E’) which is an isomorphism of ordered
groupoids (which implies thatis a biorder isomorphism as well).

Sinceve = 1g andve’ = 1. it follows from the diagram (D3) that = v¢. Thus for any
inductive functorp, the mapv¢ is always a regular bimorphism.df: G — H andy: H — K
are inductive functors with respect th vG — vH andn: vH — vK respectively, then
po1: VG — vK is easily seen to be inductive with respec@ton. Also, 14 is inductive with
respecttd,s. Hence there is a categd¥ys with objects as inductive groupoids and morphisms
as inductive functors. The definition 68 implies that there are twimrgetfulfunctors

4736 — OB and v: J® — RV

The functor¥ sends each inductive groupoid to the underlying orderedgpil and each in-
ductive functor to the corresponding order preserving foncSimilarly vG: 7& — R is a
functor which sends inductive groupdigto the biordered set and inductive functop to the
bimorphismv¢ so thaty is inductive with respect ta¢.

If : G — H any inductive functor then

app inGimplies ¢(a)pd(8)
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in H. Hencey induces a map

(2.21) S(¢): @+ o(a)

of §(G) to S(H) which is a homomorphism. We can now extend the constructiorheo-
rem 2.4 to morphisms of inductive groupoids and regular gesoips (see [14], § 3,4 for details
of the construction and proofs).

THEOREM 2.5.Let h: S — S’ be a homomorphism of regular semigroups. Then Equa-
tion (2.20)defines an inductive funct@(h): G(S) — G(S’). Also, the assignments

G: S— G(S), hw~— G(h)

is a functorG: J& — RG.
Similarly, if : G — H is an inductive functor, then the map defined by Equai®pl)s a
homomorphisn$(¢): S(G) — S(H) of regular semigroups. Moreover, the assignments

S:G— S(G), ¢+~ S(¢9)

is a functorS: 76 — RG.

The functorsG: ;6 — J& andS: J& — RS are mutually inverse up to equivalence. We
have (cf. [14], § 4)

THEOREM2.6.For any regular semigroug®, define

(2.22a) 1®s = (z,2') forall zeS 2/ e ¥()(x).

Then®g: S — S(G(S)) is an isomorphism and the map— @ is a natural isomorphism
®: Ilpys = Go S.

Similarly, for any inductive groupoid:, let

(2.22b) vo(a) = (@,a-1) forall aeG.

Thenve : G — G(S(G)) is an inductive isomorphism and the m&p— v is a natural
isomorphism

v: 13@&806.

In particular categories® andRG are naturally equivalent.

Recall that every semilatticg is a regular biordered in which the relatiansandw’ defined
by Equation (2.9) coincide so that we have

(2.23) wr =wl=uw.

Conversely every regular biordered set satisfying thisddtm is a semilattice. In this case
the groupoid®(E) coincides with the trivial groupoid and an evaluation of e#attice F in
an ordered groupoidr is simply a an order isomorphism & onto vG. Hence an inductive
groupoidG (in the sense of Definition 2.1) is a Schein groupoid (cf. O&én 1.2) if and only

if vG is a semilattice. It follows that Theorems 1.3, 1.4 and 1e5manrticular cases of Theorems
2.4, 2.5 and 2.6 respectively.
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3. SOME APPLICATIONS OFINDUCTIVE GROUPOIDS

We now discuss the significance and the use of the repregemtstregular semigroups as
inductive groupoids and the consequences of the categoiyadence of the categofiS of
regular semigroups and the categdy of inductive groupoids. The category equivalence
implies that any statement about regular semigroups canitebly translated as a statement
regarding inductive groupoids and vice-versa. Consedyéminy discussion, it is possible to
replace one by the other according to convenience.

Recall that an element in a semigroup is regular if and oriyhiés at least one (semigroup)
inverses. Regularity is a significant concept both in themhef semigroups and the applica-
tions of this theory. An inverse semigroup has the addditipnoperty that every element has a
unigueinverse. This fact has strong influence on the structurewvafrge semigroups. Some of
the consequences of the uniqueness are that theStagkan inverse semigroup is a groupoid
and that the map +— 2z~ is an involution onS One may say that the uniqueness of inverses
gives the structure of inverse semigroup an intrinsic sytryneMany of the existing results
about inverse semigroups exploit this symmetry signifigant

Though every element in a regular semigroup has an invérséngerse may not be unique.
Consequently, the symmetry that exists in the case of ieve@migroup, does not exist in the
case of arbitrary regular semigroups. This presents suifst@roblems in formulating and
proving results on regular semigroups. On the other haddgitive groupoid does possess some
of the symmetry that is lacking in semigroups. Therefore ynmasults can be formulated and
proved much more simply and elegantly in terms of inductigeigoids rather than semigroups.
We discuss some examples below to illustrate this.

Let E be aregular biordered set andTét(E') denote the set of alb-isomorphisms (biorder
isomorphisms ofv-ideals § 2). Asin 8§ 1, it is clear thdt*(F) is an ordered subgroupoid of
the symmetric ordered groupoid, (F) in which identities are identity maps anideals. For
alle,f e Ewithe Z fore Z f,let

gf ifeZf;
fg feZ f.
Then it follows directly from biorder axioms thate, f) is anw-isomorphism ofv(e) tow(f).

Also we havev—isomorphisms of ordered groupoids :Z— T*(F) andr; :£— T*(E)
defined by

(3.1) gr(e f) = {

Tr: (e, f) €X— T(e, f); vir=1g
T (e, f) €L 1(e, f); v =1g
and so, since the diagram (D1) is a push out, there is a umiggemorphism
7:C(F)—>T*(E) suchthat 7 =n,07, 7, =mn0T.
Forc = c(eg,...,en) € €(E), we have

7(c) = 7(eg,e1) oT(e1,€2) ... T(en—1,€n)

Hence from Equation (3.1) and the definition of restrictian¢i( £), for all ¢ € ¢(E) and
g € w(e.) we have

(32) gT(C) = fg\c

It is also easy to verify that the-isomorphisnr : €(E) — T™*(F) satisfies axioms (IG1) and
(1G2). Hence the ordered groupditt (E) is inductive with respect te. By arguments similar
to those in § 1, we can prove (see § 5, [14]):

THEOREM 3.1.Let E be a (regular) biordered set and I18t*(E) denote the groupoid of all
w-isomorphisms ofs. Then Equatior{3.2) defines as—isomorphismr : ¢(FE) — T*(E) and
T*(E) is inductive with respect te. The semigrouf’(E) = §(T*(E)) is fundamental and
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regular. Moreover, ifS is any fundamental regular semigroup wiS) isomorphic toE, then
S is isomorphic to a full subsemigroup d{E).

We observe that the theorem above has close similarity withivé theorem (Theorem 1.6);
in fact the above statement is formally obtained from Murthéorem by replacing semilattice
by biordered sets.

Another class of regular semigroups whose inductive grmgpoan be characterized natu-
rally in terms of their biordered sets are idempotent gerdreegular semigroups. In this case
inductive groupoids of such semigroups can be obtained asenus of the ordered groupoid
¢(E) (see [14], § 6 for detalls). In particular cases, these itidegroupoids have interesting
properties. Thus i is the biordered set of all idempotentx n-matrices then the semigroup
S generated by (under matrix multiplication) is the set of all singutarx n-matrices [4, 11].
In this caseF is a finite dimensional manifold and the inductive groupdidds the groupoid
of all polygonal paths irf.

Often results about inverse semigroups can be extendeiiiato regular semigroups using
inductive groupoids. For example, consider the consnaiif essential and normal extension
of inverse semigroups. Recall that an essential extengian mverse [regular] semigroupis
an inverse [regular] semigroup 2 S such that any homomorphisgn: T' — U which is injec-
tive on S is injective on the whole of";again,T is a conjugate extensiondf 1St C S for all
t € T and itis a normal extension &fif 7' is a full (thatis,E(S) = E(T")) and conjugate exten-
sion of S [20]. T is also maximal if it is not properly contained in any extemsl” of the same
type asT'. Petrich [19] has given a construction of the maximal, etsgenormal extension of
inverse semigroups. In [16] the inductive groupoid of theximmal, essential-normal extension
of regular semigroup was constructed by a method quite goakto Petrich construction for
inverse semigroups. Petrich and Pastijn later generalimedonstruction to obtain a class of ex-
tensions. They did not use inductive groupoids explicitid #heir methods are quite involved.
Radhkrishnan Chettiyar [1] later obtained a much more intliand elegant construction of
inductive groupoids of extensions. Notice that once we hhganductive groupoids, we can
always obtain the corresponding semigroups using Theorérfs@e [14], § 4 for details).

We give a brief description of the inductive groupoids ofemdions as follows (see [1],
Ch. 4). LetS be a regular semigroup and & = {S. : e € E(S)} be a family of regular
subsemigroups o such that

(EX1) E(S.) = w(e) foralle € E(S);

(EX2) S. C Syif ew f;and

(EX3) for eachz € S andz’ € ¥()(z), the mapd(z,z’) : s — 2'sx is an isomorphism of
Seer ONOS,/ 4.

Then F is called an extensive family [18] o§. An isomorphismo : S. — S; is called
an F-isomorphism if for allg w e, the mapo|S, is an isomorphism of, onto S,,. It is
easy to see that the s&t(S) of all F-isomorphisms is an ordered groupoid under the obvious
composition and partial order. As shown in [1], there is airadtevaluation oE(S) in Az (.5)
making it an inductive groupoid. Furthermore, there exastsidentity separating inductive
functorq : G(S) — A#(S). The semigrouglz(S) = S(A#(9)) is an essential extension of
S if and only if ¢ is injective or equivalently, the homomorphigp = S(q) : S — Ax(S) is
injective.

It is well-known that a congruengeon a regular semigrouf is determined uniquely by the
set of congruence class&s, = {p, : A € A} that contain idempotents or that, is the kernel-
system ofp [3]. As in [3], we shall refer tak, as a kernel-normal system f If S'is inverse,
eachp-classp, € K, that contain idempotents is an inverse subsemigrou$ ahd so, the
kernel-normal systerk, is a collection of inverse subsemigroupsfKernel-normal systems
for inverse semigroups can be characterized axiomati¢sdlg [3], Chapter 7, page 60). For
regular semigroups it is known that subsemigroups bel@ngik’, may not be regular and this
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makes a direct characterization of kernel-normal systemetjular semigroups difficult. How-
ever, if we consider congruences on inductive groupoid= ttongruence classes containing
identities are inductive subgroupoids and the collectiballsuch inductive subgroupoids form
anormalsystem. In this case a characterization kernel-norma¢sy$br inductive groupoids,
similar to those for inverse semigroups, is possible.

Other applications of the method of inductive groupoidside the construction of an impor-
tant class of subdirect products, callgt-direct products; see [17] for definitions and various
applications of the construction. Inductive groupoidsae® useful in studying congruences,
homomorphism, extensions and co-extensions of regulagseaps (see [15] for more details).
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