АЛГЕБРАИЧЕСКАЯ ТРАКТОВКА ДВУХФАКТОРНОЙ БИНАРНОЙ ТЕОРИИ ДОСТАТОЧНЫХ ПРИЧИН

Ю.В. Нагребецкая

Екатеринбург, УрФУ 2012

Формализация эксперимента

- На изучаемое бинарное событие D воздействуют бинарные факторы $X_1, X_2(X_1, X_2, X_3)$.
- Уровни события и факторов условно обозначаются 0,1.
- Не имеет значения, какими символами обозначены уровни факторов. Каждый из факторов в данном эксперименте обязательно присутствует. В частности, уровень $X_i = 0$, i = 1, 2 может не означать отсутствие фактора.
- Возможные значения отклика определяются сочетаниями уровней факторов $X_1, X_2\,$.
- Отклик можно представить в виде *булевой функции от* факторов

Достаточные причины

- Достаточная причина такое минимальное множество событий, действий, состояний природы, которые все вместе неизбежно запускают тот механизм, который приводит к исследуемому исходу (Rothman, 1975).
- Если все компоненты частной достаточной причины присутствуют, то исход с необходимостью наступает. Внутри же каждой достаточной причины каждая её компонента необходима для того, чтобы эта достаточная причина приводила к рассматриваемому исходу (Rothman, 1975).
- Компоненты называются *необходимыми причинами* или факторами.

Формализация бинарного эксперимента

- Как отклик D, так и факторы X_1 , X_2 можно считать булевыми переменными, с естественно определенной операцией дополнения.
- Логическая структура присутствия факторов в данном эксперименте полностью соответствует операциям дизъюнкции и конъюнкции над этими булевыми переменными.
- Отклик представляет собой булеву функцию от данных факторов.

Достаточные причины

T.J. VanderWeele, J.M.Robins, следуя Rothman, ввели следующее определение

Опр 1. Факторы $X_1, X_2, ..., X_n$ формируют достаточную причину, если из того, что $X_1 = X_2 = ... = X_n = 1$, следует D = 1.

1

Конъюнкция $X_1X_2...X_n$ - импликанта б.ф. D.

 $D = X_1 X_2 ... X_n \lor u(X_1, X_2, ..., X_n)$, где u - некоторая б. ф.

Достаточные причины

$$D = a_0 \lor a_1 X_1 \lor a_2 \overline{X}_1 \lor a_3 X_2 \lor a_4 \overline{X}_2 \lor \lor a_5 X_1 X_2 \lor a_6 \overline{X}_1 X_2 \lor a_7 X_1 \overline{X}_2 \lor a_8 \overline{X}_2 \overline{X}_1,$$

достаточные причины при $a_i = 1$

T.J. Vander Weele, J.M. Robins, S. Greendland, C. Pool

Представление отклика в виде ДНФ

$$D = a_{0} \lor a_{1} X_{1} \lor a_{2} \overline{X}_{1} \lor a_{3} X_{2} \lor a_{4} \overline{X}_{2} \lor \lor a_{5} X_{1} X_{2} \lor a_{6} \overline{X}_{1} X_{2} \lor a_{7} X_{1} \overline{X}_{2} \lor a_{8} \overline{X}_{2} \overline{X}_{1},$$

элементарные конъюнкции

Взаимодействие

- Нарушение равенства эффектов есть проявление некоторого типа взаимодействия факторов
- Наиболее интересные из них синергизм и антагонизм.
- Синергизм означает наличие дополнительного эффекта по сравнению с суммой эффектов от каждого фактора.
- Антагонизм совместный эффект меньше, чем сумма эффектов.

Аксиомы взаимодействия факторов для двух факторов

- 1) Если факторы X_1, X_2 взаимодействуют, то и факторы X_2, X_1 взаимодействуют.
- 2) Если факторы X_1, X_2 взаимодействуют, то и факторы \overline{X}_1, X_2 взаимодействуют.

формализация условий Greenland-Brumback, Vander Weele-Robins

Аксиомы взаимодействия факторов для трёх факторов

- 1) Если факторы X_1, X_2, X_3 взаимодействуют, то и факторы $X_{i_1}, X_{i_2}, X_{i_3}$ взаимодействуют для любой перестановки i_1, i_2, i_3 индексов 1,2,3.
- 2) Если факторы X_1, X_2, X_3 взаимодействуют, то и факторы \overline{X}_1, X_2, X_3 взаимодействуют.

обобщение аксиом взаимодействия для трёх бинарных факторов

Представление отклика в виде СДНФ

Любую б. ф. $f(x_1, x_2) \in \mathbb{B}(x_1, x_2)$ можно единственным образом представить в виде

$$f(x_{1},x_{2}) = f_{00}\overline{x}_{1}\overline{x}_{2} \vee f_{01}\overline{x}_{1}x_{2} \vee f_{10}x_{1}\overline{x}_{2} \vee f_{11}x_{1}x_{2} =$$

$$= f_{00}\overline{x}_{1}\overline{x}_{2} + f_{01}\overline{x}_{1}x_{2} + f_{10}x_{1}\overline{x}_{2} + f_{11}x_{1}x_{2} =$$

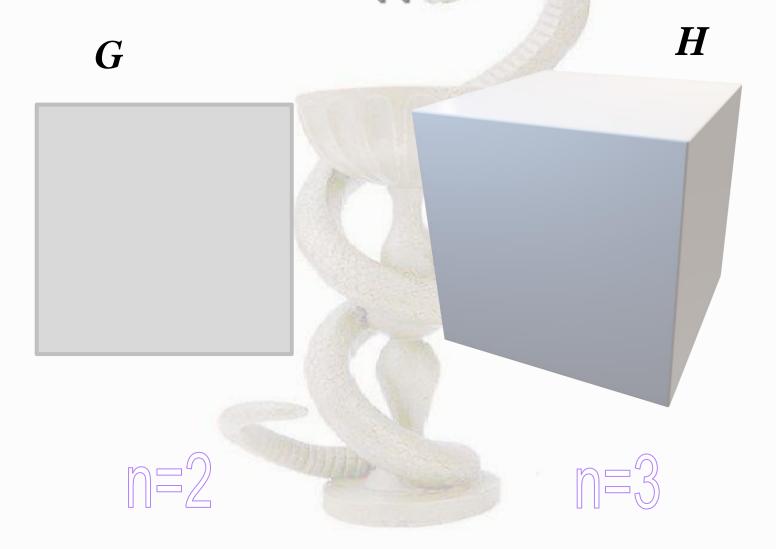
$$= \bigvee_{\alpha,\beta \in \mathbb{B}} f_{\alpha\beta}x_{1}^{\alpha}x_{2}^{\beta}$$

$$f_{\alpha\beta} = f(\alpha, \beta), \quad \alpha, \beta \in \mathbb{B}$$

1)
$$\begin{cases} x_{1} \xrightarrow{S_{1}} x_{2} \\ x_{2} \xrightarrow{S_{1}} x_{1} \end{cases}$$
 2)
$$\begin{cases} x_{1} \xrightarrow{S_{2}} \overline{x_{1}} \\ x_{2} \xrightarrow{S_{2}} x_{2} \end{cases}$$
$$x_{1}^{\alpha} x_{2}^{\beta} \xrightarrow{S_{1}} x_{1}^{\beta} x_{2}^{\alpha} x_{1}^{\alpha} x_{2}^{\beta} \xrightarrow{S_{2}} x_{1}^{1-\alpha} x_{2}^{\beta} \end{cases}$$
$$S_{i}(f(x_{1}, x_{2})) = f_{00}S_{i}(\overline{x_{1}}\overline{x_{2}}) + f_{01}S_{i}(\overline{x_{1}}x_{2}) + f_{01}S$$

- Пусть $G = \langle S_1, S_2 \rangle$.
- Группа *G* является группой всех автоморфизмов булева квадрата (как графа).
- Группа G изоморфна группе всех симметрий квадрата.
- Группа G является некоторой группой автоморфизмов свободной б.а. $\mathbb{B}(x_1, x_2)$.

- Пусть группа H порождена соответств. преобразованиями булева куба.
- Группа H является группой всех автоморфизмов булева куба (как графа).
- Группа *Н* изоморфна группе всех симметрий куба.
- Группа H является некоторой группой автоморфизмов своб. б.а. $\mathbb{B}(x_1, x_2, x_3)$.



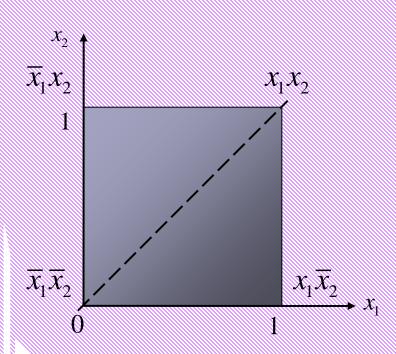
Геометрическая интерпретация свободной булевой алгебры

 $\varphi: \mathbb{B}(x_1, x_2) \to \mathscr{S}(\mathbb{B}^2)$ – изоморфизм $\varphi(f) = \{(\alpha, \beta) \in \mathbb{B}^2 | f(\alpha, \beta) = 1\} =$ $\overline{X}_1 X_2$ $= \left\{ (\alpha, \beta) \in \mathbb{B}^2 \middle| f_{\alpha\beta} = 1 \right\}$ Пример. $f = x_1 = x_1 \overline{x}_2 + x_1 x_2$, $\varphi(f) = \{(1,0),(1,1)\}$ $\overline{X}_1\overline{X}_2$

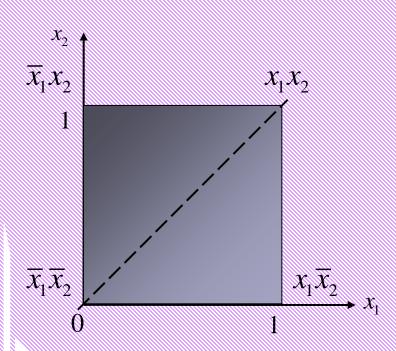
Геометрическая интерпретация свободной булевой алгебры

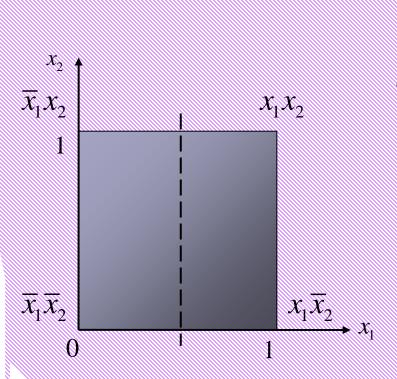
 $\varphi: \mathbb{B}(x_1, x_2) \to \mathscr{S}(\mathbb{B}^2)$ – изоморфизм

 $S_1: x_1 \longleftrightarrow x_2$



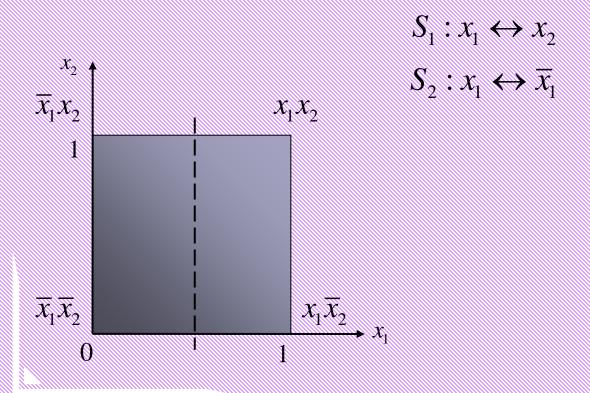
 $S_1: x_1 \longleftrightarrow x_2$



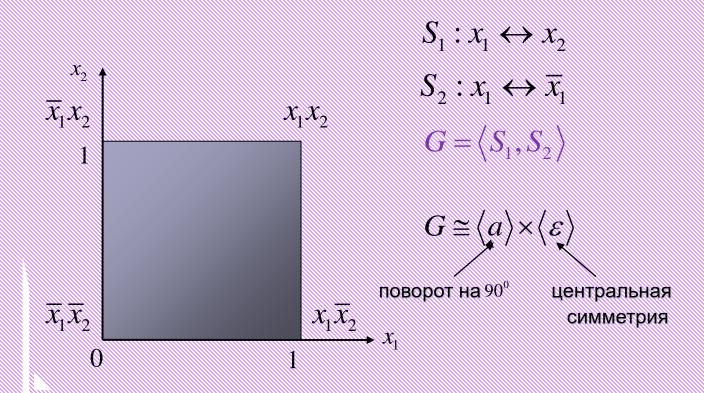


$$S_1: x_1 \longleftrightarrow x_2$$

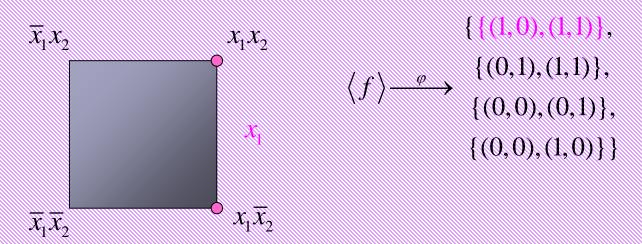
$$S_2: x_1 \leftrightarrow \overline{x}_1$$



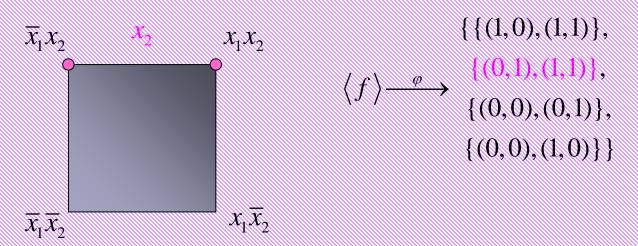




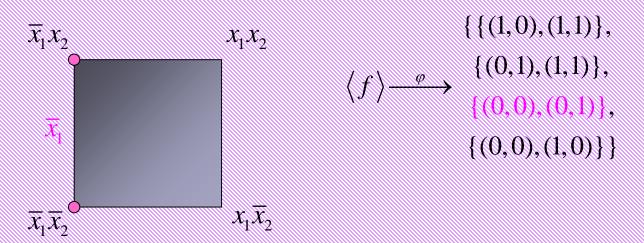
Пример.
$$f = x_1 = x_1 \overline{x}_2 + x_1 x_2, \langle f \rangle = \{x_1, x_2, \overline{x}_1, \overline{x}_2\},$$
 $f \xrightarrow{\varphi} \{(1,0), (1,1)\}$



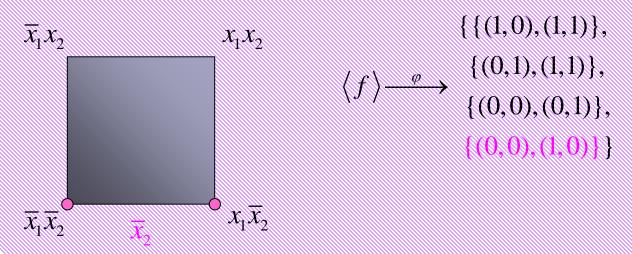
Пример.
$$f = x_1 = x_1 \overline{x}_2 + x_1 x_2, \langle f \rangle = \{x_1, x_2, \overline{x}_1, \overline{x}_2\},$$
 $f \xrightarrow{\varphi} \{(1,0), (1,1)\}$



Пример.
$$f = x_1 = x_1 \overline{x}_2 + x_1 x_2, \langle f \rangle = \{x_1, x_2, \overline{x}_1, \overline{x}_2\},$$
 $f \xrightarrow{\varphi} \{(1,0), (1,1)\}$



Пример.
$$f = x_1 = x_1 \overline{x}_2 + x_1 x_2, \langle f \rangle = \{x_1, x_2, \overline{x}_1, \overline{x}_2\},$$
 $f \longrightarrow \{(1,0), (1,1)\}$



- Группа G действует на свободной булевой алгебре $\mathbb{B}(x_1, x_2)$.
- Действие группы G вызывает разбиение булевой алгебры $\mathbb{B}(x_1, x_2)$ на непересекающиеся орбиты.
- Полученное разбиение можно интерпретировать как некоторую классификацию типов взаимодействия двух бинарных факторов.

Описание действия группы

Теорема. Орбитами действия группы G на б.а. $\mathbb{B}(x_1, x_2)$ являются следующие множества булевых функций

$$\langle \mathbf{0} \rangle = \mathbf{0}, \ \langle \mathbf{1} \rangle = \mathbf{1}, \ \langle x_1 \rangle = \{x_1, x_2, \overline{x}_1, \overline{x}_2\},$$

$$\langle x_1 \vee x_2 \rangle = \{x_1 \vee x_2, x_1 \vee x_2, x_1 \vee x_2, x_1 \vee x_2\},$$

$$\langle x_1 x_2 \rangle = \{x_1 x_2, \overline{x}_1 x_2, x_1 \overline{x}_2, \overline{x}_1 \overline{x}_2\},$$

$$\langle x_1 x_2 \vee \overline{x}_1 \overline{x}_2 \rangle = \{x_1 x_2 \vee \overline{x}_1 \overline{x}, x_1 \overline{x}_2 \vee x_1 \overline{x}_2\}$$

Классификация типов трёх бинарных факторов

Теорема. Взаимодействие трёх бинарных факторов описывается следующими представителями типов

$$0, \ 1, x_{1}, x_{1} \lor x_{2}, x_{1}x_{2}, x_{1}x_{2} \lor \overline{x_{1}}\overline{x_{2}}, \\ x_{1} \lor x_{2} \lor x_{3}, x_{1} \lor x_{2}x_{3}, x_{1} \lor x_{2}x_{3} \lor \overline{x_{2}}\overline{x_{3}}, x_{1}x_{2} \lor \overline{x_{1}}x_{3}, \\ x_{1}x_{2} \lor x_{1}x_{2} \lor x_{2}x_{3}, x_{1}x_{2} \lor \overline{x_{1}}\overline{x_{2}} \lor x_{2}x_{3}, x_{1}x_{2} \lor x_{2}x_{3} \lor \overline{x_{1}}x_{3} \\ x_{1}x_{2}x_{3}, x_{1}x_{2}x_{3} \lor \overline{x_{1}}\overline{x_{2}}\overline{x_{3}}, \\ x_{1}x_{2}x_{3} \lor \overline{x_{1}}\overline{x_{2}}x_{3}, x_{1}x_{2}x_{3} \lor \overline{x_{1}}\overline{x_{2}}x_{3} \lor x_{1}\overline{x_{2}}\overline{x_{3}}, \\ x_{1}x_{2}x_{3} \lor \overline{x_{1}}\overline{x_{2}}x_{3} \lor x_{1}\overline{x_{2}}\overline{x_{3}} \lor \overline{x_{1}}x_{2}\overline{x_{3}}, \\ x_{1}x_{2}x_{3} \lor \overline{x_{1}}\overline{x_{2}}x_{3} \lor x_{1}\overline{x_{2}}\overline{x_{3}} \lor \overline{x_{1}}x_{2}\overline{x_{3}}, \\ x_{1}x_{2}x_{3} \lor \overline{x_{1}}\overline{x_{2}}x_{3} \lor x_{1}\overline{x_{2}}\overline{x_{3}} \lor \overline{x_{1}}x_{2}\overline{x_{3}}, \\ x_{1}x_{2}x_{3} \lor \overline{x_{1}}\overline{x_{2}}x_{3} \lor x_{1}\overline{x_{2}}\overline{x_{3}} \lor \overline{x_{1}}\overline{x_{2}}x_{3} \lor \overline{x_{1}}\overline{x_{2}}\overline{x_{3}}, \\ x_{1}x_{2}x_{3} \lor \overline{x_{1}}\overline{x_{2}}x_{3} \lor x_{1}\overline{x_{2}}\overline{x_{3}} \lor \overline{x_{1}}\overline{x_{2}}\overline{x_{3}}, \\ x_{1}x_{2}x_{3} \lor \overline{x_{1}}\overline{x_{2}}x_{3} \lor x_{1}\overline{x_{2}}\overline{x_{3}} \lor \overline{x_{1}}\overline{x_{2}}\overline{x_{3}}, \\ x_{1}x_{2}x_{3} \lor \overline{x_{1}}\overline{x_{2}}x_{3} \lor \overline{x_{1}}\overline{x_{2}}x_{3} \lor \overline{x_{1}}\overline{x_{2}}x_{3} \lor \overline{x_{1}}\overline{x_{2}}\overline{x_{3}}, \\ x_{1}x_{2} \lor \overline{x_{1}}\overline{x_{2}}x_{3} \lor \overline{x_{1}}\overline{x_{2}}x_{3} \lor \overline{x_{1}}\overline{x_{2}}x_{3} \lor \overline{x_{1}}\overline{x_{2}}x_{3} \lor \overline{x_{1}}\overline{x_{2}}\overline{x_{2}}x_{3} \lor \overline{x_{1}}\overline{x_{2}}x_{3} \lor \overline{x_{1}}\overline{x_{2}}\overline{x_{2}}$$

Простая импликанта

Простой импликантой булевой функции f называется импликанта (т.е. элементарная дизъюнкция ДНФ, представляющей булеву функцию f), из которой нельзя вычеркнуть ни один литерал так, чтобы она перестала быть импликантой.

Пример. Для ДНФ $f = x_1 \overline{x}_2 \lor x_1 x_2 \lor x_2 = x_1 \lor x_2$ импликанты x_1, x_2 являются простыми, а импликанта $x_1 x_2$ не является простой.

Тупиковая ДНФ

- Тупиковой ДНФ булевой функции f называется ДНФ этой функции, состоящая из простых импликант, из которой нельзя вычеркнуть ни одной простой импликанты так, чтобы не нарушилась равносильность исходной ДНФ.
- В тупиковой ДНФ нет избыточных импликант.

Длина ДНФ

- Рангом элементарной конъюнкции называется число входящих в неё неповторяющихся литералов.
- Ранг константы считается равным нулю.
- *Длиной ДНФ* называется сумма рангов входящих в неё элементарных конъюнкций.

Пример. Длина ДНФ
$$x_1 \lor x_1 \overline{x}_2 \lor x_1 x_2 \lor 0$$
 равна 5

Минимальная ДНФ

Минимальной ДНФ для данной булевой функции называется ДНФ минимальной длины, представляющая эту функцию.

Пример. Минимальной ДНФ для функции
$$f = x_1 \lor x_1 \overline{x}_2 \lor x_1 x_2 \lor 0$$
 является ДНФ $f = x_1$ $(f = x_1 \lor (x_1 \overline{x}_2 \lor x_1 x_2) = x_1 \lor x_1 = x_1)$

Минимальная и тупиковые ДНФ

- Любая *минимальной ДНФ* является тупиковой ДНФ.
- Минимальная ДНФ описывает характер взаимодействия в наиболее простой форме.
- Для булевой функции от двух переменных минимальная ДНФ и тупиковая ДНФ единственны и совпадают между собой.

Минимальная и тупиковые ДНФ

• T.J. Vander Weele, J.M. Robins неявно используют понятие минимальной и тупиковой ДНФ для определения взаимодействия факторов.

Тупиковая ДНФ не содержит ни одной избыточной простой импликанты (достаточной причины), которую можно вычеркнуть без потери равносильности исходному отклику.

Типы взаимодействия

Опр 2. Типом взаимодействия двух бинарных факторов назовем представителя орбиты действия группы G на б. а. $\mathbb{B}(x_1, x_2)$, записанного в виде минимальной ДНФ.

Классификация взаимодействия двух бинарных факторов

Следствие 1. Взаимодействие двух бинарных факторов описывается следующими типами

0, 1,
$$x_1$$
, $x_1 \lor x_2$, x_1x_2 , $x_1\overline{x}_2$

Взаимодействие достаточных причин

Опр 3. Конъюнкция $X_1^{\alpha} X_2^{\beta}$, $\alpha, \beta \in \mathbb{B}$, представляет взаимодействие факторов X_1, X_2 в отклике $D(X_1, X_2)$ при значениях уровней $X_1 = \alpha, X_2 = \beta$, если она является простой импликантой минимальной ДНФ, представляющей отклик D.

(строгая математическая формулировка описательного определения для двух бинарных факторов, данного T.J. Vander Weele и J.M. Robins)

Примеры взаимодействия факторов

• Пример 1. В б. ф. $f(x_1, x_2) = x_1 x_2$, представимой в виде минимальной ДНФ, конъюнкция (простая импликанта) $x_1 x_2$ представляет взаимодействие факторов x_1 , x_2 при значениях уровней $x_1 = 1$, $x_2 = 1$, поскольку простая импликанта $x_1 x_2$ есть в единственной минимальной (и тупиковой) ДНФ, представляющей f.

Утв 1. Конъюнкция $X_1^{\alpha} X_2^{\beta}$, α , $\beta \in \mathbb{B}$, представляет взаимодействие факторов в отклике $D(x_1, x_2) \Leftrightarrow$ она является элементарной конъюнкцией каждой ДНФ, представляющей отклик D.

(утвержд., доказанное в других терминах T.J. Vander Weele и J.M. Robins, как одно из мотиваций для введения опр. взаимодействия факторов)

Опр 3. Конъюнкция $X_1^{\alpha} X_2^{\beta} X_3^{\gamma}$, $\alpha, \beta, \gamma \in \mathbb{B}$, представляет взаимодействие факторов X_1, X_2, X_3 в отклике $D(X_1, X_2, X_3)$ при значениях уровней $X_1 = \alpha, X_2 = \beta, X_3 = \gamma$, если она является простой импликантой каждой тупиковой ДНФ, представляющей отклик D.

(строгая математическая формулировка определения для трех бинарных факторов, данного T.J. Vander Weele и J.M.Robins)

Примеры взаимодействия факторов

• **Пример 2.** В б. ф. $f(x_1, x_2, x_3) = x_1 x_2 x_3 \vee \overline{x_1} \overline{x_2} x_3$, представимой в виде минимальной ДНФ, конъюнкция $x_1 x_2 x_3$ (простая импликанта) представляет взаимодействие факторов x_1, x_2, x_3 при значениях уровней $x_1 = 1$, $x_2 = 1$, $x_3 = 1$, поскольку она есть в единственной минимальной (и тупиковой) ДНФ, представляющей f. А конъюнкция $\overline{X}_1 \overline{X}_2 X_3$ (простая импликанта) представляет взаимодействие достаточных причин x_1, x_2, x_3 при значениях уровней $x_1 = 0, x_2 = 0, x_3 = 1.$

Утв 2. Конъюнкция $X_1^{\alpha} X_2^{\beta} X_3^{\gamma}$, α , β , $\gamma \in \mathbb{B}$, представляет взаимодействие факторов в отклике $D(X_1, X_2, X_3) \Leftrightarrow$ она является элементарной конъюнкцией каждой ДНФ, представляющей отклик D.

(утвержд., доказанное T.J. Vander Weele и J.M. Robins, как одно из мотиваций для введения опр. вз-я факторов)

Опр 4. Конъюнкция $X_{i_1}^{\alpha}X_{i_2}^{\beta}$, α , $\beta \in \mathbb{B}$, представляет взаимодействие факторов X_{i_1}, X_{i_2} в отклике $D(X_1, X_2, X_3)$, если для каждой тупиковой ДНФ, представляющей отклик D, она является подконъюнкцией некоторой ее простой импликанты.

(строгая математическая формулировка определения для двух бинарных факторов, данного T.J. Vander Weele и J.M.Robins)

Примеры взаимодействия факторов

• Пример 3. В б. ф. $f(x_1, x_2, x_3) = x_1 x_2 x_3 \vee \overline{x_1} \overline{x_2} x_3$, представимой в виде минимальной ДНФ, конъюнкция $x_1 x_2$ представляет взаимодействие факторов x_1, x_2 , поскольку она является подконъюнкцией простой импликанты $x_1 x_2 x_3$ единственной минимальной (и тупиковой) ДНФ, представляющей б.ф. f.

Утв 3. Конъюнкция $X_1^{\alpha} X_2^{\beta}$, α , $\beta \in \mathbb{B}$, представляет взаимодействие факторов в отклике $D(X_1, X_2, X_3) \Leftrightarrow$ для каждой ДНФ, представляющей отклик D, она является подконъюнкцией некоторой элементарной дизъюнкции.

Конъюн. $X_1^{\alpha}X_2^{\beta}$ присутствует в качестве достат. причины в любом наборе достат. причин для отклика D.

- Итак, взаимодействие имеет место между факторами X_1, X_2 , если для некоторых $\alpha, \beta \in \mathbb{B}$ конъюнкция $X_1^{\alpha} X_2^{\beta}$ представляет взаимодействие достаточных причин в отклике D.
- Будем говорить, что соответствующая булева функция *представляет взаимодействие* факторов.

- Утв. Если б. ф. $f \in \mathbb{B}(x_1, x_2)$ представляет взаимодействие факторов, то и б. ф. S(f) для любого преобразования $S \in G$ представляет взаимодействие факторов.
- Взаимодействие между факторами можно характеризовать при помощи *типов* взаимодействия

Классификация взаимодействия двух бинарных факторов

• Типы 0,1 постоянны при всех уровнях двух факторов и поэтому вообще не характеризуют действия и, тем более взаимодействия этих факторов.

• Тип x_1 представляет действие только одного фактора, т.е. не характеризует взаимодействие двух факторов.

Классификация взаимодействия двух бинарных факторов

• Типы x_1x_2 , $x_1x_2 \vee \overline{x_1}\overline{x_2}$ представляют взаимодействие факторов.

Для откликов этого типа всегда есть синергизм между факторами.

• Тип $x_1 \vee x_2$ представляют совместное действие факторов, но не является синергизмом.

Примеры взаимодействия двух бинарных факторов

- Пример 4. D = 1 (D = 0) у пациента неудовлетв. (удовлетв.) состояние организма.
- $X_i = 1$ ($X_i = 0$) воздействие (не воздействие) на пациента i -го токсина.
- Пациент заболевает только в случае воздействия сразу двух токсинов.
- Б. ф. $f = x_1 x_2$ описывает тип взаимодействия бинарных факторов X_1, X_2 в данном случае.

Примеры взаимодействия

- Пример 5. D = 1 (D = 0) у пациента неудовлетв. (удовлетв.) состояние организма.
- $X_i = 1$ ($X_i = 0$) приём (неприём) пациентом i-го лекарст. средства, i = 1, 2.
- Пациент заболевает как при отсутствии лечения, так и при одновременном приёме двух несовместимых для него препаратов.
- Б. ф. $f = x_1 x_2 \vee \overline{x_1} \overline{x_2}$ описывает тип взаимодействия бинарных факторов X_1, X_2 .

Примеры взаимодействия

- Пример 6. D = 1 (D = 0) у пациента неудовлетв. (удовлетв.) состояние организма.
- $X_i = 1$ ($X_i = 0$) воздействие (невоздействие) на пациента i -го токсина.
- Пациент заболевает в случае воздействия только одного токсина.
- Факторы взаимодействуют по типу

$$f = x_1 \overline{x}_2 \vee x_1 \overline{x}_2$$

Заключение

- Построена математическая модель концепции достаточных причин для двух бинарных факторов на основе теории булевых функций.
- В качестве основы для классификации типов взаимодействия предложено брать представление булевой функции в виде минимальной ДНФ.
- Свойства рассматриваемого бинарного эксперимента формализованы в виде преобразований на модельной свободной булевой алгебре, которые порождают группу автоморфизмов этой алгебры.
- Построенная модель обобщена на случай трёх бинарных факторов, что позволило полностью классифицировать типы взаимодействия этих факторов