MODULAR AND CANCELLABLE ELEMENTS OF THE LATTICE OF SEMIGROUP VARIETIES

Boris M. Vernikov
(joint with Sergey V. Gusev and Dmitry V. Skokov)
Ural Federal University

Emil Artin International Conference
Yerevan, May 27 - June 2, 2018

The collection of all semigroup varieties forms a lattice under class-theoretical inclusion. We denote this lattice by $\mathbb{S E M}$.

The structure of $\mathbb{S E M}$ is extremely complicated. In particular, it contains an anti-isomorphic copy of the partition lattice over a countably infinite set (Burris and Nelson, 1971). Whence $\mathbb{S E M}$ does not satisfy any non-trivial lattice (quasi)identity.

Since the lattice $\mathbb{S E M}$ does not satisfy lattice identities, it is natural to examine varieties with distributive (modular etc.) subvariety lattice.

In 1989-1992 Volkov completely classify semigroup varieties with modular subvariety lattices and describe varieties with distribuitive subvariety lattices modulo groups and without some very special class of varieties.

In 2002-2004 Volkov and V. describe varieies with Arguesian, upper semimodular or lower semimodular subvariety lattice.

The next natural step is to consider varieties that guarantee, so to speak, "nice lattice behaviour" in their neighborhood.

W/e say about special elements of diferent types in SEIM.

Since the lattice $\mathbb{S E M}$ does not satisfy lattice identities, it is natural to examine varieties with distributive (modular etc.) subvariety lattice.

In 1989-1992 Volkov completely classify semigroup varieties with modular subvariety lattices and describe varieties with distribuitive subvariety lattices modulo groups and without some very special class of varieties.

In 2002-2004 Volkov and V. describe varieies with Arguesian, upper semimodular or lower semimodular subvariety lattice.

The next natural step is to consider varieties that guarantee, so to speak, "nice lattice behaviour" in their neighborhood.

We say about special elements of diferent types in $\mathbb{S E M}$.

How special elements are defined usually

Let ε be a lattice identity with variables $x_{0}, x_{1}, \ldots, x_{n}$:

$$
p\left(x_{0}, x_{1}, \ldots, x_{n}\right)=q\left(x_{0}, x_{1}, \ldots, x_{n}\right) .
$$

This is the first-order formula without free variables, and all variables are subject to universal quantification. The identity $p=q$ holds in a lattice L if

$$
\left(\forall x_{0}, x_{1}, \ldots, x_{n} \in L\right) \quad\left(p\left(x_{0}, x_{1}, \ldots, x_{n}\right)=q\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right) .
$$

Now we consider the situation when all variables but one are subject to universal quantification, while one of them, say, x_{0}, is left free. Then we have the following first order formula:

We say that an element x of a lattice L is an $\left(\varepsilon, x_{0}\right)$-element of L if the latest formula holds true whenever x_{1}, \ldots, x_{n} are evaluated by arbitrary elements of L.

Let ε be a lattice identity with variables $x_{0}, x_{1}, \ldots, x_{n}$:

$$
p\left(x_{0}, x_{1}, \ldots, x_{n}\right)=q\left(x_{0}, x_{1}, \ldots, x_{n}\right)
$$

This is the first-order formula without free variables, and all variables are subject to universal quantification. The identity $p=q$ holds in a lattice L if

$$
\left(\forall x_{0}, x_{1}, \ldots, x_{n} \in L\right) \quad\left(p\left(x_{0}, x_{1}, \ldots, x_{n}\right)=q\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right) .
$$

Now we consider the situation when all variables but one are subject to universal quantification, while one of them, say, x_{0}, is left free. Then we have the following first order formula:

We say that an element x of a lattice L is an $\left(\varepsilon, x_{0}\right)$-element of L if the latest formula holds true whenever x_{1}, \ldots, x_{n} are evaluated by arbitrary elements of L.

Let ε be a lattice identity with variables $x_{0}, x_{1}, \ldots, x_{n}$:

$$
p\left(x_{0}, x_{1}, \ldots, x_{n}\right)=q\left(x_{0}, x_{1}, \ldots, x_{n}\right)
$$

This is the first-order formula without free variables, and all variables are subject to universal quantification. The identity $p=q$ holds in a lattice L if

$$
\left(\forall x_{0}, x_{1}, \ldots, x_{n} \in L\right) \quad\left(p\left(x_{0}, x_{1}, \ldots, x_{n}\right)=q\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right) .
$$

Now we consider the situation when all variables but one are subject to universal quantification, while one of them, say, x_{0}, is left free. Then we have the following first order formula:

$$
\left(\forall x_{1}, \ldots, x_{n} \in L\right) \quad\left(p\left(x_{0}, x_{1}, \ldots, x_{n}\right)=q\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right) .
$$

We say that an element x of a lattice L is an $\left(\varepsilon, x_{0}\right)$-element of L if the latest formula holds true whenever x_{1}, \ldots, x_{n} are evaluated by arbitrary elements of L.

Let ε be a lattice identity with variables $x_{0}, x_{1}, \ldots, x_{n}$:

$$
p\left(x_{0}, x_{1}, \ldots, x_{n}\right)=q\left(x_{0}, x_{1}, \ldots, x_{n}\right)
$$

This is the first-order formula without free variables, and all variables are subject to universal quantification. The identity $p=q$ holds in a lattice L if

$$
\left(\forall x_{0}, x_{1}, \ldots, x_{n} \in L\right) \quad\left(p\left(x_{0}, x_{1}, \ldots, x_{n}\right)=q\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right)
$$

Now we consider the situation when all variables but one are subject to universal quantification, while one of them, say, x_{0}, is left free. Then we have the following first order formula:

$$
\left(\forall x_{1}, \ldots, x_{n} \in L\right) \quad\left(p\left(x_{0}, x_{1}, \ldots, x_{n}\right)=q\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right)
$$

We say that an element x of a lattice L is an $\left(\varepsilon, x_{0}\right)$-element of L if the latest formula holds true whenever x_{1}, \ldots, x_{n} are evaluated by arbitrary elements of L.

Special elements of distributive types

There are three identities that define distributive lattices:

1) $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$,
2) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$,
3) $(x \vee y) \wedge(y \vee z) \wedge(z \vee x)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)$.

These three identities permit to define five types of special elements.
(i) An element $x \in L$ is called distributive in L if

(ii) Codistributive elements are defined dually.
(iii) An element $x \in I$ is called standard in I if $(\forall y, z) \quad(y \vee(x \wedge z)=(y \vee x) \wedge(y \vee z))$
(iv) Costandard elements are defined dually.
(v) Finally, an element $x \in L$ is called neutral in L if

An element $x \in L$ is neutral in L if and only if, for all $y, z \in L$, elements x, y
and z generate a distributive sublattice of L.

There are three identities that define distributive lattices:

1) $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$,
2) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$,
3) $(x \vee y) \wedge(y \vee z) \wedge(z \vee x)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)$.

These three identities permit to define five types of special elements.
(i) An element $x \in L$ is called distributive in L if

$$
(\forall y, z) \quad(x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z))
$$

(ii) Codistributive elements are defined dually.
(iii) An element $x \in L$ is called standard in L if $(\forall y, z) \quad(y \vee(x \wedge z)=(y \vee x) \wedge(y \vee z))$.

$$
\begin{aligned}
& \text { (iv) Costandard elements are defined dually. } \\
& \text { (v) Finally, an element } x \in L \text { is called neutral in } L \text { if } \\
& \quad(\forall y, z) \quad((x \vee y) \wedge(y \vee z) \wedge(z \vee x)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)) .
\end{aligned}
$$

An element $x \in L$ is neutral in L if and only if, for all $y, z \in L$, elements x, y
and z generate a distributive sublattice of L.

There are three identities that define distributive lattices:

1) $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$,
2) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$,
3) $(x \vee y) \wedge(y \vee z) \wedge(z \vee x)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)$.

These three identities permit to define five types of special elements.
(i) An element $x \in L$ is called distributive in L if

$$
(\forall y, z) \quad(x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z))
$$

(ii) Codistributive elements are defined dually.

An element $x \in L$ is neutral in L if and only if, for all $y, z \in L$, elements x, y
and z generate a distributive sublattice of L.

There are three identities that define distributive lattices:

1) $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$,
2) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$,
3) $(x \vee y) \wedge(y \vee z) \wedge(z \vee x)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)$.

These three identities permit to define five types of special elements.
(i) An element $x \in L$ is called distributive in L if

$$
(\forall y, z) \quad(x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z))
$$

(ii) Codistributive elements are defined dually.
(iii) An element $x \in L$ is called standard in L if

$$
(\forall y, z) \quad(y \vee(x \wedge z)=(y \vee x) \wedge(y \vee z))
$$

(iv) Costandard elements are defined dually.
(v) Finally, an element $x \in L$ is called neutral in L if

An element $x \in L$ is neutral in L if and only if, for all $y, z \in L$, elements x, y

There are three identities that define distributive lattices:

1) $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$,
2) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$,
3) $(x \vee y) \wedge(y \vee z) \wedge(z \vee x)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)$.

These three identities permit to define five types of special elements.
(i) An element $x \in L$ is called distributive in L if

$$
(\forall y, z) \quad(x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z))
$$

(ii) Codistributive elements are defined dually.
(iii) An element $x \in L$ is called standard in L if

$$
(\forall y, z) \quad(y \vee(x \wedge z)=(y \vee x) \wedge(y \vee z))
$$

(iv) Costandard elements are defined dually.
(v) Finally, an element $x \in L$ is called neutral in L if

An element $x \in L$ is neutral in L if and only if, for all $y, z \in L$, elements x, y
and z generate a distributive sublattice of L

There are three identities that define distributive lattices:

1) $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$,
2) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$,
3) $(x \vee y) \wedge(y \vee z) \wedge(z \vee x)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)$.

These three identities permit to define five types of special elements.
(i) An element $x \in L$ is called distributive in L if

$$
(\forall y, z) \quad(x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z))
$$

(ii) Codistributive elements are defined dually.
(iii) An element $x \in L$ is called standard in L if

$$
(\forall y, z) \quad(y \vee(x \wedge z)=(y \vee x) \wedge(y \vee z))
$$

(iv) Costandard elements are defined dually.
(v) Finally, an element $x \in L$ is called neutral in L if

$$
(\forall y, z) \quad((x \vee y) \wedge(y \vee z) \wedge(z \vee x)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x))
$$

There are three identities that define distributive lattices:

1) $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$,
2) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$,
3) $(x \vee y) \wedge(y \vee z) \wedge(z \vee x)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)$.

These three identities permit to define five types of special elements.
(i) An element $x \in L$ is called distributive in L if

$$
(\forall y, z) \quad(x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z))
$$

(ii) Codistributive elements are defined dually.
(iii) An element $x \in L$ is called standard in L if

$$
(\forall y, z) \quad(y \vee(x \wedge z)=(y \vee x) \wedge(y \vee z))
$$

(iv) Costandard elements are defined dually.
(v) Finally, an element $x \in L$ is called neutral in L if

$$
(\forall y, z) \quad((x \vee y) \wedge(y \vee z) \wedge(z \vee x)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x))
$$

An element $x \in L$ is neutral in L if and only if, for all $y, z \in L$, elements x, y and z generate a distributive sublattice of L.

As usual, we write the modular law in the form of quasi-identity:

$$
y \leq z \longrightarrow(x \vee y) \wedge z=(x \wedge z) \vee y
$$

This permits to define three types of special elements:
(i) An element $x \in L$ is called modular in L if

(ii) An element $x \in L$ is called lower-modular in L if

(iii) Upper-modular elements are defined dually to lower-modular ones.

As usual, we write the modular law in the form of quasi-identity:

$$
y \leq z \longrightarrow(x \vee y) \wedge z=(x \wedge z) \vee y .
$$

This permits to define three types of special elements:
(i) An element $x \in L$ is called modular in L if

$$
(\forall y, z) \quad(y \leq z \longrightarrow(x \vee y) \wedge z=(x \wedge z) \vee y) .
$$

(ii) An element $x \in L$ is called lower-modular in L if
(iii) Upper-modular elements are defined dually to lower-modular ones.

As usual, we write the modular law in the form of quasi-identity:

$$
y \leq z \longrightarrow(x \vee y) \wedge z=(x \wedge z) \vee y
$$

This permits to define three types of special elements:
(i) An element $x \in L$ is called modular in L if

$$
(\forall y, z) \quad(y \leq z \longrightarrow(x \vee y) \wedge z=(x \wedge z) \vee y) .
$$

(ii) An element $x \in L$ is called lower-modular in L if

$$
(\forall y, z) \quad(x \leq z \longrightarrow(x \vee y) \wedge z=x \vee(y \wedge z)) .
$$

(iii) Upper-modular elements are defined dually to lower-modular ones.

As usual, we write the modular law in the form of quasi-identity:

$$
y \leq z \longrightarrow(x \vee y) \wedge z=(x \wedge z) \vee y .
$$

This permits to define three types of special elements:
(i) An element $x \in L$ is called modular in L if

$$
(\forall y, z) \quad(y \leq z \longrightarrow(x \vee y) \wedge z=(x \wedge z) \vee y) .
$$

(ii) An element $x \in L$ is called lower-modular in L if

$$
(\forall y, z) \quad(x \leq z \longrightarrow(x \vee y) \wedge z=x \vee(y \wedge z)) .
$$

(iii) Upper-modular elements are defined dually to lower-modular ones.

Cancellable elements

One more type of special elements is defined on the base of the following quasi-identity:

$$
x \vee y=x \vee z \& x \wedge y=x \wedge z \rightarrow y=z
$$

An element $x \in L$ is called cancellable in L if

Cancellable elements

One more type of special elements is defined on the base of the following quasi-identity:

$$
x \vee y=x \vee z \& x \wedge y=x \wedge z \rightarrow y=z
$$

An element $x \in L$ is called cancellable in L if

$$
(\forall y, z) \quad(x \vee y=x \vee z \& x \wedge y=x \wedge z \rightarrow y=z) .
$$

Relationships between special element in abstract lattices

What we know about special elements in the lattice $\mathbb{S E M}$ so far

The results in this area before 2015 are discussed in the survey B.M.Vernikov. Special elements in lattices of semigroup varieties, Acta Sci. Math. (Szeged), 81 (2015), 79-109.

See also
https://arxiv.org/abs/1309.0228
The link refers to a version of the survey that is occasionally updated when new results and/or publications appeared. The latest update is yesterday.

The results in this area before 2015 are discussed in the survey
B.M.Vernikov. Special elements in lattices of semigroup varieties, Acta Sci. Math. (Szeged), 81 (2015), 79-109.

See also
https://arxiv.org/abs/1309.0228
The link refers to a version of the survey that is occasionally updated when new results and/or publications appeared. The latest update is yesterday.

Let \mathbf{T} be the trivial variety, $\mathrm{SL}=\operatorname{var}\left\{x \approx x^{2}, x y \approx y x\right\}$ (the variety of semilattices), SEM be the variety of all semigroups.
$\mathbf{w} \approx 0$ is a short form for the identities $\mathbf{w} x \approx x \mathbf{w} \approx \mathbf{w}$ where x is a letter that does not occur in the word \mathbf{w}. (A semigroup S satisfies these identities if and only if S contains 0 and all values of w in S equals 0 .)

A nilvariety is a variety with an identity of the form $x^{n} \approx 0$ for some n.
\square
Proposition (Jeizek and Mckenzie, 1093; reproved in a simpler wey by Shapryskiti, 2012) If a semigroup variety V is a modulur element of the lattic SEM then either $\mathbf{V}=\mathbf{S E M}$ or $\mathbf{V}=\mathbf{M} \vee \mathbf{N}$ where \mathbf{M} is one of the varieties \mathbf{T} and $\mathbf{S L}$, while N is a nilvariety.

Since a cancellable element of a lattice is modular, the conclusion of this Proposition is true for cancellable elements of the lattice $\mathbb{S E M}$ too.

Let \mathbf{T} be the trivial variety, $\mathrm{SL}=\operatorname{var}\left\{x \approx x^{2}, x y \approx y x\right\}$ (the variety of semilattices), SEM be the variety of all semigroups.
$\mathbf{w} \approx 0$ is a short form for the identities $\mathbf{w} x \approx x \mathbf{w} \approx \mathbf{w}$ where x is a letter that does not occur in the word \mathbf{w}. (A semigroup S satisfies these identities if and only if S contains 0 and all values of \mathbf{w} in S equals 0 .)

A nilvariety is a variety with an identity of the form $x^{n} \approx 0$ for some n.

Proposition (Ježek and McKenzie, 1993; reproved in a simpler way by
Shaprynskii, 2012)
If a semigroup variety \mathbf{V} is a modular element of the lattice $\mathbb{S E} \mathbb{M}$ then either $\mathbf{V}=\mathbf{S E M}$ or $\mathbf{V}=\mathbf{M} \vee \mathbf{N}$ where \mathbf{M} is one of the varieties \mathbf{T} and $\mathbf{S L}$, while \mathbf{N} is a nilvariety.

Since a cancellable element of a lattice is modular, the conclusion of this Proposition is true for cancellable elements of the lattice $\mathbb{S E M}$ too.

Let \mathbf{T} be the trivial variety, $\mathrm{SL}=\operatorname{var}\left\{x \approx x^{2}, x y \approx y x\right\}$ (the variety of semilattices), SEM be the variety of all semigroups.
$\mathbf{w} \approx 0$ is a short form for the identities $\mathbf{w} x \approx x \mathbf{w} \approx \mathbf{w}$ where x is a letter that does not occur in the word \mathbf{w}. (A semigroup S satisfies these identities if and only if S contains 0 and all values of \mathbf{w} in S equals 0 .)

A nilvariety is a variety with an identity of the form $x^{n} \approx 0$ for some n.

```
Proposition (Ježek and McKenzie, 1993; reproved in a simpler way by
Shaprynskii, 2012)
```

If a semigroup variety \mathbf{V} is a modular element of the lattice $\mathbb{S E M}$ then either $\mathbf{V}=\mathbf{S E M}$ or $\mathbf{V}=\mathbf{M} \vee \mathbf{N}$ where \mathbf{M} is one of the varieties \mathbf{T} and $\mathbf{S L}$, while \mathbf{N} is a nilvariety.

Since a cancellable element of a lattice is modular, the conclusion of this Proposition is true for cancellable elements of the lattice $\mathbb{S E M}$ too.

Proposition

If a proper semigroup variety \mathbf{V} is a modular (a cancellable) element of the lattice SEM then either $\mathbf{V}=\mathbf{S E M}$ or $\mathbf{V}=\mathbf{M} \vee \mathbf{N}$ where \mathbf{M} is one of the varieties \mathbf{T} and $\mathbf{S L}$, while \mathbf{N} is a nilvariety.

Lemma

1) (Shaprynskii, 2011) Let ε be a non-trivial lattice identity and x_{0} be a letter that occurrs in ε. A semigroup variety \mathbf{V} is an (ε, x_{0})-element of the lattice SEM if and only if the variety $\mathbf{V} \vee \mathrm{SL}$ has this property.
2) (Gusev, Skokov and V .) A semigroup variety V is a cancellable element of
the lattice SEM if and only if the variety $\mathrm{V} V \mathrm{SL}$ has this property.

Thus, the problem of classification of modular or cancellable elements of SEM is completely reduced to nilvarieties.

Proposition

If a proper semigroup variety \mathbf{V} is a modular (a cancellable) element of the lattice $\mathbb{S E M}$ then either $\mathbf{V}=\mathbf{S E M}$ or $\mathbf{V}=\mathbf{M} \vee \mathbf{N}$ where M is one of the varieties \mathbf{T} and $\mathbf{S L}$, while \mathbf{N} is a nilvariety.

Lemma

1) (Shaprynskii, 2011) Let ε be a non-trivial lattice identity and x_{0} be a letter that occurrs in ε. A semigroup variety \mathbf{V} is an $\left(\varepsilon, x_{0}\right)$-element of the lattice $\mathbb{S E M}$ if and only if the variety $\mathbf{V} \vee \mathbf{S L}$ has this property.
2) (Gusev, Skokov and V.) A semigroup variety \mathbf{V} is a cancellable element of the lattice $\mathbb{S E M}$ if and only if the variety $\mathbf{V} \vee \mathbf{S L}$ has this property.

Thus, the problem of classification of modular or cancellable elements of SEM is completely reduced to nilvarieties.

Proposition

If a proper semigroup variety \mathbf{V} is a modular (a cancellable) element of the lattice $\mathbb{S E M}$ then either $\mathbf{V}=\mathbf{S E M}$ or $\mathbf{V}=\mathbf{M} \vee \mathbf{N}$ where M is one of the varieties \mathbf{T} and $\mathbf{S L}$, while \mathbf{N} is a nilvariety.

Lemma

1) (Shaprynskii, 2011) Let ε be a non-trivial lattice identity and x_{0} be a letter that occurrs in ε. A semigroup variety \mathbf{V} is an $\left(\varepsilon, x_{0}\right)$-element of the lattice $\mathbb{S E M}$ if and only if the variety $\mathbf{V} \vee \mathbf{S L}$ has this property.
2) (Gusev, Skokov and V.) A semigroup variety \mathbf{V} is a cancellable element of the lattice $\mathbb{S E M}$ if and only if the variety $\mathbf{V} \vee \mathbf{S L}$ has this property.

Thus, the problem of classification of modular or cancellable elements of $\mathbb{S E M}$ is completely reduced to nilvarieties.

A sufficient condition and a necessary condition for modular elements in the nil-case

Identities of the form $\mathbf{w} \approx 0$ and varieties given by such identities are called 0 -reduced. It is evident that any 0 -reduced variety is a nilvariety.

```
Proposition
Every 0-reduced semigroup variety is a modular element of the lattice SRMM.
This claim follows from a result by Ježek, 1981. It is mentioned explicitly first
by V. and Volkov, 1988, and independently by Ježek and McKenzie, }1993
Substitutive identity is an identity of the form u }\approxv\mathrm{ where the words }u\mathrm{ and v
depend on the same letters and v}\mathrm{ is obtained from u}\mathrm{ by renaming of letters.
Examples: xy ~ yx, xyzt ~ zxyt, \mp@subsup{x}{}{2}y~\mp@subsup{y}{}{2}x, xyxz~ ~zyyx
```

```
Proposition (V., 2007)
If a nilvariety \}\mathbf{V}\mathrm{ is a modular element of the lattice SEM then V can be given
by 0-reduced and substitutive identities only.
```


A sufficient condition and a necessary condition for modular elements in the nil-case

Identities of the form $\mathbf{w} \approx 0$ and varieties given by such identities are called 0 -reduced. It is evident that any 0 -reduced variety is a nilvariety.

Proposition

Every 0-reduced semigroup variety is a modular element of the lattice $\mathbb{S E M}$.

This claim follows from a result by Ježek, 1981. It is mentioned explicitly first by V. and Volkov, 1988, and independently by Ježek and McKenzie, 1993.

Substitutive identity is an identity of the form $\mathbf{u} \approx v$ where the words u and v depend on the same letters and \mathbf{v} is obtained from \mathbf{u} by renaming of letters. Examples: $x y \approx y x, x y z t \approx z x y t, x^{2} y \approx y^{2} x, x y x z \approx y z y x$

Proposition (V., 2007)

If a nivariet V is a modular element of the lattice SEMI then V can be given
by 0 -reduced and substitutive identities only.

A sufficient condition and a necessary condition for modular elements in the nil-case

Identities of the form $\mathbf{w} \approx 0$ and varieties given by such identities are called 0 -reduced. It is evident that any 0 -reduced variety is a nilvariety.

Proposition

Every 0-reduced semigroup variety is a modular element of the lattice $\mathbb{S E M}$.

This claim follows from a result by Ježek, 1981. It is mentioned explicitly first by V. and Volkov, 1988, and independently by Ježek and McKenzie, 1993.

Substitutive identity is an identity of the form $\mathbf{u} \approx \mathbf{v}$ where the words \mathbf{u} and \mathbf{v} depend on the same letters and \mathbf{v} is obtained from \mathbf{u} by renaming of letters.

```
Examples: xy }\approxyx,xyzt \approxzxyt,\mp@subsup{x}{}{2}y\approx\mp@subsup{y}{}{2}x,xyxz\approxyzy
```

\squareProposition (V., 2007)If a nilvariety \mathbf{V} is a modular element of the lattice $\mathbb{S} \mathbb{M}$ then \mathbf{V} can be givenby 0-reduced and substitutive identities only.

A sufficient condition and a necessary condition for modular elements in the nil-case

Identities of the form $\mathbf{w} \approx 0$ and varieties given by such identities are called 0 -reduced. It is evident that any 0 -reduced variety is a nilvariety.

Proposition

Every 0-reduced semigroup variety is a modular element of the lattice $\mathbb{S E M}$.

This claim follows from a result by Ježek, 1981. It is mentioned explicitly first by V. and Volkov, 1988, and independently by Ježek and McKenzie, 1993.

Substitutive identity is an identity of the form $\mathbf{u} \approx \mathbf{v}$ where the words \mathbf{u} and \mathbf{v} depend on the same letters and \mathbf{v} is obtained from \mathbf{u} by renaming of letters.

Examples: $x y \approx y x, x y z t \approx z x y t, x^{2} y \approx y^{2} x, x y x z \approx y z y x$.

[^0]
A sufficient condition and a necessary condition for modular elements in the nil-case

Identities of the form $\mathbf{w} \approx 0$ and varieties given by such identities are called 0 -reduced. It is evident that any 0 -reduced variety is a nilvariety.

Proposition

Every 0-reduced semigroup variety is a modular element of the lattice $\mathbb{S E M}$.

This claim follows from a result by Ježek, 1981. It is mentioned explicitly first by V. and Volkov, 1988, and independently by Ježek and McKenzie, 1993.

Substitutive identity is an identity of the form $\mathbf{u} \approx \mathbf{v}$ where the words \mathbf{u} and \mathbf{v} depend on the same letters and \mathbf{v} is obtained from \mathbf{u} by renaming of letters.

Examples: $x y \approx y x, x y z t \approx z x y t, x^{2} y \approx y^{2} x, x y x z \approx y z y x$.

Proposition (V., 2007)

If a nilvariety \mathbf{V} is a modular element of the lattice $\mathbb{S E M}$ then \mathbf{V} can be given by 0-reduced and substitutive identities only.

Modular elements in the commutative case

The simplest partial case of substitutive identities are permutative identities, that is identities of the form

$$
x_{1} x_{2} \cdots x_{n} \approx x_{1 \pi} x_{2 \pi} \cdots x_{n \pi}
$$

where π is a non-trivial permutation on the set $\{1,2, \ldots, n\}$. The number n is called a length of this identity.

In turn, the simplest partial case of permutative identities is the commutative law.

Theorem (V., 2007)
A commutative semigroup variety V is a modular element of the lattice $\mathbb{S E R}$ if and only if $\mathrm{V}=\mathrm{M} \vee \mathrm{N}$ where M is one of the varieties T or SL , while N satisfies the identities $x^{2} y \approx 0, x y \approx y x$.

Modular elements in the commutative case

The simplest partial case of substitutive identities are permutative identities, that is identities of the form

$$
x_{1} x_{2} \cdots x_{n} \approx x_{1 \pi} x_{2 \pi} \cdots x_{n \pi}
$$

where π is a non-trivial permutation on the set $\{1,2, \ldots, n\}$. The number n is called a length of this identity.

In turn, the simplest partial case of permutative identities is the commutative law.

Theorem (V., 2007)

A commutative semigroup variety \mathbf{V} is a modular element of the lattice $\mathbb{S E M}$ if and only if $\mathrm{V}=\mathrm{M} \vee \mathbf{N}$ where M is one of the varieties T or SL , while N satisfies the identities $x^{2} y \approx 0, x y \approx y x$.

The simplest partial case of substitutive identities are permutative identities, that is identities of the form

$$
x_{1} x_{2} \cdots x_{n} \approx x_{1 \pi} x_{2 \pi} \cdots x_{n \pi}
$$

where π is a non-trivial permutation on the set $\{1,2, \ldots, n\}$. The number n is called a length of this identity.

In turn, the simplest partial case of permutative identities is the commutative law.

Theorem (V., 2007)

A commutative semigroup variety \mathbf{V} is a modular element of the lattice $\mathbb{S E M}$ if and only if $\mathbf{V}=\mathbf{M} \vee \mathbf{N}$ where \mathbf{M} is one of the varieties \mathbf{T} or $\mathbf{S L}$, while \mathbf{N} satisfies the identities $x^{2} y \approx 0, x y \approx y x$.

Theorem (Gusev, Skokov and V.)

For a commutative semigroup variety \mathbf{V}, the following are equivalent:
a) \mathbf{V} is a modular element of the lattice $\mathbb{S E M}$;
b) \mathbf{V} is a cancellable element of the lattice $\mathbb{S E M}$;
c) $\mathbf{V}=\mathbf{M} \vee \mathbf{N}$ where \mathbf{M} is one of the varieties \mathbf{T} or $\mathbf{S L}$, while \mathbf{N} satisfies the identities $x^{2} y \approx 0, x y \approx y x$.

Are the properties to be modular and cancellable element of $\mathbb{S} \mathbb{E M}$ equivalent for arbitrary semigroup varieties?

To answer this question, we consider slightly wider class of semigroup varieties than the class of commutative varieties. The commutative law is a permutative identity of length 2. We consider varieties that satisfy a permutative identity of length 3.

Theorem (Gusev, Skokov and V.)

For a commutative semigroup variety \mathbf{V}, the following are equivalent:
a) \mathbf{V} is a modular element of the lattice $\mathbb{S E M}$;
b) \mathbf{V} is a cancellable element of the lattice $\mathbb{S E M}$;
c) $\mathbf{V}=\mathbf{M} \vee \mathbf{N}$ where \mathbf{M} is one of the varieties \mathbf{T} or $\mathbf{S L}$, while \mathbf{N} satisfies the identities $x^{2} y \approx 0, x y \approx y x$.

Are the properties to be modular and cancellable element of SEM equivalent for arbitrary semigroup varieties?

To answer this question, we consider slightly wider class of semigroup varieties than the class of commutative varieties. The commutative law is a permutative identity of length 2 . We consider varieties that satisfy a permutative identity of length 3.

Theorem (Gusev, Skokov and V.)

For a commutative semigroup variety \mathbf{V}, the following are equivalent:
a) \mathbf{V} is a modular element of the lattice $\mathbb{S E M}$;
b) \mathbf{V} is a cancellable element of the lattice $\mathbb{S E M}$;
c) $\mathbf{V}=\mathbf{M} \vee \mathbf{N}$ where \mathbf{M} is one of the varieties \mathbf{T} or $\mathbf{S L}$, while \mathbf{N} satisfies the identities $x^{2} y \approx 0, x y \approx y x$.

Are the properties to be modular and cancellable element of SEM equivalent for arbitrary semigroup varieties?

To answer this question, we consider slightly wider class of semigroup varieties than the class of commutative varieties. The commutative law is a permutative identity of length 2 . We consider varieties that satisfy a permutative identity of length 3.

Modular and cancellable elements in the case of a permutative identity of length 3

Theorem (Skokov and V.)

A semigroup variety \mathbf{V} satisfying a permutative identity of length 3 is a modular element of the lattice $\mathbb{S E M}$ if and only if $\mathbf{V}=\mathrm{M} \vee \mathrm{N}$ where M is one of the varieties \mathbf{T} or SL, while the variety \mathbf{N} satisfies one of the following identity systems:

$$
\begin{aligned}
& x y z \approx z y x, x^{2} y \approx 0 \\
& x y z \approx y z x, x^{2} y \approx 0 \\
& x y z \approx y x z, x y z t \approx x z t y, x y^{2} \approx 0 \\
& x y z \approx x z y, x y z t \approx y z x t, x^{2} y \approx 0
\end{aligned}
$$

Theorem (V., May 27, 2018)

A semigroup variety \mathbf{V} satisfying a permutative identity of length 3 is a cancellable element of the lattice $\mathbb{S E M}$ if and only if $\mathrm{V}=\mathrm{M} \vee \mathrm{N}$ where M is one of the varieties T or SL , while the variety N satisfies the identities $x y z \approx y x z \approx x z y, x^{2} y \approx x y x \approx y x^{2} \approx 0$

Thus, the properties to be modular and cancellable elements in $\mathbb{S} \mathbb{E M}$ are not
equivalent.

Modular and cancellable elements in the case of a permutative identity of length 3

Theorem (Skokov and V.)

A semigroup variety \mathbf{V} satisfying a permutative identity of length 3 is a modular element of the lattice $\mathbb{S E M}$ if and only if $\mathrm{V}=\mathrm{M} \vee \mathrm{N}$ where M is one of the varieties \mathbf{T} or $\mathbf{S L}$, while the variety \mathbf{N} satisfies one of the following identity systems:

$$
\begin{aligned}
& x y z \approx z y x, x^{2} y \approx 0 \\
& x y z \approx y z x, x^{2} y \approx 0 \\
& x y z \approx y x z, x y z t \approx x z t y, x y^{2} \approx 0 \\
& x y z \approx x z y, x y z t \approx y z x t, x^{2} y \approx 0
\end{aligned}
$$

Theorem (V., May 27, 2018)

A semigroup variety \mathbf{V} satisfying a permutative identity of length 3 is a cancellable element of the lattice $\mathbb{S E M}$ if and only if $\mathbf{V}=\mathrm{M} \vee \mathbf{N}$ where M is one of the varieties \mathbf{T} or $\mathbf{S L}$, while the variety \mathbf{N} satisfies the identities

$$
x y z \approx y x z \approx x z y, x^{2} y \approx x y x \approx y x^{2} \approx 0
$$

Thus, the properties to be modular and cancellable elements in SEM are not
equivalent.

Modular and cancellable elements in the case of a permutative identity of length 3

Theorem (Skokov and V.)

A semigroup variety \mathbf{V} satisfying a permutative identity of length 3 is a modular element of the lattice $\mathbb{S E M}$ if and only if $\mathrm{V}=\mathrm{M} \vee \mathrm{N}$ where M is one of the varieties \mathbf{T} or $\mathbf{S L}$, while the variety \mathbf{N} satisfies one of the following identity systems:

$$
\begin{aligned}
& x y z \approx z y x, x^{2} y \approx 0 \\
& x y z \approx y z x, x^{2} y \approx 0 \\
& x y z \approx y x z, x y z t \approx x z t y, x y^{2} \approx 0 \\
& x y z \approx x z y, x y z t \approx y z x t, x^{2} y \approx 0
\end{aligned}
$$

Theorem (V., May 27, 2018)

A semigroup variety \mathbf{V} satisfying a permutative identity of length 3 is a cancellable element of the lattice $\mathbb{S E M}$ if and only if $\mathbf{V}=\mathrm{M} \vee \mathbf{N}$ where M is one of the varieties \mathbf{T} or $\mathbf{S L}$, while the variety \mathbf{N} satisfies the identities

$$
x y z \approx y x z \approx x z y, x^{2} y \approx x y x \approx y x^{2} \approx 0
$$

Thus, the properties to be modular and cancellable elements in $\mathbb{S E M}$ are not equivalent.

Cancellable elements and permutative identities

The variety $\operatorname{var}\left\{x y z \approx y x z \approx x z y, x^{2} y \approx x y x \approx y x^{2} \approx 0\right\}$ satisfies all permutative identities of length 3 .

Proposition (V.)
Let \mathbf{V} be a semigroup variety that is a cancellable element of the lattice SEMI and n be a natural number. If V satisfies some permutative identity of length n then it satisfies all permutative identities of length n.

Cancellable elements and permutative identities

The variety $\operatorname{var}\left\{x y z \approx y x z \approx x z y, x^{2} y \approx x y x \approx y x^{2} \approx 0\right\}$ satisfies all permutative identities of length 3 .

Proposition (V.)

Let \mathbf{V} be a semigroup variety that is a cancellable element of the lattice $\mathbb{S E M}$ and n be a natural number. If V satisfies some permutative identity of length n then it satisfies all permutative identities of length n.

Thank you very much!

Thank you very much!

[^0]: Proposition ($V_{., 2} 2007$)
 If a nilvariety V is a modular element of the lattice SMML then V can be given
 by 0 -reduced and substitutive identities only.

