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Abstract

Let En be the variety of all epigroups of index ≤ n. We prove that,
for an arbitrary natural number n, the interval [En, En+1] of the lattice of
epigroup varieties contains a chain isomorphic to the chain of real numbers
with the usual order and an anti-chain of the cardinality continuum.
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A semigroup S is called an epigroup if for any element x of S some power
of x lies in some subgroup of S. For an element a of a given epigroup, let ea be
the unit element of the maximal subgroup G that contains some power of a. It
is known that aea = eaa and this element lies in G. We denote by a the element
inverse to aea in G. This element is called the pseudo-inverse of a. The mapping
a 7−→ a defines a unary operation on an epigroup. The idea to treat epigroups
as unary semigroups (that is semigroups with an additional unary operation of
pseudo-inversion) was promoted by Shevrin in [2]. A systematic overview of the
material accumulated in the theory of epigroups by the beginning of the 2000s
was given in the survey [3].

By epigroup variety we mean a variety of epigroups treated just as unary
semigroups. Results about epigroup varieties that are known so far mainly
concern with equational and structural aspects (see corresponding results in
[2,3]). As to considerations of the varietal lattices, there are only a few results
about such a type (see Sections 2 and 3 in the recent survey [4]). In [2] several
open questions about lattices of epigroup varieties were formulated; some of
them are reproduced in [3] and [4]. The aim of this note is to answer one
of these questions and obtain an information closely related with one more of
them.

An epigroup S has index n if the nth power of every element of S lies in
some of its subgroups and n is the least number with this property. The class of
all epigroups of index ≤ n is denoted by En. For each n, the class En is known
to be a variety of epigroups; it is given by the identities

(xy)z = x(yz), xx = xx, xx 2 = x, xn+1x = xn
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(see [2]). The chain E1 ⊂ E2 ⊂ · · · En ⊂ · · · can be regarded as the “spine” of
the lattice of all epigroup varieties, since for any epigroup variety V there exists
n such that V ⊆ En.

The following questions have been formulated in [2] and repeated in [3, 4]:
1) What are the order types of maximal chains in the intervals [En, En+1] of

the lattice of epigroup varieties?
2) What are the cardinalities of maximal anti-chains in these intervals?
The first question is still open. But the following theorem shows that the

intervals [En, En+1] contain rather complicated chains.

Theorem 1. For an arbitrary natural number n, the interval [En, En+1] contains
a chain isomorphic to the chain of real numbers with the usual order.

Note that chains we construct in the proof of Theorem 1 are not maximal
in the intervals of the kind [En, En+1] (see Remark 4 below).

The complete answer on the second question is given by the following

Theorem 2. For an arbitrary natural number n, the interval [En, En+1] contains
an anti-chain of cardinality continuum.

There are two results that play the key role in the proof of both theorems.
The first of them was proved by Ježek in [1]. To formulate this result, we
recall that a word u is said to be applicable to a word v if v may be presented
in the form aξ(u)b where a and b are (maybe empty) words, while ξ is an
endomorphism on the free semigroup under a countably infinite alphabet. The
mentioned result by Ježek is that there are a countably infinite set of semigroup
words {wi | i ∈ I} such that wi is not applicable to wj for any i, j ∈ I, i 6= j,
and x2 is not applicable to wi for any i ∈ I. For our aim, it is convenient
to enumerate these words by rational numbers. In what follows we will refer
to these words as to the words Zα where α runs over the set of all rational
numbers. For each rational α, the first letter of Zα will be denoted by xα.

To formulate the second result, we need some definitions and notation. A
pair of identities wx = xw = w where the letter x does not occur in the word
w is usually written as the symbolic identity w = 0. (This notation is justified
because a semigroup with the identities wx = xw = w has a zero element
and all values of the word w in this semigroup are equal to zero.) An identity
of the form w = 0 as well as a variety given by identities of such a form are
called 0-reduced. A semigroup variety is called a nil-variety if it consists of
nil-semigroups; this takes place if and only if it satisfies the identity xn = 0 for
some n. It is evident that every 0-reduced variety is a nil-variety. It is clear
that every nil-semigroup is an epigroup and every nil-variety of semigroups may
be considered as a variety of epigroups.

An element x of a lattice 〈L;∨,∧〉 is called lower-modular if

∀ y, z ∈ L : x ≤ y −→ (z ∨ x) ∧ y = (z ∧ y) ∨ x.

Upper-modular elements are defined dually. It was verified in [5, Corollary 3]
that a 0-reduced semigroup variety is a lower-modular element of the lattice of
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all semigroup varieties. The proof of this fact given in [5] is based on the fol-
lowing two statements: 1) the fully invariant congruence on the free semigroup
corresponding to a 0-reduced variety has exactly one non-singleton class; 2) an
equivalence relation π on a set S has at most one non-singleton class if and only
if π is an upper-modular element of the equivalence lattice of S (this observa-
tion was checked in [5, Proposition 3]). It is evident that these arguments are
applicable for epigroup varieties as well. Thus we have

Lemma 3. A 0-reduced epigroup variety is a lower-modular element of the
lattice of all epigroup varieties.

A semigroup variety given by an identity system Σ is denoted by varΣ.
Now we are ready to prove both theorems.
Proof of Theorem 1. Let n be a natural number and ξ a real number. Put

Cn
ξ = var {xn+1 = xn−1

α Zα = 0 | α ≥ ξ}
(if n = 1 then x0

α is the empty word) and Dn
ξ = En ∨ Cn

ξ . It is clear that
Cn

ξ ⊆ En+1, whence Dn
ξ ∈ [En, En+1]. Let now ξ1 and ξ2 be real numbers with

ξ1 ≤ ξ2. Then Cn
ξ1
⊆ Cn

ξ2
and therefore Dn

ξ1
⊆ Dn

ξ2
. To prove Theorem 1, it

suffices to verify that Dn
ξ1
6= Dn

ξ2
whenever ξ1 6= ξ2. Arguing by contradiction,

suppose that ξ1 < ξ2 (and therefore Cn
ξ1
⊂ Cn

ξ2
) but Dn

ξ1
= Dn

ξ2
(see Fig. 1).

Note that all varieties of the kind Cn
ξ are 0-reduced. Further, for any ξ, the

variety En ∧ Cn
ξ is a nil-variety of index ≤ n, whence it satisfies the identity

xn = 0. Therefore
En ∧ Cn

ξ2 ⊆ Cn
ξ1 . (1)

We have

Cn
ξ1 = (En ∧ Cn

ξ2) ∨ Cn
ξ1 by (1)

= (En ∨ Cn
ξ1) ∧ Cn

ξ2 by Lemma 3

= Dn
ξ1 ∧ Cn

ξ2 by the definition of Dn
ξ1

= Dn
ξ2 ∧ Cn

ξ2 because Dn
ξ1 = Dn

ξ2

= Cn
ξ2 by the definition of Dn

ξ2 .

Thus Cn
ξ1

= Cn
ξ2

. A contradiction.
Let C = {Dn

ξ | ξ ∈ R}. If ξ ∈ R then En 6= Dn
ξ because Cn

ξ * En, and
En+1 6= Dξ because Dξ ⊂ Dλ ⊆ En+1 for any λ ∈ R with ξ < λ. Thus we may
ajoin En [respectively En+1] as the least [the greatest] element to the chain C
and obtain a chain C∗ in [En, En+1] with C ⊂ C∗. We have the following

Remark 4. The chain C is not the maximal chain in the interval [En, En+1].

Proof of Theorem 2. As in the proof of Theorem 1, let n be a natural
number and ξ a real number. Now we put

An
ξ = var {xn+1 = xn−1

α Zα = 0 | ξ − 1 < α < ξ + 1}
and Bn

ξ = En∨An
ξ . It is clear that An

ξ ⊆ En+1 and Bn
ξ ∈ [En, En+1]. Let ξ1 and ξ2

be different real numbers. Then the varieties An
ξ1

and An
ξ2

are non-comparable.
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Figure 1 Figure 2

To prove Theorem 2, it suffices to verify that the varieties Bn
ξ1

and Bn
ξ2

are
non-comparable too. Arguing by contradiction, suppose that Bn

ξ2
⊆ Bn

ξ1
(see

Fig. 2).
Note that all varieties of the kind An

ξ are 0-reduced. Further, the variety
En ∧ (An

ξ1
∨ An

ξ2
) is a nil-variety of index ≤ n, whence it satisfies the identity

xn = 0. Therefore
En ∧ (An

ξ1 ∨ An
ξ2) ⊆ An

ξ1 . (2)

Furthermore, Bn
ξ1
⊇ An

ξ1
and Bn

ξ1
⊇ Bn

ξ2
⊇ An

ξ2
, whence

Bn
ξ1 ⊇ An

ξ1 ∨ An
ξ2 . (3)

We have

An
ξ1 =

(En ∧ (An
ξ1 ∨ An

ξ2)
) ∨ An

ξ1 by (2)

= (En ∨ An
ξ1) ∧ (An

ξ1 ∨ An
ξ2) by Lemma 3

= Bn
ξ1 ∧ (An

ξ1 ∨ An
ξ2) by the definition of Bn

ξ1

= An
ξ1 ∨ An

ξ2 by (3).

Thus An
ξ1

= An
ξ1
∨ An

ξ2
, whence An

ξ2
⊆ An

ξ1
. A contradiction.
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