Chains and anti-chains in the lattice of epigroup varieties^{*}

D. V. Skokov and B. M. Vernikov

Communicated by Lev N. Shevrin

Abstract

Let \mathcal{E}_n be the variety of all epigroups of index $\leq n$. We prove that, for an arbitrary natural number n, the interval $[\mathcal{E}_n, \mathcal{E}_{n+1}]$ of the lattice of epigroup varieties contains a chain isomorphic to the chain of real numbers with the usual order and an anti-chain of the cardinality continuum.

Key words: epigroup, variety, lattice of subvarieties.

AMS Subject Classification: primary 20M07, secondary 08B15.

A semigroup S is called an *epigroup* if for any element x of S some power of x lies in some subgroup of S. For an element a of a given epigroup, let e_a be the unit element of the maximal subgroup G that contains some power of a. It is known that $ae_a = e_a a$ and this element lies in G. We denote by \overline{a} the element inverse to ae_a in G. This element is called the *pseudo-inverse* of a. The mapping $a \mapsto \overline{a}$ defines a unary operation on an epigroup. The idea to treat epigroups as unary semigroups (that is semigroups with an additional unary operation of pseudo-inversion) was promoted by Shevrin in [2]. A systematic overview of the material accumulated in the theory of epigroups by the beginning of the 2000s was given in the survey [3].

By epigroup variety we mean a variety of epigroups treated just as unary semigroups. Results about epigroup varieties that are known so far mainly concern with equational and structural aspects (see corresponding results in [2,3]). As to considerations of the varietal lattices, there are only a few results about such a type (see Sections 2 and 3 in the recent survey [4]). In [2] several open questions about lattices of epigroup varieties were formulated; some of them are reproduced in [3] and [4]. The aim of this note is to answer one of these questions and obtain an information closely related with one more of them.

An epigroup S has *index* n if the nth power of every element of S lies in some of its subgroups and n is the least number with this property. The class of all epigroups of index $\leq n$ is denoted by \mathcal{E}_n . For each n, the class \mathcal{E}_n is known to be a variety of epigroups; it is given by the identities

 $(xy)z = x(yz), \ x\overline{x} = \overline{x}x, \ x\overline{x}^2 = \overline{x}, \ x^{n+1}\overline{x} = x^n$

^{*}The work was partially supported by the Russian Foundation for Basic Research (grant No. 09-01-12142) and the Federal Education Agency of the Russian Federation (project No. 2.1.1/3537).

(see [2]). The chain $\mathcal{E}_1 \subset \mathcal{E}_2 \subset \cdots \mathcal{E}_n \subset \cdots$ can be regarded as the "spine" of the lattice of all epigroup varieties, since for any epigroup variety \mathcal{V} there exists n such that $\mathcal{V} \subseteq \mathcal{E}_n$.

The following questions have been formulated in [2] and repeated in [3,4]:

1) What are the order types of maximal chains in the intervals $[\mathcal{E}_n, \mathcal{E}_{n+1}]$ of the lattice of epigroup varieties?

2) What are the cardinalities of maximal anti-chains in these intervals?

The first question is still open. But the following theorem shows that the intervals $[\mathcal{E}_n, \mathcal{E}_{n+1}]$ contain rather complicated chains.

Theorem 1. For an arbitrary natural number n, the interval $[\mathcal{E}_n, \mathcal{E}_{n+1}]$ contains a chain isomorphic to the chain of real numbers with the usual order.

Note that chains we construct in the proof of Theorem 1 are not maximal in the intervals of the kind $[\mathcal{E}_n, \mathcal{E}_{n+1}]$ (see Remark 4 below).

The complete answer on the second question is given by the following

Theorem 2. For an arbitrary natural number n, the interval $[\mathcal{E}_n, \mathcal{E}_{n+1}]$ contains an anti-chain of cardinality continuum.

There are two results that play the key role in the proof of both theorems. The first of them was proved by Ježek in [1]. To formulate this result, we recall that a word u is said to be *applicable to a word* v if v may be presented in the form $a\xi(u)b$ where a and b are (maybe empty) words, while ξ is an endomorphism on the free semigroup under a countably infinite alphabet. The mentioned result by Ježek is that there are a countably infinite set of semigroup words $\{w_i \mid i \in I\}$ such that w_i is not applicable to w_j for any $i, j \in I, i \neq j$, and x^2 is not applicable to w_i for any $i \in I$. For our aim, it is convenient to enumerate these words by rational numbers. In what follows we will refer to these words as to the words Z_{α} where α runs over the set of all rational numbers. For each rational α , the first letter of Z_{α} will be denoted by x_{α} .

To formulate the second result, we need some definitions and notation. A pair of identities wx = xw = w where the letter x does not occur in the word w is usually written as the symbolic identity w = 0. (This notation is justified because a semigroup with the identities wx = xw = w has a zero element and all values of the word w in this semigroup are equal to zero.) An identity of the form w = 0 as well as a variety given by identities of such a form are called 0-*reduced*. A semigroup variety is called a *nil-variety* if it consists of nil-semigroups; this takes place if and only if it satisfies the identity $x^n = 0$ for some n. It is evident that every 0-reduced variety is a nil-variety. It is clear that every nil-semigroup is an epigroup and every nil-variety of semigroups may be considered as a variety of epigroups.

An element x of a lattice $\langle L; \vee, \wedge \rangle$ is called *lower-modular* if

$$\forall y, z \in L \colon \quad x \leq y \longrightarrow (z \lor x) \land y = (z \land y) \lor x.$$

Upper-modular elements are defined dually. It was verified in [5, Corollary 3] that a 0-reduced semigroup variety is a lower-modular element of the lattice of

all semigroup varieties. The proof of this fact given in [5] is based on the following two statements: 1) the fully invariant congruence on the free semigroup corresponding to a 0-reduced variety has exactly one non-singleton class; 2) an equivalence relation π on a set S has at most one non-singleton class if and only if π is an upper-modular element of the equivalence lattice of S (this observation was checked in [5, Proposition 3]). It is evident that these arguments are applicable for epigroup varieties as well. Thus we have

Lemma 3. A 0-reduced epigroup variety is a lower-modular element of the lattice of all epigroup varieties.

A semigroup variety given by an identity system Σ is denoted by var Σ . Now we are ready to prove both theorems.

Proof of Theorem 1. Let n be a natural number and ξ a real number. Put

$$\mathcal{C}^n_{\xi} = \operatorname{var} \left\{ x^{n+1} = x^{n-1}_{\alpha} Z_{\alpha} = 0 \mid \alpha \ge \xi \right\}$$

(if n = 1 then x_{α}^{0} is the empty word) and $\mathcal{D}_{\xi}^{n} = \mathcal{E}_{n} \vee \mathcal{C}_{\xi}^{n}$. It is clear that $\mathcal{C}_{\xi}^{n} \subseteq \mathcal{E}_{n+1}$, whence $\mathcal{D}_{\xi}^{n} \in [\mathcal{E}_{n}, \mathcal{E}_{n+1}]$. Let now ξ_{1} and ξ_{2} be real numbers with $\xi_{1} \leq \xi_{2}$. Then $\mathcal{C}_{\xi_{1}}^{n} \subseteq \mathcal{C}_{\xi_{2}}^{n}$ and therefore $\mathcal{D}_{\xi_{1}}^{n} \subseteq \mathcal{D}_{\xi_{2}}^{n}$. To prove Theorem 1, it suffices to verify that $\mathcal{D}_{\xi_{1}}^{n} \neq \mathcal{D}_{\xi_{2}}^{n}$ whenever $\xi_{1} \neq \xi_{2}$. Arguing by contradiction, suppose that $\xi_{1} < \xi_{2}$ (and therefore $\mathcal{C}_{\xi_{1}}^{n} \subset \mathcal{C}_{\xi_{2}}^{n}$) but $\mathcal{D}_{\xi_{1}}^{n} = \mathcal{D}_{\xi_{2}}^{n}$ (see Fig. 1). Note that all varieties of the kind \mathcal{C}_{ξ}^{n} are 0-reduced. Further, for any ξ , the variety $\mathcal{E}_{n} \wedge \mathcal{C}_{n}^{n}$ is a pil variety of index $\leq n$ whence it satisfies the identity.

variety $\mathcal{E}_n \wedge \mathcal{C}_{\mathcal{E}}^n$ is a nil-variety of index $\leq n$, whence it satisfies the identity $x^n = 0$. Therefore

$$\mathcal{E}_n \wedge \mathcal{C}^n_{\xi_2} \subseteq \mathcal{C}^n_{\xi_1}.$$
 (1)

We have

$$\begin{aligned}
\mathcal{L}_{\xi_1}^n &= (\mathcal{E}_n \wedge \mathcal{C}_{\xi_2}^n) \vee \mathcal{C}_{\xi_1}^n & \text{by (1)} \\
&= (\mathcal{E}_n \vee \mathcal{C}_{\xi_1}^n) \wedge \mathcal{C}_{\xi_2}^n & \text{by Lemma 3} \\
&= \mathcal{D}_{\xi_1}^n \wedge \mathcal{C}_{\xi_2}^n & \text{by the definition of } \mathcal{D}_{\xi_1}^n \\
&= \mathcal{D}_{\xi_2}^n \wedge \mathcal{C}_{\xi_2}^n & \text{because } \mathcal{D}_{\xi_1}^n = \mathcal{D}_{\xi_2}^n \\
&= \mathcal{C}_{\xi_2}^n & \text{by the definition of } \mathcal{D}_{\xi_2}^n.
\end{aligned}$$

Thus $C_{\xi_1}^n = C_{\xi_2}^n$. A contradiction. \Box Let $C = \{\mathcal{D}_{\xi}^n \mid \xi \in \mathbb{R}\}$. If $\xi \in \mathbb{R}$ then $\mathcal{E}_n \neq \mathcal{D}_{\xi}^n$ because $\mathcal{C}_{\xi}^n \notin \mathcal{E}_n$, and $\mathcal{E}_{n+1} \neq \mathcal{D}_{\xi}$ because $\mathcal{D}_{\xi} \subset \mathcal{D}_{\lambda} \subseteq \mathcal{E}_{n+1}$ for any $\lambda \in \mathbb{R}$ with $\xi < \lambda$. Thus we may ajoin \mathcal{E}_n [respectively \mathcal{E}_{n+1}] as the least [the greatest] element to the chain Cand obtain a chain C^* in $[\mathcal{E}_n, \mathcal{E}_{n+1}]$ with $C \subset C^*$. We have the following

Remark 4. The chain C is not the maximal chain in the interval $[\mathcal{E}_n, \mathcal{E}_{n+1}]$. \Box

Proof of Theorem 2. As in the proof of Theorem 1, let n be a natural number and ξ a real number. Now we put

$$\mathcal{A}_{\xi}^{n} = \operatorname{var} \left\{ x^{n+1} = x_{\alpha}^{n-1} Z_{\alpha} = 0 \mid \xi - 1 < \alpha < \xi + 1 \right\}$$

and $\mathcal{B}_{\xi}^{n} = \mathcal{E}_{n} \vee \mathcal{A}_{\xi}^{n}$. It is clear that $\mathcal{A}_{\xi}^{n} \subseteq \mathcal{E}_{n+1}$ and $\mathcal{B}_{\xi}^{n} \in [\mathcal{E}_{n}, \mathcal{E}_{n+1}]$. Let ξ_{1} and ξ_{2} be different real numbers. Then the varieties $\mathcal{A}_{\xi_{1}}^{n}$ and $\mathcal{A}_{\xi_{2}}^{n}$ are non-comparable.

To prove Theorem 2, it suffices to verify that the varieties $\mathcal{B}_{\xi_1}^n$ and $\mathcal{B}_{\xi_2}^n$ are non-comparable too. Arguing by contradiction, suppose that $\mathcal{B}_{\xi_2}^n \subseteq \mathcal{B}_{\xi_1}^n$ (see Fig. 2).

Note that all varieties of the kind \mathcal{A}_{ξ}^{n} are 0-reduced. Further, the variety $\mathcal{E}_{n} \wedge (\mathcal{A}_{\xi_{1}}^{n} \vee \mathcal{A}_{\xi_{2}}^{n})$ is a nil-variety of index $\leq n$, whence it satisfies the identity $x^{n} = 0$. Therefore

$$\mathcal{E}_n \wedge (\mathcal{A}_{\xi_1}^n \lor \mathcal{A}_{\xi_2}^n) \subseteq \mathcal{A}_{\xi_1}^n.$$
⁽²⁾

Furthermore, $\mathcal{B}_{\xi_1}^n \supseteq \mathcal{A}_{\xi_1}^n$ and $\mathcal{B}_{\xi_1}^n \supseteq \mathcal{B}_{\xi_2}^n \supseteq \mathcal{A}_{\xi_2}^n$, whence

$$\mathcal{B}^n_{\xi_1} \supseteq \mathcal{A}^n_{\xi_1} \lor \mathcal{A}^n_{\xi_2}. \tag{3}$$

We have

$$\begin{aligned} \mathcal{A}_{\xi_1}^n &= \left(\mathcal{E}_n \wedge \left(\mathcal{A}_{\xi_1}^n \vee \mathcal{A}_{\xi_2}^n \right) \right) \vee \mathcal{A}_{\xi_1}^n \qquad \text{by (2)} \\ &= \left(\mathcal{E}_n \vee \mathcal{A}_{\xi_1}^n \right) \wedge \left(\mathcal{A}_{\xi_1}^n \vee \mathcal{A}_{\xi_2}^n \right) \qquad \text{by Lemma 3} \\ &= \mathcal{B}_{\xi_1}^n \wedge \left(\mathcal{A}_{\xi_1}^n \vee \mathcal{A}_{\xi_2}^n \right) \qquad \text{by the definition of } \mathcal{B}_{\xi_1}^n \\ &= \mathcal{A}_{\xi_1}^n \vee \mathcal{A}_{\xi_2}^n \qquad \text{by (3).} \end{aligned}$$

Thus $\mathcal{A}_{\xi_1}^n = \mathcal{A}_{\xi_1}^n \lor \mathcal{A}_{\xi_2}^n$, whence $\mathcal{A}_{\xi_2}^n \subseteq \mathcal{A}_{\xi_1}^n$. A contradiction.

Acknowledgements. The authors would like to thank Professor M. V. Volkov for fruitful discussions.

References

- [1] J. Ježek, Intervals in lattices of varieties, Algebra Universalis, 6 (1976), 147–158.
- [2] L. N. Shevrin, On theory of epigroups. I, II, Matem. Sborn., 185 (1994), No. 8, 129–160; No. 9, 153–176 [Russian; Engl. translation: Russ. Acad. Sci. Sb. Math., 82 (1995), 485–512; 83 (1995), 133–154].
- [3] L. N. Shevrin, *Epigroups*, In: Structural Theory of Automata, Semigroups, and Universal Algebra, V. B. Kudryavtsev and I. G. Rosenberg (eds.), Springer, Dordrecht (2005), 331–380.
- [4] L. N. Shevrin, B. M. Vernikov and M. V. Volkov, Lattices of semigroup varieties, Izv. VUZ. Matem., No. 3 (2009), 3–36 [Russian; Engl. translation: Russian Math. Iz. VUZ, 53, No. 3 (2009), 1–28].

[5] B. M. Vernikov and M. V. Volkov, Lattices of nilpotent semigroup varieties, In: Algebraic Systems and their Varieties, L. N. Shevrin (ed.), Sverdlovsk: Ural State University (1988), 53–65 [Russian].

Department of Mathematics and Mechanics, Ural State University, Lenina 51, 620083 Ekaterinburg, Russia

E-mail address: dskokov@yandex.ru, boris.vernikov@usu.ru

Received July 13, 2009 and in final form November 19, 2009