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Abstract We consider epigroups as algebras with two operations (multiplication and
pseudoinversion) and construct a countably infinite family of injective endomorphisms
of the lattice of all epigroup varieties. An epigroup variety is said to be a variety of finite
degree if all its nilsemigroups are nilpotent.We characterize epigroup varieties of finite
degree in the language of identities and in terms of minimal forbidden subvarieties.

Keywords Epigroup · Variety · Lattice of varieties · Variety of epigroups of finite
degree

1 Introduction and summary

A semigroup S is called an epigroup if some power of each element of S lies in a
subgroup of S. The class of epigroups is quite wide. It includes, in particular, all
completely regular semigroups (i.e., unions of groups) and all periodic semigroups
(i.e., semigroups in which every element has an idempotent power). Epigroups have
been intensely studied in the literature under different names since the end of 1950’s.
An overview of results obtained here is given in the fundamental work by Shevrin [9]
and his survey [10].
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Endomorphisms of the lattice of epigroup varieties 555

It is natural to consider epigroups as unary semigroups, i.e., semigroups equipped
with an additional unary operation. This operation is defined in the following way.
If S is an epigroup and a ∈ S, then some power of a lies in a maximal subgroup of
S. We denote this subgroup by Ga . The unit element of Ga is denoted by aω. It is
well known (see, e.g., [9]) that the element aω is well defined and aaω = aωa ∈ Ga .
We denote the inverse of aaω in Ga by a. The map a �→ a is the unary operation
on S mentioned above. The element a is called the pseudoinverse of a. Throughout
this article we consider epigroups as algebras with two operations: multiplication and
pseudoinversion. In particular, this allows us to speak about varieties of epigroups as
algebras with these two operations. An investigation of epigroups in the framework
of the theory of varieties was promoted by Shevrin in [9]. An overview of first results
obtained here may be found in [12, Section 2].

It is well known (see, e.g., [9,10]) that the class of all epigroups is not a variety. In
other words, the variety of unary semigroups generated by this class contains not only
epigroups. Denote this variety by EPI. We note that an identity basis of the variety
EPI is known. This result was announced in 2000 by Zhil’tsov [17], and its proof
was rediscovered recently by Mikhailova [4] (some related results can also be found
in [1]).

IfV is a semigroup [epigroup] variety thenwe denote by
←−V the variety consisting of

all semigroups [epigroups] dual (that is, antiisomorphic) to the semigroups [epigroups]
from V . It is evident that the map δ of the lattice of all semigroup varieties SEM [the

lattice of all epigroup varieties EPI] into itself given by the rule δ(V) = ←−V for every
variety V is an automorphism of this lattice. The question whether there are non-trivial
automorphisms of the lattice SEM [the lattice EPI] different from δ is still open. We
notice that there exist infinitelymany non-trivial injective endomorphisms of the lattice
SEM. Namely, let V be a semigroup variety given by the identities {ui = vi | i ∈ I },
m and n non-negative integers, and x1, ... , xm, y1, ... , yn letters that do not occur in
the words ui and vi for all i ∈ I . Let Vm,n be the semigroup variety given by the
identities

{x1 · · · xmui y1 · · · yn = x1 · · · xmvi y1 · · · yn | i ∈ I }.

It has been verified in [3] that Vm,n does not depend on the choice of an identity basis
of the variety V and the map V �→ Vm,n is an injective endomorphism of the lattice
SEM. The first main result of the present paper is an epigroup analogue of this fact.

In order to formulate this result, we need some definitions and notation. We denote
by F the free unary semigroup. The unary operation on F will be denoted by .
Elements of F are called unary words or simplywords. LetΣ be a system of identities
written in the language of unary semigroups. Then KΣ stands for the class of all
epigroups satisfying Σ . The class KΣ is not obliged to be a variety because it maybe
not closed under taking of infinite Cartesian products (see, e.g., [10, Section 2.3] or
Example 2.14 below). A complete classification of identity system Σ such that KΣ is
a variety is provided by Proposition 2.15 below. If Σ has this property, then we will
write V[Σ] along with (and in the same sense as) KΣ . We denote the variety of unary
semigroups defined by the identity system Σ by varΣ . Denote the set of all identities
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556 S. V. Gusev, B. M. Vernikov

that hold in any epigroup by Δ. Thus EPI = varΔ. Let varE Σ = EPI ∧ varΣ =
var(Σ ∪Δ) (here the symbol∧ denotes the meet of varieties). Clearly, if the class KΣ

is not a variety then varE Σ contains some unary semigroups that are not epigroups.
Moreover, the classes KΣ and varE Σ may differ even when KΣ is a variety (see
Example 2.16 below). The first main result of the paper is the following

Theorem 1.1 Let V = varE {ui = vi | i ∈ I } be an epigroup variety, m and n non-
negative numbers, and x1, ... , xm, y1, ... , yn letters that do not occur in the words ui
and vi for all i ∈ I . Put

Vm,n = varE {x1 · · · xmui y1 · · · yn = x1 · · · xmvi y1 · · · yn | i ∈ I }.

Then the variety Vm,n is an epigroup variety and the map V �→ Vm,n is an injective
endomorphism of the lattice EPI.

An examination of semigroup varieties shows that properties of a variety depend in
an essential way on properties of nilsemigroups belonging to the variety. This gives rise
to the following definitions. A semigroup variety V is called a variety of finite degree
if all nilsemigroups in V are nilpotent. If V has a finite degree then it is said to be a
variety of degree n if the nilpotency degrees of all nilsemigroups in V do not exceed n
and n is the least number with this property. Semigroup varieties of finite degree and
some natural subclasses of this class of varieties were investigated in [5,8,13–15] and
other articles, see also [11, Section 8]).

It is well known and may be easily verified that, in a periodic semigroup varieties,
pseudoinversion may be expressed via multiplication. Indeed, if an epigroup satisfies
the identity

x p = x p+q (1.1)

for some natural numbers p and q, then the identity

x = x (p+1)q−1 (1.2)

holds in this epigroup. If p > 1, then the simpler identity

x = x pq−1 (1.3)

is valid. Thismeans that periodic varieties of epigroupsmay be identifiedwith periodic
varieties of semigroups. Semigroup varieties of finite degree are periodic, whence they
may be considered as epigroup varieties. It seems to be natural to extend the notions
of varieties of finite degree or of degree n to all epigroup varieties. The definitions
of epigroup varieties of finite degree or degree n repeat literally the definitions of the
same notions for semigroup varieties.

In [8, Theorem 2], semigroup varieties of finite degree were characterized in several
ways. In particular, it was proved there that a semigroup variety V has a finite degree
if and only if it satisfies an identity of the form

x1 · · · xn = w (1.4)
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Endomorphisms of the lattice of epigroup varieties 557

for some natural n and some word w of length > n. Moreover, the proof of this result
easily implies that V has a degree ≤ n if and only if it satisfies an identity of the
form (1.4) for some word w of length > n. For varieties of degree 2, this equational
characterization was made more specific in [2, Lemma 3]. Namely, it was verified
there that a semigroup variety has degree ≤ 2 if and only if it satisfies an identity of
the form xy = w where w is one of the words xm+1y, xym+1 or (xy)m+1 for some
natural m. In [15, Proposition 2.11], an analogue of this result of [8] was obtained for
semigroup varieties of degree ≤ n with arbitrary n (see Proposition 2.9 below). The
second objective of this article is to extend the mentioned results of [8,15] to epigroup
varieties. The proof of the corresponding statement makes use of Theorem 1.1.

In order to formulate the second main result of this paper, we need some more
definitions and notation. A semigroup word is a word that does not involve the unary
operation. Ifw ∈ F , then �(w) stands for the length ofw; we define the length as usual
for semigroupwords and assume that the length of any non-semigroupword is infinite.
If x is a letter and w is a word such that x does not occur in w, the pair of identities
wx = xw = w is written as the symbolic identity w = 0. Notice that this notation
is justified because a semigroup with such identities has a zero element and all values
of the word w in this semigroup are equal to zero. If a system Σ of unary identities is
such that the class KΣ consists of periodic epigroups (in particular, of nilsemigroups),
then KΣ is a periodic semigroup variety, and therefore, is an epigroup variety. Thus,
the notation V[Σ] is well justified in this case. We often use this observation below
without any additional reference. Put

F = V[x2 = 0, xy = yx],
Fk = V[x2 = x1 · · · xk = 0, xy = yx]

where k is an arbitrary natural number. The second main result of the paper is the
following

Theorem 1.2 For an epigroup variety V , the following are equivalent:

(1) V is a variety of finite degree;
(2) V � F;
(3) V satisfies an identity of the form (1.4) for some natural n and some unary word

w with �(w) > n;
(4) V satisfies an identity of the form

x1 · · · xn = x1 · · · xi−1 · xi · · · x j · x j+1 · · · xn (1.5)

for some i , j and n with 1 ≤ i ≤ j ≤ n.

As we will see below, the proof of this theorem easily implies the following

Corollary 1.3 Let n be an arbitrary natural number. For an epigroup variety V , the
following are equivalent:

(1) V is a variety of degree ≤ n;
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558 S. V. Gusev, B. M. Vernikov

(2) V � Fn+1;
(3) V satisfies an identity of the form (1.4) for some unary word w with �(w) > n;
(4) V satisfies an identity of the form (1.5) for some i and j with 1 ≤ i ≤ j ≤ n.

It is well known that an epigroup variety has degree 1 if and only if it satisfies the
identity

x = x (1.6)

(see Lemma 2.7 below). Besides that, it is evident that a variety has degree 1 if and
only if it does not contain the variety of semigroups with zero multiplication, i.e., the
variety F2. The equivalence of the claims (1), (2) and (4) of Corollary 1.3 generalizes
these known facts.

The paper consists of four sections. Section 2 contains definitions, notation and
auxiliary results we need. Section 3 is devoted to the proof of Theorem 1.1, while in
Sect. 4, Theorem 1.2 and Corollary 1.3 are proved.

2 Preliminaries

We denote by Gr S the set of all group elements of the epigroup S. The following
well-known fact was verified in [6].

Lemma 2.1 If S is an epigroup, x ∈ S and xn ∈ Gr S for some natural n then
xm ∈ Gr S for every m ≥ n.

The next lemma collects several simple and well-known facts (see, e.g., [9,10]).

Lemma 2.2 If S is an epigroup and x ∈ S then the equalities

x x = ( x x )2 = x x, (2.1)

x x = x x = xω, (2.2)

xωx = xxω = x, (2.3)

x = x2 x = x x2, (2.4)

xn = x n, (2.5)

x = x (2.6)

hold where n is an arbitrary natural number.

The equalities (2.2) show that the expression vω iswell defined in epigroup identities
as a short form of the term v v. So, the equalities (2.1)–(2.6) are identities valid in
arbitrary epigroup. We need the following generalization of (2.2).

Corollary 2.3 An arbitrary epigroup satisfies the identities

xn x n = x nxn = xω (2.7)

for any natural number n.
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Proof Let S be an epigroup and x ∈ S. The identities (2.2) and the fact that xω is an
idempotent in S imply that xn x n = x nxn = (x x )n = (xω)n = xω. 
�

The symbol ≡ denotes the equality relation on F . The number of occurrences of
multiplication or unary operation in a word w is called the weight of w.

Lemma 2.4 Let w be a non-semigroup word depending on a letter x only. Then the
variety EPI satisfies an identity

w = x p x q (2.8)

for some p ≥ 0 and some positive integer q.

Proof We use induction on the weight of w.
Induction base If the weight of w equals 1, then w ≡ x and the identity (2.8) with

p = 0 and q = 1 holds.
Induction step Suppose that the weight of the word w is i > 1. Further considera-

tions are divided into two cases.

Case 1 w ≡ w1w2 where w1 and w2 are words with weights less than i . Obviously,
at least one of the words w1 or w2 involves the unary operation. It suffices to consider
the case when w1 is a non-semigroup word. By the induction assumption, the identity
w1 = xs x t holds in EPI for some s ≥ 0 and some positive integer t . If the word
w2 involves the unary operation, then, by the induction assumption, the identity w2 =
xm x k holds in EPI for some m ≥ 0 and some k > 0. If, otherwise, the word w2 is a
semigroup one then w2 ≡ xr for some r . In any case, we may apply the identity (2.2)
and conclude that EPI satisfies an identity of the form (2.8).

Case 2 w ≡ w1 where the weight of the word w1 is less than i . If w1 is a semigroup
word, then w1 ≡ xr for some r . Taking into account the identity (2.5), we have that
the variety EPI satisfies the identity w = x r . If, otherwise, the word w1 contains the
unary operation then, by the induction assumption, the identity w1 = xs x t holds in
EPI for some s ≥ 0 and some t > 0. If s > t then

w ≡ w1 = xs x t

= xs−t x t x t

= xs−t (x x )t by (2.2)
= xs−t (x x )s−t by (2.1)
= xs−t (xω)s−t by (2.2)
= (xxω)s−t by (2.3)

= (
x

)s−t by (2.3)

= (
x

)s−t by (2.5)
= x s−t by (2.6).
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560 S. V. Gusev, B. M. Vernikov

If s = t then

w ≡ w1 = xs x s

= (x x )s by (2.2)
= x x by (2.1)
= x x by (2.1).

Finally, if s < t then

w ≡ w1 = xs x t

= xs x s x t−s

= (x x )s x t−s by (2.2)
= (x x )t−s x t−s by (2.1)
= (x x 2)t−s by (2.1)

= (
x x2

)t−s by (2.5)
= x t−s by (2.4)
= (

x
)t−s by (2.5)

= (xxω)t−s by (2.3)
= (x2 x )t−s by (2.2)
= x2(t−s) x t−s by (2.2).

We have thus proved that the variety EPI satisfies an identity of the form (2.8) in any
case. 
�

As usual, we say that an epigroup S has index n if xn ∈ Gr S for every x ∈ S and
n is the least number with this property. Following [9,10], we denote the class of all
epigroups of index ≤ n by En . It is well known that En is an epigroup variety (see,
e.g., [9, Proposition 6] or [10, Proposition 2.10]). An identity u = v is said to bemixed
if exactly one of u and v is a semigroup word.

Corollary 2.5 If a class of unary semigroups K is contained in EPI and satisfies a
mixed identity then K consists of epigroups and K ⊆ En for some n.

Proof Suppose that K satisfies a mixed identity u = v. Substitute some letter x for
all letters occurring in this identity. Then we obtain an identity of the form xn = w

for some positive integer n and some non-semigroup word w depending on x only.
By Lemma 2.4, EPI satisfies an identity of the form (2.8). Therefore, K satisfies

xn = w = x p x q by (2.8)

= (x p x q−1) x 2x by (2.4)

= (x p x q)x x by (2.2)

= xnx x by (2.8)

= xn+1 x .
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Endomorphisms of the lattice of epigroup varieties 561

So, the identity xn = xn+1 x holds in K . It is well known (see, e.g., [10, p. 334])
that if a unary semigroup S ∈ K satisfies this identity then S is an epigroup of index
≤ n. 
�

If w ∈ F , then t (w) stands for the last letter of w.

Lemma 2.6 For any word u, there is a word u∗ such that the variety EPI satisfies
the identity u = u∗z where z ≡ t (u).

Proof Let u be an arbitrary word and z ≡ t (u). There are two possible cases: either
u ≡ u∗z or u ≡ s0 w1 for some (maybe empty) word s0. In the second case we

apply to u the identity (2.4) and obtain the word u1 ≡ s0 w2
1 w1 such that the identity

u = u1 holds EPI. Here we have two possible cases again: either w1 ≡ w∗z or
w1 ≡ s1 w2. In the second case we again apply the identity (2.4) and obtain the word

u2 ≡ s0 w2
1 s1 w2

2 w2 such that the identity u = u2 holds in EPI. One can continue
this process. It is clear that after finite number of steps we find a word with the required
properties. 
�

In the remaining part of the paper, u∗ has the same meaning as in Lemma 2.6.
As already mentioned, every completely regular semigroup is an epigroup. The

operation of pseudoinversion on a completely regular semigroup coincides with the
operation of taking the inverse of a given element x in the maximal subgroup that con-
tains x . The latter operation is the standard unary operation on the class of completely
regular semigroups (see, e.g., the book [7] or [12, Section 6]). Thus, the varieties of
completely regular semigroups considered as unary semigroups are epigroup varieties.
The following statement is well known.

Lemma 2.7 For an epigroup variety V , the following are equivalent:

(a) V is completely regular;
(b) V is a variety of degree 1;
(c) V satisfies the identity (1.6).

The following claim is evident.

Lemma 2.8 Every nil-epigroup satisfies the identity x = 0.

Nowwe formulate results about semigroup varieties of finite degree obtained in [8,
15]. An identity u = v is called a semigroup identity if both u and v are semigroup
words. For a semigroup variety V , the following are equivalent:

(a) V is a variety of finite degree;
(b) V � F ;
(c) V satisfies an identity of the form (1.4) for some natural n and some semigroup

word w with �(w) > n;
(d) V satisfies an identity of the form

x1 · · · xn = x1 · · · xi−1 · (xi · · · x j )m+1 · x j+1 · · · xn (2.9)

for some m, n, i and j with 1 ≤ i ≤ j ≤ n.
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562 S. V. Gusev, B. M. Vernikov

The equivalence of the claims (a)–(c) was proved in [8, Theorem 2], while the equiv-
alence of (a) and (d) immediately follows from [15, Proposition 2.11]. For varieties
of an arbitrary given degree n, the following modification of this assertion is valid.

Proposition 2.9 Let n be a natural number. For a semigroup variety V , the following
are equivalent:

(a) V is a variety of degree ≤ n;
(b) V � Fn+1;
(c) V satisfies an identity of the form (1.4) for some semigroupwordwwith �(w) > n;
(d) V satisfies an identity of the form (2.9) for some m, i and j with 1 ≤ i ≤ j ≤ n.

Here the equivalence of the claims (a)–(c) easily follows from the proof of [8,
Theorem 2], while the equivalence of (a) and (d) is verified in [15, Proposition 2.11].

A semigroup word w is called linear if any letter occurs in w at most once. Recall
that an identity of the form

x1x2 · · · xn = x1π x2π · · · xnπ

where π is a non-trivial permutation on the set {1, 2, ... , n} is called permutational.
If w ∈ F , then c(w) denotes the set of all letters occurring in the word w.

Lemma 2.10 If an epigroup variety V satisfies a non-trivial identity of the form (1.4)
then either this identity is permutational or V is a variety of degree ≤ n.

Proof If thewordw involves the operation of pseudoinversion then every nilsemigroup
in V satisfies the identity x1 · · · xn = 0 by Lemma 2.8. Therefore, V is a variety of
degree ≤ n in this case. Thus, we may assume that w is a semigroup word. Suppose
that �(w) > n. Then substituting x to all letters occurring in (1.4), we obtain an
identity of the form (1.1). Therefore, V is periodic. Then it may be considered as a
variety of semigroups. According to Proposition 2.9, this means that V is a variety of
degree ≤ n. Suppose now that �(w) ≤ n. If c(w) �= {x1, ... , xn} then xi /∈ c(w) for
some 1 ≤ i ≤ n. One can substitute x2i for xi in (1.4). Then we obtain the identity
x1 · · · xi−1x2i xi+1 · · · xn = w. Put w′ ≡ x1 · · · xi−1x2i xi+1 · · · xn . Then x1 · · · xn =
w = w′ holds in V . Thus, V satisfies the identity x1 · · · xn = w′ and �(w′) > n. As we
have seen above, this implies that V has degree ≤ n. Finally, if c(w) = {x1, ... , xn}
then the fact that �(w) ≤ n implies that �(w) = n, whence the word w is linear.
Therefore, the identity (1.4) is permutational in this case. 
�

Put P = V[xy = x2y, x2y2 = y2x2]. We need the following

Lemma 2.11 If the variety P satisfies a non-trivial identity of the form (1.4) then
n > 1 and w ≡ w′xn for some word w′ with c(w′) = {x1, ... , xn−1}.
Proof It is well known and easy to check that the variety P is generated by the
semigroup

P = 〈a, e | e2 = e, ea = a, ae = 0〉 = {e, a, 0}.
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This semigroup is finite, whence it is an epigroup. Note that e = e and a = 0.
Suppose that c(w) �= {x1, ... , xn}. Then there is a letter x that occurs on one side of
the identity (1.4) but does not occur on the other side. Substituting 0 for x and e for all
other letters occurring in the identity, we obtain the wrong equality e = 0. Therefore,
c(w) = {x1, ... , xn}. Substitute now a for xn and e for all other letters occurring in
the identity (1.4). The left hand side of the equality we obtain equals a. We denote the
right hand side of this equality by b. Thus, P satisfies the equality a = b. If the unary
operation applies to the letter xn in the word w or t (w) �≡ xn then b = 0. But a �= 0 in
P . Therefore,w ≡ w′xn . If xn ∈ c(w′) then b = 0 again, thus c(w′) = {x1, ... , xn−1}.
Finally, the word w′ is non-empty because the identity (1.4) is non-trivial. Therefore,
n > 1. 
�

Put C = V[x2 = x3, xy = yx]. The unary semigroup variety generated by an
epigroup S is denoted by var S. Clearly, if the semigroup S is finite then var S is a
variety of epigroups. We need the following statement.

Proposition 2.12 ([16, Theorem 3.2]) Let V be an epigroup variety. For an arbitrary
epigroup S ∈ V , the set Gr S is a right ideal in S if and only if the variety V contains
neither C nor P .

We mention that there is some inaccuracy in the formulation of [16, Theorem 3.2].
Namely, it contains the words ‘left ideal’ rather than ‘right ideal’.

Note that semigroup varieties with the property that, for every its member S, the
set Gr S is an ideal or a right ideal of S were examined in [13].

An epigroup variety V is called a variety of epigroups with completely regular nth
power if, for every S ∈ V , the epigroup Sn is completely regular.

Lemma 2.13 An epigroup variety of degree ≤ n is a variety of epigroups with com-

pletely regular nth power if and only if it contains neither P nor
←−P .

Proof Necessity Let V be a variety of epigroups with completely regular nth power.
In view of Lemma 2.7 V satisfies the identity

x1 · · · xn = x1 · · · xn . (2.10)

But Lemma 2.11 and the dual statement imply that this identity is false in the varieties

P and
←−P .

Sufficiency Let V be a variety of epigroups of degree ≤ n that contains neither P
nor

←−P . Further, let S ∈ V and J = Gr S. Clearly, the variety C is not a variety of finite

degree, whence V � C. Thus V contains none of the varieties C, P and
←−P . Now we

may apply Proposition 2.12 and the dual statement with the conclusion that J is an
ideal in S. If x ∈ S then xn ∈ J for some n. This means that the Rees quotient S/J
is a nilsemigroup. Since V is a variety of degree ≤ n, this means that the epigroup
S/J satisfies the identity x1x2 · · · xn = 0. In other words, if x1, x2, ... , xn ∈ S then
x1x2 · · · xn ∈ J . Therefore, Sn ⊆ J , whence the epigroup Sn is completely regular. 
�

Let Σ be a system of identities written in the language of unary semigroups. As we
have already noted, the class KΣ is not obliged to be a variety. This claim is confirmed
by the following
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Example 2.14 Put Nk = 〈a | ak+1 = 0〉 = {a, a2, ... , ak, 0} for any natural k. The
semigroup Nk is finite, therefore it is an epigroup. Put

N =
∏

k∈N
Nk .

Obviously, the semigroup N is not an epigroup because, for example, no power of the
element (a, ... , a, ... ) belongs to a subgroup.Note that the epigroup Nk is commutative
for any k. We see that the class KΣ with Σ = {xy = yx} is not a variety.

If w is a semigroup word, then �x (w) denotes the number of occurrences of the
letter x in this word. Recall that a semigroup identity v = w is called balanced if
�x (v) = �x (w) for any letter x . We call an identity v = w strictly unary if v andw are
non-semigroup words. We say that an identity v = w follows from an identity system
Σ in the class of all epigroups (orΣ implies v = w in the class of all epigroups) if this
identity holds in the class KΣ . The following statement gives a complete description
of identity systems Σ such that KΣ is a variety.

Proposition 2.15 Let Σ be a system of identities written in the language of unary
semigroups. The following are equivalent:

(1) KΣ is a variety;
(2) Σ implies in the class of all epigroups some mixed identity;
(3) Σ contains either a semigroup non-balanced identity or a mixed identity.

Proof (1)−→ (3) Suppose that each identity in Σ is either balanced or strictly unary.
We note that the epigroup Nk from Example 2.14 satisfies any balanced identity and
any strictly unary one. In particular, any identity from Σ holds in the epigroup Nk .
Hence Nk ∈ KΣ for any k. Example 2.14 shows that the class KΣ is not a variety.

(3)−→ (2) The case when Σ contains a mixed identity is evident. Suppose now
that Σ contains a semigroup non-balanced identity v = w. Then �x (u) �= �x (v)

for some letter x . If �(u) = �(v) then we substitute x2 to x in u = v. As a result,
we obtain a semigroup non-balanced identity u′ = v′ such that K satisfies u′ = v′,
�x (u′) �= �x (v

′) and �(u′) �= �(v′). This allows us to suppose that �(u) �= �(v).
Substitute some letter x to all letters occurring in this identity. We obtain an identity
of the form (1.1). As it was mentioned above, this identity implies in the class of all
epigroups the identity (1.2). It remains to note that this identity is mixed.

(2)−→ (1) Obviously, the class KΣ is closed under taking of subepigroups and
homomorphisms. It remains to prove that it is closed under taking of Cartesian prod-
ucts. Let {Si | i ∈ I } be an arbitrary set of epigroups from KΣ . Consider the semigroup

S =
∏

i∈I
Si .

According to Corollary 2.5, there exists a number n such that xn ∈ Gr T for any
T ∈ KΣ and any x ∈ T . In particular, the epigroup Si for any i ∈ I has this property.
But then the semigroup S also satisfies this condition, i.e., S is an epigroup. Obviously,
any identity from Σ holds in the epigroup S. Therefore, S ∈ KΣ and we are done. 
�
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As it was mentioned above, the classes KΣ and varE Σ may differ even whenever
KΣ is a variety. This claim is confirmedby the following example that is communicated
to the authors by V.Shaprynskiı̌.

Example 2.16 Let Σ = {x = x2}. Consider the two-element semilattice T = {e, 0}.
We define on T the unary operation ∗ by the rule e∗ = 0∗ = 0. Results of the article [4]
imply that the variety EPI has the following identity basis:

(xy)z = x(yz), xy x = x yx, x 2x = x, x2 x = x, x x = x x, x p = x p (2.11)

where p runs over the set of all prime numbers. So, any non-trivial identity from Δ

is strictly unary. Therefore, these identities hold in T , whence T ∈ EPI ∧ varΣ =
varE Σ . But e = e. Therefore, the unary operation ∗ is not the pseudoinversion on T ,
thus T /∈ V[Σ].

Recall that a semigroup identity u = v is called homotypical if c(u) = c(v),
and heterotypical otherwise. The following claim gives a classification of all identity
systems Σ such that V[Σ] = varE Σ .

Lemma 2.17 Let Σ be a system of identities written in the language of unary semi-
groups. The following are equivalent:

(a) V[Σ] = varE Σ;
(b) varE Σ satisfies a mixed identity;
(c) Σ contains either a semigroup heterotypical identity or a mixed identity.

Proof (a)−→ (c) Suppose that each identity in Σ is either homotypical or strictly
unary. Obviously, the unary semigroup T from Example 2.16 satisfies all these iden-
tities, whence T ∈ varE Σ . But T /∈ V[Σ], i.e., V[Σ] �= varE Σ .

(c)−→ (b) If the identity u = v is mixed then the required assertion is obvious.
Suppose that the identity u = v is heterotypical. We may assume that there is some
letter x that occurs in the word u but does not occur in the word v. We substitute x to
x in u = v. As a result, we obtain a mixed identity.

The implication (b)−→ (a) follows from Corollary 2.5. 
�
Suppose that an identity u = v holds in the variety varE Σ . In view of the generally

known universal-algebraic considerations, this identity may be obtained from the set
of identities Σ ∪ Δ by using a finite number of the following operations:

• swap of the left and the right part of the identity,
• equating of two words that are equal to the same word,
• side-by-side multiplication of two identities,
• applying the unary operation to both parts of the identity,
• applying a substitution on F to both parts of the identity.

For convenience of references, we formulate this fact as a lemma.

Lemma 2.18 Let Σ be a system of idenitities written in the language of unary semi-
groups. If an identity u = v holds in the variety varE Σ then there exists a sequence
of identities

u0 = v0, u1 = v1, ... , um = vm (2.12)
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such that the identity u0 = v0 lies in Σ ∪ Δ, the identity um = vm coincides with the
identity u = v and, for every i = 1, ... ,m, one of the following holds:

(i) the identity ui = vi lies in Σ ∪ Δ;
(ii) there is 0 ≤ j < i such that ui ≡ v j and vi ≡ u j ;
(iii) there are 0 ≤ j, k < i such that u j ≡ ui , v j ≡ uk and vk ≡ vi ;
(iv) there are 0 ≤ j, k < i such that ui ≡ u juk and vi ≡ v jvk;
(v) there is 0 ≤ j < i such that ui ≡ u j and vi ≡ v j ;
(vi) there is 0 ≤ j < i such that ui ≡ ξ(u j ) and vi ≡ ξ(v j ) for some substitution ξ

on F.

Lemma 2.18 immediately implies

Corollary 2.19 Let a variety varE Σ satisfies an identity u = v. If t (p) ≡ t (q) for
any identity p = q ∈ Σ then t (u) ≡ t (v).

The sequence of identities (2.12) with the properties mentioned in Lemma 2.18 is
called a deduction of the identity v = w from the identity system Σ .

Lemma 2.20 Let Θ = {pi = qi | i ∈ I } be an identity system written in the language
of unary semigroups and x a letter. Put Σ = {pi x = qi x | i ∈ I }. If an identity
ux = vx holds in the variety varE Σ , then the identity u = v holds in the variety
varE Θ .

Proof Let (2.12) be a deduction of the identity ux = vx from the identity system Σ .
Let 1 ≤ i ≤ m. Corollary 2.19 implies that t (ui ) ≡ t (vi ). We are going to verify that
the variety varE Σ satisfies the identity u∗

i = v∗
i . Then, in particular, varE Σ satisfies

u = v. We will use induction by i . It will be convenient for us to suppose that Δ is an
identity basis of the variety EPI rather than the set of all identities that hold in this
variety. It is clear that, under this assumption, all considerations are valid. Thus, we
assume that Δ coincides with the identity system (2.11).

Induction base If u0 = v0 ∈ Σ then the statement is evident. If u0 = v0 ∈ Δ, then
it may be verified easily that the identity u∗

0 = v∗
0 holds in the variety EPI.

Induction step Let now i > 0. We need consider the cases (i)–(vi) of Lemma 2.18.
(i) This case is proved analogously to the induction base.
(ii) The identity u∗

i = v∗
j holds in the variety varE Θ by the induction assumption.

Since the identities u∗
i = v∗

i and v∗
j = u∗

j coincide, we are done.
(iii) The identities u∗

j = v∗
j and u∗

k = v∗
k (i.e., u∗

i = u∗
k and u∗

k = v∗
i , respectively)

hold in varE Θ by the induction assumption. Therefore, the identity u∗
i = v∗

i holds in
varE Θ as well.

(iv) Note that u∗
i ≡ u ju∗

k and v∗
i ≡ v jv

∗
k . Let y ≡ t (u j ) ≡ t (v j ). Using the

induction assumption, we conclude that the identities u∗
j = v∗

j and u∗
k = v∗

k hold
in varE Θ . Multiplying the former identity on a letter y on the right, we see that
varE Θ satisfies the identity u∗

j y = v∗
j y. Since the variety EPI satisfies the identities

u j = u∗
j y, v j = v∗

j y and varE Θ ⊆ EPI, we have that varE Θ satisfies the identity
u j = v j . Multiplying this identity and the identity u∗

k = v∗
k , we conclude that varE Θ

satisfies the identity u∗
i = v∗

i .
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(v) The identity u∗
j = v∗

j holds in the variety varE Θ by the induction assumption.

Note that u∗
i ≡ u j

2u∗
j and v∗

i ≡ v j
2v∗

j . As we have seen in the case (iv), varE Θ

satisfies the identity u j = v j . It is evident that the identity u j
2u∗

j = v j
2v∗

j may be
deduced from the identities u j = v j and u∗

j = v∗
j . Hence varE Θ satisfies u∗

i = v∗
i .

(vi) As usual, u∗
j = v∗

j holds in varE Θ by the induction assumption. Let t (u j ) ≡
t (v j ) ≡ x . Then

(
ξ(u j )

)∗ ≡ ξ(u∗
j )

(
ξ(x)

)∗ and
(
ξ(v j )

)∗ ≡ ξ(v∗
j )

(
ξ(x)

)∗. This implies
that varE Θ satisfies the identity u∗

i = v∗
i . 
�

3 Endomorphisms of the lattice EPI

To verify Theorem 1.1, we need some auxiliary facts.

Lemma 3.1 Let Σ = {pα = qα | α ∈ �}. If the variety varE Σ satisfies an identity
u = v and x is a letter that does not occur in the words u, v, pα and qα (for all α ∈ �),
then the identity ux = vx follows from the identity systemΣ ′ = {pαx = qαx | α ∈ �}
in the class of all epigroups.

Proof Let (2.12) be a deduction of the identity u = v from the identity system Σ . Let
1 ≤ i ≤ m. Corollary 2.19 implies that t (ui ) ≡ t (vi ). Let y be a letter with y �≡ x .
If the letter x occurs in some identities of the sequence (2.12) then we substitute y
to x in all such identities. The identities from Σ ∪ {u = v} will not change because
these identities do not contain the letter x , and the identities from Δ will still remain
in Δ. The sequence we obtain is a deduction of the identity u = v from the identity
system Σ ∪Δ again, and all the identities of this deduction do not contain the letter x .
We may assume without any loss that already the deduction (2.12) possesses the last
property.

For each i = 0, 1, ... ,m, the identity ui = vi holds in the variety varE Σ . Since
the identity um = vm coincides with the identity u = v, it suffices to verify that, for
each i = 0, 1, ... ,m, the identity ui x = vi x follows from the identity system Σ ′ in
the class of all epigroups. The proof of this claim is given by induction on i .

Induction base is evident because the identity u0 = v0 lies in Σ ∪ Δ.
Induction step Let now i > 0. One can consider the cases (i)–(vi).
(i) This case is obvious.
(ii) By the induction assumption, the identity u j x = v j x follows from the identity

system Σ ′ in the class of all epigroups. Since the identity ui x = vi x coincides with
the identity v j x = u j x , we are done.

(iii) By the induction assumption, the identities u j x = v j x (i.e., ui x = ukx) and
ukx = vk x (i.e., ukx = vi x) follow from the identity system Σ ′ in the class of all
epigroups. Therefore, the identity ui x = vi x follows from the identity system Σ ′ in
the class of all epigroups too.

(iv) By the induction assumption, the identities u j x = v j x and ukx = vk x follow
from the identity system Σ ′ in the class of all epigroups. We substitute ukx to x in
the identity u j x = v j x . Since the letter x does not occur in the words u j and v j ,
we obtain the identity u jukx = v j uk x , i.e., ui x = v j uk x . Further, we multiply the
identityukx = vk x onv j from the left.Hereweobtain the identityv j uk x = v jvk x , i.e.,
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v j uk x = vi x . We see that the identity system Σ ′ implies the identities ui x = v j uk x
and v j uk x = vi x in the class of all epigroups, whence the identity ui x = vi x also
follows from Σ ′ in the class of all epigroups.

(v) By the induction assumption, the identity u j x = v j x follows from the identity
system Σ ′ in the class of all epigroups. Since ui ≡ u j and vi ≡ v j , it remains
to verify that the identity u j x = v j x follows from the identity system Σ ′ in the
class of all epigroups. Suppose that an epigroup S satisfies the identity u j x = v j x
and

∣∣c(u j ) ∪ c(v j )
∣∣ = k. We fix arbitrary elements a1, ... , ak and b in S. Put Uj =

u j (a1, ... , ak) and Vj = v j (a1, ... , ak). Then

Ujb = Vjb. (3.1)

We need to verify that Uj b = Vj b. First of all, we verify that

V s+1
j = Us

j Vj (3.2)

for any natural s. We use induction by s. If s = 1 then the equality (3.2) coincides
with (3.1) where b = Vj . If s > 1 then

V s+1
j = VjV

s
j

= UjV
s
j by (3.1) with b = V s

j

= UjU
s−1
j V j by the induction assumption

= Us
j Vj ,

and the equality (3.2) is proved. The equality (3.1) with b = Vj and (2.2) imply that
Uω

j V j = Uj U jVj = Uj V 2
j . Thus,

Uj V
2
j = Uω

j V j . (3.3)

Let now s be a natural number with s ≥ 2. Using (3.3), we have

Uj
s
Vj

s = Uj
s−1(

Uj Vj
2)
Vj

s−2 = Uj
s−1

Uj
ω
VjVj

s−2 = Uj
s−1

Vj
s−1

.

Therefore, Uj
s
Vj

s = Uj
s−1

Vj
s−1 = · · · = Uj Vj . Thus,

Uj
s
Vj

s = Uj Vj (3.4)
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for any natural s. Since S is an epigroup, there are numbers g and h such thatUg
j , V

h
j ∈

Gr S. Put m = max{g, h}. For any s ≥ m we have

Uω
j V

s
j = Uω

j (V s
j V

ω
j ) because V s

j ∈ GVj by Lemma 2.1

= Uω
j (V s+1

j V j ) by (2.2)
= (Uω

j U
s
j )Vj Vj by (3.2)

= (Us
j Vj ) Vj because Us

j ∈ GUj by Lemma 2.1

= V s+1
j V j by (3.2)

= V s
j V

ω
j by (2.2)

= V s
j because V s

j ∈ GVj by Lemma 2.1.

Thus,
Uω

j V
s
j = V s

j (3.5)

for any s ≥ m. Note also that

Uω
j V j = Uj

m
U j

m
Vj by (2.7)

= Um
j (Um

j Vj ) by (2.5)

= Um
j Vm+1

j by (3.2)

= Um
j Vm+1

j V ω
j because Vm+1

j ∈ GVj by Lemma 2.1

= Um
j Vm+1

j (Vm
j )ω because GVj = GVm

j

= Um
j Vm+1

j V m
j Vm

j by (2.2)

= (
Uj

m
Vj

m)
Vj

m+1
Vm
j by (2.5)

= Uj Vj V
m+1
j V m

j by (3.4)

= (Uj V 2
j )(V

m
j Vm

j )

= (Uω
j V j )(Vm

j Vm
j ) by (3.3)

= Vm+1
j V m

j by (3.5)

= VjVj
m
Vj

m
by (2.5)

= VjV ω
j by (2.7)

= Vj by (2.3).

Thus,
Uω

j V j = Vj . (3.6)

Besides that,

Uj V ω
j = (

Uj Vj
2)

Vj
2

by (2.7)

= (Uj
ω
Vj ) Vj

2
by (3.3)

= Vj Vj
2

by (3.6)

= V ω
j V j because Vj and Vj are mutually inverse in GVj

= Vj because Vj ∈ GVj .
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Thus,
Uj V

ω
j = Vj . (3.7)

Finally, we have

Uj b = U 2
j (Ujb) by (2.4)

= U 2
j (Vjb) by (3.1)

= U 2
j (Uω

j V j )b because U 2
j ∈ GUj

= U 2
j

(
Vj b

)
by (3.6)

= (U 2
j V

ω
j )Vjb by (2.3)

= Uj
2
Vj

ω
Vjb by (2.5)

= Uj Vj Vjb by (3.7)
= Uj V ω

j V j Vjb because Vj ∈ GVj

= Uj V ω
j V j Vjb because Vj ∈ GVj

= Vj ( Vj Vj )b by (3.7)
= Vj V ω

j b by (2.2)
= Vj b because Vj ∈ GVj .

We prove that Uj b = Vj b. This completes a consideration of the case (v).
(vi) By the induction assumption, the identity u j x = v j x follows from the identity

system Σ ′ in the class of all epigroups. We may assume without any loss that c(u j ) ∪
c(v j ) = {x1, ... , xk} and the identity ui = vi is obtained from the identity u j = v j

by a substitution of some word w for some letter that occurs in the identity u j = v j .
Since x /∈ c(ui ) ∪ c(vi ), the letter x does not occur in the word w. We substitute w to
x in the identity u j x = v j x . Then we obtain the identity ui x = vi x . Therefore, this
identity follows from the identity system Σ ′ in the class of all epigroups. 
�
Lemma 3.2 Let Θ = {pi = qi | i ∈ I } be an identity system such that the variety
varE Θ is a variety of epigroups, and let x be a letter with x /∈ c(pi ) ∪ c(qi ) for all
i ∈ I . Put Σ = {pi x = qi x | i ∈ I }. Then the variety varE Σ is a variety of epigroups
and the identity ux = vx holds in varE Σ whenever the identity u = v holds in
varE Θ .

Proof Let y be a letter with y /∈ c(u) ∪ c(v) and y /∈ c(pi ) ∪ c(qi ) for all i ∈ I . By
Lemma 3.1, the identity uy = vy holds in the class of epigroups KΣ . Substituting x for
y in this identity, we obtain that the identity ux = vx is valid in KΣ . Now Lemma 2.17
applies with the conclusion that the systemΘ contains an identity pi = qi that is either
mixed or semigroup heterotypical. Then the identity pi x = qi x ∈ Σ also has one of
these two properties. In view of Proposition 2.15, the class KΣ is an epigroup variety.
Now Lemma 2.17 applies again, and we conclude that KΣ = V [Σ] = varE Σ . 
�
Corollary 3.3 Let Θ1 = {vi = wi | i ∈ I }, Θ2 = {pα = qα | α ∈ �} and x a letter
such that x /∈ c(vi ) ∪ c(wi ) for all i ∈ I and x /∈ c(pα) ∪ c(qα) for all α ∈ �. Put
Σ1 = {vi x = wi x | i ∈ I } and Σ2 = {pαx = qαx | α ∈ �}. If varE Θ1 is an epigroup
variety then varE Θ1 = varE Θ2 if and only if varE Σ1 = varE Σ2.
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Proof NecessityLet varE Θ1 = varE Θ2. Thismeans that the variety varE Θ1 satisfies
the identity pα = qα for each α ∈ �. Lemma 3.2 implies that the identity pαx = qαx
holds in the variety varE Σ1. Therefore, varE Σ1 ⊆ varE Σ2. The opposite inclusion
holds as well by symmetry. Thus varE Σ1 = varE Σ2.

Sufficiency Let now varE Σ1 = varE Σ2. Then pαx = qαx holds in varE Σ1 for
each α ∈ �. Lemma 2.20 then implies that the variety varE Θ1 satisfies all identities
pα = qα , whence varE Θ1 ⊆ varE Θ2. By symmetry, varE Θ2 ⊆ varE Θ1. Therefore,
varE Θ1 = varE Θ2. 
�

Nowwe are ready to complete the proof of Theorem 1.1. By symmetry and evident
induction, it suffices to verify that if x is a letter with x /∈ c(ui ) ∪ c(vi ) for all i ∈ I
then V0,1 = varE {ui x = vi x | i ∈ I } is an epigroup variety and the map f from EPI
into itself given by the rule f (V) = V0,1 is an injective endomorphism of the lattice
EPI.

The claim that V0,1 is an epigroup variety follows from Lemma 3.2. The map f
is well defined and injective by Corollary 3.3. It remains to verify that the map f is
a homomorphism. Let V1 and V2 be epigroup varieties. Further, let V1 = varE Θ1
and V2 = varE Θ2 for identity systems Θ1 = {ui = vi | i ∈ I } and Θ2 = {pα =
qα | α ∈ �}. Suppose that x is a letter such that x /∈ c(ui ) ∪ c(vi ) for all i ∈ I and
x /∈ c(pα) ∪ c(qα) for all α ∈ �. Put Σ1 = {ui x = vi x | i ∈ I } and Σ2 = {pαx =
qαx | α ∈ �}. Then we have

f (V1 ∧ V2) = f (varE Θ1 ∧ varE Θ2) = f (varE (Θ1 ∪ Θ2))

= varE (Σ1 ∪ Σ2) = varE Σ1 ∧ varE Σ2 = f (V1) ∧ f (V2).

Thus, f (V1 ∧V2) = f (V1) ∧ f (V2). It remains to verify that f (V1 ∨V2) = f (V1) ∨
f (V2).
Let V1 ∨ V2 = varE Θ where Θ = {s j = t j | j ∈ J }. We may assume without

loss of generality that x /∈ c(s j ) ∪ c(y j ) for all j ∈ J because we may rename
letters otherwise. Further, varE Θ1 = varE (Θ1 ∪ Θ) because V1 ⊆ V1 ∨ V2. Now
Corollary 3.3 applies with the conclusion that

f (V1) = f (varE (Θ1 ∪ Θ)) = varE {ui x = vi x, s j x = t j x | i ∈ I, j ∈ J }
⊆ varE {s j x = t j x | j ∈ J } = f (V1 ∨ V2).

Analogously, f (V2) ⊆ f (V1 ∨ V2). Therefore, f (V1) ∨ f (V2) ⊆ f (V1 ∨ V2).
It remains to verify the opposite inclusion. Let the identity u = v hold in the variety

f (V1) ∨ f (V2). Then it holds in f (Vi ) with i = 1, 2. We may assume without any
loss that t (u) ≡ x . Applying Corollary 2.19, we conclude that t (v) ≡ t (u) ≡ x .
Lemma 2.6 implies that the identities u = u∗x and v = v∗x hold in the variety
EPI. Hence, the variety f (V1) satisfies the identity u∗x = v∗x . Now Lemma 2.20
applies and we conclude that the variety V1 satisfies the identity u∗ = v∗. Analogous
considerations show that this identity is true in the variety V2 as well. Thus, u∗ = v∗
holds in the variety V1 ∨ V2. The letter x does not occur in any identity from Θ .
Now Lemma 3.2 applies with the conclusion that the variety f (V1 ∨ V2) satisfies the
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identity u∗x = v∗x . Then this variety satisfies the identity u = v too. Therefore,
f (V1 ∨ V2) ⊆ f (V1) ∨ f (V2).

4 Varieties of finite degree

The aim of this section is to prove Theorem 1.2 and Corollary 1.3. The implication
(4)−→ (3) of Theorem 1.2 is obvious, while the implication (3)−→ (2) follows from
the evident fact that the variety F does not satisfy any identity of the form (1.4) with
�(w) > n. It remains to verify the implications (1)−→ (4) and (2)−→ (1).

(1)−→ (4)We are going to verify that if an epigroup variety V is a variety of degree
≤ n then it satisfies an identity of the form (1.5) for some i and j with 1 ≤ i ≤ j ≤ n.
Clearly, this implies the implication. We use induction on n.

Induction base If V is a variety of degree 1, then it satisfies the identity of the
form (1.5) with i = j = n = 1 by Lemma 2.7.

Induction step Let n > 1 and V is a variety of degree ≤ n. If P,
←−P � V then

V is a variety of epigroups with completely regular nth power by Lemma 2.13. By
Lemma 2.7 V then satisfies the identity (2.10), i.e., the identity of the form (1.5) with

i = 1 and j = n. Suppose now that V contains one of the varieties P or
←−P . We will

assume without loss of generality that P ⊆ V .
The variety Fn+1 has degree n + 1, whence V � Fn+1. Therefore, there is an

identity u = v that holds in V but is false in Fn+1. In view of Lemma 2.8, every non-
semigroup word equals to 0 in Fn+1. It is evident that every non-linear semigroup
word and every semigroup word of length > n equal to 0 in Fn+1 as well. Therefore,
we may assume without any loss that u is a linear semigroup word of length ≤ n,
i.e., u ≡ x1 · · · xm for some m ≤ n. Since P ⊆ V , the identity x1 · · · xm = v holds
in P . Now Lemma 2.11 applies with the conclusion that m > 1 and v ≡ v′xm for
some word v′ with c(v′) = {x1, ... , xm−1}. Suppose that �(v′) ≤ m − 1. In particular,
this means that v′ is a semigroup word. Since c(v′) = {x1, ... , xm−1}, we have that
�(v′) = m − 1. Therefore, the word v′ is linear, whence v is linear too. This means
that u = v is a permutational identity. But every permutational identity holds in the
variety Fn+1, while the identity u = v is false in Fn+1. Hence �(v′) > m − 1. So,
taking into account Proposition 2.15, we have that V ⊆ V[x1 · · · xm = v′xm].

Also, Proposition 2.15 implies that the class of epigroups satisfying the identity

x1 · · · xm−1 = v′ (4.1)

is a variety. We denote this variety by V ′. According to Lemma 2.10, V ′ is a variety
of degree ≤ m − 1. Since m ≤ n, we use the induction assumption and conclude that

V ′ ⊆ varE {x1 · · · xm−1 = x1 · · · xi−1 · xi · · · x j · x j+1 · · · xm−1}

for some 1 ≤ i ≤ j ≤ m − 1. Further considerations are divided into two cases.

Case 1 the word v′ involves the unary operation. According to Lemma 2.17, V ′ =
V[x1 · · · xm−1 = v′] = varE {x1 · · · xm−1 = v′}. The letter xm does not occur in any of
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the words x1 · · · xm−1, v′ and x1 · · · xi−1 · xi · · · x j · x j+1 · · · xm−1. Now Theorem 1.1
applies with the conclusion that

varE {x1 · · · xm = v′xm} ⊆ varE {x1 · · · xm = x1 · · · xi−1 · xi · · · x j · x j+1 · · · xm}.

Therefore, V satisfies the identity

x1 · · · xm = x1 · · · xi−1 · xi · · · x j · x j+1 · · · xm . (4.2)

It is evident that this identity implies the identity (1.5).

Case 2 w′ is a semigroup word. Substitute some letter x to all letters occurring in the
identity (4.1). Then we obtain an identity xm−1 = xm−1+k for some k > 0. By (1.2),
the latter identity implies in the class of all epigroups the identity x = xmk−1. Using
Lemma 2.17 we have

V ′ = V[x1 · · · xm−1 = v′] = V[x1 · · · xm−1 = v′, x = xmk−1]
= varE {x1 · · · xm−1 = v′, x = xmk−1}.

As in the Case 1, we apply Theorem 1.1. We get that the variety

varE {x1 · · · xm = x1 · · · xi−1 · xi · · · x j · x j+1 · · · xm}.

contains the variety varE {x1 · · · xm = v′xm, x xm = xmk−1xm}. Note that the vari-
ety V[x1 · · · xm = v′xm] satisfies the identity xm = xm+k . Hence, taking into
account (1.3), we have that the identity x = xmk−1 holds in this variety. Then the
variety V[x1 · · · xm = v′xm] satisfies the identity x xm = xmk−1xm . Hence, the iden-
tity (4.2) holds in the variety V[x1 · · · xm = v′xm]. Then this variety satisfies the
identity (1.5). Thus, we complete the proof of the implication (1)−→ (4).

(2)−→ (1) Let V � F . Then there is an identity u = v that holds in V but does not
hold inF . Repeating literally arguments from the proof of the implication (1)−→ (4),
we reduce our consideration to the case when the word u is linear. Now Lemma 2.10
and the fact that every permutational identity holds in the variety F imply that V is a
variety of finite degree. Theorem 1.2 is proved.

It remains to prove Corollary 1.3. The implication (1)−→ (4) of this corollary
follows from the proof of the same implication in Theorem 1.2. The implication
(4)−→ (3) is evident, while the implication (3)−→ (2) follows from the evident fact
that the variety Fn+1 does not satisfy an identity of the form (1.4) with �(w) > n.
Finally, the implication (2)−→ (1) of Corollary 1.3 is verified quite analogously to
the same implication of Theorem 1.2.
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