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DUALITIES IN LATTICES OF SEMIGROUP VARIETIES 

B.M.Vernikov 
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INTRODUCTION 

The subvariety lattice L(~ of a variety of 

universal algebras ~ is one of the main objects 

investigated in the theory of varieties. The first 

results about lattices of semigroup varieties see in the 

survey article [4~. 

Recently a lot of papers have appeared in which 

semigroup varieties with restrictions on subvsriety 

lattice were investigated (see, e.g., [1,9,15,16,19-25. 

Many various lattice conditions are considered in this 

context. Conditions connecting with lattice duality 

however are not among them. 

We say that varieties of universal algebras 

and ~r are dual one to another if L(~ and 

L(~ l) are dual. A variety ~P" is said to be selfdua! 

if it is dual to itself, i.e. L(~) is selfdual. 

Further let X be an arbitrary class of semigroup 

varieties. A semigroup variety ~ is called admitting 

dualit 2 in class X if a semigroup variety ~ S exists 
, 

such that ~ X and ~/t is dual to . We shall 

omit the words "in class X" and say that a variety 

admits duality if X is the class of all semigroup 

varieties. 
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The investigation of dualities is a traditional 

aspect of the consideration of derivative lattices of 

algebraic objects (see, e.g., ~4S or ~7~)- Moreover an 

additional stimul exists to investigate dualities in 

lattices of semigroup varieties. Namely, semigroup 

varieties of two types examined earlier admit duality: 

varieties which subvariety lattices are finite chains 

[15] or Boolean algebras ~,2dS. If a semigroup variety 

~belongs to one of these classes then ~ is 

selfdual; moreover it is clear that each subvariety of 

~J~ is selfdual (in particular admits dualit~ too. If 

is an arbitrary semigroup variety such that each 

subvariety of ~ admits duality in class X then we 

say that ~ hereditarily admits dualit 2 in class X 

(h.a.d. in X for short). As above we omit the words 

"in class X" and say that ~ h ereditaril~ admits 

~ualit 2 (h.a.d.) if X is the class of all semigroup 

varieties. Finally, a variety of universal algebras ~/~ 

is said to be hereditarily selfdual if each subvariety of 

�9 (~ is selfdual. 

H.a.d. and hereditarily selfdual semigroup varieties 

are investigated just in the present paper. It consists 

of two sections. 

Section I is devoted to hereditarily selfdual 

varieties. A necessary condition for hereditary 

selfduality of arbitrary varieties of universal algebras 

is found and a characterisation of hereditarily selfdual 

varieties of two large classes of universal algebras is 

obtained in the paper ~8~; these two classes include 

varieties of all "classical" algebras except semigroups. 

These universal algebraic results are completed and made 

more precise in Section I. Proposition I gives a 

necessary condition for hereditary selfduality which is 

stronger that the corresponding result of ~8]. 

Proposition 2 yields a characterisation of hereditarily 

selfdual varieties of very large class of universal 

algebras embracing as varieties considered in [18~ as 
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semigroup varieties. Finally, the main result of 

Section 1 (Theorem I) gives a description of hereditarily 

selfdual semigroup varieties "modulo groups". Moreover, 

combining Theorem 1 with the results of ~S we obtain 

a complete description of hereditarily selfdual 

semigroup varieties in which every periodic group is 

locally finite (in particular, a complete description of 

locally finite hereditarily selfdual semigroup varieties~ 

Section 2 is devoted to h.a.d, semigroup varieties. 

We obtain a necessary condition on arbitrary semigroup 

variety being h.a.d. (Theorem 2). This result reduces in 

some sence the question of complete description of h.a.~ 

semigroup varieties to examination of two cases: 

varieties in which every nilsemigroup is a zero semigroup 

and nilpotent varieties. Unfortunately, all our attempts 

to obtain further information about arbitrary h.a.C. 

varieties are not successful for the present. The main 

cause of this situation is the following circumstance. 

If ~ is an arbitrary h.a.d, semigroup variety then it 

is possible that an arbitrary semigroup variety dual to 

~ is a variety of periodic but not locally finite 

groups. However, practically there is no any positive 

information about subvariety lattices of periodic not 

locally finite group varieties at this ~ime. ThaWs why 

after proving of Theorem 2 we investigate semigroup 

varieties h.a.d, in class K only where K is the cla~ 

of all semigroup varieties in which every periodic group 

is locally finite. Theorem 3 gives a complete description 

@f semigroup varieties h.a.d, in K with the assumption 

that one of the following statement holds: 

(i) ~ contains a nilsemigroup which is not a 

zero semigroup~ 

(ii) ~J" satisfies an identity of the kind 

x I ... x n = Xl~ ... Xn~ where �9 is a permutation, 

1~ # 1 and n~ # n 

(Note that the case (ii) embraces all commutative 

varieties). In particular we state the fairly surprising 
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fact that every semigroup variety h.a.d, in K and 

satisfying (i) or (ii) is hereditarily selfdual. At the 

conclusion of Section 2 we give examples of h.a.d, in K 

(in particular, h.a.d.) but not hereditarily selfdual 

varieties as well as an example of admitting duality but 

not h.a.d, in K variety. Unfortunately, we have 

no examples of varieties which admit duality but not 

h.a.d. It seems that there exists such a variety but it 

is very difficult to find it in view of above mentioned 

causes. 

We say that a variety ~ is small if L(~) is 

finite and chain if this lattice is a chain. Varieties 

~2 same similarity type are and of the called 

disjoint if ~ A ~2 =~ where ~ is the trivial 

variety. Finally, a semichain variety is a join of a 

finite number of pairwise disj@int small chain varieties. 

The semigroup variety defining by a system of identities 

(generating by a semigroup S) is written as var~ 

(var S respectively). Recall that a lattice L is 

called d-distributive if it satisfies the implication 

xAz = d~ y^ z = d--~(xvy)^ z = d. We say that a 

lattice is weakly d-semimodular if the join of two its 

arbitrary different atoms covers both of this atoms. 

Finally, a lattice L is said to be lower weakl[ 

semimodular if for any x, y~ L the following holds: 

xVy covers both x and y implies x and y 

cover x^ y. All other lattice notions used below may be 

found in the monographs [3] or [6]. 

Let ~1 and ~2 be varieties of periodic groups 

Then 2~ ~ denotVes the H.Neumann~ product of I ~ 
and ~ . In other words, ~1 ~2 consists of 

groups-and a group G belongs to ~1 ~2 if and only 

if there exists a normal subgroup G~ 8f G such that 

G1~I and G/GIE~2. As it is shown in ~I] 

~1 ~2 is a group variety. 
The auth~ wish to express sincere gratitude to 

Professor L.N.Shevrin for his supervision and to Drs. 

M.V.Sapir, E.V.Sukhanovand M.V.Volkov for helpful 
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discussions. 

w HEREDITARILY SELFDUAL VARIETIES 

PROPOSITION I. Let ~4 ~ be a hereditaril~ selfdual 

variety of universal algebras. Then ~ is small and 

s~ichain and the lattice L(~) is O-distributive. 

Proof. As it is shown in 518S, every hereditarily 

selfdual varieties of universal algebras with 

q-distributive subvariety lattice is small and semichain. 

Hence we need only to prove that L(~/~) is 

q-distributive, l~t 6~) ~) ~ ~_ ~ and ~D~ ~ = 

~v~ �9 It is clear that ~^~= ~^~'=0" ~d 
~) ~, t~{~. AS it is provg~in [8] the lattice L('~)_. 

satisfies the implication (i~ei xiV y = z)~ iEAI x i = 0 
--~ y = z for any variety of universal algebras ~ . The 

lattice L( ~ ) is selfdual and hence it satisfies the 

implication x~y y = O~ x Ivx 2 = I --~y = O. But 

= O" and 6~. v ~" = ~ . We see that 

~= u ~.Thus ~^~ --~ A~ =~ imply (~v 
for any Cc_'  , i.e. 

is q-distributive. The proposition is proved. 

PROPOSITION 2. Let ~ be a varlet2 of universal 

and the lattice L(~) is weakl20-semimodular 

The following are equivalent; 

a) ~ is hereditaril~ selfdual; 

b) L(~) is a direct product of a finite number 

~f finite chains. 

Proof. The implication b)--~a) is evident. 

a)~ b). Let (~c_ ~ and ~ is an arbitrary 

duallsm of L((~4 ) onto itself, and let ~ .  The 

lattice I<OL) is atomic as well as an arbitrary 

subvariety lattice. Hence ~( ~ )~ where ~ is an 

a~om of L(~ ) and ~ g ~  where 4~= ~-~( ~ ) is a 
coatom of L(~). We see that the lattice L(~) is 

strongly coatomic �9 
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Further both ~let ~ ~ / ~  and ~ =~v~ 
covers and ~; and ~ xs an arbitrary 

dualism of L(~ ) onto itself. Then ~= ~(~ ) is 
covered by ~ (~) and ~ (~), i.e. ~( g ~and 

M* (~) are atoms of L(~). It is clear that ~(~)# 

~ (~). The d-semimedularity of L(~) implies that 

V(~ ) v T(~ ) covers both V (~) and ~ (~). 

Hence ~ and ~ cover ~^~ . Thus we prove that 

the lattice L(~) is lower weakly semimodular. 

Besides that L(~) is coalgebraic as well as any 

subvariety lattice. By the statement dual to the Theorem 

3.7 [3] a coalgebraic, strongly coatomic and lower 

weakly semimodular lattice is lower semimodular. Hence 

L(~) is lower semimodular. The selfduality of L(~) 

implies that it is semimodular. But a semimodular, lower 

semimodular and coalgebraic lattice is modular by the 

statement dual to the Theorem 3.6 [3]. We see that 

L(~) is modular. 

Suppose that L(~) is not distributive. Then it 

contains the 5-element modular non-distributive 

sublattice. Let ~ be the gratest element of this 

sublattice. The selfduality of L(~) implies that it 

is not d-distributive. But it is impossible by 

Proposition I. 

Thus L(~) is distributive. Finally by n 

Proposition~ I ~ is semichain, i.e. ~= i~I i 

where ~ ~I' "'" ' ~ ~ are pairwise disjoint varieties 

and L(~I) , , L(n~ n) are finite chains. It is 

clear that L(~) ~ L( ~1)x ...x L(Cn). The 

proposition is proved. 

As it is noted in [8], there exists a variety of 

universal algebras ~ such that L(~) is the 

5--element non-modular lattice. It means, in particular, 

that an analogue of Preposition 2 does not valid for 

arbitrary varieties of universal algebras. 

We finish a universal algebraic part of our work. 

Further we deal with semigroup varieties only. 
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Let us introduce the notations for some concrete 

semigroup varieties : 

~r = vat {xry =,Y, xy = yx], r>/2; 

~ ~ v.r ~ : y~, 

vat {xl...x k - t  2, xy = y x ] ,  k~2; 

~ -- vat ~xyz -- t2}; 

: vat {xy, : t3 xy : 

Recall that a semigroup variety is called 

Cliffordian (or completely regular) if it consists of 

Cliffordian semigroups (unions of groups) only. 

THEOREM I. For an arbitrary semigroup variety 

the f o!lowing are equivalent: 

a) ~ is hereditaril 2 selfdua.1; 

b) L(~) is a direct product of _a finite number of 

finitw chain s ; 
c) ~ is semichain and L(~ ) is modular; 

d) q~ is contained either i._nn a variety of the kind 

qv ~vq~vTvQCL 2 where ? is a se_~michain periodic.~ 

or in a variet2 of the kind ~ r V ~ - V ~  ~rou~ variety 

"n,. ;5. 
Proof. It is well known that the lattice of all 

semigroup varieties is weakly 0-semimodular (see, e.g., 

[4]). Hence the equivalence of a) and b)follows 

immediately from Proposition 2. The implication b)--~c) 

is evident. 

c) ~d). It is easy to verify that the lattice 

L( ~v ~'L ) is non-modular if ~ is a non-commutative 

Cliffordian variety and "~ is a nilvariety, ~ ~2" 

~his is an easy consequence of Lemma I [22], e.g.). 

Hence either each Cliffordian subvariety of ~4" is 

commutative or each nil-subvariety of ~ is contained 

in ~/~2" Further ~ is a join of a finite number of 
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pairwise disj@int small chain varieties. By Corollary I 
of [15~ varieties ~, ~, T' ~[k' q~2 ~ and only 
they are nongroup small chain varieties. We see that 

~C~V~V~vTV~ 2 where ~ is.~a semichain 
group variety if each nil-subvariety of r~ is contained 

in q~2 and ~ @ - ~ ~  where ~e~k,~ , 

~ ~ if each Cliffo~i~ ~ubvariety of ~C is 

commutative. 
d)--~b). The proof of this implication is naturally 

divided into two cases. 

(i)~C_~V~V@~V~M ~b 2 wheren ~ is a 

semichain group variety, i.e. ~ = i~I ~i where ~I, 
�9 "" ' ~ n are pairwise disjoint small chain group 

varieties.V It is easy to verify that L(~ ) ~ L( ~1)x 
x... XL( ~ ) (stronger results see [qS~, Lemma ~, or 
~9]' Lemm~ ~). By results of ~2] L(~vZV~ v~v~2 ) ~ 
= L(~) ~ L( ~ )x L(~) ~L(~)~ L( ~2 )" It remains to 
account that ~ ~ ~ and "~V- 2 are small chain 
varieties. 

(i[) ~ r V ~  where ~~k,~,'~. By 

[10] L(~V~ ) = L( ~)x L(~) for any semigroup 
variety ~'~. Further by Proposition 2 [19] L(~ ~V 

~. -r ~ = ~ 2 
~ ) ~ ~'( ~r)~ ~C ~ ) where ~ var ~x y ~ ztz - 

= yx2~. But ~k'@7"~ '~c5-c~ . Hence L(&rZrV~V 

for any ~g [~k,~,~ ~. Finally L(~ r ) is a 

direct product of a finite number of finite chains and 
k' ~' ~ and ~ are small chain varieties. The 

theorem is proved. 
Locally finite chain varieties of groups were 

described in [2]. Combining this result with Theorem I 
we obtain a complete description of hereditarily self dual 
locally finite semigroup varieties. 

It is interesting to compare Theorem I with the 
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description of hereditarily selfdual congruence- 

permutable varieties obtained in ~8]. 

PROPOSITION 3 ( ~8], Theorem 2). For a congruence- 

permutable variety of universal algebras q~ the 

following are equivalent: 

a) ~ i_~shereditaril 2 selfdual; 

b) ~4 ~ i_~s semichain ; 

c) L(q~ is a direct product of a finite number 

of finite chains. 

We see that the semigroup case differs essentially 

from the congruence-permutable one: a semichain variety 

of semigroups often is not hereditarily selfdual. However 

Theorem I and Proposition 5 have an essential "common 

part" too: equivalence of hereditary selfduality of 

and decomposability of L(q~) into direct product 

of a finite number of finite chains. Of course, this 

coincidence is not accidentally. This equivalence is 

guaranteed by Proposition 2 in both cases. 

w HEREDITARILY ADMITTING DUALITY VARIETIES 

We start this section from the statement which 

gives some information about arbitrary admitting duality 

semigroup varieties. We do not use it below. It seems 

however that it is of some independent interest. 

It is well known that a semigroup variety ~ is 

periodic (i.e. consists of periodic semigroups) if and 

only if ~L~OZ where ~ = var [xy = yx}. 

LEMMA I. An arbitrar~ admitting dualit ~ semigroup 

variety e~ i._ss periodic. 

Proof. Let e~1 be an arbitrary semigroup variety 

dual to ~ . The lattice L(q4 ~l) is coalgebraic smd 

hence the lattice L(~/~) is algebraic. But the lattice 

L(0~) is not algebraic. Indeed ~3 = 6~ 3A~ = 

:~5^(n~I 07~2n)6 nV=1 (0~3^~2n) -~, i.e. L(Q5 ) 

is not continlous, but every algebraic lattice is 
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continious. 

Now we start to investigate h.a.d, semigroup 

varieties. As we mentioned above, the lattice of all 

semigroup varieties is weakly ~-semimodular. A simple 

modification of first, second and third paragraphs of 

proving of the implication a)~b) of Proposition 2 

permits to obtain the following two lemmas. 

LEMPirA 2. Tf ~ is a h.a.d, semi~rouR variety then 

L(~) i~s strongly coatomic. 

LEMMA 3. If ~ is a h.a.d, semigroup varlet ~ then 

L(~) is lower semimodular. 

Following ~13~ we shall say that a semigroup variety 

has a finite index if there exists a natural number 

n such that an arbitrary nilsemigroup of ~- is 

nilpotent of step ~ n; the least n with this property 

is called the index of ~ . It is easy to verify that a 

variety ~ has an index ~ 2 if and only if ~ ~ 3  

(see ~5~, Lemma 3). 

LEMMA 4. Let ~ b_~e a non-commutative semigroup 

variety of an index ~ 2. Then ~v~3 is not a h.a.d. 

variety. 

Proof. The non-commutativity of ~ implies easily 

that ~ v~3~L ~ (see ~22~, Lemma I). Further ~ 

~3 implies that ~ V~. 2 ~ ~v~3. Suppose that 

~v 1FL 3 is h.a.d.~By Lemma 2 there exists a coatom ~IL 

of the interval L~V~, ~v~L3~. (May be that 

~(~2 but it is not essential for the proof). It is 

easy to verify that ~F~v~ = ~ v~3 and ~r~A ~2 
3 = 

2 =~2" We see tha~ ~3PLv~o covers ~ but ~3 

does not cover ~A~.~ Thus the lattice L(~V~ 3) 

is not lower semimodular that is impossible by Lemma 3. 

The lemma is proved. 

Let P be the semigroup ~e, a, ~ where e 2 = e, 

ea = a and all other products are equal ~ and ~ be 

the semigroup dual to P. Eecall that a semigroup variety 

is said to be a variety with central idempotents if it 
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2 satisfies the implication e = e--~ex = xe. 

Li~I~ 5 ([22~, Lemma 2). If ~ i_~s ~ semigroup 

4 "- variet ~ containing no varieties ~, vat P and var P 

then ~ i_~s ~ variety with central idem~otents. 

LE~A 6. A_~n arbitrary h.a.d, semigroup v srietF~ 

has a finite index. 

Proof. By Theorem 2 of ~3] it is sufficient to 

verify that ~ ~  where ~ = var {x2y = y, xy = 

= yx}. It is well known that L(~) is a chain of the 

type ~+ I (see, e.g., [4]). It remains to refer to 

Lemma 2. 

It is clear that an arbitrary semigroup variety of a 

finite index is periodic. Recall that a periodic variety 

contains the gratest group subvariety and the 

gratest nil-subvariety. We shall denote these varieties 

as G(~) and N(~) respectively. 

LEMMA 7. Let ~ b_~e s_ semigrou~ va~iet~ of a finite 

inde____~xwithoentra__~l idempotents. Then ~= ~v~v~'~ 

where ~ is ~ variet F of periodic groups, ~c~ and 

is a nilpotent varlet F. Horeover, if G(~) Is a 

small varlet F then ~ is a small one too. 

Proof. The first statement of the lemma immediately 

follows from following three facts: 

I) as it is follows from the proof of Proposition 1 

of [22] an arbitrary periodic variety with central 

idempotents is the join of a variety generated by a 

semigroup with the unit and a nilvariety; 

2) Lemma 9 of [22] easily implies that an arbitrary 

non-Cliffordiau semigroup with the unit generates a 

variety which has no a finite index. 
J 

3) it is easy to verify that an arbitrary 

Cliffordian variety with central idempotents is the join 

of a periodic group variety and a variety ~ . 

Thus ~ ~ ~ V ~  where ~ is a periodic 

group variety, _ and ~ is a~nilpotent variety. 

We may assume without loss of generality that 

= G ( ~ )  and ~ =  N ( ~ ) .  Let now ~ ~ .  Th~n 
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is a variety of a finite index with central idempotents. 

Hence ~ = ~' Vl~Sv~ j , where ~i is a periodic 
r ! M group variety, ~ _ ~ and ~ is nilpotent. It is 

IC %; i 
clear that ~ _0~' and "6Z, ~'~. Hence IL(q4") ~ 

(IL( ~ )I~ ~L( ~)Ix IL('~,)I. The lattices L(~) 

and L(~) are finite. Hence if L( ~ ) is finite 

then T,(~) is finite too. The lemmaUis proved. 

Now we ready to establish 

THEOREM 2. Let ~ be a h.a.d, semigroup varlet 2 

and one of the following conditions holds: 

( i ) ~ contains a nilsemigroup which is not a 

zer___2o semigroup; 

(ii) ~ satisfies an identit~ of the kind 

x 1...x n = Xl~ r ...Xn~ where ~ is_ a permutation, 

1~ # 1 and n~f ~ n. 

Then ~ 0~ r v ~ v/~ where ~ i_~s a nilpotent h.a.d. 

variet~. 

Proof. Lemmas 6 and 7 show that it is suffucient to 

verify that ~ is a variety with central idempotents 

and each group of ~ is abelian. If ~/~ satisfies 

condition (i) then it follows from Lemmas 4 and 5. 

Finally, in the case (ii) it is easy to see that ~/~ 

has the mentioned properties. 

Theorem 2 and the second statement of Lemma 7 imply 

COROLLARY. l~t ~ be a h.a.d, semigroup variet~ 

and one of the conditions (i) and (ii) o_f_f Theorem 2 

holds. Then ~ is a small variety. 

Recall that we denote as K the class of all 

semigroup varieties in which every periodic group is 

locally finite. Further we investigate semigroup 

varieties h.a.d, in K only. Our aim is to describe 

such varieties with the assumption that either (~) or 

( i'~ ) holds. 

Recall that a finite group is called critical if it 

does not belong to the variety generating by all its 

proper subgroups and all its proper factor-groups. It is 

well known that each critical group G contains the 
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~nique minimal non-trivial normal subgroup which is 

called the monolith of G (see, e.g., Theorem 51.32 of 

~I]). The following lemma communicated to the author by 

M.V.Sapir. 

LEMMA 8. There exists no locall~ finite group 

variety which subvariet2 lattice is the lattice on the 

Figure I. 

Proof. Let ~ be a counter- 

example to the lemma, ~ be the 

greatest proper subvariety~ of 

~p and ~q be atoms of L(~). 

(Of course p and q are different 

primes). It is convinient to divide 

further considerations on two steps. 

Step ~. Let us prove that ~ = 

= ~p~q (without loss ~~ 

generality). The variety @~ is 

locally finite and hence it is 

FIGURE I 

generated by its finite groups. It means that there 

exist finite groups of ~\ ( ~  V~). Let H be a 
F 

group of the least order among these finite groups. It 

is clear that H is a critical group. Let N be the 

monolith of H. Suppose that N = H. Then H is a 

simple group. Moreover, ~H~ = p~q~ and hence H is 

solvable (see, e.g., K7], Theorem 5.3.2). Thus H is a 

simple solvable group, i.e. a cyclic group of a prime 

order. But it is impossible because ~ = vat H ~p~ 

V~q. Thus N ~ H and hence N~ ~p~q. Put 

Np = ~x~N ~x p = I~ and Nq = ~x E N~ x q = I~. Then Np 

and N are characteristic subgroups of N. But a q 
monolith does not contain proper characteristic 

subgroups. Tha~s~ why either ~NP = L~I~j and N = Nq~ ~q 

or Nq-- ~lJ an~ N Np~ ~f~p~ Suppose that NE 

without loss Of generality. It is clear that IH/N~ �9 ~H~ 

and hence H/NO ~pV~q, in particular H/N is 

abelian. Thus th~ Sylow p-subgroup of H/N is a normal 

of H/N. Since N ~ ~p it implies that the subgroup 

V! 
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Sylow p-subgroup K of H is a normal subgroup of H. 

Hence HH/KI~-'~q We see that He ~p~Y~q and 

= var ~ ~pV~q. Finally, by Theorem 54.41 of 

~p V ~q is the gratest proper subvariety of 

Hence ~ = ~ ~ . 

Step 2. Consider now the variety ~ . As above 

r~d r vat G where G is a finite group of the least 
o e of z~4 ~,~\,~j and G is a critical group; further q 
M ~ G and M__~ = ~ p~Y~q where M is the monolith 

of G. Repeating the considerations of the Step I we 

prove that either M~ ~ p  and hence Q~ = O'~.p~-q = 
--~ or M~(~L . The first case is impossible. Thus q 
Me~q. It is clear that G/M~=~ (T~pdrCq Hence 

there exists a normal subgroup LTM of G/M such that 

L/M~p and (G/M)/(L/M)-~-G/L~(r~,q. Then L~ 

~q~_. But varieties ~_ ~_ and (~r~_(~ q are 

not compa~able, and hence ~ ~ .  Further ~pV 

(Y~q is the gratest prope~c subvarie~y of ~ ~p 

and hence Lg~pV~q. Put Lp =~x6Llx p -- ~. Then 

Lp is a characteristic subgroup of a normal subgroup L 

of G and hence Lp is a normal subgroup of G. But 

Lp~ _ M and M is the monolith of G. It means that 

L =~I~ and L E~ . Since G/LE~ we see that G~ p ~ q q 
e~ (~ and ~ = var G c(~ ~ . But it is 

q q d - q q 
impossible because ~q~ q ~  p. The lemma is proved. 

PROPOSITION 4. Let ~ be a nilvariety of 

semigrouos. The following are equivalent: 

a) ~ is h.a.d, in K; 

b) ~ i_~s hereditarily selfdual; 

c) ~ is a nilpotent chain variety; 

Proof. The equivalence of c) and d) follows from 

[15], the implications c) ~b) and b)---~a) are evident. 

a) ~c). By Lemma 6 ~ is nilpotent. Suppose that 

is not chain. By Corollary 2 of ~qS] ~ contains 
a variety ~ such that L(~) is the lattice dual to 

the lattice on Che Figure I. Lemma 8 shows that there no 
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exist locally finite group varieties dual to ~. 

Moreover result of K16~ implies that there no exist 

nongroup varieties with such properties too. Hence r~L 

is not h.a.d, in K. The proposition is proved. 

THEOREM 3. I@t ~f~b_~e~ semigrou~ variety and one of 

the followinE conditions holds: 

(i) ~ contains a n!lsem!group which is not a 

zero semigrou~; 

(ii) ~ satisfies an identity of the kind 

xl...x n = x1~ ...Xn~ where ~L ~ i_~s ~ permutation, 

I~11 and n~ in. 
The following are equivalent: 

a) ~ is h.a.d, in K; 

b) ~ i_~s hereditaril~ selfdual; 
2 c 

c) ~ ~ r V ~ V ~  where ~ ~k'~3 '~ 3 ~" 
l~oof, a)~). By Theorem 2 ~ ~ r V ~ V ~ '  

where ~ is a nilpotent h.a.d, variety. Moreover, the 

proof of Theorem 2 shows that r~= ~v ~V~, where 

~ r  and ~ ~ . In particular ~ ~  and 

is h.a.d, in K. It remains to account Proposition $. 

c)~b) by Theorem I. 

b)~a). It is sufficient to verify that if ~ 

C~then ~K. If ~ satisfies the condition ( ~ ) 

then each group of ~ is abelian by Lemma 4. It is 

evident that in the case (ii) ~ has the latest 

property too. We see that if ~ ~  then G(~) is 

abelian and hence ~K. It finishes the proof of the 

Theorem. 
Theorem 3 and Proposition 4 permit to assume that 

an arbitrary semigroup variety h.a.d, in K is 

hereditarily selfdual. Unfortunately this conjecture is 

false. The corresponding examples show on the Figure 2 

~.~ is the variety of 3-Engel groups of prime exponent 

P ~3~- The Figure 3 demonstrates an example of admitting 

duality but not h.a.d, in K semigroup variety (the 

proof of Proposition 4 implies that ~ admits 

no duality in class K). 
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FIGURE 2 

vat P 

FIGURE 5 

var {xyzt = u 2, xy~ = yxy, 
xyz = zyx } , I~ 

var [xyzt = uvu = xr, 

xyz = zyx ~ I 

/k 

Added in proof. Recently the author has proved that 

if ~ is a nilpotent variety and ~Pg~e then the 

variety OT~ r v~ is not h.a.d. It permits to obtain the 

following stronger version of Theorem 2: if ~ is a 

h.a.d, semigroup varie~ and one of the conditions (i) 

and (ii) holds then either ~ g ~ r V ~ V ~  where ~6~ 

is a nilpotent h.a.d, variety and "~'L~FL ~ or ~c~w~l 

where ~'~ is a nilpotent h.a.d, variety. 
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