MODULAR ELEMENTS OF THE LATTICE OF SEMIGROUP VARIETIES. II

BORIS M. VERNIKOV AND MIKHAIL V. VOLKOV

Abstract

We completely determine all semigroup varieties that are both modular and upper-modular elements of the lattice of all semigroup varieties as well as nilsemigroup varieties that are upper-modular elements of this lattice.

Introduction and summary

This note continues the article [10]. An element x of a lattice $\langle L ; \vee, \wedge\rangle$ is called modular if

$$
\forall y, z \in L: \quad y \leq z \longrightarrow(x \vee y) \wedge z=(x \wedge z) \vee y
$$

and upper-modular if

$$
\forall y, z \in L: \quad y \leq x \longrightarrow(z \vee y) \wedge x=(z \wedge x) \vee y
$$

Lower-modular elements are defined dually to upper-modular ones.
Semigroup varieties that are both modular and lower-modular elements of the lattice of all semigroup varieties were completely described in [10]. Here we consider the dual restriction. Besides that, we classify nilsemigroup varieties that are upper-modular elements of the lattice of all semigroup varieties.

In order to formulate our main results, we need some notation. We adopt the usual agreement of writing $w=0$ as a short form of the identity system $w u=u w=w$ where u runs over the set of all words. By var Σ we denote the variety of all semigroups satisfying the identity system Σ. Put

$$
\begin{aligned}
\mathfrak{S} \mathfrak{L} & =\operatorname{var}\left\{x^{2}=x, x y=y x\right\} \\
\mathfrak{C} & =\operatorname{var}\left\{x^{2} y=0, x y=y x\right\}
\end{aligned}
$$

We will denote the lattice of all semigroup varieties by $\mathbb{S E M}$. The first main result of this paper is the following

[^0]Theorem 1. A semigroup variety \mathfrak{V} is both a modular and an upper-modular element of the lattice $\mathbb{S E M}$ if and only if either \mathfrak{V} coincides with the class of all semigroups or $\mathfrak{V} \subseteq \mathfrak{S} \mathfrak{L} \vee \mathfrak{C}$.

Recall that a semigroup variety is called a nil-variety if it satisfies the identity $x^{n}=0$ for some n. Our second main result is the following

Theorem 2. A nil-variety \mathfrak{V} is an upper-modular element of the lattice $\mathbb{S E M}$ if and only if it satisfies the identities $x^{2} y=x y^{2}$ and $x y=y x$.

The note is structured as follows. Section 1 contains all necessary preliminaries. In Section 2 the "only if" parts of both the theorems are proved. In Sections 3 and 4 we verify the "if" parts of respectively Theorems 2 and 1.

1. Preliminaries

We start with some information about special elements of abstract lattices. Recall that an element x of a lattice L is called neutral if, for any two elements $y, z \in L$, the sublattice of L generated by x, y and z is distributive. An element a of a lattice L with 0 is called an atom of L if a is a minimal non-zero element.

Lemma 1.1. Let L be a lattice with 0 and let a be a neutral element of L. Then:
(i) if x is a modular element of L then so is $x \vee a$;
(ii) if a is an atom of L and x is an upper-modular element of L then $x \vee a$ is an upper-modular element of L too.

Proof. Part (i) is proved in [10, Lemma 1.6(ii)]. Let us verify (ii). We have to check that

$$
\begin{equation*}
(z \vee y) \wedge(x \vee a)=(z \wedge(x \vee a)) \vee y \tag{1}
\end{equation*}
$$

for every $y \in L$ such that $y \leq x \vee a$ and for an arbitrary $z \in L$. Since $y \leq x \vee a$ and a is neutral, we have

$$
\begin{equation*}
y=y \wedge(x \vee a)=(y \wedge x) \vee(y \wedge a) \tag{2}
\end{equation*}
$$

Now consider two cases: $y \nsupseteq a$ and $y \geq a$.

Case 1: $y \nsupseteq a$. Since a is an atom, we then have $y \wedge a=0$, and from (2) we conclude that $y=y \wedge x \leq x$. We have

$$
\begin{array}{rlrl}
(z \vee y) \wedge(x \vee a) & =((z \vee y) \wedge x) \vee((z \vee y) \wedge a) & & \text { because } a \text { is neutral } \\
& =((z \vee y) \wedge x) \vee((z \wedge a) \vee(y \wedge a)) & & \text { because } a \text { is neutral } \\
& =((z \vee y) \wedge x) \vee(z \wedge a) & & \text { because } y \wedge a=0 \\
& =((z \wedge x) \vee y) \vee(z \wedge a) & & \text { because } y \leq x \text { and } \\
& =((z \wedge x) \vee(z \wedge a)) \vee y & & x \text { is upper modular } \\
& =(z \wedge(x \vee a)) \vee y & & \\
\text { because } a \text { is neutral. }
\end{array}
$$

Thus, the desired equality (1) holds.
Case 2: $y \geq a$. From (2) we then have

$$
\begin{equation*}
y=(y \wedge x) \vee a \tag{3}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
(z \vee y) \wedge(x \vee a) & =(z \vee((y \wedge x) \vee a)) \wedge(x \vee a) & & \text { by }(3) \\
& =((z \vee(y \wedge x)) \vee a) \wedge(x \vee a) & & \\
& =((z \vee(y \wedge x)) \wedge x) \vee a & & \text { because } a \text { is neutral } \\
& =((z \wedge x) \vee(y \wedge x)) \vee a & & \text { because } y \wedge x \leq x \text { and } \\
& =((z \wedge x) \vee(y \wedge x)) \vee(a \vee(z \wedge a)) & & \text { by the absorbtion law } \\
& =((z \wedge x) \vee(z \wedge a)) \vee((y \wedge x) \vee a) & & \\
& =((z \wedge x) \vee(z \wedge a)) \vee y & & \text { by (3) } \\
& =(z \wedge(x \vee a)) \vee y & & \text { because } a \text { is neutral. }
\end{aligned}
$$

Thus, the equality (1) holds in this case as well.
Lemma 1.2. Let L be a lattice with $0, x \in L$, and let a be an atom and a neutral element of L. Then:
(i) if $x \vee a$ is a modular element of L then so is x;
(ii) if $x \vee a$ is an upper-modular element of L then so is x.

Proof. Since a is an atom of L, we have that, for any $z \in L, z \nsupseteq a$ if and only if $z \wedge a=0$. Because a is a neutral element of L, we have that, for any $b, c \in L$, if $b \wedge a=0$ and $c \wedge a=0$ then $(b \vee c) \wedge a=(b \wedge a) \vee(c \wedge a)=0$. In other words,

$$
\begin{equation*}
\forall b, c \in L: \quad b \nsupseteq a \& c \nsupseteq a \longrightarrow b \vee c \ngtr a . \tag{4}
\end{equation*}
$$

Further, it is known that if e is a neutral element of a lattice L and the equalities $f \wedge e=g \wedge e$ and $f \vee e=g \vee e$ hold true for some elements $f, g \in L$ then $f=g$ (see [3, Theorem III.2.4], for instance). Therefore,

$$
\begin{equation*}
\forall b, c \in L: b \nsupseteq a \& c \nsupseteq a \& b \vee a=c \vee a \longrightarrow b=c . \tag{5}
\end{equation*}
$$

Now we are well prepared to prove the claims (i) and (ii).
(i) Let $y, z \in L$ with $y \leq z$. We may assume that $x \nsupseteq a$ because $x \vee a=x$ in the contrary case. We have to check that

$$
\begin{equation*}
(x \vee y) \wedge z=(x \wedge z) \vee y \tag{6}
\end{equation*}
$$

Now consider two cases: $z \nsupseteq a$ and $z \geq a$.
Case 1: $z \nsupseteq a$. We have

$$
\begin{aligned}
(x \vee y) \wedge z & =((x \vee y) \wedge z) \vee(a \wedge z) & & \text { because } a \wedge z=0 \\
& =((x \vee y) \vee a) \wedge z & & \text { because } a \text { is neutral } \\
& =((x \vee a) \vee y) \wedge z & & \\
& =((x \vee a) \wedge z) \vee y & & \text { because } x \vee a \text { is modular } \\
& =((x \wedge z) \vee(a \wedge z)) \vee y & & \text { because } a \text { is neutral } \\
& =(x \wedge z) \vee y & & \text { because } a \wedge z=0 .
\end{aligned}
$$

We see that (6) holds whenever $z \nsupseteq a$.
Case 2: $z \geq a$. Then we have

$$
\begin{aligned}
((x \vee y) \wedge z) \vee a & =((x \vee y) \wedge z) \vee(a \wedge z) & & \text { because } a \wedge z=a \\
& =((x \vee y) \vee a) \wedge z & & \text { because } a \text { is neutral } \\
& =((x \vee a) \vee y) \wedge z & & \\
& =((x \vee a) \wedge z) \vee y & & \text { because } x \vee a \text { is modular } \\
& =((x \wedge z) \vee(a \wedge z)) \vee y & & \text { because } a \text { is neutral } \\
& =((x \wedge z) \vee a) \vee y & & \text { because } a \wedge z=a \\
& =((x \wedge z) \vee y) \vee a . & &
\end{aligned}
$$

We see that

$$
\begin{equation*}
((x \vee y) \wedge z) \vee a=((x \wedge z) \vee y) \vee a \tag{7}
\end{equation*}
$$

Suppose at first that $y \geq a$. Since $z \geq a$, we have $(x \vee y) \wedge z \geq a$ and $(x \wedge z) \vee y \geq a$. Therefore, the equality (7) is equivalent to (6) in the case we consider.

Finally, let $y \nsupseteq a$. Recall that $x \nsupseteq a$. Applying (4) we have $x \vee y \nsupseteq a$, whence $(x \vee y) \wedge z \nsupseteq a$. Furthermore, $x \nsupseteq a$ implies $x \wedge z \nsupseteq a$. Applying (4) again we have $(x \wedge z) \vee y \nsupseteq a$. Now we may apply (5) and (7) concluding that (6) is valid. Thus, the equality (6) holds in any case.
(ii) Let $y, z \in L$ with $y \leq x$. As in the proof of part (i), we may assume that $x \nsupseteq a$ because $x \vee a=x$ in the contrary case. Clearly, $y \leq x$ implies $y \vee a \leq x \vee a$. We have

$$
\begin{aligned}
((z \vee y) \wedge x) \vee a & =((z \vee y) \vee a) \wedge(x \vee a) & & \text { because } a \text { is neutral } \\
& =(z \vee(y \vee a)) \wedge(x \vee a) & & \\
& =(z \wedge(x \vee a)) \vee(y \vee a) & & \text { because } x \vee a \text { is } \\
& =((z \wedge x) \vee(z \wedge a)) \vee(y \vee a) & & \text { upper-modular } \\
& =((z \wedge x) \vee y) \vee((z \wedge a) \vee a) & & \\
& =((z \wedge x) \vee y) \vee a & & \text { because the absorbtion law. }
\end{aligned}
$$

We see that

$$
\begin{equation*}
((z \vee y) \wedge x) \vee a=((z \wedge x) \vee y) \vee a \tag{8}
\end{equation*}
$$

Recall that $x \nsupseteq a$. This implies $z \wedge x \nsupseteq a$. Besides that, $y \nsupseteq a$ because $y \leq x$. By (4) we conclude that $(z \wedge x) \vee y \nsupseteq a$. Furthermore, $x \nsupseteq a$ implies $(z \vee y) \wedge x \nsupseteq a$. Now we may apply (5) and (8) concluding that $(z \vee y) \wedge x=(z \wedge x) \vee y$, that is x is an upper-modular element.

Combining Lemmas 1.1 and 1.2, we have
Proposition 1.3. Let L be a lattice with $0, x \in L$, and let a be an atom and a neutral element of L. Then:
(i) x is a modular element of L if and only if so is $x \vee a$;
(ii) x is an upper-modular element of L if and only if so is $x \vee a$.

Now we apply the above results to the lattice of semigroup varieties. The following lemma contains some properties of the variety $\mathfrak{S L}$ that are most important for this paper.
Lemma 1.4. The variety $\mathfrak{S L}$ is:
(i) an atom of the lattice SEM;
(ii) a neutral element of the lattice SEM.

The claim (i) of this lemma is well known (see the survey [2], for instance). The statement (ii) is also known. It can be easily deduced from some remarks scattered over [$1,6,7$]; an explicit proof was given in [10, Proposition 2.4].

Lemma 1.4 and Proposition 1.3 immediately imply
Corollary 1.5. Let \mathfrak{M} be a semigroup variety.
(i) The variety \mathfrak{M} is a modular element of the lattice SEM if and only if so is the variety $\mathfrak{M} \vee \mathfrak{S L}$.
(ii) The variety \mathfrak{M} is an upper-modular element of the lattice $\mathbb{S E M}$ if and only if so is the variety $\mathfrak{M} \vee \mathfrak{S L}$.

2. Necessity

Modular elements of the lattice $\mathbb{S E M}$ have been studied by Ježek and McKenzie [5]. One should note that the paper [5] has dealt with the lattice of equational theories of semigroups, that is, the dual of SEM rather than the lattice $\mathbb{S E M}$ itself. However, the modular elements of the former lattice precisely correspond to the modular elements of $\mathbb{S E M}$. Indeed, the notion of a modular element is self-dual in the sense that a modular element of a lattice L is also modular in the dual of L (this readily follows from the definition or from [4, Proposition 2.1]). To reproduce a result from [5] concerning modular elements of the lattice $\mathbb{S E M}$, we need one definition. Following [10], we call a semigroup variety a Rees variety if it may be defined by a system of identities of the form $u=0$. Clearly, every Rees variety is a nil-variety. We start the proof of Theorem 1 with the following result due to Ježek and McKenzie [5, Proposition 1.6] (we "translate" the original result from the language of equational theories to the language of varieties).

Proposition 2.1. If a semigroup variety \mathfrak{V} is a modular element of the lattice $\mathbb{S E M}$ then either \mathfrak{V} coincides with the class of all semigroups or $\mathfrak{V} \subseteq \mathfrak{S} \mathfrak{L} \vee \mathfrak{R}$ for some Rees variety \mathfrak{R}.

This proposition easily implies
Corollary 2.2. If a semigroup variety \mathfrak{V} is a modular element of the lattice $\mathbb{S E M}$ then either \mathfrak{V} coincides with the class of all semigroups or \mathfrak{V} is a nilvariety or $\mathfrak{V}=\mathfrak{S} \mathfrak{L} \vee \mathfrak{N}$ for some nil-variety \mathfrak{N}.

Proof. Suppose that \mathfrak{V} differs from the class of all semigroups. By Proposition $2.1 \mathfrak{V} \subseteq \mathfrak{S} \mathfrak{L} \vee \mathfrak{R}$ for some Rees variety \mathfrak{R}. Applying Lemma 1.4(ii), we get

$$
\mathfrak{V}=\mathfrak{V} \wedge(\mathfrak{S} \mathfrak{L} \vee \mathfrak{R})=(\mathfrak{V} \wedge \mathfrak{S} \mathfrak{L}) \vee(\mathfrak{V} \wedge \mathfrak{R})
$$

Put $\mathfrak{N}=\mathfrak{V} \wedge \mathfrak{R}$. Since the variety $\mathfrak{S} \mathfrak{L}$ is an atom of the lattice $\mathbb{S E M}$, the variety $\mathfrak{V} \wedge \mathfrak{S} \mathfrak{L}$ coincides with either $\mathfrak{S L}$ or the trivial variety. Therefore, either $\mathfrak{V}=\mathfrak{N}$ or $\mathfrak{V}=\mathfrak{S} \mathfrak{L} \vee \mathfrak{N}$. It remains to note that the variety \mathfrak{N} is a nil-variety because of it is a subvariety of the nil-variety \mathfrak{R}.

Let now \mathfrak{V} be simultaneously a modular and an upper-modular element of the lattice $\mathbb{S E M}$. Of course, we may assume that \mathfrak{V} differs from the class of all semigroups. By Corollaries 2.2 and 1.5 , it suffices to verify that if \mathfrak{V} is a nil-variety then $\mathfrak{V} \subseteq \mathfrak{C}$.

Throughout the rest of this section we assume that \mathfrak{V} is a nil-variety.
We denote by F the free semigroup of a countable rank. The symbol \equiv stands for the equality relation on F. If $u \in F$, then $c(u)$ denotes the set of all letters occurring in u, while $\ell(u)$ stands for the length of u. Let $u, v \in F$. We
write $u \triangleleft v$ if $v \equiv a \xi(u) b$ for some endomorphism ξ of F and some $a, b \in F^{1}$ where F^{1} is F with the empty word 1 adjoined. We need the following technical remarks about identities of nil-varieties.

Lemma 2.3. Let \mathfrak{N} be a nil-variety.
(i) If \mathfrak{N} satisfies an identity $u=v$ with $c(u) \neq c(v)$, then \mathfrak{N} satisfies also the identity $u=0$.
(ii) If \mathfrak{N} satisfies an identity of the form $u=v u w$ where $v, w \in F^{1}$ and at least one of the words v and w is non-empty, then it satisfies also the identity $u=0$.
(iii) If \mathfrak{N} satisfies an identity of the form $x_{1} x_{2} \cdots x_{n}=u$ with $\ell(u) \neq n$, then it satisfies also the identity $x_{1} x_{2} \cdots x_{n}=0$.
(iv) If the variety \mathfrak{N} is commutative and satisfies an identity $u=v$ where $\ell(u)<\ell(v)$ and $u \triangleleft v$, then \mathfrak{N} satisfies also the identity $u=0$.

Proof. (i) We may assume that there is a letter $x \in c(v) \backslash c(u)$. Substituting 0 for x in the identity $u=v$, we obtain $u=0$.
(ii) The identity $u=v u w$ implies $u=v u w=v^{2} u w^{2}=\cdots=v^{n} u w^{n}=\cdots$. Since \mathfrak{N} is a nil-variety and at least one of the words v and w is non-empty, there is n with either $v^{n}=0$ or $w^{n}=0$ in \mathfrak{N}. Therefore, $u=0$ holds in \mathfrak{N}.
(iii) If $\ell(u)<n$, then $c(u) \neq\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and the statement (i) applies. If $\ell(u)>n$, then the claim follows from [8, Lemma 1].
(iv) This claim is a partial case of [9, Lemma 1.3(iii)].

Recall that a word u is said to be an isoterm in the variety \mathfrak{M} if no nontrivial identity of the form $u=v$ holds in \mathfrak{M}. Let \mathfrak{M}_{1} and \mathfrak{M}_{2} be arbitrary semigroup varieties and suppose that an identity $w_{1}=w_{2}$ holds in the variety $\mathfrak{M}_{1} \wedge \mathfrak{M}_{2}$. In this case there is a sequence of words $u_{0}, u_{1}, \ldots, u_{n}$ such that $u_{0} \equiv w_{1}, u_{n} \equiv w_{2}$ and, for every $i=0,1, \ldots, n-1$, the identity $u_{i}=u_{i+1}$ holds in either \mathfrak{M}_{1} or \mathfrak{M}_{2}. An arbitrary sequence of words with such properties will be called an $\left(\mathfrak{M}_{1}, \mathfrak{M}_{2}\right)$-deduction of the identity $w_{1}=w_{2}$.

Proposition 2.4. If \mathfrak{V} is a nil-variety and \mathfrak{V} is an upper-modular element of the lattice $\mathbb{S E M}$ then \mathfrak{V} is commutative.

Proof. Suppose that the commutative law fails in \mathfrak{V} and denote by \mathfrak{X} the subvariety of \mathfrak{V} defined within \mathfrak{V} by the identity $x y=y x$. Further, let \mathfrak{G} be an arbitrary non-abelian periodic group variety. Clearly, $\mathfrak{G} \wedge \mathfrak{V}$ is the trivial variety, and therefore $(\mathfrak{G} \wedge \mathfrak{V}) \vee \mathfrak{X}=\mathfrak{X}$. Since \mathfrak{V} is an upper-modular element of $\mathbb{S E M}$, this means that $(\mathfrak{G} \vee \mathfrak{X}) \wedge \mathfrak{V}=\mathfrak{X}$. The variety \mathfrak{X} satisfies the commutative law. Therefore, there is a $(\mathfrak{G} \vee \mathfrak{X}, \mathfrak{V})$-deduction of the identity $x y=y x$. In particular, there is a word u with $u \not \equiv x y$ and the identity $x y=u$ holds in either $\mathfrak{G} \vee \mathfrak{X}$ or \mathfrak{V}. Suppose that $x y=u$ holds in \mathfrak{V}. If $u \not \equiv y x$ then
either $c(u) \neq\{x, y\}$ or $\ell(u) \neq 2$. By the claims (i) and (iii) of Lemma 2.3 either $u \equiv y x$ or $x y=0$ holds in \mathfrak{V}. Since the variety \mathfrak{V} is non-commutative, both the cases are impossible. Therefore, the word $x y$ is an isoterm in \mathfrak{V}. Whence the identity $x y=u$ is satisfied by the variety $\mathfrak{G} \vee \mathfrak{X}$. In particular, $x y=u$ holds in the nil-variety \mathfrak{X}. Using the same arguments as above, we have that either $u \equiv y x$ or $x y=0$ holds in \mathfrak{X}. But the latter is not the case, and we have proved that the variety $\mathfrak{G} \vee \mathfrak{X}$ satisfies the commutative law. In particular, $x y=y x$ holds in the variety \mathfrak{G}, contradicting the choice of this variety.

$$
\text { Put } W=\left\{x^{2} y, x y x, y x^{2}, y^{2} x, y x y, x y^{2}\right\}
$$

Lemma 2.5. If a commutative nil-variety \mathfrak{M} satisfies an identity of the form $u=v$ where $u \in W$ then either $v \in W$ or \mathfrak{M} satisfies the identity $u=0$.

Proof. If $c(v) \neq\{x, y\}$ then $u=0$ in \mathfrak{M} by Lemma 2.3(i). Let now $c(v)=$ $\{x, y\}$. Let k (respectively, ℓ) be the number of occurences of the letter x (respectively, y) in v. Since the variety \mathfrak{M} is commutative, it satisfies $v=x^{k} y^{\ell}$ and either $u=x^{2} y$ or $u=x y^{2}$. Suppose that $v \notin W$. Then either $k \geq 3$ or $\ell \geq 3$ or $k=\ell=2$ or $k=\ell=1$. Applying then Lemma 2.3(iv) we conclude that \mathfrak{M} satisfies the identity $u=0$.
Proposition 2.6. If \mathfrak{V} is a nil-variety and \mathfrak{V} is an upper-modular element of the lattice $\mathbb{S E M}$ then \mathfrak{V} satisfies the identity $x^{2} y=x y^{2}$.

Proof. Suppose that the identity $x^{2} y=x y^{2}$ is false in \mathfrak{V} and denote by \mathfrak{X} the subvariety of \mathfrak{V} given within \mathfrak{V} by this identity. Further, let \mathfrak{G} be an arbitrary non-trivial periodic group variety. Clearly, $\mathfrak{G} \wedge \mathfrak{V}$ is the trivial variety, and therefore $(\mathfrak{G} \wedge \mathfrak{V}) \vee \mathfrak{X}=\mathfrak{X}$. Since \mathfrak{V} is an upper-modular element of $\mathbb{S E M}$, this means that $(\mathfrak{G} \vee \mathfrak{X}) \wedge \mathfrak{V}=\mathfrak{X}$. The variety \mathfrak{X} satisfies the identity $x^{2} y=x y^{2}$. Therefore, there is a $(\mathfrak{G} \vee \mathfrak{X}, \mathfrak{V})$-deduction of this identity. Let

$$
x^{2} y \equiv u_{0}, u_{1}, \ldots, u_{n} \equiv x y^{2}
$$

be an arbitrary such deduction. Put $W_{1}=\left\{x^{2} y, x y x, y x^{2}\right\}$ and $W_{2}=\left\{y^{2} x\right.$, $\left.y x y, x y^{2}\right\}$. Since $u_{0} \in W_{1}$ and $u_{n} \notin W_{1}$, there is an index $i>0$ such that $u_{i-1} \in W_{1}$ while $u_{i} \notin W_{1}$. The identity $u_{i-1}=u_{i}$ holds in one of the varieties $\mathfrak{G} \vee \mathfrak{X}$ and \mathfrak{V}. Suppose that $u_{i-1}=u_{i}$ in \mathfrak{V}. The variety \mathfrak{V} is commutative by Proposition 2.4. Therefore, it satisfies all identities of the type $w_{1}=x^{2} y$ with $w_{1} \in W_{1}$ and $w_{2}=x y^{2}$ with $w_{2} \in W_{2}$. So, if $u_{i} \in W_{2}$ then $x^{2} y=y x^{2}$ in \mathfrak{V}. Furthermore, if $u_{i} \notin W_{2}$ then $u_{i} \notin W$. Now Lemma 2.5 applies and we conclude that \mathfrak{V} satisfies the identity $x^{2} y=0$. Therefore, $x y^{2}=0$ and $x^{2} y=x y^{2}$ in \mathfrak{V}. We prove that if $u_{i-1}=u_{i}$ holds in \mathfrak{V} then \mathfrak{V} satisfies the identity $x^{2} y=x y^{2}$. But this is not the case. Therefore, $u_{i-1}=u_{i}$ holds in $\mathfrak{G} \vee \mathfrak{X}$. In particular, $u_{i-1}=u_{i}$ in \mathfrak{X}. If $u_{i} \notin W_{2}$ then $u_{i} \notin W$, whence $x^{2} y=u_{i-1}=0$ in \mathfrak{X} by Lemma 2.5. But it is not the case. Therefore,
$u_{i} \in W_{2}$. This means that the variety $\mathfrak{G} \vee \mathfrak{X}$ satisfies the identity $u_{i-1}=u_{i}$ where $u_{i-1} \in W_{1}$ and $u_{i} \in W_{2}$. In particular, this identity holds true in the variety \mathfrak{G}. Recall that \mathfrak{G} is a non-trivial group variety. Substituting 1 for y in the identity $u_{i-1}=u_{i}$, we obtain that $x^{2}=x$ in \mathfrak{G}. Therefore, \mathfrak{G} is the trivial variety, a contradiction.

Propositions 2.4 and 2.6 imply necessity in Theorem 2.
We need the following easy observation.
Lemma 2.7. Let \mathfrak{M} be a nil-variety satisfying the identities $x^{2} y=x y^{2}$ and $x y=y x$. Then \mathfrak{M} satisfies also the identity

$$
\begin{equation*}
x^{2} y z=0 . \tag{9}
\end{equation*}
$$

Proof. Substituting $y z$ for y in $x^{2} y=x y^{2}$, we obtain that \mathfrak{M} satisfies the identities $x^{2} y z=x(y z)^{2}=x y^{2} z^{2}=x^{2} y z^{2}$. Now Lemma 2.3(ii) applies.

In [4], Ježek describes modular elements of the lattice of all varieties (more exactly, all equational theories) of any given type. In particular, [4, Lemma 6.3] implies that if a nil-variety \mathfrak{V} satisfies the identity $x^{2} y=x y^{2}$ and \mathfrak{V} is a modular element of the lattice of all groupoid varieties then $x^{2} y=0$ holds in \mathfrak{V}. This does not imply directly the same conclusion for nil-varieties that are modular elements of SEM since a modular element of SEM need not be a modular element of the lattice of all groupoid varieties. Nevertheless, the following "semigroup analogue" of the mentioned result by Ježek is true.

Proposition 2.8. If a nil-variety \mathfrak{V} is a modular element of the lattice $\mathbb{S E M}$ and satisfies the identities $x^{2} y=x y^{2}$ and $x y=y x$ then $x^{2} y=0$ holds in \mathfrak{V}.

Proof. By Lemma 2.7 \mathfrak{V} satisfies the identity (9). Put $\mathfrak{X}=\operatorname{var}\left\{x^{2} y=\left(x^{2} y\right)^{2}\right\}$ and $\mathfrak{Y}=\operatorname{var}\left\{x^{2} y=\left(x^{2} y\right)^{2}, x y^{2}=\left(x y^{2}\right)^{2}\right\}$. Clearly, $\mathfrak{Y} \subseteq \mathfrak{X}$. The variety $\mathfrak{V} \wedge \mathfrak{X}$ satisfies the identities $x y^{2}=x^{2} y=\left(x^{2} y\right)^{2}$. Together with (9) this implies $x y^{2}=0$. In particular, $x y^{2}=\left(x y^{2}\right)^{2}$ in $\mathfrak{V} \wedge \mathfrak{X}$, that is $\mathfrak{V} \wedge \mathfrak{X} \subseteq \mathfrak{Y}$. Thus, $(\mathfrak{V} \wedge \mathfrak{X}) \vee \mathfrak{Y}=\mathfrak{Y}$. Since \mathfrak{V} is a modular element of the lattice $\mathbb{S E M}$, $(\mathfrak{V} \vee \mathfrak{Y}) \wedge \mathfrak{X}=\mathfrak{Y}$. In particular, $x y^{2}=\left(x y^{2}\right)^{2}$ holds in $(\mathfrak{V} \vee \mathfrak{Y}) \wedge \mathfrak{X}$. Then there exists a $(\mathfrak{V} \vee \mathfrak{Y}, \mathfrak{X})$-deduction of the identity $x y^{2}=\left(x y^{2}\right)^{2}$. This means that there is a word u such that $u \not \equiv x y^{2}$ and $x y^{2}=u$ holds in either $\mathfrak{V} \vee \mathfrak{Y}$ or \mathfrak{X}. Clearly, the word $x y^{2}$ is an isoterm in the variety \mathfrak{X}. Therefore, $x y^{2}=u$ holds in $\mathfrak{V} \vee \mathfrak{Y}$ and, in particular, in \mathfrak{V}. Applying Lemma 2.5 we conclude that either $u \in W$ or $x y^{2}=0$ in \mathfrak{V}. In the latter case $x^{2} y=0$ in \mathfrak{V} because \mathfrak{V} is commutative. Let now $u \in W$. The identity $x y^{2}=u$ holds in $\mathfrak{V} \vee \mathfrak{Y}$, and moreover in \mathfrak{Y}. But it is clear that all non-trivial identities of the type $x y^{2}=u$ with $u \in W$ are false in \mathfrak{Y}.

Of course, our proof of Proposition 2.8 (namely, the choice of the varieties \mathfrak{X} and \mathfrak{Y} in this proof) is inspired by the proof of [4, Lemma 6.3].

Propositions 2.4, 2.6 and 2.8 imply together that $\mathfrak{V} \subseteq \mathfrak{C}$. The necessity in Theorem 1 is proved.

3. Sufficiency in Theorem 2

By Lemma 2.7, if a nil-variety satisfies the identities $x^{2} y=x y^{2}$ and $x y=y x$ then it satisfies the identity (9) too. Put

$$
\mathfrak{A}=\operatorname{var}\left\{x^{2} y z=0, x^{2} y=x y^{2}, x y=y x\right\}
$$

In this section we have to verify that any subvariety of \mathfrak{A} is an upper-modular element of the lattice $\mathbb{S E M}$.

Put $U=\left\{x^{2}, x^{3}, x^{2} y, x_{1} x_{2} \cdots x_{n} \mid n \in \mathbb{N}\right\}$ where \mathbb{N} stands for the set of all natural numbers. It is evident that any subvariety of \mathfrak{A} may be given in \mathfrak{A} only by identities of the type $u=v$ or $u=0$ where $u, v \in U$. The claims (i)-(iii) of Lemma 2.3 imply that if $u, v \in U$ and $u \not \equiv v$ then $u=v$ implies in \mathfrak{A} the identity $u=0$. Now it is very easy to check that the subvariety lattice of the variety \mathfrak{A} has the form shown on Fig. 1, where

$$
\begin{aligned}
\mathfrak{A}_{n} & =\operatorname{var}\left\{x^{2} y z=x_{1} x_{2} \cdots x_{n}=0, x^{2} y=x y^{2}, x y=y x\right\} \quad(n \geq 4) \\
\mathfrak{B} & =\operatorname{var}\left\{x^{2} y z=x^{3}=0, x^{2} y=x y^{2}, x y=y x\right\} \\
\mathfrak{B}_{n} & =\operatorname{var}\left\{x^{2} y z=x^{3}=x_{1} x_{2} \cdots x_{n}=0, x^{2} y=x y^{2}, x y=y x\right\} \quad(n \geq 4) \\
\mathfrak{C}_{n} & =\operatorname{var}\left\{x^{2} y=x_{1} x_{2} \cdots x_{n}=0, x y=y x\right\} \quad(n \geq 3) \\
\mathfrak{D} & =\operatorname{var}\left\{x^{2}=0, x y=y x\right\} \\
\mathfrak{D}_{n} & =\operatorname{var}\left\{x^{2}=x_{1} x_{2} \cdots x_{n}=0, x y=y x\right\} \quad(n \in \mathbb{N})
\end{aligned}
$$

Let $\mathfrak{X} \subseteq \mathfrak{A}$. We have to check that if $\mathfrak{Y} \subseteq \mathfrak{X}$ and \mathfrak{Z} is an arbitrary semigroup variety then $(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}=(\mathfrak{Z} \wedge \mathfrak{X}) \vee \mathfrak{Y}$.

We need some definitions and notation. Recall that a semigroup S is called nilpotent if it satisfies an identity of the form $x_{1} x_{2} \cdots x_{k}=0$. If k is the least number with such a property then S is said to be nilpotent of index k. A semigroup variety \mathfrak{M} is called a variety of a finite index if there is a natural k such that every nilsemigroup from \mathfrak{M} is nilpotent of index $\leq k$; the least k with this property is called the index of \mathfrak{M}. If \mathfrak{M} is a variety of a finite index, we denote its index by $\operatorname{ind}(\mathfrak{M})$; otherwise we write $\operatorname{ind}(\mathfrak{M})=\infty$. Let \mathfrak{M}_{1} and \mathfrak{M}_{2} be arbitrary semigroup varieties. It is clear that

$$
\left\{\begin{array}{l}
\operatorname{ind}\left(\mathfrak{M}_{1} \vee \mathfrak{M}_{2}\right)=\max \left\{\operatorname{ind}\left(\mathfrak{M}_{1}\right), \operatorname{ind}\left(\mathfrak{M}_{2}\right)\right\}, \tag{10}\\
\operatorname{ind}\left(\mathfrak{M}_{1} \wedge \mathfrak{M}_{2}\right)=\min \left\{\operatorname{ind}\left(\mathfrak{M}_{1}\right), \operatorname{ind}\left(\mathfrak{M}_{2}\right)\right\}
\end{array}\right.
$$

Figure 1. The subvariety lattice of the variety \mathfrak{A}
(we assume here that $k \leq \infty$ for any $k \in \mathbb{N} \cup\{\infty\}$). For a variety \mathfrak{M} with $\mathfrak{M} \subseteq \mathfrak{A}$, we define by \mathfrak{M} the least of the varieties $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$ and \mathfrak{D} that contains \mathfrak{M}. Fig. 1 shows that if $\mathfrak{M}_{1}, \mathfrak{M}_{2} \subseteq \mathfrak{A}$ then

$$
\mathfrak{M}_{1}=\mathfrak{M}_{2} \Longleftrightarrow \operatorname{ind}\left(\mathfrak{M}_{1}\right)=\operatorname{ind}\left(\mathfrak{M}_{2}\right) \text { and } \overline{\mathfrak{M}}_{1}=\overline{\mathfrak{M}}_{2} .
$$

Therefore, we have to verify the following two equalities:

$$
\begin{align*}
& \frac{\operatorname{ind}((\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X})=\operatorname{ind}((\mathfrak{Z} \wedge \mathfrak{X}) \vee \mathfrak{Y}),}{(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}}=\overline{(\mathfrak{Z} \wedge \mathfrak{X}) \vee \mathfrak{Y}} . \tag{11}
\end{align*}
$$

Put $\operatorname{ind}(\mathfrak{X})=k, \operatorname{ind}(\mathfrak{Y})=\ell$ and $\operatorname{ind}(\mathfrak{Z})=m$. According to (10), we have

$$
\begin{aligned}
& \operatorname{ind}((\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X})=\min \{\max \{m, \ell\}, k\}, \\
& \operatorname{ind}((\mathfrak{Z} \wedge \mathfrak{X}) \vee \mathfrak{Y})=\max \{\min \{m, k\}, \ell\} .
\end{aligned}
$$

Clearly, $\ell \leq k$ because $\mathfrak{Y} \subseteq \mathfrak{X}$. It is then evident that $\min \{\max \{m, \ell\}, k\}=$ $\max \{\min \{m, k\}, \ell\}$. The equality (11) is proved.

It remains to verify the equality (12). Clearly, it is equivalent to the following claim: if u is one of the words $x^{3}, x^{2} y$ and x^{2} then the variety $(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}$
satisfies the identity $u=0$ if and only if the variety $(\mathfrak{Z} \wedge \mathfrak{X}) \vee \mathfrak{Y}$ does so. Obviously, $(\mathfrak{Z} \wedge \mathfrak{X}) \vee \mathfrak{Y} \subseteq(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}$. Thus, we have to check that $u=0$ holds in $(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}$ whenever it is so in $(\mathfrak{Z} \wedge \mathfrak{X}) \vee \mathfrak{Y}$. Further considerations are naturally divided into two cases.

Case 1: u is one of the words x^{2} and x^{3}. We prove that if the variety $(\mathfrak{Z} \wedge \mathfrak{X}) \vee \mathfrak{Y}$ satisfies an identity of the form $x^{n}=0$ for some n then $x^{n}=0$ holds in the variety $(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}$ as well. (This is evident whenever $n>3$ because $x^{4}=0$ in \mathfrak{A}, and moreover in \mathfrak{X}. But the proof we give below does not depend on n.) Suppose that $x^{n}=0$ in $(\mathfrak{Z} \wedge \mathfrak{X}) \vee \mathfrak{Y}$. This means that $x^{n}=0$ in \mathfrak{Y} and there is a $(\mathfrak{Z}, \mathfrak{X})$-deduction of the identity $x^{n}=0$. In particular, there is a word v such that $v \not \equiv x^{n}$ and $x^{n}=v$ holds in either \mathfrak{Z} or \mathfrak{X}. Suppose that $x^{n}=v$ in \mathfrak{X}. Since \mathfrak{X} is a nil-variety, the claims (i) and (ii) of Lemma 2.3 imply that $x^{n}=0$ in \mathfrak{X}, and moreover in $(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}$. Let now $x^{n}=v$ in \mathfrak{Z}. If $c(v)=\{x\}$ then $x^{n}=v$ is an identity of the form

$$
\begin{equation*}
x^{n}=x^{m} \tag{13}
\end{equation*}
$$

where $n \neq m$. Suppose that $c(v) \neq\{x\}$. If $\ell(v) \neq n$ then substituting x for each letter from $c(v) \backslash\{x\}$ in the identity $x^{n}=v$, we deduce from this identity an identity of the form (13) with $n \neq m$. Finally, if $\ell(v)=n$ then we obtain an identity of the same form by substitution x^{2} for any letter from $c(v) \backslash\{x\}$ in $x^{n}=v$. Thus, in any case the variety \mathfrak{Z} satisfies an identity of the form (13) with $n \neq m$. If $m<n$ then multiplying both the sides of this identity by x^{n-m} we obtain the identity $x^{2 n-m}=x^{n}$. Clearly, $2 n-m>n$. Thus, we may assume that \mathfrak{Z} satisfies an identity of the form (13) for some $m>n$. Since $x^{n}=0$ in \mathfrak{Y}, the variety $\mathfrak{Z} \vee \mathfrak{Y}$ also satisfies (13) for some $m>n$. Applying Lemma 2.3(ii) we have that any nil-subvariety of $\mathfrak{Z} \vee \mathfrak{Y}$ satisfies $x^{n}=0$. In particular, it is so for the variety $(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}$.

Case 2: $u \equiv x^{2} y$. Now we have to check that if the variety $(\mathfrak{Z} \wedge \mathfrak{X}) \vee \mathfrak{Y}$ satisfies the identity $x^{2} y=0$ then the variety $(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}$ does so. We may assume that $\mathfrak{Z} \nsupseteq \mathfrak{X}$ because $(\mathfrak{Z} \wedge \mathfrak{X}) \vee \mathfrak{Y}=\mathfrak{X}=(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}$ otherwise. In particular, $\mathfrak{Z} \nsupseteq \operatorname{var}\{x y=y x\}$. As well known, this means that \mathfrak{Z} consists of periodic semigroups or, equivalently, satisfies an identity of the form (13) with $n<m$ (see, e.g., [2]). Since \mathfrak{Y} is a nil-variety, an identity of this form holds in the variety $\mathfrak{Z} \vee \mathfrak{Y}$. By Lemma 2.3(ii) this implies that any nil-subvariety of $\mathfrak{Z} \vee \mathfrak{Y}$ satisfies the identity $x^{n}=0$. Hence there exists the (unique) greatest nilsubvariety of the variety $\mathfrak{Z} \vee \mathfrak{Y}$. We denote this subvariety by $\operatorname{Nil}(\mathfrak{Z} \vee \mathfrak{Y})$. It is evident that $\operatorname{Nil}(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X} \subseteq(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}$. On the other hand, any semigroup from $(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}$ is a nilsemigroup (because \mathfrak{X} is a nil-variety) and this nilsemigroup lies both in $\mathfrak{Z} \vee \mathfrak{Y}$ and \mathfrak{X}. Therefore, $(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X} \subseteq \operatorname{Nil}(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}$. We see that

$$
\begin{equation*}
(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}=\operatorname{Nil}(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X} \tag{14}
\end{equation*}
$$

As in Section 2 put

$$
W=\left\{x^{2} y, x y x, y x^{2}, y^{2} x, y x y, x y^{2}\right\} .
$$

The variety $(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}$ is commutative. Therefore, it suffices to verify that this variety satisfies an identity $w=0$ for some word $w \in W$. By the hypothesis the variety $(\mathfrak{Z} \wedge \mathfrak{X}) \vee \mathfrak{Y}$ satisfies the identity $x^{2} y=0$. This means that $x^{2} y=0$ in \mathfrak{Y} and there is a $(\mathfrak{Z}, \mathfrak{X})$-deduction of the identity $x^{2} y=0$. Let $x^{2} y \equiv u_{0}, u_{1}, \ldots, u_{n}, 0$ be an arbitrary such deduction. Suppose that $u_{n} \in W$. The identity $u_{n}=0$ holds in one of the varieties \mathfrak{Z} and \mathfrak{X}. Suppose that $u_{n}=0$ in \mathfrak{Z}. Because $u_{n} \in W$ and the variety \mathfrak{Y} is commutative and satisfies the identity $x^{2} y=0$, we have $u_{n}=0$ in \mathfrak{Y}. Therefore, $u_{n}=0$ in $\mathfrak{Z} \vee \mathfrak{Y}$, and moreover in $(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}$. Obviously, the same is the case whenever $u_{n}=0$ in \mathfrak{X}. Since $u_{n} \in W$, we are done.

Let now $u_{n} \notin W$. Since $u_{0} \in W$, then there is an index $i>0$ such that $u_{i} \notin W$ while $u_{i-1} \in W$. The identity $u_{i-1}=u_{i}$ holds in one of the varieties \mathfrak{Z} and \mathfrak{X}. If $u_{i-1}=u_{i}$ in \mathfrak{X} then Lemma 2.5 applies and we conclude that $u_{i-1}=0$ in \mathfrak{X}, and moreover in $(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}$. Since $u_{i-1} \in W$, we are done.

Finally, suppose that $u_{i-1}=u_{i}$ in \mathfrak{Z}. Note that $u_{i-1}=0$ in \mathfrak{Y} because $x^{2} y=0$ in \mathfrak{Y}, the variety \mathfrak{Y} is commutative and $u_{i-1} \in W$. We are going to check that $u_{i-1}=0$ in $(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}$. This suffices for our aims because $u_{i-1} \in W$. Suppose at first that there is a letter $z \in c\left(u_{i}\right) \backslash\{x, y\}$. Substitute u_{i-1}^{2} for z in the identity $u_{i-1}=u_{i}$. We obtain an identity of the type $u_{i-1}=$ $w_{1} u_{i-1}^{2} w_{2}$ for some (maybe empty) words w_{1} and w_{2}. This identity holds in $\mathfrak{Z} \vee \mathfrak{Y}$ because $u_{i-1}=u_{i}$ in \mathfrak{Z} and $u_{i-1}=0$ in \mathfrak{Y}. By Lemma 2.3(ii) $u_{i-1}=0$ holds in $\operatorname{Nil}(\mathfrak{Z} \vee \mathfrak{Y})$, and moreover in $\operatorname{Nil}(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}$. We are done by (14).

Let now $c\left(u_{i}\right) \subseteq\{x, y\}$. Recall that a word u is called linear if every letter occurs in u at most one time. We write $u \approx v$ if the word v may be obtained from the word u by renaming of letters. Suppose that the identity $u_{i}=0$ is false in the variety \mathfrak{Y}. Because $x^{2} y=0$ in \mathfrak{Y}, this means that either u_{i} is linear or $u_{i} \approx x^{2}$. Since $c\left(u_{i}\right) \subseteq\{x, y\}$, we have $u_{i} \in\left\{x, y, x y, y x, x^{2}, y^{2}\right\}$. Substitute x for y in the identity $u_{i-1}=u_{i}$. We obtain either $x^{3}=x$ or $x^{3}=x^{2}$. Each of these two identities implies $x^{4}=x^{2}$. Thus, $x^{4}=x^{2}$ in \mathfrak{Z}, and therefore $x^{4} y=x^{2} y$ in $\mathfrak{Z} \vee \mathfrak{Y}$. By Lemma 2.3(ii), we have $x^{2} y=0$ in $\operatorname{Nil}(\mathfrak{Z} \vee \mathfrak{Y})$, and moreover in $\operatorname{Nil}(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}$. According to (14) $x^{2} y=0$ in $(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}$.

Finally, let $u_{i}=0$ in \mathfrak{Y}. Then we have $u_{i-1}=u_{i}$ in \mathfrak{Y}, and therefore in $\mathfrak{Z} \vee \mathfrak{Y}$. Recall that $c\left(u_{i}\right) \subseteq\{x, y\}$. If $c\left(u_{i}\right) \subset\{x, y\}$ then Lemma 2.3(i) applies and we conclude that $u_{i-1}=0$ in $\operatorname{Nil}(\mathfrak{Z} \vee \mathfrak{Y})$, and moreover in $\operatorname{Nil}(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}$. Now the equality (14) applies. It remains to consider the case $c\left(u_{i}\right)=\{x, y\}$. Let k (respectively, ℓ) denote the number of occurrences of the letter x (respectively, y) in the word u_{i}. Since the variety \mathfrak{X} satisfies the commutative law, $u_{i}=x^{k} y^{\ell}$ in \mathfrak{X}. If $k=\ell=1$ then $u_{i} \in\{x y, y x\}$ and we may repeat literally the arguments from the previous paragraph. Furthermore, if either $k=2$,
$\ell=1$ or $k=1, \ell=2$ then $u_{i} \in W$ that contradicts the choice of the word u_{i}. Therefore, we may assume that either $k \geq 3$ or $\ell \geq 3$ or $k=\ell=2$. The variety \mathfrak{X} satisfies the identities $x^{3} y=0$ and $x^{2} y^{2}=0$ because $\mathfrak{X} \subseteq \mathfrak{A}$. Hence $u_{i}=0$ in \mathfrak{X}. Taking into account that $u_{i-1}=u_{i}$ in $\mathfrak{Z} \vee \mathfrak{Y}$, we obtain that the consequence $u_{i-1}, u_{i}, 0$ is a $(\mathfrak{Z} \vee \mathfrak{Y}, \mathfrak{X})$-deduction of the identity $u_{i-1}=0$, whence this identity holds in $(\mathfrak{Z} \vee \mathfrak{Y}) \wedge \mathfrak{X}$.

The equality (12) is proved. Thus, we have completed the proof of sufficiency in Theorem 2.

4. Sufficiency in Theorem 1

In this section we complete the proof of Theorem 1. It is evident that the variety of all semigroups is both a modular and an upper-modular element of the lattice $\mathbb{S E M}$. Let now \mathfrak{X} be a semigroup variety with $\mathfrak{X} \subseteq \mathfrak{S} \mathfrak{L} \vee \mathfrak{C}$. Repeating literally the proof of Corollary 2.2 , we conclude that either $\mathfrak{X}=\mathfrak{X}^{\prime}$ or $\mathfrak{X}=\mathfrak{S} \mathfrak{L} \vee \mathfrak{X}^{\prime}$ for some variety $\mathfrak{X}^{\prime} \subseteq \mathfrak{C}$. According to Corollary 1.5 it suffices to verify that each subvariety of the variety \mathfrak{C} is both a modular and an uppermodular element of the lattice $\mathbb{S E M}$. The "upper-modular half" of this claim immediately follows from Theorem 2. Thus, it remains to verify that any subvariety of the variety \mathfrak{C} is a modular element of the lattice $\mathbb{S E M}$.

Let $\mathfrak{X} \subseteq \mathfrak{C}$. In other words, \mathfrak{X} is one of the varieties $\mathfrak{C}, \mathfrak{C}_{n}, \mathfrak{D}$ and \mathfrak{D}_{n} (see Fig. 1). We have to check that if \mathfrak{Y} and \mathfrak{Z} are arbitrary semigroup varieties with $\mathfrak{Y} \subseteq \mathfrak{Z}$ then $(\mathfrak{X} \vee \mathfrak{Y}) \wedge \mathfrak{Z}=(\mathfrak{X} \wedge \mathfrak{Z}) \vee \mathfrak{Y}$. It suffices to verify that $(\mathfrak{X} \vee \mathfrak{Y}) \wedge \mathfrak{Z} \subseteq(\mathfrak{X} \wedge \mathfrak{Z}) \vee \mathfrak{Y}$ since the opposite inclusion is evident. In other words, we have to prove that an identity $u=v$ holds in $(\mathfrak{X} \vee \mathfrak{Y}) \wedge \mathfrak{Z}$ whenever it does so in $(\mathfrak{X} \wedge \mathfrak{Z}) \vee \mathfrak{Y}$. Let $u=v$ be an identity that holds in $(\mathfrak{X} \wedge \mathfrak{Z}) \vee \mathfrak{Y}$. Then $u=v$ in \mathfrak{Y} and there is an $(\mathfrak{X}, \mathfrak{Z})$-deduction of $u=v$. Let

$$
\begin{equation*}
u \equiv w_{0}, w_{1}, \ldots, w_{n} \equiv v \tag{15}
\end{equation*}
$$

be the shortest $(\mathfrak{X}, \mathfrak{Z})$-deduction of the identity $u=v$. In particular, this means that there are no $i \in\{0,1, \ldots, n-2\}$ with $w_{i}=w_{i+1}=w_{i+2}$ in one of the varieties \mathfrak{X} and \mathfrak{Z}. Besides that, if $n>1$ then there are no $i \in\{0,1, \ldots, n-1\}$ such that $w_{i}=w_{i+1}$ in both the varieties \mathfrak{X} and \mathfrak{Z}.

The case $n=1$ is fairly simple. Indeed, if $n=1$ then the identity $u=v$ holds in one of the varieties \mathfrak{X} and \mathfrak{Z}. Since this identity holds in \mathfrak{Y}, we have that $u=v$ in one of the varieties $\mathfrak{X} \vee \mathfrak{Y}$ and \mathfrak{Z}, and moreover in $(\mathfrak{X} \vee \mathfrak{Y}) \wedge \mathfrak{Z}$.

Suppose now that $n=2$. By symmetry we may assume that $u=w_{1}$ in \mathfrak{X} and $w_{1}=v$ in \mathfrak{Z}. Then $w_{1}=v=u$ in \mathfrak{Y}. We see that $u=w_{1}$ in $\mathfrak{X} \vee \mathfrak{Y}$ and $w_{1}=v$ in \mathfrak{Z}, so $u=v$ in $(\mathfrak{X} \vee \mathfrak{Y}) \wedge \mathfrak{Z}$.

Throughout the rest of this section we assume that $n \geq 3$.
First of all, let us consider some very special but important partial case. As we shall seen below, all other cases reduce to this one.

Lemma 4.1. If $n=3, w_{0}=w_{1}$ in $\mathfrak{Z}, w_{1}=w_{2}$ in \mathfrak{X} and $w_{2}=w_{3}$ in \mathfrak{Z} then the identity $u=v$ holds in the variety $(\mathfrak{X} \vee \mathfrak{Y}) \wedge \mathfrak{Z}$.

Proof. Recall that the identity $u=v$ holds in $\mathfrak{Y}, u \equiv w_{0}$ and $v \equiv u_{n}$. Since $\mathfrak{Y} \subseteq \mathfrak{Z}$, we have $w_{1}=w_{0}=w_{3}=w_{2}$ in \mathfrak{Y}. Therefore, the identity $w_{1}=w_{2}$ holds in the variety $\mathfrak{X} \vee \mathfrak{Y}$. Since the identities $w_{0}=w_{1}$ and $w_{2}=w_{3}$ hold true in \mathfrak{Z}, we are done.

Clearly, if u is a non-linear word and $u \not \approx x^{2}$ then the identity $u=0$ holds in \mathfrak{X}. Put

$$
\begin{aligned}
& Z=\{u \in F \mid u=0 \text { holds in } \mathfrak{X}\}= \\
& = \begin{cases}\left\{u \in F \mid u \text { is non-linear and } u \not \not x^{2}\right\} & \text { if } \mathfrak{X}=\mathfrak{C}, \\
\left\{u \in F \mid \text { either } u \text { is non-linear and } u \not \approx x^{2}\right. & \\
\text { or } u \text { is linear and } \ell(u) \geq n\} & \text { if } \mathfrak{X}=\mathfrak{C}_{n}, \\
\{u \in F \mid u \text { is non-linear }\} & \text { if } \mathfrak{X}=\mathfrak{D}, \\
\{u \in F \mid \text { either } u \text { is non-linear } & \\
\text { or } u \text { is linear and } \ell(u) \geq n\} & \text { if } \mathfrak{X}=\mathfrak{D}_{n},\end{cases} \\
& L=\{u \in F \mid u \text { is linear and } u \notin Z\}= \\
& = \begin{cases}\{u \in F \mid u \text { is linear }\} & \text { if } \mathfrak{X}=\mathfrak{C} \text { or } \mathfrak{X}=\mathfrak{D}, \\
\{u \in F \mid u \text { is linear and } \ell(u)<n\} & \text { if } \mathfrak{X}=\mathfrak{C}_{n} \text { or } \mathfrak{X}=\mathfrak{D}_{n} ;\end{cases} \\
& S=\{u \in F \mid u \notin Z \cup L\}= \begin{cases}\left\{u \in F \mid u \approx x^{2}\right\} & \text { if } \mathfrak{X}=\mathfrak{C} \text { or } \mathfrak{X}=\mathfrak{C}_{n}, \\
\varnothing & \text { if } \mathfrak{X}=\mathfrak{D} \text { or } \mathfrak{X}=\mathfrak{D}_{n} .\end{cases}
\end{aligned}
$$

Clearly, every word belongs to exactly one of the sets Z, L and S. In particular, it is so for each of the words $w_{0}, w_{1}, \ldots, w_{n}$. It is evident that if $w^{\prime}, w^{\prime \prime} \in Z$ then $w^{\prime}=w^{\prime \prime}$ in \mathfrak{X}. In the sequel we use this claim without any references.

Now we verify several properties of the sequence (15).
Lemma 4.2. If $w_{i}, w_{j} \in Z$ for some $0 \leq i<j \leq n$ then $j=i+1$. In particular, the sequence (15) contains at most two words from the set Z.

Proof. Suppose that $w_{i}, w_{j} \in Z$ for some $0 \leq i, j \leq n$ and $j>i+1$. Then $w_{i}=w_{j}$ in \mathfrak{X}, whence $w_{0}, w_{1}, \ldots, w_{i}, w_{j}, \ldots, w_{n}$ is an $(\mathfrak{X}, \mathfrak{Z})$-deduction of the identity $u=v$ that is shorter than (15).

Lemma 4.3. If $w_{i} \in S$ for some $0 \leq i \leq n$ then:
(i) either $i=0$ or $i=n$;
(ii) if $w_{0} \in S$ (respectively, $w_{n} \in S$) then the identity $w_{0}=w_{1}$ (respective$l y, w_{n-1}=w_{n}$) holds in the variety \mathfrak{Z}.

Proof. Let $w_{i} \in S$, that is $w_{i} \approx x^{2}$. Suppose that $i>0$ and the identity $w_{i-1}=w_{i}$ holds in \mathfrak{X}. The claims (i) and (ii) of Lemma 2.3 then imply that $x^{2}=0$ in \mathfrak{X}. Thus, $w_{i}=0$ in \mathfrak{X} that contradicts the claim $w_{i} \in S$. Therefore, if $i>0$ then the identity $w_{i-1}=w_{i}$ holds in \mathfrak{Z}. In particular, if $w_{n} \in S$ then $w_{n-1}=w_{n}$ in \mathfrak{Z}. Analogous arguments show that if $i<n$ (in particular, if $i=0$) then the identity $w_{i}=w_{i+1}$ holds in \mathfrak{Z}. The part (ii) is proved. Furthermore, if $0<i<n$ then $w_{i-1}=w_{i}=w_{i+1}$ in \mathfrak{Z}. But this is impossible. The part (i) is proved as well.

Lemma 4.4. If $w_{i} \in L$ for some $0<i<n$ then either $w_{i-1} \in L$ or $w_{i+1} \in L$.
Proof. Arguing by contradiction, suppose that $w_{i-1}, w_{i+1} \in Z \cup S$. If $w_{i-1} \in S$ then $w_{i-1}=w_{i}$ holds in \mathfrak{Z} by Lemma 4.3. Let now $w_{i-1} \in Z$. Then $w_{i-1}=0$ holds in \mathfrak{X} while the identity $w_{i}=0$ is false in \mathfrak{X}. Therefore, the identity $w_{i-1}=w_{i}$ is false in \mathfrak{X} too. This means that $w_{i-1}=w_{i}$ holds in \mathfrak{Z} as well. Analogously, the identity $w_{i}=w_{i+1}$ holds in \mathfrak{Z}, that is $w_{i-1}=w_{i}=w_{i+1}$ in 3. But this is impossible.

Lemma 4.5. Let $w_{i}, w_{i+1} \in L$ for some $0 \leq i \leq n-1$. The identity $w_{i}=w_{i+1}$ holds in the variety \mathfrak{X} if and only if $c\left(w_{i}\right)=c\left(w_{i+1}\right)$.

Proof. Let $w_{i}, w_{i+1} \in L$. If $c\left(w_{i}\right)=c\left(w_{i+1}\right)$ then $w_{i}=w_{i+1}$ in \mathfrak{X} because the variety \mathfrak{X} is commutative. Let now $c\left(w_{i}\right) \neq c\left(w_{i+1}\right)$. If $w_{i}=w_{i+1}$ in \mathfrak{X} then $w_{i}=0$ in \mathfrak{X} by Lemma 2.3(i). But this contradicts $w_{i} \in L$.

Lemma 4.6. If $w_{i}, w_{i+1} \in L$ for some $0 \leq i \leq n-1$ then the sequence (15) contains no word from the set Z.

Proof. Suppose that $i+1<n$ and $w_{i+2} \in Z$. Then $w_{i+2}=0$ holds in \mathfrak{X} while $w_{i+1}=0$ is false in \mathfrak{X}. Therefore, the identity $w_{i+1}=w_{i+2}$ is false in \mathfrak{X}. This means that $w_{i+1}=w_{i+2}$ in \mathfrak{Z}, and therefore $w_{i}=w_{i+1}$ in \mathfrak{X}. The latter together with Lemma 4.5 imply that $c\left(w_{i}\right)=c\left(w_{i+1}\right)$. Therefore, the word w_{i} may be obtained from w_{i+1} by an action of some permutation σ on indices of letters occurring in $c\left(w_{i+1}\right)$. Substitute $x_{\sigma(j)}$ for x_{j} in the identity $w_{i+1}=w_{i+2}$ for all letters $x_{j} \in c\left(w_{i+1}\right)$. We obtain an identity of the type $w_{i}=w^{\prime}$ such that $w^{\prime} \approx w_{i+2}$ and the identity $w_{i}=w^{\prime}$ holds in \mathfrak{Z}. Since $w_{i+2}=0$ in \mathfrak{X}, we have $w^{\prime}=0$ in \mathfrak{X} too. Thus, $w^{\prime}=w_{i+2}$ in \mathfrak{X}. Since $n \geq 3$, either $i>0$ or $i+2<n$. If $i>0$ then $w_{i-1}=w_{i}=w^{\prime}$ in \mathfrak{Z} and $w_{0}, w_{1}, \ldots, w_{i-1}, w^{\prime}, w_{i+2}, \ldots, w_{n}$ is an $(\mathfrak{X}, \mathfrak{Z})$-deduction of the identity $u=v$ that shorter than (15). Furthermore, if $i+2<n$ then $w^{\prime}=w_{i+2}=w_{i+3}$ in \mathfrak{X} and $w_{0}, w_{1}, \ldots, w_{i}, w^{\prime}, w_{i+3}, \ldots, w_{n}$ is an $(\mathfrak{X}, \mathfrak{Z})$-deduction of the identity $u=v$ that shorter than (15). We see that if $i+1<n$ then $w_{i+2} \notin Z$. By symmetry, if $i>0$ then $w_{i-1} \notin Z$.

Let now $w_{j}, \ldots, w_{i}, \ldots, w_{k}$ (where $0 \leq j \leq i<k \leq n$) be the maximal subsequence of the sequence (15) consisting of words from the set L. In other
words, $w_{j}, \ldots, w_{i}, \ldots, w_{k} \in L, w_{k+1} \notin L$ whenever $k<n$, and $w_{j-1} \notin L$ whenever $j>0$. Suppose that $k<n$. As we have proved above $w_{k+1} \notin Z$, whence $w_{k+1} \in S$. Applying Lemma 4.3(i) we have $k+1=n$. Analogously, if $j>0$ then $j=1$ and $w_{0} \in S$. We see that the words from the set Z are absent in the sequence (15).

Lemma 4.7. If $w_{i}, w_{i+1}, w_{i+2} \in L$ for some $0 \leq i \leq n-2$ then either $c\left(w_{i}\right)=$ $c\left(w_{i+1}\right) \neq c\left(w_{i+2}\right)$ or $c\left(w_{i}\right) \neq c\left(w_{i+1}\right)=c\left(w_{i+2}\right)$.

Proof. Applying Lemma 4.5, we have $w_{i}=w_{i+1}=w_{i+2}$ in \mathfrak{X} whenever $c\left(w_{i}\right)=$ $c\left(w_{i+1}\right)=c\left(w_{i+2}\right)$, and $w_{i}=w_{i+1}=w_{i+2}$ in \mathfrak{Z} whenever $c\left(w_{i}\right) \neq c\left(w_{i+1}\right) \neq$ $c\left(w_{i+2}\right)$. Both the cases are impossible.
Lemma 4.8. If $w_{i}, w_{i+1}, w_{i+2}, w_{i+3} \in L$ and $c\left(w_{i}\right)=c\left(w_{i+1}\right) \neq c\left(w_{i+2}\right)=$ $c\left(w_{i+3}\right)$ for some $0 \leq i \leq n-3$ then there are words w^{\prime} and $w^{\prime \prime}$ such that $w_{i}=w^{\prime}$ in $\mathfrak{Z}, w^{\prime}=w^{\prime \prime}$ in \mathfrak{X} and $w^{\prime \prime}=w_{i+3}$ in \mathfrak{Z}.

Proof. By Lemma 4.5 the identities $w_{i}=w_{i+1}$ and $w_{i+2}=w_{i+3}$ hold true in \mathfrak{X} while the identity $w_{i+1}=w_{i+2}$ holds in \mathfrak{Z}. Since $c\left(w_{i}\right)=c\left(w_{i+1}\right)$ and $w_{i}, w_{i+1} \in L$, the word w_{i} may be obtained from w_{i+1} by an action of some permutation σ on the indices of the letters occurring in $c\left(w_{i+1}\right)$. Substitute $x_{\sigma(j)}$ for x_{j} in the identity $w_{i+1}=w_{i+2}$ for all letters $x_{j} \in c\left(w_{i+1}\right)$. We obtain an identity of the type $w_{i}=w_{i+2}^{\prime}$ such that $w_{i+2}^{\prime} \in L, c\left(w_{i}\right) \neq c\left(w_{i+2}^{\prime}\right)$ and the identity $w_{i}=w_{i+2}^{\prime}$ holds in \mathfrak{Z}. There is a letter x such that either $x \in c\left(w_{i}\right) \backslash$ $c\left(w_{i+2}^{\prime}\right)$ or $x \in c\left(w_{i+2}^{\prime}\right) \backslash c\left(w_{i}\right)$. Substitute x^{3} for x in the identity $w_{i}=w_{i+2}^{\prime}$. If $x \in c\left(w_{i}\right) \backslash c\left(w_{i+2}^{\prime}\right)$ we obtain an identity of the type $w^{\prime}=w_{i+2}^{\prime}$ such that $w^{\prime} \in Z$ (because $x^{3}=0$ in \mathfrak{C}, and moreover in \mathfrak{X}) and $w^{\prime}=w_{i+2}^{\prime}$ holds in \mathfrak{Z}. Clearly, $w_{i}=w^{\prime}$ also is satisfied by \mathfrak{Z}. Furthermore, if $x \in c\left(w_{i+2}^{\prime}\right) \backslash c\left(w_{i}\right)$ then the substitution $x \longmapsto x^{3}$ immediately deduces from $w_{i}=w_{i+2}^{\prime}$ an identity of the type $w_{i}=w^{\prime}$ such that $w^{\prime} \in Z$ (by the aforementioned reason) and $w_{i}=w^{\prime}$ in \mathfrak{Z}. Thus, in any case there is a word $w^{\prime} \in Z$ such that $w_{i}=w^{\prime}$ in \mathfrak{Z}. Analogously, there is a word $w^{\prime \prime} \in Z$ such that the identity $w^{\prime \prime}=w_{i+3}$ holds in \mathfrak{Z}. Because $w^{\prime}, w^{\prime \prime} \in Z$, the identity $w^{\prime}=w^{\prime \prime}$ holds in \mathfrak{X}.

Now we are ready to complete the proof of sufficiency in Theorem 1. Further considerations are divided into four cases.

Case 1: the sequence (15) contains no adjacent words from the set L. Lemmas 4.3(i) and 4.4 imply that $w_{1}, \ldots, w_{n-1} \in Z$ in this case. Combining this claim with Lemma 4.2 and the condition $n \geq 3$, we obtain that $n=3$. Besides that, the identity $w_{1}=w_{2}$ holds in \mathfrak{X}, and therefore the identities $w_{0}=w_{1}$ and $w_{2}=w_{3}$ hold in \mathfrak{Z}. Now Lemma 4.1 applies.

Case 2: the sequence (15) contains adjacent words from the set L but does not contain three words in row from this set. Applying Lemma 4.6 we have
that the sequence (15) contains no words from the set Z in this case. Then Lemma 4.3(i) together with the claim $n \geq 3$ implies that $n=3, w_{0}, w_{3} \in S$ and $w_{1}, w_{2} \in L$. By Lemma 4.3(ii) the identities $w_{0}=w_{1}$ and $w_{2}=w_{3}$ hold true in \mathfrak{Z}. Therefore, $w_{1}=w_{2}$ in \mathfrak{X}. Now Lemma 4.1 applies.

Case 3: the sequence (15) contains three words in row from the set L but does not contain four words in row from this set. So, let $w_{i}, w_{i+1}, w_{i+2} \in L$ for some $0 \leq i \leq n-2$. According to Lemmas 4.7 and 4.5, either $c\left(w_{i}\right)=$ $c\left(w_{i+1}\right) \neq c\left(w_{i+2}\right), w_{i}=w_{i+1}$ in \mathfrak{X} and $w_{i+1}=w_{i+2}$ in \mathfrak{Z} or $c\left(w_{i}\right) \neq c\left(w_{i+1}\right)=$ $c\left(w_{i+2}\right), w_{i}=w_{i+1}$ in \mathfrak{Z} and $w_{i+1}=w_{i+2}$ in \mathfrak{X}. By symmetry, it suffices to consider the former case. So, let $c\left(w_{i}\right)=c\left(w_{i+1}\right) \neq c\left(w_{i+2}\right), w_{i}=w_{i+1}$ in \mathfrak{X} and $w_{i+1}=w_{i+2}$ in \mathfrak{Z}. Since $n \geq 3$, either $i+2<n$ or $i>0$. Suppose at first that $i+2<n$. Then the identity $w_{i+2}=w_{i+3}$ holds in \mathfrak{X}. Since $w_{i+2} \in L$, the identity $w_{i+2}=0$ is false in \mathfrak{X}. The claims (i) and (iii) of Lemma 2.3 imply now that $w_{i+3} \in L$. Therefore, the sequence (15) contains four words in row from the set L (namely, the words w_{i}, w_{i+1}, w_{i+2} and w_{i+3}). But this is impossible. Therefore, $i+2=n$, whence $i>0$. The identity $w_{i-1}=w_{i}$ holds in the variety \mathfrak{Z}. The case $w_{i-1} \in L$ is impossible because the sequence (15) contains no four words in row from the set L. Lemma 4.6 implies that $w_{i-1} \notin Z$. Therefore, $w_{i-1} \in S$. Then we can apply Lemma $4.3(\mathrm{i})$ and conclude that $i-1=0$. Now Lemma 4.1 applies.

Case 4: the sequence (15) contains four words in row from the set L. So, let $w_{i}, w_{i+1}, w_{i+2}, w_{i+3} \in L$ for some $0 \leq i \leq n-3$. According to Lemma 4.7, this means that either $c\left(w_{i}\right)=c\left(w_{i+1}\right) \neq c\left(w_{i+2}\right)=c\left(w_{i+3}\right)$ or $c\left(w_{i}\right) \neq$ $c\left(w_{i+1}\right)=c\left(w_{i+2}\right) \neq c\left(w_{i+3}\right)$. Consider two corresponding subcases.

Subcase 4.1: $c\left(w_{i}\right)=c\left(w_{i+1}\right) \neq c\left(w_{i+2}\right)=c\left(w_{i+3}\right)$. Then $w_{i}=w_{i+1}$ in $\mathfrak{X}, w_{i+1}=w_{i+2}$ in \mathfrak{Z} and $w_{i+2}=w_{i+3}$ in \mathfrak{X} by Lemma 4.5. Applying Lemma 4.8 we have that there are words w^{\prime} and $w^{\prime \prime}$ such that $w_{i}=w^{\prime}$ in $\mathfrak{Z}, w^{\prime}=w^{\prime \prime}$ in \mathfrak{X} and $w^{\prime \prime}=w_{i+3}$ in \mathfrak{Z}. If $i>0$ then $w_{i-1}=w_{i}=w^{\prime}$ in \mathfrak{Z}. This means that $w_{0}, w_{1}, \ldots, w_{i-1}, w^{\prime}, w^{\prime \prime}, w_{i+3}, \ldots, w_{n}$ is an $(\mathfrak{X}, \mathfrak{Z})$-deduction of the identity $u=$ v that shorter than (15). Thus, $i=0$. Analogous arguments imply that $i+3=n$. Now we can apply Lemma 4.1 for the sequence $w_{0}, w^{\prime}, w^{\prime \prime}, w_{i+3}$.

Subcase 4.2: $c\left(w_{i}\right) \neq c\left(w_{i+1}\right)=c\left(w_{i+2}\right) \neq c\left(w_{i+3}\right)$. By Lemma 4.5, $w_{i}=w_{i+1}$ in $\mathfrak{Z}, w_{i+1}=w_{i+2}$ in \mathfrak{X} and $w_{i+2}=w_{i+3}$ in \mathfrak{Z}. Suppose that $i>0$. Then the identity $w_{i-1}=w_{i}$ holds in \mathfrak{X}. By Lemmas 4.3 and $4.6 w_{i-1} \notin S \cup Z$, whence $w_{i-1} \in L$. By Lemma $4.5 c\left(w_{i-1}\right)=c\left(w_{i}\right)$. Now we can apply the same arguments as in Subcase 4.1 for the words $w_{i-1}, w_{i}, w_{i+1}, w_{i+2}$. The case $i+3<n$ can be considered quite analogously. Finally, if $i=0$ and $i+3=n$, it remains to refer to Lemma 4.1.

We have completed the proof of sufficiency in Theorem 1.
Acknowledgements. The authors are grateful to the anonymous referee for several useful remarks.

References

[1] A. Ja. Aizenštat: On some sublattices of the lattice of semigroup varieties. In E. S. Lyapin (ed.), Sovremennaya Algebra (Contemporary Algebra), Leningrad State Pedagogical Institute, Leningrad 1 (1974), 3-15 (Russian).
[2] T. Evans: The lattice of semigroup varieties. Semigroup Forum 2 (1971), 1-43.
[3] G. Grätzer: General Lattice Theory. 2-nd ed., Birkhäuser Verlag, Basel (1998).
[4] J. Ježek: The lattice of equational theories. Part I: modular elements. Czechosl. Math. J. 31 (1981), 127-152.
[5] J. Ježek, R. N. McKenzie: Definability in the lattice of equational theories of semigroups. Semigroup Forum 46 (1993), 199-245.
[6] I. I. Mel'nik: On varieties of Ω-algebras. In V.V. Vagner (ed.), Issledovaniya po Algebre (Investigations in Algebra), Saratov State University, Saratov 1 (1969), 32-40 (Russian).
[7] I. I. Mel'nik: On varieties and lattices of varieties of semigroups. In V.V.Vagner (ed.), Issledovaniya po Algebre (Investigations in Algebra), Saratov State University, Saratov 2 (1970), 47-57 (Russian).
[8] M.V.Sapir, E. V.Sukhanov: On varieties of periodic semigroups. Izv. VUZ. Matem. No. 4 (1981), 48-55 [Russian; Engl. translation: Soviet Math. Izv. VUZ 25, No. 4 (1981), 53-63].
[9] B. M. Vernikov, M. V. Volkov: Commuting fully invariant congruences on free semigroups. Contrib. General Algebra 12 (2000), 391-417.
[10] M. V. Volkov: Modular elements of the lattice of semigroup varieties. Contrib. General Algebra 16 (2005), 275-288.

Department of Mathematics and Mechanics, Ural State University, 620083 Ekaterinburg, Russia

E-mail address: \{Boris.Vernikov, Mikhail.Volkov\}@usu.ru

[^0]: 1991 Mathematics Subject Classification. Primary 20M07; secondary 08B15.
 Key words and phrases. Semigroup variety, lattice of varieties, modular element, uppermodular element, nil-variety.

 The authors acknowledge support from the Russian Foundation for Basic Research, grant 05-01-00540.

