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MODULAR ELEMENTS
OF THE LATTICE OF SEMIGROUP VARIETIES. II

BORIS M. VERNIKOV AND MIKHAIL V. VOLKOV

Abstract. We completely determine all semigroup varieties that are both
modular and upper-modular elements of the lattice of all semigroup vari-
eties as well as nilsemigroup varieties that are upper-modular elements of
this lattice.

Introduction and summary

This note continues the article [10]. An element x of a lattice 〈L;∨,∧〉 is
called modular if

∀ y, z ∈ L : y ≤ z −→ (x ∨ y) ∧ z = (x ∧ z) ∨ y,

and upper-modular if

∀ y, z ∈ L : y ≤ x −→ (z ∨ y) ∧ x = (z ∧ x) ∨ y.

Lower-modular elements are defined dually to upper-modular ones.
Semigroup varieties that are both modular and lower-modular elements of

the lattice of all semigroup varieties were completely described in [10]. Here we
consider the dual restriction. Besides that, we classify nilsemigroup varieties
that are upper-modular elements of the lattice of all semigroup varieties.

In order to formulate our main results, we need some notation. We adopt
the usual agreement of writing w = 0 as a short form of the identity system
wu = uw = w where u runs over the set of all words. By varΣ we denote the
variety of all semigroups satisfying the identity system Σ. Put

SL = var{x2 = x, xy = yx},
C = var{x2y = 0, xy = yx}.

We will denote the lattice of all semigroup varieties by SEM. The first main
result of this paper is the following
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Theorem 1. A semigroup variety V is both a modular and an upper-modular
element of the lattice SEM if and only if either V coincides with the class of
all semigroups or V ⊆ SL ∨ C.

Recall that a semigroup variety is called a nil-variety if it satisfies the
identity xn = 0 for some n. Our second main result is the following

Theorem 2. A nil-variety V is an upper-modular element of the lattice SEM
if and only if it satisfies the identities x2y = xy2 and xy = yx.

The note is structured as follows. Section 1 contains all necessary prelim-
inaries. In Section 2 the “only if” parts of both the theorems are proved. In
Sections 3 and 4 we verify the “if” parts of respectively Theorems 2 and 1.

1. Preliminaries

We start with some information about special elements of abstract lattices.
Recall that an element x of a lattice L is called neutral if, for any two elements
y, z ∈ L, the sublattice of L generated by x, y and z is distributive. An element
a of a lattice L with 0 is called an atom of L if a is a minimal non-zero element.

Lemma 1.1. Let L be a lattice with 0 and let a be a neutral element of L.
Then:

(i) if x is a modular element of L then so is x ∨ a;
(ii) if a is an atom of L and x is an upper-modular element of L then x∨a

is an upper-modular element of L too.

Proof. Part (i) is proved in [10, Lemma 1.6(ii)]. Let us verify (ii). We have to
check that

(1) (z ∨ y) ∧ (x ∨ a) = (z ∧ (x ∨ a)) ∨ y

for every y ∈ L such that y ≤ x∨a and for an arbitrary z ∈ L. Since y ≤ x∨a
and a is neutral, we have

(2) y = y ∧ (x ∨ a) = (y ∧ x) ∨ (y ∧ a).

Now consider two cases: y � a and y ≥ a.
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Case 1: y � a. Since a is an atom, we then have y ∧ a = 0, and from (2)
we conclude that y = y ∧ x ≤ x. We have

(z ∨ y) ∧ (x ∨ a) = ((z ∨ y) ∧ x) ∨ ((z ∨ y) ∧ a) because a is neutral

= ((z ∨ y) ∧ x) ∨ ((z ∧ a) ∨ (y ∧ a)) because a is neutral

= ((z ∨ y) ∧ x) ∨ (z ∧ a) because y ∧ a = 0

= ((z ∧ x) ∨ y) ∨ (z ∧ a) because y ≤ x and
x is upper modular

= ((z ∧ x) ∨ (z ∧ a)) ∨ y

= (z ∧ (x ∨ a)) ∨ y because a is neutral.

Thus, the desired equality (1) holds.

Case 2: y ≥ a. From (2) we then have

(3) y = (y ∧ x) ∨ a.

Therefore,

(z ∨ y) ∧ (x ∨ a) = (z ∨ ((y ∧ x) ∨ a)) ∧ (x ∨ a) by (3)

= ((z ∨ (y ∧ x)) ∨ a) ∧ (x ∨ a)

= ((z ∨ (y ∧ x)) ∧ x) ∨ a because a is neutral

= ((z ∧ x) ∨ (y ∧ x)) ∨ a because y ∧ x ≤ x and
x is upper-modular

= ((z ∧ x) ∨ (y ∧ x)) ∨ (a ∨ (z ∧ a)) by the absorbtion law

= ((z ∧ x) ∨ (z ∧ a)) ∨ ((y ∧ x) ∨ a)

= ((z ∧ x) ∨ (z ∧ a)) ∨ y by (3)

= (z ∧ (x ∨ a)) ∨ y because a is neutral.

Thus, the equality (1) holds in this case as well. ¤

Lemma 1.2. Let L be a lattice with 0, x ∈ L, and let a be an atom and a
neutral element of L. Then:

(i) if x ∨ a is a modular element of L then so is x;
(ii) if x ∨ a is an upper-modular element of L then so is x.

Proof. Since a is an atom of L, we have that, for any z ∈ L, z � a if and
only if z ∧ a = 0. Because a is a neutral element of L, we have that, for any
b, c ∈ L, if b ∧ a = 0 and c ∧ a = 0 then (b ∨ c) ∧ a = (b ∧ a) ∨ (c ∧ a) = 0. In
other words,

(4) ∀ b, c ∈ L : b � a & c � a −→ b ∨ c � a.
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Further, it is known that if e is a neutral element of a lattice L and the
equalities f ∧ e = g ∧ e and f ∨ e = g ∨ e hold true for some elements f, g ∈ L
then f = g (see [3, Theorem III.2.4], for instance). Therefore,

(5) ∀ b, c ∈ L : b � a & c � a & b ∨ a = c ∨ a −→ b = c.

Now we are well prepared to prove the claims (i) and (ii).

(i) Let y, z ∈ L with y ≤ z. We may assume that x � a because x ∨ a = x
in the contrary case. We have to check that

(6) (x ∨ y) ∧ z = (x ∧ z) ∨ y.

Now consider two cases: z � a and z ≥ a.

Case 1: z � a. We have

(x ∨ y) ∧ z = ((x ∨ y) ∧ z) ∨ (a ∧ z) because a ∧ z = 0

= ((x ∨ y) ∨ a) ∧ z because a is neutral

= ((x ∨ a) ∨ y) ∧ z

= ((x ∨ a) ∧ z) ∨ y because x ∨ a is modular

= ((x ∧ z) ∨ (a ∧ z)) ∨ y because a is neutral

= (x ∧ z) ∨ y because a ∧ z = 0.

We see that (6) holds whenever z � a.

Case 2: z ≥ a. Then we have

((x ∨ y) ∧ z) ∨ a = ((x ∨ y) ∧ z) ∨ (a ∧ z) because a ∧ z = a

= ((x ∨ y) ∨ a) ∧ z because a is neutral

= ((x ∨ a) ∨ y) ∧ z

= ((x ∨ a) ∧ z) ∨ y because x ∨ a is modular

= ((x ∧ z) ∨ (a ∧ z)) ∨ y because a is neutral

= ((x ∧ z) ∨ a) ∨ y because a ∧ z = a

= ((x ∧ z) ∨ y) ∨ a.

We see that

(7) ((x ∨ y) ∧ z) ∨ a = ((x ∧ z) ∨ y) ∨ a.

Suppose at first that y ≥ a. Since z ≥ a, we have (x ∨ y) ∧ z ≥ a and
(x ∧ z) ∨ y ≥ a. Therefore, the equality (7) is equivalent to (6) in the case we
consider.

Finally, let y � a. Recall that x � a. Applying (4) we have x ∨ y � a,
whence (x ∨ y) ∧ z � a. Furthermore, x � a implies x ∧ z � a. Applying (4)
again we have (x∧ z)∨ y � a. Now we may apply (5) and (7) concluding that
(6) is valid. Thus, the equality (6) holds in any case.
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(ii) Let y, z ∈ L with y ≤ x. As in the proof of part (i), we may assume
that x � a because x ∨ a = x in the contrary case. Clearly, y ≤ x implies
y ∨ a ≤ x ∨ a. We have

((z ∨ y) ∧ x) ∨ a = ((z ∨ y) ∨ a) ∧ (x ∨ a) because a is neutral

= (z ∨ (y ∨ a)) ∧ (x ∨ a)

= (z ∧ (x ∨ a)) ∨ (y ∨ a) because x ∨ a is
upper-modular

= ((z ∧ x) ∨ (z ∧ a)) ∨ (y ∨ a) because a is neutral

= ((z ∧ x) ∨ y) ∨ ((z ∧ a) ∨ a)

= ((z ∧ x) ∨ y) ∨ a by the absorbtion law.

We see that

(8) ((z ∨ y) ∧ x) ∨ a = ((z ∧ x) ∨ y) ∨ a.

Recall that x � a. This implies z ∧ x � a. Besides that, y � a because
y ≤ x. By (4) we conclude that (z ∧ x) ∨ y � a. Furthermore, x � a
implies (z ∨ y) ∧ x � a. Now we may apply (5) and (8) concluding that
(z ∨ y) ∧ x = (z ∧ x) ∨ y, that is x is an upper-modular element. ¤

Combining Lemmas 1.1 and 1.2, we have

Proposition 1.3. Let L be a lattice with 0, x ∈ L, and let a be an atom and
a neutral element of L. Then:

(i) x is a modular element of L if and only if so is x ∨ a;
(ii) x is an upper-modular element of L if and only if so is x ∨ a. ¤

Now we apply the above results to the lattice of semigroup varieties. The
following lemma contains some properties of the variety SL that are most
important for this paper.

Lemma 1.4. The variety SL is:

(i) an atom of the lattice SEM;
(ii) a neutral element of the lattice SEM. ¤

The claim (i) of this lemma is well known (see the survey [2], for instance).
The statement (ii) is also known. It can be easily deduced from some remarks
scattered over [1, 6, 7]; an explicit proof was given in [10, Proposition 2.4].

Lemma 1.4 and Proposition 1.3 immediately imply

Corollary 1.5. Let M be a semigroup variety.

(i) The variety M is a modular element of the lattice SEM if and only if
so is the variety M ∨SL.

(ii) The variety M is an upper-modular element of the lattice SEM if and
only if so is the variety M ∨SL. ¤
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2. Necessity

Modular elements of the lattice SEM have been studied by Ježek and
McKenzie [5]. One should note that the paper [5] has dealt with the lat-
tice of equational theories of semigroups, that is, the dual of SEM rather than
the lattice SEM itself. However, the modular elements of the former lattice
precisely correspond to the modular elements of SEM. Indeed, the notion of
a modular element is self-dual in the sense that a modular element of a lattice
L is also modular in the dual of L (this readily follows from the definition or
from [4, Proposition 2.1]). To reproduce a result from [5] concerning modular
elements of the lattice SEM, we need one definition. Following [10], we call a
semigroup variety a Rees variety if it may be defined by a system of identi-
ties of the form u = 0. Clearly, every Rees variety is a nil-variety. We start
the proof of Theorem 1 with the following result due to Ježek and McKen-
zie [5, Proposition 1.6] (we “translate” the original result from the language
of equational theories to the language of varieties).

Proposition 2.1. If a semigroup variety V is a modular element of the lattice
SEM then either V coincides with the class of all semigroups or V ⊆ SL ∨R
for some Rees variety R. ¤

This proposition easily implies

Corollary 2.2. If a semigroup variety V is a modular element of the lattice
SEM then either V coincides with the class of all semigroups or V is a nil-
variety or V = SL ∨N for some nil-variety N.

Proof. Suppose that V differs from the class of all semigroups. By Proposi-
tion 2.1 V ⊆ SL ∨R for some Rees variety R. Applying Lemma 1.4(ii), we
get

V = V ∧ (SL ∨R) = (V ∧SL) ∨ (V ∧R).
Put N = V ∧R. Since the variety SL is an atom of the lattice SEM, the
variety V ∧SL coincides with either SL or the trivial variety. Therefore,
either V = N or V = SL ∨N. It remains to note that the variety N is a
nil-variety because of it is a subvariety of the nil-variety R. ¤

Let now V be simultaneously a modular and an upper-modular element of
the lattice SEM. Of course, we may assume that V differs from the class of
all semigroups. By Corollaries 2.2 and 1.5, it suffices to verify that if V is a
nil-variety then V ⊆ C.

Throughout the rest of this section we assume that V is a nil-variety.

We denote by F the free semigroup of a countable rank. The symbol ≡
stands for the equality relation on F . If u ∈ F , then c(u) denotes the set of all
letters occurring in u, while `(u) stands for the length of u. Let u, v ∈ F . We
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write u C v if v ≡ aξ(u)b for some endomorphism ξ of F and some a, b ∈ F 1

where F 1 is F with the empty word 1 adjoined. We need the following technical
remarks about identities of nil-varieties.

Lemma 2.3. Let N be a nil-variety.

(i) If N satisfies an identity u = v with c(u) 6= c(v), then N satisfies also
the identity u = 0.

(ii) If N satisfies an identity of the form u = vuw where v, w ∈ F 1 and at
least one of the words v and w is non-empty, then it satisfies also the
identity u = 0.

(iii) If N satisfies an identity of the form x1x2 · · ·xn = u with `(u) 6= n,
then it satisfies also the identity x1x2 · · ·xn = 0.

(iv) If the variety N is commutative and satisfies an identity u = v where
`(u) < `(v) and u C v, then N satisfies also the identity u = 0.

Proof. (i) We may assume that there is a letter x ∈ c(v) \ c(u). Substituting
0 for x in the identity u = v, we obtain u = 0.

(ii) The identity u = vuw implies u = vuw = v2uw2 = · · · = vnuwn = · · · .
Since N is a nil-variety and at least one of the words v and w is non-empty,
there is n with either vn = 0 or wn = 0 in N. Therefore, u = 0 holds in N.

(iii) If `(u) < n, then c(u) 6= {x1, x2, . . . , xn} and the statement (i) applies.
If `(u) > n, then the claim follows from [8, Lemma 1].

(iv) This claim is a partial case of [9, Lemma 1.3(iii)]. ¤

Recall that a word u is said to be an isoterm in the variety M if no non-
trivial identity of the form u = v holds in M. Let M1 and M2 be arbitrary
semigroup varieties and suppose that an identity w1 = w2 holds in the variety
M1 ∧ M2. In this case there is a sequence of words u0, u1, . . . , un such that
u0 ≡ w1, un ≡ w2 and, for every i = 0, 1, . . . , n−1, the identity ui = ui+1 holds
in either M1 or M2. An arbitrary sequence of words with such properties will
be called an (M1, M2)-deduction of the identity w1 = w2.

Proposition 2.4. If V is a nil-variety and V is an upper-modular element of
the lattice SEM then V is commutative.

Proof. Suppose that the commutative law fails in V and denote by X the
subvariety of V defined within V by the identity xy = yx. Further, let G
be an arbitrary non-abelian periodic group variety. Clearly, G ∧V is the
trivial variety, and therefore (G ∧V) ∨ X = X. Since V is an upper-modular
element of SEM, this means that (G ∨ X) ∧V = X. The variety X satisfies the
commutative law. Therefore, there is a (G ∨ X, V)-deduction of the identity
xy = yx. In particular, there is a word u with u 6≡ xy and the identity xy = u
holds in either G ∨ X or V. Suppose that xy = u holds in V. If u 6≡ yx then
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either c(u) 6= {x, y} or `(u) 6= 2. By the claims (i) and (iii) of Lemma 2.3
either u ≡ yx or xy = 0 holds in V. Since the variety V is non-commutative,
both the cases are impossible. Therefore, the word xy is an isoterm in V.
Whence the identity xy = u is satisfied by the variety G ∨ X. In particular,
xy = u holds in the nil-variety X. Using the same arguments as above, we
have that either u ≡ yx or xy = 0 holds in X. But the latter is not the case,
and we have proved that the variety G ∨ X satisfies the commutative law. In
particular, xy = yx holds in the variety G, contradicting the choice of this
variety. ¤

Put W = {x2y, xyx, yx2, y2x, yxy, xy2}.
Lemma 2.5. If a commutative nil-variety M satisfies an identity of the form
u = v where u ∈ W then either v ∈ W or M satisfies the identity u = 0.

Proof. If c(v) 6= {x, y} then u = 0 in M by Lemma 2.3(i). Let now c(v) =
{x, y}. Let k (respectively, `) be the number of occurences of the letter x
(respectively, y) in v. Since the variety M is commutative, it satisfies v = xky`

and either u = x2y or u = xy2. Suppose that v /∈ W . Then either k ≥ 3 or
` ≥ 3 or k = ` = 2 or k = ` = 1. Applying then Lemma 2.3(iv) we conclude
that M satisfies the identity u = 0. ¤
Proposition 2.6. If V is a nil-variety and V is an upper-modular element of
the lattice SEM then V satisfies the identity x2y = xy2.

Proof. Suppose that the identity x2y = xy2 is false in V and denote by X the
subvariety of V given within V by this identity. Further, let G be an arbitrary
non-trivial periodic group variety. Clearly, G ∧V is the trivial variety, and
therefore (G ∧V) ∨ X = X. Since V is an upper-modular element of SEM, this
means that (G ∨ X) ∧V = X. The variety X satisfies the identity x2y = xy2.
Therefore, there is a (G ∨ X,V)-deduction of this identity. Let

x2y ≡ u0, u1, . . . , un ≡ xy2

be an arbitrary such deduction. Put W1 = {x2y, xyx, yx2} and W2 = {y2x,
yxy, xy2}. Since u0 ∈ W1 and un /∈ W1, there is an index i > 0 such that
ui−1 ∈ W1 while ui /∈ W1. The identity ui−1 = ui holds in one of the varieties
G ∨ X and V. Suppose that ui−1 = ui in V. The variety V is commutative
by Proposition 2.4. Therefore, it satisfies all identities of the type w1 = x2y
with w1 ∈ W1 and w2 = xy2 with w2 ∈ W2. So, if ui ∈ W2 then x2y = yx2

in V. Furthermore, if ui /∈ W2 then ui /∈ W . Now Lemma 2.5 applies and
we conclude that V satisfies the identity x2y = 0. Therefore, xy2 = 0 and
x2y = xy2 in V. We prove that if ui−1 = ui holds in V then V satisfies the
identity x2y = xy2. But this is not the case. Therefore, ui−1 = ui holds
in G ∨ X. In particular, ui−1 = ui in X. If ui /∈ W2 then ui /∈ W , whence
x2y = ui−1 = 0 in X by Lemma 2.5. But it is not the case. Therefore,
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ui ∈ W2. This means that the variety G ∨ X satisfies the identity ui−1 = ui

where ui−1 ∈ W1 and ui ∈ W2. In particular, this identity holds true in the
variety G. Recall that G is a non-trivial group variety. Substituting 1 for y in
the identity ui−1 = ui, we obtain that x2 = x in G. Therefore, G is the trivial
variety, a contradiction. ¤

Propositions 2.4 and 2.6 imply necessity in Theorem 2.

We need the following easy observation.

Lemma 2.7. Let M be a nil-variety satisfying the identities x2y = xy2 and
xy = yx. Then M satisfies also the identity

(9) x2yz = 0.

Proof. Substituting yz for y in x2y = xy2, we obtain that M satisfies the
identities x2yz = x(yz)2 = xy2z2 = x2yz2. Now Lemma 2.3(ii) applies. ¤

In [4], Ježek describes modular elements of the lattice of all varieties (more
exactly, all equational theories) of any given type. In particular, [4, Lemma
6.3] implies that if a nil-variety V satisfies the identity x2y = xy2 and V is
a modular element of the lattice of all groupoid varieties then x2y = 0 holds
in V. This does not imply directly the same conclusion for nil-varieties that
are modular elements of SEM since a modular element of SEM need not be
a modular element of the lattice of all groupoid varieties. Nevertheless, the
following “semigroup analogue” of the mentioned result by Ježek is true.

Proposition 2.8. If a nil-variety V is a modular element of the lattice SEM
and satisfies the identities x2y = xy2 and xy = yx then x2y = 0 holds in V.

Proof. By Lemma 2.7 V satisfies the identity (9). Put X = var{x2y = (x2y)2}
and Y = var{x2y = (x2y)2, xy2 = (xy2)2}. Clearly, Y ⊆ X. The variety
V ∧ X satisfies the identities xy2 = x2y = (x2y)2. Together with (9) this
implies xy2 = 0. In particular, xy2 = (xy2)2 in V ∧ X, that is V ∧ X ⊆ Y.
Thus, (V ∧ X) ∨Y = Y. Since V is a modular element of the lattice SEM,
(V ∨Y) ∧ X = Y. In particular, xy2 = (xy2)2 holds in (V ∨Y) ∧ X. Then
there exists a (V ∨Y, X)-deduction of the identity xy2 = (xy2)2. This means
that there is a word u such that u 6≡ xy2 and xy2 = u holds in either V ∨Y
or X. Clearly, the word xy2 is an isoterm in the variety X. Therefore, xy2 = u
holds in V ∨Y and, in particular, in V. Applying Lemma 2.5 we conclude
that either u ∈ W or xy2 = 0 in V. In the latter case x2y = 0 in V because
V is commutative. Let now u ∈ W . The identity xy2 = u holds in V ∨Y,
and moreover in Y. But it is clear that all non-trivial identities of the type
xy2 = u with u ∈ W are false in Y. ¤
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Of course, our proof of Proposition 2.8 (namely, the choice of the varieties
X and Y in this proof) is inspired by the proof of [4, Lemma 6.3].

Propositions 2.4, 2.6 and 2.8 imply together that V ⊆ C. The necessity in
Theorem 1 is proved.

3. Sufficiency in Theorem 2

By Lemma 2.7, if a nil-variety satisfies the identities x2y = xy2 and xy = yx
then it satisfies the identity (9) too. Put

A = var{x2yz = 0, x2y = xy2, xy = yx}.
In this section we have to verify that any subvariety of A is an upper-modular
element of the lattice SEM.

Put U = {x2, x3, x2y, x1x2 · · ·xn | n ∈ N} where N stands for the set of
all natural numbers. It is evident that any subvariety of A may be given in
A only by identities of the type u = v or u = 0 where u, v ∈ U . The claims
(i)–(iii) of Lemma 2.3 imply that if u, v ∈ U and u 6≡ v then u = v implies in
A the identity u = 0. Now it is very easy to check that the subvariety lattice
of the variety A has the form shown on Fig. 1, where

An = var{x2yz = x1x2 · · ·xn = 0, x2y = xy2, xy = yx} (n ≥ 4),

B = var{x2yz = x3 = 0, x2y = xy2, xy = yx},
Bn = var{x2yz = x3 = x1x2 · · ·xn = 0, x2y = xy2, xy = yx} (n ≥ 4),

Cn = var{x2y = x1x2 · · ·xn = 0, xy = yx} (n ≥ 3),

D = var{x2 = 0, xy = yx},
Dn = var{x2 = x1x2 · · ·xn = 0, xy = yx} (n ∈ N).

Let X ⊆ A. We have to check that if Y ⊆ X and Z is an arbitrary semigroup
variety then (Z ∨Y) ∧ X = (Z ∧ X) ∨Y.

We need some definitions and notation. Recall that a semigroup S is called
nilpotent if it satisfies an identity of the form x1x2 · · ·xk = 0. If k is the least
number with such a property then S is said to be nilpotent of index k. A
semigroup variety M is called a variety of a finite index if there is a natural
k such that every nilsemigroup from M is nilpotent of index ≤ k; the least k
with this property is called the index of M. If M is a variety of a finite index,
we denote its index by ind(M); otherwise we write ind(M) = ∞. Let M1 and
M2 be arbitrary semigroup varieties. It is clear that

(10)
{

ind(M1 ∨M2) = max{ind(M1), ind(M2)},
ind(M1 ∧M2) = min{ind(M1), ind(M2)}
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Figure 1. The subvariety lattice of the variety A

(we assume here that k ≤ ∞ for any k ∈ N ∪ {∞}). For a variety M with
M ⊆ A, we define by M the least of the varieties A, B, C and D that contains
M. Fig. 1 shows that if M1, M2 ⊆ A then

M1 = M2 ⇐⇒ ind(M1) = ind(M2) and M1 = M2.

Therefore, we have to verify the following two equalities:

ind((Z ∨Y) ∧ X) = ind((Z ∧ X) ∨Y),(11)

(Z ∨Y) ∧ X = (Z ∧ X) ∨Y.(12)

Put ind(X) = k, ind(Y) = ` and ind(Z) = m. According to (10), we have

ind((Z ∨Y) ∧ X) = min{max{m, `}, k},
ind((Z ∧ X) ∨Y) = max{min{m, k}, `}.

Clearly, ` ≤ k because Y ⊆ X. It is then evident that min{max{m, `}, k} =
max{min{m, k}, `}. The equality (11) is proved.

It remains to verify the equality (12). Clearly, it is equivalent to the follow-
ing claim: if u is one of the words x3, x2y and x2 then the variety (Z ∨Y) ∧ X
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satisfies the identity u = 0 if and only if the variety (Z ∧ X) ∨Y does so. Ob-
viously, (Z ∧ X) ∨Y ⊆ (Z ∨Y) ∧ X. Thus, we have to check that u = 0 holds
in (Z ∨Y) ∧ X whenever it is so in (Z ∧ X) ∨Y. Further considerations are
naturally divided into two cases.

Case 1: u is one of the words x2 and x3. We prove that if the variety
(Z ∧ X) ∨Y satisfies an identity of the form xn = 0 for some n then xn = 0
holds in the variety (Z ∨Y) ∧ X as well. (This is evident whenever n > 3
because x4 = 0 in A, and moreover in X. But the proof we give below does
not depend on n.) Suppose that xn = 0 in (Z ∧ X) ∨Y. This means that
xn = 0 in Y and there is a (Z, X)-deduction of the identity xn = 0. In
particular, there is a word v such that v 6≡ xn and xn = v holds in either Z or
X. Suppose that xn = v in X. Since X is a nil-variety, the claims (i) and (ii)
of Lemma 2.3 imply that xn = 0 in X, and moreover in (Z ∨Y) ∧ X. Let now
xn = v in Z. If c(v) = {x} then xn = v is an identity of the form

(13) xn = xm

where n 6= m. Suppose that c(v) 6= {x}. If `(v) 6= n then substituting x for
each letter from c(v)\{x} in the identity xn = v, we deduce from this identity
an identity of the form (13) with n 6= m. Finally, if `(v) = n then we obtain
an identity of the same form by substitution x2 for any letter from c(v) \ {x}
in xn = v. Thus, in any case the variety Z satisfies an identity of the form
(13) with n 6= m. If m < n then multiplying both the sides of this identity by
xn−m we obtain the identity x2n−m = xn. Clearly, 2n−m > n. Thus, we may
assume that Z satisfies an identity of the form (13) for some m > n. Since
xn = 0 in Y, the variety Z ∨Y also satisfies (13) for some m > n. Applying
Lemma 2.3(ii) we have that any nil-subvariety of Z ∨Y satisfies xn = 0. In
particular, it is so for the variety (Z ∨Y) ∧ X.

Case 2: u ≡ x2y. Now we have to check that if the variety (Z ∧ X) ∨Y
satisfies the identity x2y = 0 then the variety (Z ∨Y) ∧ X does so. We may
assume that Z + X because (Z ∧ X) ∨Y = X = (Z ∨Y) ∧ X otherwise. In par-
ticular, Z + var{xy = yx}. As well known, this means that Z consists of
periodic semigroups or, equivalently, satisfies an identity of the form (13) with
n < m (see, e.g., [2]). Since Y is a nil-variety, an identity of this form holds
in the variety Z ∨Y. By Lemma 2.3(ii) this implies that any nil-subvariety of
Z ∨Y satisfies the identity xn = 0. Hence there exists the (unique) greatest nil-
subvariety of the variety Z ∨Y. We denote this subvariety by Nil(Z ∨Y). It is
evident that Nil(Z ∨Y) ∧ X ⊆ (Z ∨Y) ∧ X. On the other hand, any semigroup
from (Z ∨Y) ∧ X is a nilsemigroup (because X is a nil-variety) and this nilsemi-
group lies both in Z ∨Y and X. Therefore, (Z ∨Y) ∧ X ⊆ Nil(Z ∨Y) ∧ X. We
see that

(14) (Z ∨Y) ∧ X = Nil(Z ∨Y) ∧ X.
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As in Section 2 put

W = {x2y, xyx, yx2, y2x, yxy, xy2}.
The variety (Z ∨Y) ∧ X is commutative. Therefore, it suffices to verify that
this variety satisfies an identity w = 0 for some word w ∈ W . By the hypoth-
esis the variety (Z ∧ X) ∨Y satisfies the identity x2y = 0. This means that
x2y = 0 in Y and there is a (Z, X)-deduction of the identity x2y = 0. Let
x2y ≡ u0, u1, . . . , un, 0 be an arbitrary such deduction. Suppose that un ∈ W .
The identity un = 0 holds in one of the varieties Z and X. Suppose that
un = 0 in Z. Because un ∈ W and the variety Y is commutative and satisfies
the identity x2y = 0, we have un = 0 in Y. Therefore, un = 0 in Z ∨Y, and
moreover in (Z ∨Y) ∧ X. Obviously, the same is the case whenever un = 0 in
X. Since un ∈ W , we are done.

Let now un /∈ W . Since u0 ∈ W , then there is an index i > 0 such that
ui /∈ W while ui−1 ∈ W . The identity ui−1 = ui holds in one of the varieties
Z and X. If ui−1 = ui in X then Lemma 2.5 applies and we conclude that
ui−1 = 0 in X, and moreover in (Z ∨Y) ∧ X. Since ui−1 ∈ W , we are done.

Finally, suppose that ui−1 = ui in Z. Note that ui−1 = 0 in Y because
x2y = 0 in Y, the variety Y is commutative and ui−1 ∈ W . We are going
to check that ui−1 = 0 in (Z ∨Y) ∧ X. This suffices for our aims because
ui−1 ∈ W . Suppose at first that there is a letter z ∈ c(ui) \ {x, y}. Substitute
u2

i−1 for z in the identity ui−1 = ui. We obtain an identity of the type ui−1 =
w1u

2
i−1w2 for some (maybe empty) words w1 and w2. This identity holds in

Z ∨Y because ui−1 = ui in Z and ui−1 = 0 in Y. By Lemma 2.3(ii) ui−1 = 0
holds in Nil(Z ∨Y), and moreover in Nil(Z ∨Y) ∧ X. We are done by (14).

Let now c(ui) ⊆ {x, y}. Recall that a word u is called linear if every letter
occurs in u at most one time. We write u ≈ v if the word v may be obtained
from the word u by renaming of letters. Suppose that the identity ui = 0 is
false in the variety Y. Because x2y = 0 in Y, this means that either ui is linear
or ui ≈ x2. Since c(ui) ⊆ {x, y}, we have ui ∈ {x, y, xy, yx, x2, y2}. Substitute
x for y in the identity ui−1 = ui. We obtain either x3 = x or x3 = x2. Each
of these two identities implies x4 = x2. Thus, x4 = x2 in Z, and therefore
x4y = x2y in Z ∨Y. By Lemma 2.3(ii), we have x2y = 0 in Nil(Z ∨Y), and
moreover in Nil(Z ∨Y) ∧ X. According to (14) x2y = 0 in (Z ∨Y) ∧ X.

Finally, let ui = 0 in Y. Then we have ui−1 = ui in Y, and therefore in
Z ∨Y. Recall that c(ui) ⊆ {x, y}. If c(ui) ⊂ {x, y} then Lemma 2.3(i) applies
and we conclude that ui−1 = 0 in Nil(Z ∨Y), and moreover in Nil(Z ∨Y) ∧ X.
Now the equality (14) applies. It remains to consider the case c(ui) = {x, y}.
Let k (respectively, `) denote the number of occurrences of the letter x (re-
spectively, y) in the word ui. Since the variety X satisfies the commutative
law, ui = xky` in X. If k = ` = 1 then ui ∈ {xy, yx} and we may repeat liter-
ally the arguments from the previous paragraph. Furthermore, if either k = 2,
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` = 1 or k = 1, ` = 2 then ui ∈ W that contradicts the choice of the word
ui. Therefore, we may assume that either k ≥ 3 or ` ≥ 3 or k = ` = 2. The
variety X satisfies the identities x3y = 0 and x2y2 = 0 because X ⊆ A. Hence
ui = 0 in X. Taking into account that ui−1 = ui in Z ∨Y, we obtain that
the consequence ui−1, ui, 0 is a (Z ∨Y, X)-deduction of the identity ui−1 = 0,
whence this identity holds in (Z ∨Y) ∧ X.

The equality (12) is proved. Thus, we have completed the proof of suffi-
ciency in Theorem 2. ¤

4. Sufficiency in Theorem 1

In this section we complete the proof of Theorem 1. It is evident that the
variety of all semigroups is both a modular and an upper-modular element
of the lattice SEM. Let now X be a semigroup variety with X ⊆ SL ∨ C.
Repeating literally the proof of Corollary 2.2, we conclude that either X = X′
or X = SL ∨ X′ for some variety X′ ⊆ C. According to Corollary 1.5 it suffices
to verify that each subvariety of the variety C is both a modular and an upper-
modular element of the lattice SEM. The “upper-modular half” of this claim
immediately follows from Theorem 2. Thus, it remains to verify that any
subvariety of the variety C is a modular element of the lattice SEM.

Let X ⊆ C. In other words, X is one of the varieties C, Cn, D and Dn

(see Fig. 1). We have to check that if Y and Z are arbitrary semigroup
varieties with Y ⊆ Z then (X ∨Y) ∧ Z = (X ∧ Z) ∨Y. It suffices to verify that
(X ∨Y) ∧ Z ⊆ (X ∧ Z) ∨Y since the opposite inclusion is evident. In other
words, we have to prove that an identity u = v holds in (X ∨Y) ∧ Z whenever
it does so in (X ∧ Z) ∨Y. Let u = v be an identity that holds in (X ∧ Z) ∨Y.
Then u = v in Y and there is an (X,Z)-deduction of u = v. Let

(15) u ≡ w0, w1, . . . , wn ≡ v

be the shortest (X, Z)-deduction of the identity u = v. In particular, this means
that there are no i ∈ {0, 1, . . . , n − 2} with wi = wi+1 = wi+2 in one of the
varieties X and Z. Besides that, if n > 1 then there are no i ∈ {0, 1, . . . , n−1}
such that wi = wi+1 in both the varieties X and Z.

The case n = 1 is fairly simple. Indeed, if n = 1 then the identity u = v
holds in one of the varieties X and Z. Since this identity holds in Y, we have
that u = v in one of the varieties X ∨Y and Z, and moreover in (X ∨Y) ∧ Z.

Suppose now that n = 2. By symmetry we may assume that u = w1 in X
and w1 = v in Z. Then w1 = v = u in Y. We see that u = w1 in X ∨Y and
w1 = v in Z, so u = v in (X ∨Y) ∧ Z.

Throughout the rest of this section we assume that n ≥ 3.
First of all, let us consider some very special but important partial case.

As we shall seen below, all other cases reduce to this one.
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Lemma 4.1. If n = 3, w0 = w1 in Z, w1 = w2 in X and w2 = w3 in Z then
the identity u = v holds in the variety (X ∨Y) ∧ Z.

Proof. Recall that the identity u = v holds in Y, u ≡ w0 and v ≡ un. Since
Y ⊆ Z, we have w1 = w0 = w3 = w2 in Y. Therefore, the identity w1 = w2

holds in the variety X ∨Y. Since the identities w0 = w1 and w2 = w3 hold
true in Z, we are done. ¤

Clearly, if u is a non-linear word and u 6≈ x2 then the identity u = 0 holds
in X. Put

Z = {u ∈ F | u = 0 holds in X} =

=





{u ∈ F | u is non-linear and u 6≈ x2} if X = C,

{u ∈ F | either u is non-linear and u 6≈ x2

or u is linear and `(u) ≥ n} if X = Cn,

{u ∈ F | u is non-linear} if X = D,

{u ∈ F | either u is non-linear
or u is linear and `(u) ≥ n} if X = Dn;

L = {u ∈ F | u is linear and u /∈ Z} =

=

{
{u ∈ F | u is linear} if X = C or X = D,

{u ∈ F | u is linear and `(u) < n} if X = Cn or X = Dn;

S = {u ∈ F | u /∈ Z ∪ L} =

{
{u ∈ F | u ≈ x2} if X = C or X = Cn,

∅ if X = D or X = Dn.

Clearly, every word belongs to exactly one of the sets Z, L and S. In particular,
it is so for each of the words w0, w1, . . . , wn. It is evident that if w′, w′′ ∈ Z
then w′ = w′′ in X. In the sequel we use this claim without any references.

Now we verify several properties of the sequence (15).

Lemma 4.2. If wi, wj ∈ Z for some 0 ≤ i < j ≤ n then j = i + 1. In
particular, the sequence (15) contains at most two words from the set Z.

Proof. Suppose that wi, wj ∈ Z for some 0 ≤ i, j ≤ n and j > i + 1. Then
wi = wj in X, whence w0, w1, . . . , wi, wj , . . . , wn is an (X, Z)-deduction of the
identity u = v that is shorter than (15). ¤

Lemma 4.3. If wi ∈ S for some 0 ≤ i ≤ n then:

(i) either i = 0 or i = n;
(ii) if w0 ∈ S (respectively, wn ∈ S) then the identity w0 = w1 (respective-

ly, wn−1 = wn) holds in the variety Z.
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Proof. Let wi ∈ S, that is wi ≈ x2. Suppose that i > 0 and the identity
wi−1 = wi holds in X. The claims (i) and (ii) of Lemma 2.3 then imply that
x2 = 0 in X. Thus, wi = 0 in X that contradicts the claim wi ∈ S. Therefore,
if i > 0 then the identity wi−1 = wi holds in Z. In particular, if wn ∈ S
then wn−1 = wn in Z. Analogous arguments show that if i < n (in particular,
if i = 0) then the identity wi = wi+1 holds in Z. The part (ii) is proved.
Furthermore, if 0 < i < n then wi−1 = wi = wi+1 in Z. But this is impossible.
The part (i) is proved as well. ¤
Lemma 4.4. If wi ∈ L for some 0 < i < n then either wi−1 ∈ L or wi+1 ∈ L.

Proof. Arguing by contradiction, suppose that wi−1, wi+1 ∈ Z∪S. If wi−1 ∈ S
then wi−1 = wi holds in Z by Lemma 4.3. Let now wi−1 ∈ Z. Then wi−1 = 0
holds in X while the identity wi = 0 is false in X. Therefore, the identity
wi−1 = wi is false in X too. This means that wi−1 = wi holds in Z as well.
Analogously, the identity wi = wi+1 holds in Z, that is wi−1 = wi = wi+1 in
Z. But this is impossible. ¤
Lemma 4.5. Let wi, wi+1 ∈ L for some 0 ≤ i ≤ n−1. The identity wi = wi+1

holds in the variety X if and only if c(wi) = c(wi+1).

Proof. Let wi, wi+1 ∈ L. If c(wi) = c(wi+1) then wi = wi+1 in X because the
variety X is commutative. Let now c(wi) 6= c(wi+1). If wi = wi+1 in X then
wi = 0 in X by Lemma 2.3(i). But this contradicts wi ∈ L. ¤
Lemma 4.6. If wi, wi+1 ∈ L for some 0 ≤ i ≤ n − 1 then the sequence (15)
contains no word from the set Z.

Proof. Suppose that i + 1 < n and wi+2 ∈ Z. Then wi+2 = 0 holds in X
while wi+1 = 0 is false in X. Therefore, the identity wi+1 = wi+2 is false in
X. This means that wi+1 = wi+2 in Z, and therefore wi = wi+1 in X. The
latter together with Lemma 4.5 imply that c(wi) = c(wi+1). Therefore, the
word wi may be obtained from wi+1 by an action of some permutation σ on
indices of letters occurring in c(wi+1). Substitute xσ(j) for xj in the identity
wi+1 = wi+2 for all letters xj ∈ c(wi+1). We obtain an identity of the type
wi = w′ such that w′ ≈ wi+2 and the identity wi = w′ holds in Z. Since
wi+2 = 0 in X, we have w′ = 0 in X too. Thus, w′ = wi+2 in X. Since
n ≥ 3, either i > 0 or i + 2 < n. If i > 0 then wi−1 = wi = w′ in Z and
w0, w1, . . . , wi−1, w

′, wi+2, . . . , wn is an (X,Z)-deduction of the identity u = v
that shorter than (15). Furthermore, if i + 2 < n then w′ = wi+2 = wi+3

in X and w0, w1, . . . , wi, w
′, wi+3, . . . , wn is an (X, Z)-deduction of the identity

u = v that shorter than (15). We see that if i + 1 < n then wi+2 /∈ Z. By
symmetry, if i > 0 then wi−1 /∈ Z.

Let now wj , . . . , wi, . . . , wk (where 0 ≤ j ≤ i < k ≤ n) be the maximal
subsequence of the sequence (15) consisting of words from the set L. In other
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words, wj , . . . , wi, . . . , wk ∈ L, wk+1 /∈ L whenever k < n, and wj−1 /∈ L
whenever j > 0. Suppose that k < n. As we have proved above wk+1 /∈ Z,
whence wk+1 ∈ S. Applying Lemma 4.3(i) we have k + 1 = n. Analogously,
if j > 0 then j = 1 and w0 ∈ S. We see that the words from the set Z are
absent in the sequence (15). ¤

Lemma 4.7. If wi, wi+1, wi+2 ∈ L for some 0 ≤ i ≤ n−2 then either c(wi) =
c(wi+1) 6= c(wi+2) or c(wi) 6= c(wi+1) = c(wi+2).

Proof. Applying Lemma 4.5, we have wi = wi+1 = wi+2 in X whenever c(wi) =
c(wi+1) = c(wi+2), and wi = wi+1 = wi+2 in Z whenever c(wi) 6= c(wi+1) 6=
c(wi+2). Both the cases are impossible. ¤

Lemma 4.8. If wi, wi+1, wi+2, wi+3 ∈ L and c(wi) = c(wi+1) 6= c(wi+2) =
c(wi+3) for some 0 ≤ i ≤ n − 3 then there are words w′ and w′′ such that
wi = w′ in Z, w′ = w′′ in X and w′′ = wi+3 in Z.

Proof. By Lemma 4.5 the identities wi = wi+1 and wi+2 = wi+3 hold true
in X while the identity wi+1 = wi+2 holds in Z. Since c(wi) = c(wi+1) and
wi, wi+1 ∈ L, the word wi may be obtained from wi+1 by an action of some
permutation σ on the indices of the letters occurring in c(wi+1). Substitute
xσ(j) for xj in the identity wi+1 = wi+2 for all letters xj ∈ c(wi+1). We obtain
an identity of the type wi = w′i+2 such that w′i+2 ∈ L, c(wi) 6= c(w′i+2) and the
identity wi = w′i+2 holds in Z. There is a letter x such that either x ∈ c(wi) \
c(w′i+2) or x ∈ c(w′i+2) \ c(wi). Substitute x3 for x in the identity wi = w′i+2.
If x ∈ c(wi) \ c(w′i+2) we obtain an identity of the type w′ = w′i+2 such that
w′ ∈ Z (because x3 = 0 in C, and moreover in X) and w′ = w′i+2 holds in Z.
Clearly, wi = w′ also is satisfied by Z. Furthermore, if x ∈ c(w′i+2)\c(wi) then
the substitution x 7−→ x3 immediately deduces from wi = w′i+2 an identity
of the type wi = w′ such that w′ ∈ Z (by the aforementioned reason) and
wi = w′ in Z. Thus, in any case there is a word w′ ∈ Z such that wi = w′
in Z. Analogously, there is a word w′′ ∈ Z such that the identity w′′ = wi+3

holds in Z. Because w′, w′′ ∈ Z, the identity w′ = w′′ holds in X. ¤

Now we are ready to complete the proof of sufficiency in Theorem 1. Further
considerations are divided into four cases.

Case 1: the sequence (15) contains no adjacent words from the set L.
Lemmas 4.3(i) and 4.4 imply that w1, . . . , wn−1 ∈ Z in this case. Combining
this claim with Lemma 4.2 and the condition n ≥ 3, we obtain that n = 3.
Besides that, the identity w1 = w2 holds in X, and therefore the identities
w0 = w1 and w2 = w3 hold in Z. Now Lemma 4.1 applies.

Case 2: the sequence (15) contains adjacent words from the set L but does
not contain three words in row from this set. Applying Lemma 4.6 we have
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that the sequence (15) contains no words from the set Z in this case. Then
Lemma 4.3(i) together with the claim n ≥ 3 implies that n = 3, w0, w3 ∈ S
and w1, w2 ∈ L. By Lemma 4.3(ii) the identities w0 = w1 and w2 = w3 hold
true in Z. Therefore, w1 = w2 in X. Now Lemma 4.1 applies.

Case 3: the sequence (15) contains three words in row from the set L but
does not contain four words in row from this set. So, let wi, wi+1, wi+2 ∈ L
for some 0 ≤ i ≤ n − 2. According to Lemmas 4.7 and 4.5, either c(wi) =
c(wi+1) 6= c(wi+2), wi = wi+1 in X and wi+1 = wi+2 in Z or c(wi) 6= c(wi+1) =
c(wi+2), wi = wi+1 in Z and wi+1 = wi+2 in X. By symmetry, it suffices to
consider the former case. So, let c(wi) = c(wi+1) 6= c(wi+2), wi = wi+1 in X
and wi+1 = wi+2 in Z. Since n ≥ 3, either i + 2 < n or i > 0. Suppose at first
that i+2 < n. Then the identity wi+2 = wi+3 holds in X. Since wi+2 ∈ L, the
identity wi+2 = 0 is false in X. The claims (i) and (iii) of Lemma 2.3 imply now
that wi+3 ∈ L. Therefore, the sequence (15) contains four words in row from
the set L (namely, the words wi, wi+1, wi+2 and wi+3). But this is impossible.
Therefore, i+2 = n, whence i > 0. The identity wi−1 = wi holds in the variety
Z. The case wi−1 ∈ L is impossible because the sequence (15) contains no four
words in row from the set L. Lemma 4.6 implies that wi−1 /∈ Z. Therefore,
wi−1 ∈ S. Then we can apply Lemma 4.3(i) and conclude that i−1 = 0. Now
Lemma 4.1 applies.

Case 4: the sequence (15) contains four words in row from the set L. So,
let wi, wi+1, wi+2, wi+3 ∈ L for some 0 ≤ i ≤ n − 3. According to Lemma
4.7, this means that either c(wi) = c(wi+1) 6= c(wi+2) = c(wi+3) or c(wi) 6=
c(wi+1) = c(wi+2) 6= c(wi+3). Consider two corresponding subcases.

Subcase 4.1: c(wi) = c(wi+1) 6= c(wi+2) = c(wi+3). Then wi = wi+1 in
X, wi+1 = wi+2 in Z and wi+2 = wi+3 in X by Lemma 4.5. Applying Lemma
4.8 we have that there are words w′ and w′′ such that wi = w′ in Z, w′ = w′′
in X and w′′ = wi+3 in Z. If i > 0 then wi−1 = wi = w′ in Z. This means that
w0, w1, . . . , wi−1, w

′, w′′, wi+3, . . . , wn is an (X,Z)-deduction of the identity u =
v that shorter than (15). Thus, i = 0. Analogous arguments imply that
i + 3 = n. Now we can apply Lemma 4.1 for the sequence w0, w

′, w′′, wi+3.
Subcase 4.2: c(wi) 6= c(wi+1) = c(wi+2) 6= c(wi+3). By Lemma 4.5,

wi = wi+1 in Z, wi+1 = wi+2 in X and wi+2 = wi+3 in Z. Suppose that i > 0.
Then the identity wi−1 = wi holds in X. By Lemmas 4.3 and 4.6 wi−1 /∈ S∪Z,
whence wi−1 ∈ L. By Lemma 4.5 c(wi−1) = c(wi). Now we can apply the
same arguments as in Subcase 4.1 for the words wi−1, wi, wi+1, wi+2. The case
i + 3 < n can be considered quite analogously. Finally, if i = 0 and i + 3 = n,
it remains to refer to Lemma 4.1.

We have completed the proof of sufficiency in Theorem 1. ¤
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