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Abstract Wecompletely determineupper-modular, codistributive and costandard ele-
ments in the lattice of all commutative semigroup varieties. In particular, we prove that
the properties of being upper-modular and codistributive elements in the mentioned
lattice are equivalent. Moreover, in the nil-case the properties of being elements of all
three types turn out to be equivalent.
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1 Introduction

A remarkable attention in the theory of lattices is devoted to special elements of
lattices. Recall definitions of several types of special elements. An element x of the
lattice 〈L; ∨,∧〉 is called

distributive if ∀y, z ∈ L : x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z);
standard if ∀y, z ∈ L : (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z);
modular if ∀y, z ∈ L : y ≤ z −→ (x ∨ y) ∧ z = (x ∧ z) ∨ y;
upper-modular if ∀y, z ∈ L : y ≤ x −→ x ∧ (y ∨ z) = y ∨ (x ∧ z);
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neutral if, for all y, z ∈ L , the elements x , y and z generate a distributive sublattice
of L . Codistributive, costandard and lower-modular elements are defined dually to
distributive, standard and upper-modular elements respectively.

Special elements play an important role in the general lattice theory (see [1,
Sect. III.2], for instance). In particular, one can say that neutral elements are
related with decompositions of a lattice into subdirect product of its intervals, while
[co]distributive elements are connected with homomorphisms of a lattice into its prin-
cipal filters [principal ideals]. Thus the knowledge of which elements of a lattice are
neutral or [co]distributive gives essential information on the structure of the lattice as
a whole.

There is a number of interrelations between the mentioned types of elements. It is
evident that a neutral element is both standard and costandard; a [co]standard element
is modular; a [co]distributive element is lower-modular [upper-modular]. It is well
known also that a [co]standard element is [co]distributive (see [1, Theorem 253], for
instance).

During last years, a number of articles appeared concerning special elements of
the above mentioned types in the lattice SEM of all semigroup varieties and in certain
its important sublattices, first of all, in the lattice Com of all commutative semigroup
varieties. Briefly speaking, these articles contain complete descriptions of special ele-
ments ofmany types and essential information about elements of other types (including
strong necessary conditions and descriptions in wide and important partial cases).
These results are discussed in details in the recent survey [11]. Special elements of the
lattice Com are examined in [4,5]. Results of these works give a complete description
of neutral, standard, distributive or lower-modular elements of Com and a consider-
able information about its modular elements that reduces the problem of description
of such elements to the nil-case. However, practically anything was unknown so far
about costandard, codistributive or upper-modular elements of the lattice Com. A
unique exception is a description of elements of these three types in the narrow and
particular class of 0-reduced varieties that follows from [4, Proposition 2.3 and The-
orem 1.2]. In particular, it was unknown whether the lattice Com contains costandard
but not neutral elements, as well as upper-modular but not codistributive elements.
Corresponding questions were formulated in [11] (see Questions 4.11 and 4.12 there).
For the sake of completeness, wemention that there exist codistributive but not costan-
dard elements in the lattice Com. This fact can be easily deduced from results of [4]
(see [11, Sect.4.5]).

In this article,we completely determine costandard, codistributive or upper-modular
elements in the lattice Com. In particular, we answer Questions 4.11 and 4.12 of [11].
Namely, we prove that, in this lattice, the properties of being upper-modular and
codistributive elements are equivalent, but the properties of being costandard and
neutral elements are not equivalent. Moreover, it turns out that all three properties we
consider are equivalent for commutative nil-varieties. Note that these results extremely
contrast with the situation in the lattice SEM where the properties of being upper-
modular and codistributive elements are not equivalent (compare [8, Theorem 1.2]
and [10, Theorem 1.2]) but the properties of being costandard and neutral elements
are equivalent [10, Theorem 1.3].
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698 B. M. Vernikov

To formulate the main results, we need some notation. We denote by T , SL and
COM the trivial variety, the variety of semilattices and the variety of all commutative
semigroups respectively. If Σ is a system of semigroup identities then varΣ stands
for the semigroup variety given by Σ . For a natural number m, we put

Cm = var
{
xm = xm+1, xy = yx

}
.

In particular, C1 = SL. For brevity, we put also C0 = T . Note that a semigroup S
satisfies the identity system wx = xw = w where the letter x does not occur in the
word w if and only if S contains a zero element 0 and all values of w in S equal 0. We
adopt the usual convention of writing w = 0 as a short form of this system. The main
results of the article are the following two theorems.

Theorem 1.1 For a commutative semigroup variety V , the following are equivalent:

(a) V is an upper-modular element of the lattice Com;
(b) V is a codistributive element of the lattice Com;
(c) one of the following holds:

(i) V = COM,
(ii) V = M ∨ N whereM is one of the varietiesT orSL, andN is a commutative

variety satisfying the identities

x2yz = 0, (1.1)

x2y = xy2, (1.2)

(iii) V = G ∨ M ∨ N where G is an Abelian periodic group variety, M is one
of the varieties T , SL or C2, and N is a commutative variety satisfying the
identity

x2y = 0. (1.3)

Theorem 1.2 For a commutative semigroup variety V , the following are equivalent:

(a) V is a modular and upper-modular element of the lattice Com;
(b) V is a costandard element of the lattice Com;
(c) one of the claims (i) or (ii) of Theorem 1.1 holds.

Note that semigroup varieties that are simultaneously modular and upper-modular
elements in SEM are completely determined in [13, Theorem 1], while costandard
elements of SEM are completely classified in [10, Theorem 1.3]. A comparison of
these two results shows that the two properties we mention are not equivalent in SEM,
in contrast with the situation in the lattice Com.

The article consists of four sections. In Sect. 2 we collect auxiliary results used in
what follows, Sect. 3 is devoted to the proof of Theorems 1.1 and 1.2, and Sect. 4
contains several corollaries from the main results.
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2 Preliminaries

We start with certain results about special elements in the lattice Com obtained earlier.

Proposition 2.1 ([4, Theorem 1.2]) A commutative semigroup variety V is a neutral
element of the lattice Com if and only if V = M ∨ N whereM is one of the varieties
T or SL, and N is a commutative variety satisfying the identity (1.3).

Proposition 2.2 ([5, Theorem1.4]) If a commutative semigroup varietyV is amodular
element of the lattice Com then V = M ∨ N where M is one of the varieties T or
SL, and N is a nil-variety.

It is generally known that the varietySL is an atom of the lattice SEM and therefore,
of the lattice Com (see the survey [6], for instance). Proposition 2.1 implies that this
variety is neutral in Com. Combining these facts with [4, Corollary 2.1], we have the
following

Lemma 2.3 A commutative semigroup variety V is an upper-modular [costandard]
element of the lattice Com if and only if the variety V ∨ SL has the same property.

The subvariety lattice of a variety X is denoted by L(X ). The following lemma
is a part of the semigroup folklore since the beginning of the 1970s. It follows from
the fact that the variety SL is a neutral element of the lattice SEM proved in [16,
Proposition 4.1].

Lemma 2.4 If V is a semigroup variety with V � SL then the lattice L(V ∨ SL) is
isomorphic to the direct product of the lattices L(V) and L(SL).

It is evident that a semigroup variety V is periodic if and only if it satisfies an
identity of the form xn = xn+m for some natural n and m. Let n be the least number
with such a property. Then a semigroup from V is a group [a nilsemigroup] if and
only if it satisfies the identities xn y = yxn = y [the identity xn = 0]. This implies
the following generally known fact.

Lemma 2.5 A periodic semigroup variety contains the greatest group subvariety and
the greatest nilsubvariety.

If V is a periodic variety then the greatest group subvariety [the greatest nilsubva-
riety] of V will be denoted by Gr(V) [respectively, Nil(V)].

We denote by F the free semigroup over a countably infinite alphabet. The symbol
≡ stands for the equality relation on F . If u ∈ F thenwe denote by c(u) the set of letters
occurring in u and by �(u) the length of u. If u, v ∈ F then we write u � v whenever
v ≡ aξ(u)b for some (maybe empty) words a and b and some homomorphism ξ of
F . The first claim in the following lemma is evident, while the second one follows
from [12, Lemma 1.3(iii)].

Lemma 2.6 Let N be a nil-variety of semigroups.

(i) IfN satisfies an identity u = v with c(u) �= c(v) thenN also satisfies the identity
u = 0.
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700 B. M. Vernikov

(ii) If N is commutative and satisfies an identity u = v with u � v then N also
satisfies the identity u = 0.

We need the following two technical corollaries from Lemma 2.6. Put W =
{x2y, xyx, yx2, y2x, yxy, xy2}.
Corollary 2.7 If a commutative nil-variety of semigroupsN satisfies an identity of the
form u = v where u ∈ {x2y, xy2} and v /∈ W then N also satisfies the identity (1.3).

Proof Suppose at first that u ≡ x2y. If c(v) �= {x, y} thenN satisfies the identity (1.3)
by Lemma 2.6(i). Let now c(v) = {x, y}. If �(v) < 3 then v � x2y and Lemma 2.6(ii)
implies thatN satisfies the identity (1.3) again. If �(v) = 3 then v ∈ W contradicting
the hypothesis. Finally, if �(v) > 3 then it is easy to see that v equals in COM (and
therefore, in N ) to a word v′ such that x2y � v′. Now Lemma 2.6(ii) applies again,
and we conclude that N satisfies the identity (1.3) as well.

The case when u ≡ xy2 can be considered quite analogously with the conclusion
thatN satisfies the identity xy2 = 0 that is equivalent to (1.3)modulo the commutative
law. �
Corollary 2.8 If a commutative nil-variety of semigroupsN satisfies the identity (1.2)
then N also satisfies the identity (1.1).

Proof Substituting yz to y in the identity (1.2), we obtain x2yz = x(yz)2 = xy2z2.
Since x2yz � xy2z2, it remains to refer to Lemma 2.6(ii). �

A semigroup variety V is called a variety of degree n if all nilsemigroups in V
are nilpotent of degree ≤ n and n is the least number with such property. A variety
is said to be a variety of finite degree if it has a degree n for some n; otherwise, a
variety is called a variety of infinite degree. The following lemma follows from [8,
Proposition 2.11] and [7, Theorem 2].

Lemma 2.9 A commutative semigroup variety V is a variety of degree≤ n if and only
if it satisfies an identity of the form

x1x2 ... xn = (x1x2 ... xn)
t+1 (2.1)

for some natural number t.

IfV is a variety of finite degree thenwe denote the degree ofV by deg(V); otherwise,
we write deg(V) = ∞.

Corollary 2.10 If X and Y are commutative semigroup varieties then

deg(X ∨ Y) = max
{
deg(X ), deg(Y)

}
.

Proof If at least one of the varieties X or Y has infinite degree then

deg(X ∨ Y) = ∞ = max
{
deg(X ), deg(Y)

}
.
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Let now deg(X ) = k and deg(Y) = m. Lemma 2.9 implies that the varieties X and
Y satisfy, respectively, the identities

x1x2 ... xk = (x1x2 ... xk)
r+1

and

x1x2 ... xm = (x1x2 ... xm)s+1

for some r and s. Assume without loss of generality that k ≤ m. Substitute xk ... xm
to xk in the first of the two mentioned identities. We have that X satisfies the identity

x1x2 ... xm = (x1x2 ... xm)r+1.

Then X ∨ Y satisfies the identity

x1x2 ... xm = (x1x2 ... xm)rs+1.

Now Lemma 2.6(ii) applies with the conclusion that

deg(X ∨ Y) ≤ m = max
{
deg(X ), deg(Y)

}
.

Since the unequality max
{
deg(X ), deg(Y)

} ≤ deg(X ∨ Y) is evident, we are done.
�

The following statement follows from [14, Proposition 1] and results of [2].

Lemma 2.11 If V is a commutative semigroup variety and V �= COM then
V = G ∨ Cm ∨ N for some Abelian periodic group variety G, some m ≥ 0 and some
nil-variety N .

A semigroup variety V is called combinatorial if all groups in V are singletons.

Lemma 2.12 If G is a periodic group variety and F is a combinatorial semigroup
variety then Gr(G ∨ F) = G.

Proof The inclusion G ⊆ Gr(G ∨ F) is evident. To verify the converse inclusion, we
suppose that the variety G satisfies the identity u = v. Being combinatorial, the variety
F satisfies the identity xn = xn+1 for some natural n. Therefore G ∨ F satisfies the
identity un+1vn = unvn+1. If we reduce it on un from the left and on vn from the
right, we obtain that the identity u = v holds in Gr(G ∨ F). �

It can be easily checked that the join of all varieties of the form Cm coincideswith the
variety COM. Therefore, for a periodic semigroup variety X there exists the largest
number m ∈ N ∪ {0} with the property Cm ⊆ X . We denote this number by m(X ).
The following two results can be easily deduced from results of [3], and also can be
easily verified directly.
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702 B. M. Vernikov

Lemma 2.13 If G is a periodic group variety, m ≥ 0 and N is a nil-variety of
semigroups then m(G ∨ Cm ∨ N ) = m.

Lemma 2.14 If X and Y are periodic commutative semigroup varieties then
m(X ∨ Y) = max

{
m(X ),m(Y)

}
.

3 Proofs of main results

To prove both theorems, it suffices to verify the implications (a)−→ (c) and (c)−→ (b)
because the implications (b)−→ (a) in both theorems are evident.

The implication (a)−→ (c) of Theorem 1.1. The article [8] contains, among others,
the proof of the following fact: if a periodic commutative semigroup variety V is an
upper-modular element of the lattice SEM then one of the claims (ii) or (iii) of The-
orem 1.1 holds. Almost all varieties that appear in the corresponding fragment of [8]
are commutative. The unique exception is a periodic group variety G that appear in the
verification of the following fact: every nil-subvariety of V satisfies the identity (1.2).
There are no the requirement that the variety G is Abelian in [8]. But if we add this
requirement to arguments used in [8] then the proof remains valid. Thus, in actual
fact, it is verified in [8] that if V is an upper-modular element of the lattice Com and
V �= COM then V satisfies one of the claims (ii) or (iii) of Theorem 1.1.

The implication (a)−→ (c) of Theorem 1.2. Let V be a modular and upper-modular
element of the lattice Com and V �= COM. Then we can apply Proposition 2.2 and
conclude that V = M ∨ N whereM is one of the varieties T or SL, andN is a nil-
variety. The varietyN is an upper-modular element in the lattice Com by Lemma 2.3.
In view of the proved above implication (a)−→ (c) of Theorem 1.1, we have that N
satisfies the identities (1.1) and (1.2). Thus the claim (ii) of Theorem 1.1 fulfills.

The implication (c)−→ (b) of Theorem 1.2. Let V = M ∨ N where M is one of
the varieties T or SL, and N is a commutative variety satisfying the identities (1.1)
and (1.2). We need to verify that V is costandard in Com. In view of Lemma 2.3, it
suffices to check that the variety N is costandard in Com. Let X and Y be arbitrary
commutative semigroup varieties. It suffices to verify that

(N ∨ Y) ∧ (X ∨ Y) ⊆ (N ∧ X ) ∨ Y

because the converse inclusion is evident. If at least one of the varieties X or Y
coincides with the variety COM then the desirable inclusion is evident. Thus we may
assume that the varieties X and Y are periodic. Let u = v be an arbitrary identity that
is satisfied by (N ∧ X ) ∨ Y . We need to verify that it holds in (N ∨ Y) ∧ (X ∨ Y).
By the hypothesis, the identity u = v holds in Y and there exists a deduction of this
identity from the identities of the varieties N and X . Let the sequence of words

u0 ≡ u, u1, ... , uk ≡ v (3.1)

be the shortest such deduction. If k = 1 then the identity u = v holds in one of the
varietiesN orX . Then it is satisfied by one of the varietiesN ∨ Y orX ∨ Y , whence
by the variety (N ∨ Y) ∧ (X ∨ Y). Thus we may assume that k > 1. If the identity
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u = v holds in N then it holds in N ∨ Y and therefore, in (N ∨ Y) ∧ (X ∨ Y).
Thus we may assume that u = v fails in N . In particular, at least one of the words
u or v, say u, does not equal 0 in N . Since N satisfies the identity (1.1), this means
that u coincides with one of the words x1x2 ... xn for some n, x2, x3 or x2y. Further
considerations are divided into three cases.

Case 1 u ≡ x1x2 ... xn . If v ≡ x1π x2π ... xnπ for some non-trivial permutation π on
the set {1, 2, ... , n} then the identity u = v holds in the variety COM and therefore, in
the variety (N ∨ Y) ∧ (X ∨ Y). Otherwise, Lemma 2.6 applies with the conclusion
that every nilsemigroup in Y satisfies the identity

x1x2 ... xn = 0. (3.2)

This means that Y is a variety of degree ≤ n. Now we can apply Lemma 2.9 and
conclude that Y satisfies the identity

x1x2 ... xn = (x1x2 ... xn)
r+1

for some natural r and therefore, the identity

x1x2 ... xn = (x1x2 ... xn)
r�+1

for any natural �. Thus the words x1x2 ... xn , (x1x2 ... xn)r�+1 (for all �) and v pairwise
equal each to other in the variety Y .

Further, one of the varieties N or X satisfies the identity x1x2 ... xn = u1. If
v ≡ x1π x2π ... xnπ for some non-trivial permutation π on the set {1, 2, ... , n} then the
identity u = u1 holds in both varietiesN and X . This contradicts the claim that (3.1)
is the shortest deduction of the identity u = v from the identities of the varieties
N and X . Repeating arguments from the previous paragraph, we may conclude that
there exists a natural s such that the words x1x2 ... xn , (x1x2 ... xn)s�+1 (for all �) and v

pairwise equal each to other in one of the varietiesN orX . Then the words x1x2 ... xn ,
(x1x2 ... xn)rs+1 and v pairwise equal each to other in one of the varieties N ∨ Y
or X ∨ Y and therefore, in the variety (N ∨ Y) ∧ (X ∨ Y). In particular, the variety
(N ∨ Y) ∧ (X ∨ Y) satisfies the identity u = v.

Case 2 u ≡ x2 or u ≡ x3. One can verify the desirable statement in slightly
more general situation when u ≡ xn for some n. (In actual fact, this statement is
evident whenever n > 3 because the variety N satisfies the identity x4 = 0. But our
considerations below do not depend on n.) The identity xn = v holds in Y . Then
Lemma 2.6 implies that every nilsemigroup in Y satisfies the identity xn = 0. Being
periodic, the variety Y satisfies the identity x p = xq for some natural p and q with
p < q. Let p be the least number with such a property. In view of Lemma 2.6, each
nilsemigroup in Y satisfies the identity x p = 0. Clearly, p is the least number with
such a property. Therefore n ≥ p. Multiplying the identity x p = xq on xn−p, we
see that Y satisfies the identity xn = xn+r for some r and therefore, the identity
xn = xn+r� for every natural �. Thus the words xn , xn+r� (for all �) and v pairwise
equal each to other in the variety Y .
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704 B. M. Vernikov

Further, one of the varieties N or X satisfies the identity xn = u1. The same
arguments as in the previous paragraph show that there exists a natural s such that the
words xn , xn+s� (for all �) and v pairwise equal each to other in one of the varieties
N or X . Then the words xn , xn+rs and v pairwise equal each to other in one of
the varieties N ∨ Y or X ∨ Y and therefore, in the variety (N ∨ Y) ∧ (X ∨ Y). In
particular, the variety (N ∨ Y) ∧ (X ∨ Y) satisfies the identity u = v.

Case 3 u ≡ x2y. This case is essentially more complex than the two previous ones.
In view of Lemma 2.11,X = G1∨Cm1 ∨N1 andY = G2∨Cm2 ∨N2 for someAbelian
periodic group varieties G1 and G2, some m1,m2 ≥ 0 and some nil-varieties N1 and
N2. We may assume without loss of generality that N1 = Nil(X ) and N2 = Nil(Y).

If the variety N satisfies the identity (1.3) then we are done by Proposition 2.1.
Suppose now that the identity (1.3) fails inN . Recall that (3.1) is the shortest deduction
of the identity u = v from the identities of the varieties N and X . Hence, for every
i = 0, 1, ... , k−1, the identity ui = ui+1 is false in COM. This allows us to suppose
that if ui is a word of length 3 depending on letters x and y then ui ∈ {x2y, xy2}.
Put S = {x2y, xy2}. The words u0, u1, …, uk are pairwise distinct, whence at most
two of them lie in S. Recall that u0 ≡ x2y ∈ S. The identity u = u1 is satisfied by
one of the varieties N or X . If it holds in N and u1 /∈ S then Corollary 2.7 applies
with the conclusion thatN satisfies the identity (1.3). But this is not the case. Further,
if the identity u = u1 holds in X and u1 ∈ S then the identity u1 = u2 holds in N
and u2 /∈ S. Then Corollary 2.7 applies again and we conclude that the variety N
satisfies the identity (1.3). As we have already noted, this is not the case. Thus either
the identity u = u1 holds in N and u1 ∈ S or this identity holds in X and u1 /∈ S.
Note that u2 /∈ S in the first case because u0, u1 ∈ S here. In both the cases, there
exists an identity of the form w1 = w2 such that w1 ∈ S, w2 /∈ S and the identity
holds in X (namely, the identity u1 = u2 in the first case, and the identity u = u1 in
the second one). Corollary 2.7 shows that N1 satisfies the identity (1.3). According
to Proposition 2.1, this implies that the varietyN1 is neutral in Com. We use this fact
below without special references.

By the hypothesis, the identity x2y = v holds in the variety Y . Then Corollary 2.7
implies that either the variety N2 satisfies the identity (1.3) or v ∈ W . In the second
case, the identity x2y = v is equivalent to (1.2) because it fails in the variety COM.
Thus either N2 satisfies the identity (1.3) or Y satisfies the identity (1.2). Consider
the second case. Corollary 2.8 implies that the identity (1.1) holds in N2 in this case.
Besides that, substituting 1 to y in (1.2), we have that every monoid in Y is a band
(in particular, each group in Y is singleton). We see that G2 = T and m2 ≤ 1 in the
considerable case. Thus either N2 satisfies the identity (1.3) or Y = M ∨ N 2 where
M is one of the varieties T or SL.

Put Z1 = (N ∧ X ) ∨ Y and Z2 = (N ∨ Y) ∧ (X ∨ Y). In view of Lemma 2.11,
it suffices to verify that Gr(Z1) = Gr(Z2), m(Z1) = m(Z2) and Nil(Z1) = Nil(Z2).
Clearly, the variety Cm ∨ U is combinatorial whenever m ≥ 0 and U is an arbitrary
nil-variety. Using Lemma 2.12, we have

Gr(Z1) = Gr
(
G2 ∨ Cm2 ∨ N2 ∨ (N ∧ X )

) = G2,

Gr(Z2) = Gr
(
(N ∨ Y) ∧ (X ∨ Y)

) = Gr(N ∨ Y) ∧ Gr(X ∨ Y)
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Upper-modular and related elements of the lattice... 705

= Gr(G2 ∨ Cm2 ∨ N2 ∨ N ) ∧ Gr(G1 ∨ G2 ∨ Cm1 ∨ Cm2 ∨ N1 ∨ N2)

= G2 ∧ (G1 ∨ G2) = G2.

Thus Gr(Z1) = Gr(Z2). Further, using Lemma 2.13, we have

m(Z1) = m
(
(N ∧ X ) ∨ Y

) = m
(
G2 ∨ Cm2 ∨ N2 ∨ (N ∧ X )

) = m2,

m(Z2) = m
(
(N ∨ Y) ∧ (X ∨ Y)

) = min
{
m(N ∨ Y),m(X ∨ Y)

}

= min
{
m(G2 ∨ Cm2 ∨ N2 ∨ N ),m(G1 ∨ G2 ∨ Cm1 ∨ Cm2 ∨ N1 ∨ N2)

}

= min
{
m(G2 ∨ Cm2 ∨ N2 ∨ N ),m(G1 ∨ G2 ∨ Cmax{m1,m2} ∨ N1 ∨ N2)

}

= min
{
m2,max{m1,m2}

} = m2.

Thus m(Z1) = m(Z2).
It remains to check that Nil(Z1) = Nil(Z2). Put

I = var{x2y = xy2, x2yz = 0, xy = yx}.

Aswe have seen above, the varietiesN1 andN2 satisfy the identity (1.2) and therefore,
the identity (1.1) (see Corollary 2.8). In other words,N1,N2 ⊆ I. Simple calculations
based on Lemma 2.6 show that proper subvarieties of the variety I are exhausted by
the following varieties:

In = var{x2yz = x1x2 ... xn = 0, x2y = xy2, xy = yx} where n ≥ 4,

J = var{x2yz = x3 = 0, x2y = xy2, xy = yx},
Jn = var{x2yz = x3 = x1x2 ... xn = 0, x2y = xy2, xy = yx} where n ≥ 4,

K = var{x2y = 0, xy = yx},
Kn = var{x2y = x1x2 ... xn = 0, xy = yx} where n ≥ 3,

L = var{x2 = 0, xy = yx},
Ln = var{x2 = x1x2 ... xn = 0, xy = yx} where n ∈ N.

This implies that the lattice L(I) has the form shown in Fig. 1.
Identities of the form w = 0 are called 0-reduced. For a commutative nil-variety

of semigroups V , we denote by ZR(V) the variety given by the commutative law and
all 0-reduced identities that hold in V . The exponent of a periodic group variety H is
denoted by exp(H). To verify the equality Nil(Z1) = Nil(Z2), we need two auxiliary
facts.

Lemma 3.1 Let G be a periodic group variety and U be a nil-variety of semigroups
with U ⊆ I and U ⊇ Nil(Cm) for some m ≤ 2. Then

(a) Nil(G ∨ Cm ∨ U) ⊆ ZR(U);
(b) if U ⊆ K then Nil(G ∨ Cm ∨ U) = U .
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Fig. 1 The lattice L(I) I

I4
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J4
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Jn+1
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Kn

Kn+1

L

L1 = T

L2

L3

L4

Ln

Ln+1

Proof (a) PutZ = G ∨ Cm∨U . Letw = 0 be an arbitrary 0-reduced identity that holds
in the varietyU . BecauseU ⊆ I, we have thatw is one of thewords x2yz, x2y, x3, x2 or
x1x2 ... xn for some natural n (see Fig. 1). Put r = exp(G). If w ∈ {x2yz, x2y, x3, x2}
then the varietyZ satisfies the identity xrw = w. Then Lemma 2.6(ii) applies with the
conclusion that the identity w = 0 holds in the variety Nil(Z). Suppose now that w ≡
x1x2 ... xn . In other words, U satisfies the identity (3.2). Because Nil(Z) ⊇ Nil(Cm)

and the variety Nil(Cm) with m > 1 does not satisfy the identity (3.2), we have that
m ≤ 1 in this case. Then the varietyZ satisfies the identity x1x2 ... xn = xr+1

1 x2 ... xn .
Using Lemma 2.6(ii) again, we have that the variety Nil(Z) satisfies the identity (3.2).
We see that if a 0-reduced identity holds in U then it holds in Nil(Z) as well. We prove
that Nil(Z) ⊆ ZR(U).

(b) Let now U ⊆ K. All subvarieties of the variety K are given within COM by 0-
reduced identities only (see Fig. 1). Therefore ZR(U) = U . Now the claim (a) implies
that Nil(G ∨ Cm ∨ U) ⊆ U . The converse inclusion is evident. �

Lemma 3.2 If U1,U2 ⊆ I then ZR(U1) ∧ U2 = U1 ∧ U2.

Proof PutQ = var{x2y = xy2, xy = yx}. Then U1 = Q ∧ ZR(U1) (see Fig. 1) and
U2 ⊆ I ⊆ Q. Therefore U1 ∧ U2 = Q ∧ ZR(U1) ∧ U2 = ZR(U1) ∧ U2. �
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Now we start with the proof of the equality Nil(Z1) = Nil(Z2). Note that if m > 2
then the variety Nil(Cm) = var{xm = 0, xy = yx} does not satisfy the identity (1.1).
Since Nil(Cm1) ⊆ N1 ⊆ X and Nil(Cm2) ⊆ N2 ⊆ Y , we have m1,m2 ≤ 2. Below
we use this fact without special references.

Further, we note that N ∧ X = N ∧ Nil(X ) = N ∧ N 1, whence

Z1 = (N ∧ N 1) ∨ Y . (3.3)

Suppose at first that the varietyN2 satisfies the identity (1.3). Using the equality (3.3),
we have

Z1 = (N ∧ N 1) ∨ Y = (N ∧ N 1) ∨ N2 ∨ G2 ∨ Cm2

where m2 ≤ 2. Recall that N1 satisfies the identity (1.3). Now Lemma 3.1(b) with
U = (N ∧ N 1) ∨ N2, G = G2 and m = m2 applies with the conclusion that

Nil(Z1) = (N ∧ N 1) ∨ N2. (3.4)

Applying Proposition 2.1, we have

Nil(Z1) = (N ∨ N 2) ∧ (N1 ∨ N2). (3.5)

One can consider the variety Nil(Z2) now. SinceZ2 = (N ∨ Y) ∧ (X ∨ Y), we have

Nil(Z2) = Nil(N ∨ Y) ∧ Nil(X ∨ Y). (3.6)

Further, Nil(N ∨ Y) = Nil(N ∨ N 2 ∨ G2 ∨ Cm2). Now we can apply Lemma 3.1(a)
with U = N ∨ N 2, G = G2 and m = m2, and conclude that

Nil(N ∨ Y) ⊆ ZR(N ∨ N 2).

On the other hand,

X ∨ Y = G1 ∨ G2 ∨ Cm1 ∨ Cm2 ∨ N1 ∨ N2 = G1 ∨ G2 ∨ Cmax{m1,m2} ∨ N1 ∨ N2.

Now Lemma 3.1(b) with U = N 1 ∨N2, G = G1 ∨G2 and m = max{m1,m2} applies
with the conclusion that Nil(X ∨ Y) = N 1 ∨ N2. Thus

Nil(Z2) = Nil(N ∨ Y) ∧ Nil(X ∨ Y) ⊆ ZR(N ∨ N 2) ∧ (N1 ∨ N2).

By the hypothesis,N ⊆ I. Now Lemma 3.2 with U1 = N ∨ N 2 and U2 = N1 ∨N2
can be applied with the conclusion that

Nil(Z2) ⊆ (N ∨ N 2) ∧ (N1 ∨ N2).
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Because the converse inclusion is evident, we have

Nil(Z2) = (N ∨ N 2) ∧ (N1 ∨ N2). (3.7)

The equalities (3.5) and (3.7) imply that Nil(Z1) = Nil(Z2).
It remains to consider the casewhenN2 does not satisfy the identity (1.3).Recall that

Y = M ∨ N 2 whereM is one of the varieties T or SL in this case. The equality (3.3)
implies that

Z1 = (N ∧ N 1) ∨ Y = (N ∧ N 1) ∨ N2 ∨ M

where M has the just mentioned sense. Lemma 2.4 implies that the equality (3.4)
holds. This equality and Proposition 2.1 show that the equality (3.5) is true. Besides
that, the equality (3.6) holds. Suppose thatM = SL. Proposition 2.1 shows that

(N ∨ Y) ∧ (X ∨ Y) = (N ∨ N 2 ∨ SL) ∧ (X ∨ N 2 ∨ SL)

= (
(N ∨ N 2) ∧ (X ∨ N 2)

) ∨ SL.

Now we can apply Lemma 2.4 and conclude that

Nil(Z2) = Nil
(
(N ∨ N 2) ∧ (X ∨ N 2)

)
.

Clearly, this equality holds whenever M = T too. Thus it is valid always. Note that

X ∨ N 2 = G1 ∨ Cm1 ∨ N1 ∨ N2.

Using Lemma 3.1(a) with U = N 1 ∨ N2, G = G1 and m = m1, we have

Nil(X ∨ N 2) ⊆ ZR(N1 ∨ N2).

Since N ∨ N 2 is a nil-variety, we have

Nil(Z2) = Nil
(
(N ∨ N 2) ∧ (X ∨ N 2)

)

= (N ∨ N 2) ∧ Nil(X ∨ N 2)

⊆ (N ∨ N 2) ∧ ZR(N1 ∨ N2).

Now we can apply Lemma 3.2 with U1 = N1 ∨N2 and U2 = N ∨ N 2 and conclude
that the equality (3.7) holds. Because we prove above that the equality (3.5) is true,
we have Nil(Z1) = Nil(Z2).

We complete the proof of Theorem 1.2.
The implication (c)−→ (b) of Theorem 1.1. It is evident that the variety COM is

codistributive in Com. If the variety V satisfies the claim (ii) of Theorem 1.1 then
Theorem 1.2 applies with the conclusion that V is costandard and therefore, is codis-
tributive in Com. It remains to consider the case when V satisfies the claim (iii) of
Theorem 1.1. So, let V = G ∨ M ∨ N where G is an Abelian periodic group variety,
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M is one of the varieties T , SL or C2, andN is a commutative variety satisfying the
identity (1.3).

LetX andY be arbitrary commutative semigroup varieties. It remains to verify that
V ∧ (X ∨ Y) ⊆ (V ∧ X ) ∨ (V ∧ Y) because the converse inclusion is evident. If at
least one of the varieties X or Y coincides with the variety COM then the desirable
inclusion is evident. Thus we may assume that the varieties X and Y are periodic.
Put Z1 = V ∧ (X ∨ Y) and Z2 = (V ∧ X ) ∨ (V ∧ Y). The varieties Z1 and Z2 are
periodic. In view of Lemma 2.11, Z1 = G1 ∨ Cm1 ∨ N1 and Z2 = G2 ∨ Cm2 ∨ N2
for some Abelian periodic group varieties G1 and G2, some m1,m2 ≥ 0 and some
nil-varietiesN1 andN2. We may assume without loss of generality that Gi = Gr(Zi )

andNi = Nil(Zi ) for i = 1, 2. If m > 2 then the variety Nil(Cm) does not satisfy the
identity (1.3). Therefore m1,m2 ≤ 2.

Clearly, it suffices to verify that G1 = G2, m(Z1) = m(Z2) and N1 ⊆ N2. Put
q = exp

(
Gr(V)

)
, r = exp

(
Gr(X )

)
and s = exp

(
Gr(Y)

)
. Then

exp(G1) = gcd
(
q, lcm(r, s)

)
and exp(G2) = lcm

(
gcd(q, r), gcd(q, s)

)
.

Since the lattice of all natural numbers with the operations gcd and lcm is distributive,
we have that exp(G1) = exp(G2). This implies that G1 = G2 because the varieties G1
and G2 are Abelian.

Put m(V) = k, m(X ) = � and m(Y) = m. It is clear that

m(E ∧ F) = min
{
m(E),m(F)

}

for arbitrary periodic varieties E andF . Combining this observationwith Lemma 2.14,
we have that

m(Z1) = min
{
k,max{�,m}} and m(Z2) = max

{
min{k, �},min{k,m}}.

This implies that m(Z1) = m(Z2).
It remains to verify that N1 ⊆ N2. It is evident that N1,N2 ⊆ Nil(V). The vari-

ety V is commutative and satisfies the identity x2y = xr+2y where r = exp(G).
Lemma 2.6(ii) implies now thatN1 andN2 satisfy the identity (1.3). This means that
N1,N2 ⊆ K. Every subvariety of the varietyK is given withinK either by the identity

x2 = 0 (3.8)

or by the identity (3.2) for some n or by these two identities simultaneously (see Fig. 1).
Thus it suffices to verify that deg(Z1) = deg(Z2) and the identity (3.8) holds in the
variety N1 whenever it holds in N2.

Put deg(V) = k, deg(X ) = � and deg(Y) = m. It is evident that

deg(E ∧ F) = min
{
deg(E), deg(F)

}
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for arbitrary semigroup varieties E and F . Combining this observation with Corol-
lary 2.10, we have that

deg(Z1) = min
{
k,max{�,m}} and deg(Z2) = max

{
min{k, �},min{k,m}}.

This implies that deg(Z1) = deg(Z2).
Suppose now that N2 satisfies the identity (3.8). Being periodic, the variety Z2

satisfies the identity xn = xm for some natural numbers n and m with m > n. Let n
be the least number with such property. Then Lemma 2.6(ii) implies that the variety
N2 = Nil(Z2) satisfies the identity xn = 0 and n is the least number with such
a property. Hence n ≤ 2. Thus the variety Z2 = (V ∧ X ) ∨ (V ∧ Y) satisfies the
identity x2 = xm for some m > 2. In particular, this identity holds in the variety
V ∨ X . Therefore there exists a deduction of this identity from the identities of the
varieties V and X . In particular, one of these varieties satisfies a non-trivial identity
of the form x2 = w. Now Lemma 2.6 implies that one of the varieties Nil(V) or
Nil(X ) satisfies the identity (3.8). If this identity holds in Nil(V) then it holds in the
variety Nil

(
V ∧ (X ∨ Y)

) = N1 too. Thus we may assume that the identity (3.8) is
satisfied by the varietyNil(X ). Analogously, using a deduction of the identity x2 = xm

from the identities of the varieties V and Y , we can reduce our considerations to the
case when the identity (3.8) holds in Nil(Y). The same arguments as we use at the
beginning of this paragraph allows us to check that the varieties X and Y satisfy,
respectively, the identities x2 = xq+2 and x2 = xr+2 for some natural numbers q and
r . Therefore X ∨ Y satisfies the identity x2 = xqr+2. Then Lemma 2.6(ii) implies
that the variety Nil(X ∨ Y) satisfies the identity (3.8). Then it holds in the variety
Nil

(
V ∧ (X ∨ Y)

) = N1 too.
We complete the proof of Theorem 1.1.

4 Corollaries

One can give several corollaries of main results. Theorem 1.1 and [8, Theorem 1.2]
imply

Corollary 4.1 A commutative semigroup variety V with V �= COM is an upper-
modular element of the lattice Com if and only if it is an upper-modular element of
the lattice SEM.

Comparing Theorems 1.1 and 1.2, we have

Corollary 4.2 Fora commutative nil-variety of semigroupsV , the followingare equiv-
alent:

(a) V is an upper-modular element of the lattice Com;
(b) V is a codistributive element of the lattice Com;
(c) V is a costandard element of the lattice Com;
(d) V satisfies the identities (1.1) and (1.2).

Theorem 1.1 implies
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Corollary 4.3 If a commutative semigroup variety V is an upper-modular element of
the lattice Com and V �= COM then every subvariety of the variety V is an upper-
modular element of the lattice Com.

Note that the analog of this assertion for the lattice SEM is the case (see [9, Corol-
lary 3]). Theorem 1.1 and results of [15] imply.

Corollary 4.4 If a commutative semigroup variety V is an upper-modular element of
the lattice Com and V �= COM then the lattice L(V) is distributive.

We do not know whether the analog of this fact in the lattice SEM is true. It is
verified in [9, Corollary 2] that the following weaker statement is the case: if a variety
V is an upper-modular element of the lattice SEM and V is not the variety of all
semigroups then the lattice L(V) is modular.
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