Глава II. Приложения к матрицам и системам линейных уравнений § 2. Общая теория систем линейных уравнений

А. Я. Овсянников

Уральский федеральный университет
Институт естественных наук и математики
Департамент математики, механики и компьютерных наук
Линейная алгебра для направлений
Механика и математическое моделирование и
Прикладная математика
(2 семестр)

Критерий совместности системы линейных уравнений

Пусть F – поле, $A \in F^{k \times n}$, $b \in F_k$, $x = (x_1, \dots, x_n)^\top$ – столбец из n неизвестных. Пусть $A = (\alpha_{ij})_{k \times n}$, $b = (\beta_1, \dots, \beta_k)^\top$. Рассмотрим систему линейных уравнений над полем F в матричной записи $A \cdot x = b$ и в развернутом виде:

$$\begin{cases}
\alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{1n}x_n = \beta_1, \\
\alpha_{21}x_1 + \alpha_{22}x_2 + \dots + \alpha_{2n}x_n = \beta_2, \\
\dots \\
\alpha_{k1}x_1 + \alpha_{k2}x_k + \dots + \alpha_{kn}x_n = \beta_k.
\end{cases}$$
(1)

Напомним, что A называется *основной матрицей системы линейных уравнений* (1), а ее *расширенная матрица* имеет вид (A|b). Критерий совместности системы линейных уравнений дает

Теорема Кронекера-Капелли

Система линейных уравнений $A\cdot x=b$ совместна тогда и только тогда, когда ${\bf r}(A)={\bf r}(A|b)$ (т.е. когда ранг основной матрицы этой системы равен рангу ее расширенной матрицы).

Леопольд Кронекер (1823-1891) Альфредо Капелли (1855-1910)

Доказательство теоремы Кронекера-Капелли

↓ Запишем систему линейных уравнений в "полуразвернутом" виде:

$$\begin{pmatrix} \alpha_{11} \\ \alpha_{21} \\ \vdots \\ \alpha_{k1} \end{pmatrix} x_1 + \begin{pmatrix} \alpha_{12} \\ \alpha_{22} \\ \vdots \\ \alpha_{k2} \end{pmatrix} x_2 + \dots + \begin{pmatrix} \alpha_{2n} \\ \alpha_{2n} \\ \vdots \\ \alpha_{kn} \end{pmatrix} x_n = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix}$$
(2)

Обозначим через a_1,\dots,a_n столбцы матрицы A. Тогда систему (2) можно записать так: $x_1a_1+\dots+x_na_n=b$. Отсюда следует, что система (1) совместна тогда и только тогда, когда $(a_1,\dots,a_n)\vdash b$. В силу утверждения 5 сл.14 §1 гл.І последнее условие равносильно равенству $\langle a_1,\dots,a_n\rangle=\langle a_1,\dots,a_n,b\rangle$. Согласно теореме сл.6 §4 гл.І это равенство с учетом включения $\langle a_1,\dots,a_n\rangle\subseteq\langle a_1,\dots,a_n,b\rangle$ равносильно равенству размерностей $\dim\langle a_1,\dots,a_n\rangle=\dim\langle a_1,\dots,a_n,b\rangle$, которое можно записать как $\mathbf{r}_{\mathsf{стлб}}(A)=\mathbf{r}_{\mathsf{стлб}}(A|b)$. По теореме сл.6 §1 получаем требуемое утверждение. \uparrow

Ранг совместной системы линейных уравнений

Так как ранг основной матрицы может быть меньше ранга расширенной матрицы только на 1, получаем такое

Следствие

Система линейных уравнений $A\cdot x=b$ несовместна тогда и только тогда, когда $\mathsf{r}(A)+1=\mathsf{r}(A|b).$

При решении конкретных систем линейных уравнений теорема Кронекера-Капелли применяется при завершении прямого хода в методе Гаусса-Жордана, когда основная и расширенная матрицы приведены к ступенчатому виду, что дает возможность легко определить ранг каждой из этих матриц.

Определение

Рангом совместной системы линейных уравнений $A\cdot x=b$ называется число $r\colon r=\mathsf{r}(A)=\mathsf{r}(A|b).$

Следствие для крамеровских систем линейных уравнений

Определение

Назовем *крамеровской* систему линейных уравнений с квадратной основной матрицей.

В дополнение к теореме Крамера (сл.10 §5 гл.I ОА) справедливо следующее

Предложение

Если в крамеровской системе линейных уравнений главный определитель равен нулю, а по крайней мере один из вспомогательных определителей отличен от нуля, то эта система несовместна.

 \Downarrow Из условия следует, что ранг по минорам основной матрицы меньше ее порядка, который обозначим через n. Вспомогательные определители отличаются от миноров порядка n расширенной матрицы быть может лишь знаком, поэтому ранг по минорам расширенной матрицы равен n. Следовательно, система несовместна. \Uparrow

Если в крамеровской системе линейных уравнений главный определитель и все вспомогательные определители равны нулю, то она может быть как несоместна, так и иметь бесконечное множество решений. Рекомендуется привести пример для каждой ситуации.

Совместная система линейных уравнений

Рассмотрим совместную систему линейных уравнений (1) на сл.3. Пусть r – ее ранг. Выберем линейно независимую систему из r строк расширенной матрицы; без ограничения общности будем считать, что это первые r строк. Так как остальные строки расширенной матрицы линейно выражаются через выбранные r строк, соответствующие уравнения являются следствиями первых r уравнений, и система (1) оказывается равносильной системе

$$\begin{cases} \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{1n}x_n = \beta_1, \\ \alpha_{21}x_1 + \alpha_{21}x_2 + \dots + \alpha_{2n}x_n = \beta_2, \\ \dots \\ \alpha_{r1}x_1 + \alpha_{r1}x_k + \dots + \alpha_{rn}x_n = \beta_r. \end{cases}$$

Приводя эту систему к лестничной форме и при необходимости перенумеруя неизвестные, получим систему

$$\begin{cases} \gamma_{11}x_1 + \gamma_{12}x_2 + \ldots + \gamma_{1r}x_r + \ldots + \gamma_{1n}x_n = \delta_1, \\ \gamma_{22}x_2 + \ldots + \gamma_{2r}x_r + \ldots + \gamma_{2n}x_n = \delta_2, \\ \vdots \\ \gamma_{rr}x_r + \ldots + \gamma_{rn}x_n = \delta_r, \end{cases}$$

в которой $\gamma_{jj} \neq 0$ при $j=1,\dots,r.$ Если r=n, то последняя система имеет единственное решение; при r< n она имеет неодноэлементное множество решений.

Общее решение совместной системы линейных уравнений

Выражая в последней системе линейных уравнений на сл.6 неизвестные x_r, x_{r-1}, \dots, x_1 через x_{r+1}, \dots, x_n при r < n, получаем следующее

Определение

Общим решением совместной системы линейных уравнений (1) сл.3, имеющей ранг r, называется система линейных уравнений (d=n-r) $\begin{cases} x_1 = \lambda_{11}x_{r+1} + \ldots + \lambda_{1d}x_n + \mu_1, \\ \ldots \\ x_r = \lambda_{r1}x_{r+1} + \ldots + \lambda_{rd}x_n + \mu_r. \end{cases}$ Неизвестные x_1, \ldots, x_r называются базисными, а неизвестные x_{r+1}, \ldots, x_n — свободными.

Отметим, что для упрощения обозначений неизвестные могли быть перенумерованы. При решении конкретной системы линейных уравнений общее решение характеризуется следующими основными чертами:

- количество уравнений равно рангу системы;
- ② каждое уравнение представляет собой выражение одной неизвестной через другие вида $x_j = \lambda_{j1} x_{i_1} + \ldots + \lambda_{jd} x_{i_d} + \mu_j;$
- Множество всех неизвестных из левых частей уравнений и множество всех неизвестных из правых частей уравнений образуют разбиение множества всех неизвестных системы.

Определенные системы линейных уравнений

Определение

Напомним, что система линейных уравнений называется *определенной*, если она имеет единственное решение.

Из результатов сл. 7 и 8 вытекает следующая

Теорема

Совместная система линейных уравнений является определенной тогда и только тогда, когда ее ранг равен количеству неизвестных.

Однородные системы линейных уравнений

Напомним, что система линейных уравнений называется *однородной*, если свободные члены во всех уравнениях этой системы равны нулю. Однородная система линейных уравнений всегда совместна и множество всех ее частных решений является подпространством (см. сл.5 $\S4$ гл.I).

Определения

Это подпространство называется *пространством решений* однородной системы линейных уравнений, а любой базис этого подпространства – ее ϕ ундаментальной системой решений (ФСР).

Теорема

Пусть $A\cdot x=O$ – матричная запись однородной системы линейных уравнений над полем F, где $A\in F^{k\times n}$ и U – пространство решений этой системы. Тогда $\dim U=n-\mathsf{r}(A)$.

 ψ Положим $r={\bf r}(A),\ d=n-r.$ Если r=n, то система имеет единственное решение (см. сл.6) – нулевое, т.е. $U=\{O\}$, и утверждение выполняется.

Окончание доказательства

Пусть r < n. Рассмотрим общее решение нашей системы, перенумеруя при необходимости неизвестные: $\left\{ \begin{array}{ll} x_1 = \lambda_{11} x_{r+1} + \ldots + \lambda_{1d} x_n, \\ \dots & & \Pi \text{остроим} \\ x_r = \lambda_{r1} x_{r+1} + \ldots + \lambda_{rd} x_n. \end{array} \right.$ систему решений, придавая по очереди одному из свободных неизвестных $x_1 \quad \dots \quad x_r \quad x_{r+1} \quad \dots \quad x_n$ значение 1, а остальным — значение 0. λ_{11} ... λ_{r1} 1 ... 0 $\lambda_{1d} \ldots \lambda_{rd} = 0 \ldots 1$ Положим $f_i = (\lambda_{1i}, \dots, \lambda_{ri}, 0, \dots, 1, \dots, 0)$ (здесь 1 на (r+j)-м месте, j = 1, ..., d) и докажем, что $(f_1, ..., f_d)$ – фундаментальная система решений. По построению $f_i \in U$. Так как ранг по минорам матрицы, составленной из строк f_1, \dots, f_d , равен d, ее ранг по строкам также равен d, т.е. строки (f_1, \ldots, f_d) линейно независимы. Покажем, что $U = \langle f_1, \ldots, f_d \rangle$. Пусть $(\xi_1, \ldots, \xi_n) \in U$. Имеем $(\xi_1, \ldots, \xi_n) =$ $= (\lambda_{11}\xi_{r+1} + \ldots + \lambda_{1d}\xi_n, \ldots, \lambda_{r1}\xi_{r+1} + \ldots + \lambda_{rd}\xi_n, \xi_{r+1}, \ldots, \xi_n) =$ $=(\lambda_{11}\xi_{r+1},\ldots,\lambda_{r1}\xi_{r+1},\xi_{r+1},0\ldots,0)+\ldots+(\lambda_{1d}\xi_{n},\ldots,\lambda_{rd}\xi_{n},0,0\ldots,\xi_{n})=$ $= \xi_{r+1} f_1 + \ldots + \xi_n f_d$, что и требуется доказать. Таким образом, (f_1,\ldots,f_d) – фундаментальная система решений и $\dim U=d=n-r$. Теорема доказана.

↑

Алгоритм нахождения фундаментальной системы решений

Чтобы найти фундаментальную систему решений однородной системы линейных уравнений $A\cdot x=O$, следует сначала найти ее общее решение. Элементарные преобразования строк можно проводить в матрице A, так как нулевой столбец свободных членов при этих преобразованиях не изменяется. Если система имеет единственное (нулевое) решение, то ее подпространство решений — нулевое и фундаментальной системы решений не существует. Если в общем решении имеется d свободных неизвестных, то выбираем невырожденную матрицу S порядка d и по очереди придаем свободным неизвестным значения элементов одной строки матрицы S; значения базисных неизвестных определяем из общего решения. Полученные d строк и будут образовывать одну из фундаментальных систем решений.

В алгоритме получается система из d линейно независимых решений, так как матрица S невырожденная. Число d – размерность пространства решений. В силу утверждения 2 теоремы сл.6 т.3 эта система будет базисом пространства решений.

В качестве матрицы S удобно брать единичную матрицу или диагональную матрицу с ненулевыми элементами на диагонали.

Найти фундаментальную систему решений системы линейных уравнений

$$\begin{cases} x_1 + 2x_2 - 3x_3 - x_4 + 2x_5 = 0, \\ 2x_1 + 3x_2 - x_3 - 2x_4 + 5x_5 = 0, \\ 3x_1 + 4x_2 - 2x_3 + x_4 + x_5 = 0. \end{cases}$$

Преобразуем основную матрицу.

$$\begin{pmatrix} 1 & 2 & -3 & -1 & 2 \\ 2 & 3 & -1 & -2 & 5 \\ 3 & 4 & -2 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -3 & -1 & 2 \\ 0 & -1 & 5 & 0 & 1 \\ 0 & -2 & 7 & 4 & -5 \end{pmatrix} \sim \\ \begin{pmatrix} 1 & 0 & 7 & -1 & 4 \\ 0 & -1 & 5 & 0 & 1 \\ 0 & 0 & -3 & 4 & -7 \end{pmatrix} \sim \begin{pmatrix} 4 & 0 & 28 & -4 & 16 \\ 0 & 1 & -5 & 0 & -1 \\ 0 & 0 & -3 & 4 & -7 \end{pmatrix} \sim \\ \begin{pmatrix} 4 & 0 & 25 & 0 & 9 \\ 0 & 1 & -5 & 0 & -1 \\ 0 & 0 & -3 & 4 & -7 \end{pmatrix} \begin{pmatrix} 4x_1 + 25x_3 + 9x_5 = 0, \\ x_2 - 5x_3 - x_5 = 0, \\ -3x_3 + 4x_4 - 7x_5 = 0. \end{pmatrix}$$

$$\begin{cases} x_1 = -\frac{25}{4}x_3 - \frac{9}{4}x_5, \\ x_2 = 5x_3 + x_5, \\ x_2 = 5x_3 + x_5, \end{cases}$$
 Свободные неизвестные: x_3, x_5 . Матрица $S = x_4 = \frac{3}{4}x_3 + \frac{7}{4}x_5.$
$$= \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}. \Phi \text{CP:} \begin{array}{cccc} \frac{x_1}{-25} & \frac{x_2}{20} & \frac{\dot{x}_3}{4} & \frac{x_4}{3} & \frac{\dot{x}_5}{4} & f_1 = (-25, 20, 4, 3, 0) \\ -9 & 4 & 0 & 7 & 4 & f_2 = (-9, 4, 0, 7, 4) \\ \end{array}$$

Связь между неоднородными и однородными системами линейных уравнений

Сопоставим совместной системе линейных уравнений над полем ${\cal F}$

$$\begin{cases}
\alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{1n}x_n = \beta_1, \\
\alpha_{21}x_1 + \alpha_{22}x_2 + \dots + \alpha_{2n}x_n = \beta_2, \\
\dots \\
\alpha_{k1}x_1 + \alpha_{k2}x_k + \dots + \alpha_{kn}x_n = \beta_k
\end{cases}$$
(3)

однородную систему линейных уравнений

$$\begin{cases}
\alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{1n}x_n = 0, \\
\alpha_{21}x_1 + \alpha_{22}x_2 + \dots + \alpha_{2n}x_n = 0, \\
\dots \\
\alpha_{k1}x_1 + \alpha_{k2}x_k + \dots + \alpha_{kn}x_n = 0.
\end{cases}$$
(4)

Обозначим множество всех частных решений системы (2) через L, а пространство решений однородной системы (3) — через U. Напомним, что $c+U=\{c+u|u\in U\}$ для любой строки $c\in F^n$.

Предложение

Для любого решения $c \in L$ имеет место равенство L = c + U.

Доказательство предложения

 \Downarrow Запишем системы (2) и (3) сл.13 в матричной форме: $A\cdot x=b$, $A\cdot x=O$. Тогда $L=\{c\in F^n|Ac^\top=b\},\ U=\{u\in F^n|Au^\top=O\}.$ Пусть $c\in L$. Для любого $u\in U$ имеем $A(c+u)^\top=Ac^\top+Au^\top=b+O=b$, т.е. $c+u\in L$. Таким образом, $c+U\subseteq L$. Убедимся, что $L\subseteq c+U$. Возьмем $x\in L$ и положим u=x-c. Так как $A\cdot c^\top=b$, $A\cdot x^\top=b$, имеем $A\cdot (x-c)^\top=A\cdot x^\top-A\cdot c^\top=O$, т.е. $u\in U$. Мы видим, что x=c+u и $x\in c+U$. Следовательно, $L\subseteq c+U$. Предложение доказано. \uparrow

Связь между неоднородной и однородной системой линейных уравнений, выражаемую формулой L=c+U, можно представить векторной записью общего решения неоднородной системы линейных уравнений. А именно, любое решение $x\in L$ может быть записано в виде $x=c+\lambda_1f_1+\ldots+\lambda_df_d$, где c — фиксированное частное решение из L, (f_1,\ldots,f_d) — базис U, т.е. фундаментальная система решений однородной системы (3), $\lambda_1,\ldots,\lambda_d$ — произвольные скаляры, независимо друг от друга пробегающие поле F.

Пример векторной записи общего решения системы линейных уравнений

Пусть неоднородная система линейных уравнений имеет общее решение $\left\{\begin{array}{l} x_1=2-x_3-x_5,\\ x_2=1+5x_3+x_5,\\ x_4=3-4x_3+7x_5. \end{array}\right.$ Записать общее решение этой системы в векторной форме.

Имеем

$$(x_1,x_2,x_3,x_4,x_5)=(2-x_3-x_5,1+5x_3+x_5,x_3,3-4x_3+7x_5,x_5)=(2,1,0,3,0)+(-x_3,5x_3,x_3,-4x_3,0)+(-x_5,x_5,0,7x_5,x_5)=(2,1,0,3,0)+x_3(-1,5,1,-4,0)+x_5(-1,1,0,7,1).$$
 Векторная запись общего решения:

$$(x_1, x_2, x_3, x_4, x_5) = (2, 1, 0, 3, 0) + \lambda(-1, 5, 1, -4, 0) + \mu(-1, 1, 0, 7, 1).$$

При этом c=(2,1,0,3,0) — частное решение неоднородной системы, $f_1=(-1,5,1,-4,0),\ f_2=(-1,1,0,7,1)$ — ФСР соответствующей однородной системы линейных уравнений.

Будем говорить, что однородная система линейных уравнений задает (определяет) свое пространство решений. Возникает вопрос: любое ли подпространство пространства строк F^n задается некоторой однородной системой линейных уравнений от n неизвестных?

Теорема

Для любого подпространства $U\subseteq F^n$ существует однородная система линейных уравнений, которая задает U.

 $\mbox{$\downarrow$}$ Если $U=\{O\}$, то возьмем систему $x_j=0,\ j=1,\dots,n.$ Если $U=F^n,$ то возьмем систему $0x_1+\dots+0x_n=0.$ Пусть $\{O\}\subset U\subset F^n.$ Выберем в U базис из строк $u_1,\dots,u_d.$ Составим из этих строк матрицу A и рассмотрим однородную систему линейных уравнений $A\cdot x=O.$ Построим фундаментальную систему решений (f_1,\dots,f_r) (r=n-d) этой системы. Составим из строк f_1,\dots,f_r матрицу B. Докажем, что однородная система линейных уравнений $B\cdot x=O$ задает U. Обозначим через V пространство решений системы $B\cdot x=O.$ По построению матрицы B имеем $u_1,\dots,u_d\in V.$ Следовательно, $U\subseteq V.$ Далее, $\dim U=d$ и $\dim V=n-\mathrm{r}(B)=n-r=d.$ Поэтому $\dim U=\dim V$ и U=V. \Uparrow

Пример задания подпространства однородной системой линейных уравнений

Найти о.с.л.у., задающую подпространство $\langle a_1,a_2,a_3,a_4\rangle$ в арифметическом пространстве \mathbb{R}^5 , где $a_1=(1,2,3,4,5)$, $a_2=(1,3,5,7,9)$, $a_3=(2,3,4,5,6)$, $a_4=(3,5,7,9,11)$.

Запишем однородное уравнение от 5 неизвестных:

 $\alpha_1x_1+\alpha_2x_2+\alpha_3x_3+\alpha_4x_4+\alpha_5x_5=0$. Векторы a_1,a_2,a_3,a_4 являются его частными решениями. Запишем получающуюся о.с.л.у.:

$$\begin{cases} \alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4 + 5\alpha_5 x_5 = 0, \\ \alpha_1 + 3\alpha_2 + 5\alpha_3 + 7\alpha_4 + 9\alpha_5 x_5 = 0, \\ 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 5\alpha_4 + 6\alpha_5 x_5 = 0, \\ 3\alpha_1 + 5\alpha_2 + 7\alpha_3 + 9\alpha_4 + 11\alpha_5 x_5 = 0. \end{cases}$$

Решим эту систему методом

Гаусса-Жордана:
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 7 & 9 \\ 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 7 & 9 & 11 \end{pmatrix} \rightarrow$$

$$\begin{pmatrix}
3 & 5 & 7 & 9 & 11
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
0 & 1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 & -4 \\
0 & -1 & -2 & -3 & -4
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4
\end{pmatrix}$$

Окончание примера

Получаем следующую систему линейных уравнений:
$$\left\{ \begin{array}{l} \alpha_1-\alpha_3-2\alpha_4-3\alpha_5=0,\\ \alpha_2+2\alpha_3+3\alpha_4+4\alpha_5=0 \end{array} \right.$$
 и общее решение исходной системы:
$$\left\{ \begin{array}{l} \alpha_1=\alpha_3+2\alpha_4+3\alpha_5,\\ \alpha_2=-2\alpha_3-3\alpha_4-4\alpha_5. \end{array} \right.$$
 Запишем фундаментальную систему решений:
$$\begin{array}{l} \alpha_1=\alpha_3+2\alpha_4+3\alpha_5,\\ \alpha_2=-2\alpha_3-3\alpha_4-4\alpha_5. \end{array} \right.$$

$$\begin{array}{l} \alpha_1=\alpha_2+\alpha_3+\alpha_4-\alpha_5,\\ \alpha_2=-2\alpha_3-3\alpha_4-\alpha_5,\\ \alpha_2=-2\alpha_3-3\alpha_4-\alpha_5,\\ \alpha_3=-2\alpha_3-3\alpha_4-\alpha_5,\\ \alpha_3=-2\alpha_3-3\alpha_4-\alpha_5,\\ \alpha_3=-2\alpha_3-3\alpha_4-\alpha_5,\\ \alpha_3=-2\alpha_3-3\alpha_4-\alpha_5,\\ \alpha_3=-2\alpha_3-3\alpha_4-\alpha_5,\\ \alpha_3=-2\alpha_3-3\alpha_4-\alpha_5,\\ \alpha_3=-2\alpha_3-3\alpha_4-\alpha_5,\\ \alpha_3=-2\alpha_3-3\alpha_4-\alpha_5,\\ \alpha_4=-2\alpha_3-2\alpha_4-\alpha_5,\\ \alpha_2=-2\alpha_3-3\alpha_4-\alpha_5,\\ \alpha_3=-2\alpha_3-3\alpha_4-\alpha_5,\\ \alpha_4=-2\alpha_3-3\alpha_4-\alpha_5,\\ \alpha_2=-2\alpha_3-3\alpha_4-\alpha_5,\\ \alpha_3=-2\alpha_3-3\alpha_4-\alpha_5,\\ \alpha_3=-2\alpha_3-3\alpha_4-\alpha_5,\\ \alpha_4=-2\alpha_3-\alpha_3-\alpha_4-\alpha_5,\\ \alpha_3=-2\alpha_3-\alpha_4-\alpha_5,\\ \alpha_4=-2\alpha_3-\alpha_3-\alpha_4-\alpha_5,\\ \alpha_1=-2\alpha_3-\alpha_3-\alpha_4-\alpha_5,\\ \alpha_2=-2\alpha_3-\alpha_3-\alpha_4-\alpha_5,\\ \alpha_3=-2\alpha_3-\alpha_3-\alpha_4-\alpha_5,\\ \alpha_3=-2\alpha_3-\alpha_3-\alpha_3-\alpha_4-\alpha_5,\\ \alpha_3=-2\alpha_3-\alpha_3-\alpha_3-\alpha_3-\alpha_4-\alpha_5,\\ \alpha_3=-2\alpha_3-\alpha_3-\alpha_3-$$