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Abstract

A variety of universal algebras is called a chain variety if its subvariety lattice is a chain. Non-
group chain varieties of semigroups were completely classified by Sukhanov in 1982. Here we
completely determine non-group chain varieties of monoids (referring to monoid varieties, we
consider monoids as algebras with an associative binary operation and the nullary operation
that fixes the identity element). Even though the lattice of all monoid varieties embeds into the
lattice of all semigroup varieties, surprisingly, the classification of non-group chain varieties in
the monoid case turns out to be much more complicated than in the case of semigroups.
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1. Introduction and summary

There are many articles devoted to the examination of the lattice SEM of all semigroup

varieties. An overview of this area is contained in the detailed survey [21]; see also the

recent work [23] devoted to elements of SEM satisfying some special properties. In sharp

contrast, the lattice MON of all monoid varieties has received much less attention over

the years; when referring to monoid varieties, we consider monoids as algebras with an

associative binary operation and the nullary operation that fixes the identity element. As

far as we know, there are only three papers containing substantial results on this subject.

We have in mind the article [7] where the lattice of commutative monoid varieties is

completely described, the article [24] which contains a complete description of the lattice

of band monoid varieties, and the article [19] where an example of a monoid variety

without covers in the lattice MON is found.

Recently, the situation has begun to change gradually. The papers [8, 9, 12–16] are

mainly devoted to examination of identities of monoids but also contain some results

about lattices of varieties. Moreover, [9] contains some results about the lattice MON

that are of independent interest.

Thus nowadays, interest in the lattice MON has grown. Nevertheless, many questions

in this area remain open. For example, it is known that the lattice MON is not modular

(see, e.g., [12, Proposition 4.1] or Fig. 2.1b) below), but it was unknown up to the recent

time whether this lattice satisfied some non-trivial identity. Only recently did the first au-

thor give a negative answer to this question [6]. In contrast, the fact that the lattice SEM

does not satisfy any non-trivial lattice identity has been known since the early 1970’s [3,4].

The problem of describing monoid varieties with modular or even distributive subva-

riety lattice seems to be quite difficult. As a first step in this direction, it seems natural to

consider the extreme strengthening of the distributive law, namely the property of being a

chain. Varieties whose subvariety lattice is a chain are called chain varieties. Non-group

chain varieties of semigroups were listed by Sukhanov [22] (see Fig. 7.2 in Chapter 7

below), while locally finite chain group varieties were completely determined by Arta-

monov [2]. Note that the problem of completely describing arbitrary chain varieties of

groups seems to be extremely difficult. This is confirmed by the fact that there are un-

countably many periodic non-locally finite varieties of groups with 3-element subvariety

lattice [11].

Some non-trivial examples of chain varieties of monoids appeared in [8, 12, 15]. How-

ever, chain monoid varieties have not been systematically studied so far. In this paper

we obtain a complete description of non-group chain varieties of monoids. Note that it

[5]
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is verified in [8] that there exists a non-finitely based chain variety of monoids. This

seems to be quite unexpected. For comparison, all non-group chain semigroup varieties

and locally finite chain group varieties are finitely based. This follows from the results

of [2, 22] mentioned above. Note also that by the result of [11] mentioned above, there

exist non-finitely based non-locally finite chain varieties of groups. But explicit examples

of such varieties have not yet been specified.

In order to formulate the main result of the article, we need some notation. We denote

by F the free semigroup over a countably infinite alphabet A. Elements of both F and

A are denoted by small Latin letters. However, elements of F for which it is not known

exactly that they belong to A are written in bold. As usual, elements of F and of A are

called words and letters respectively. The symbol F 1 stands for the semigroup F with

a new identity element adjoined. We treat this identity element as the empty word and

denote it by λ. We connect two sides of identities by the symbol ≈ and use = for equality.

We introduce notation for the following three identities:

σ1 : xyzxty ≈ yxzxty,
σ2 : xtyzxy ≈ xtyzyx,
γ1 : y1y0x1y1x0x1 ≈ y1y0y1x1x0x1.

Note that the identities σ1 and σ2 are dual to each other. The identity γ1 belongs to a

countably infinite series of identities γk that will be defined in Section 6.1. For an identity

system Σ, we denote by var Σ the variety of monoids given by Σ. Let us fix notation for

the following varieties:

Cn = var{xn ≈ xn+1, xy ≈ yx} where n ≥ 2,

D = var{x2 ≈ x3, x2y ≈ yx2, σ1, σ2, γ1},
K = var{xyx ≈ xyx2, x2y2 ≈ y2x2, x2y ≈ x2yx},
LRB = var{xy ≈ xyx},
N = var{x2y ≈ yx2, x2yz ≈ xyxzx, σ2, γ1},
RRB = var{yx ≈ xyx}.

To define one more variety, we need some additional notation. For every natural number n,

we denote by Sn the full symmetric group on {1, . . . , n}. For arbitrary permutations

π, τ ∈ Sn, we put

wn(π, τ) =
( n∏
i=1

ziti

)
x
( n∏
i=1

zπ(i)zn+τ(i)

)
x
( 2n∏
i=n+1

tizi

)
,

w′n(π, τ) =
( n∏
i=1

ziti

)
x2
( n∏
i=1

zπ(i)zn+τ(i)

)( 2n∏
i=n+1

tizi

)
.

Note that the words wn(π, τ) and w′n(π, τ) with the trivial permutations π and τ ap-

peared earlier in [8, proof of Proposition 5.5]. Put

L = var{x2y ≈ yx2, xyxzx ≈ x2yz, σ1, σ2, wn(π, τ) ≈ w′n(π, τ) | n ∈ N, π, τ ∈ Sn}.

If X is a monoid variety then we denote by
←−
X the variety dual to X, i.e. the variety

consisting of all monoids antiisomorphic to monoids from X.
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The main result of the paper is

Theorem 1.1. A non-group monoid variety is a chain variety if and only if it is contained

in one of the varieties Cn for some n ≥ 2, D, K,
←−
K, L, LRB, N,

←−
N or RRB.

The complete list of all non-group chain varieties of monoids will be given in Corol-

lary 7.1. The unique non-finitely based non-group chain variety of monoids mentioned

above is L (see Corollary 4.8).

A minimal non-chain variety is called a just-non-chain variety. It is noted in [22, Corol-

lary 2] that, among non-group varieties in SEM, any chain variety is contained in some

maximal chain variety and any non-chain variety contains some just-non-chain subvari-

ety. However, similar results do not hold for non-group varieties in MON. Specifically,

the varieties C3,C4, . . . are not contained in any maximal chain variety (see Fig. 7.1 in

Chapter 7), while it follows from Theorem 1.1 that there is a non-chain variety of monoids

that does not contain any just-non-chain subvariety (see Corollary 7.4).

In [22] non-group chain varieties of semigroups were described in two ways. The

first one is a description in the identity language. Theorem 1.1 is an analogue of this

result in the case of monoids. The second way is by presenting the full list of non-group

just-non-chain varieties of semigroups; this gives a characterization of chain varieties

because, in view of [22, Corollary 2], a non-group variety of semigroups is a chain variety

if and only if it does not contain any just-non-chain subvariety. As mentioned in the

preceding paragraph, an analogous claim is false for monoids. Therefore, the second way

of describing chain varieties is not applicable in the case of monoids. For this reason, we

do not consider just-non-chain monoid varieties here.

The article consists of seven chapters. Chapter 2 contains definitions, notation and

auxiliary results. In Chapter 3 we introduce new notions and notation and prove a number

of results of technical character. These notions and results play a significant role in

the proof of Theorem 1.1. Chapter 4 is devoted to the proof of the “only if” part of

Theorem 1.1, while the “if” part is verified in Chapters 5 and 6. Finally, in Chapter 7

some corollaries of Theorem 1.1 and of its proof are established.

2. Preliminaries

A word is called a semigroup word if it does not contain the symbol of nullary operation 1.

An identity is called a semigroup identity if both its sides are semigroup words. Note that

an identity of the form w ≈ 1 is equivalent to the pair of identities wx ≈ xw ≈ x where

the letter x does not occur in w. Further, any monoid satisfies the identities u·1 ≈ 1·u ≈ u

for any word u. These observations allow us to assume that all identities that appear below

are semigroup ones.

The content of a word w, i.e., the set of all letters occurring in w, is denoted by

con(w). We denote by SL the variety of all semilattice monoids. The following statement

is well known, but it has never appeared anywhere in this form, as far as we know. For

the sake of completeness, we give its proof here.
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Lemma 2.1. For a monoid variety V, the following are equivalent:

(a) V is a group variety;

(b) V satisfies an identity u ≈ v with con(u) 6= con(v);

(c) SL * V.

Proof. The implication (a)⇒(c) is obvious.

The implication (c)⇒(b) follows immediately from the evident fact that the variety

SL satisfies any identity u ≈ v with con(u) = con(v).

(b)⇒(a) By the hypothesis, there is a letter x that occurs in precisely one of the

words u and v. Let y be a letter with y /∈ con(uv). Clearly, the identities uy ≈ vy and

yu ≈ yv hold in V. One can substitute 1 for all letters occurring in these identities except

x and y. Then it follows that V satisfies xny ≈ y and yxn ≈ y for some n. Hence V is a

group variety.

A letter is called simple [multiple] in a word w if it occurs in w once [at least twice].

The set of all simple [multiple] letters in a word w is denoted by sim(w) [by mul(w)].

The following statement is well known and can be easily verified.

Proposition 2.2. A non-trivial identity u ≈ v holds in the variety C2 if and only if

sim(u) = sim(v) and mul(u) = mul(v). (2.1)

The following notion was introduced by Perkins [18] and has often appeared in the

literature (see [8–10, 12, 15], for instance; in [9, Remark 2.4] there are a number of other

references). Let W be a set of possibly empty words. We denote by W the set of all

subwords of words from W and by I(W ) the set F 1 \W . It is clear that I(W ) is an ideal

of F 1. Then S(W ) denotes the Rees quotient monoid F 1/I(W ). If W = {w1, . . . ,wk}
then we will write S(w1, . . . ,wk) rather than S({w1, . . . ,wk}).

A word w is called an isoterm for a class of semigroups if no semigroup in that class

satisfies any non-trivial identity of the form w ≈ w′. The following statement is known

in fact and plays an important role below.

Lemma 2.3. Let V be a monoid variety and W a set of possibly empty words. Then S(W )

lies in V if and only if each word in W is an isoterm for V.

Proof. It is easy to verify that it suffices to consider the case when W consists of one

word (see [8, paragraph after Lemma 3.3]). Then necessity is obvious, while sufficiency is

proved in [10, Lemma 5.3].

The variety generated by a monoid M is denoted by varM .

Lemma 2.4 ([1, Corollary 6.1.5]). Cn+1 = varS(xn) for any natural n.

Lemma 2.5. Let V be a monoid variety and n a natural number. If Cn+1 * V then V

satisfies an identity xn ≈ xn+m for some m.

Proof. We can assume that V is not a group variety because the conclusion is evident

otherwise. Lemmas 2.3 and 2.4 apply with the conclusion that the variety V satisfies

a non-trivial identity of the form xn ≈ w. Then con(w) = {x} by Lemma 2.1, whence

w = xk for some k 6= n. Clearly, the identity xn ≈ xk implies xn ≈ xn+m for some m.

Thus, the variety V satisfies the identity xn ≈ xn+m.
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As in the case of semigroups, a variety of monoids is called completely regular if it

consists of completely regular monoids (i.e., unions of groups). It is well known that a

variety is completely regular if and only if it satisfies an identity x ≈ xm+1 for some m.

This observation, together with Lemma 2.5 and the evident fact that the variety C2 is

not completely regular, implies

Corollary 2.6. A monoid variety V is completely regular if and only if C2 * V.

For any natural number k, we denote by Dk the subvariety of D given within D by

the identity x2y1y2 · · · yk ≈ xy1xy2x · · ·xykx. The proof of Proposition 4.1 in [15] implies

Lemma 2.7. D1 = varS(xy) and Dn+1 = varS(xy1xy2x · · ·xynx) for any natural n.

We denote by T the trivial variety of monoids. The subvariety lattice of a monoid

variety X is denoted by L(X). Proposition 4.1 of [15] and its proof readily imply

Lemma 2.8. The lattice L(D) is the chain

T ⊂ SL ⊂ C2 ⊂ D1 ⊂ D2 ⊂ · · · ⊂ D.

The following statement follows immediately from [24, Proposition 4.7].

Lemma 2.9.

(i) The lattice L(LRB ∨RRB) has the form shown in Fig. 2.1(a).

(ii) Every variety of band monoids either contains the variety LRB ∨RRB or is con-

tained in this variety.

Put

E = var{x2 ≈ x3, x2y ≈ xyx, x2y2 ≈ y2x2}.
The following lemma is verified in [12, Proposition 4.1(i) and Lemma 3.3(iv)].

Lemma 2.10.

(i) The lattice L(LRB ∨C2) has the form shown in Fig. 2.1(b).

(ii) LRB ∨C2 = var{x2 ≈ x3, x2y ≈ xyx}.

r

r
r

r
r

�
�
�

@
@
@
�
�
�

@
@
@

LRB

LRB ∨RRB

RRB

SL

T

(a) L(LRB ∨RRB)

r
r

r r
r
r

r

�
�
�

@
@
@
�
�
�
�
�
�
�
�

@
@
@

C2

D1

E

LRB ∨C2

LRB

SL

T

(b) L(LRB ∨C2)

Fig. 2.1. The lattices L(LRB ∨RRB) and L(LRB ∨C2)
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Let w be a word and x a letter. We denote by occx(w) the number of occurrences of

x in w. If x ∈ con(w) and i ≤ occx(w) then `i(w, x) denotes the length of the minimal

prefix p of w with occx(p) = i.

Example 2.11. If w=xyx2zy then, evidently, occx(w)=3, occy(w)=2 and occz(w)=1.

Further, the shortest prefixes p of w with occx(p) = 1, occx(p) = 2 and occx(p) = 3

are x, xyx and xyx2 respectively, whence `1(w, x) = 1, `2(w, x) = 3 and `3(w, x) = 4.

Analogously, `1(w, y) = 2, `2(w, y) = 6 and `1(w, z) = 5.

Below we often deal with inequalities like `i(w, x) < `j(w, y). Clearly, this inequality

means simply that the ith occurrence of x in w precedes the jth occurrence of y in w.

If w is a word and X is a set of letters then wX denotes the word obtained from w

by deleting all letters from X. If X = {x} then we write wx rather than w{x}.

Lemma 2.12. If a non-commutative variety of monoids V satisfies an identity u ≈ v

such that the claim (2.1) holds then

umul(u) = vmul(u). (2.2)

Proof. According to (2.1), sim(u) = sim(v) and mul(u) = mul(v). It is evident that (2.2)

holds whenever sim(u) contains < 2 letters. Suppose now that sim(u) contains at least

two different letters and (2.2) is false. Then there are letters x, y ∈ sim(u) such that

`1(u, x) < `1(u, y) and `1(v, x) > `1(v, y). One can substitute 1 for all letters occurring

in the identity u ≈ v except x and y. Then we obtain xy ≈ yx, contradicting the fact

that V is non-commutative.

Proposition 2.13. A non-trivial identity u ≈ v holds in the variety D1 if and only

if (2.1) and (2.2) are true.

Proof. Necessity. The inclusion C2 ⊆ D1 and Proposition 2.2 imply that the identity

u ≈ v satisfies (2.1). Since the variety D1 is non-commutative, Lemma 2.12 implies

that (2.2) holds too.

Sufficiency. Suppose that the identity u ≈ v satisfies (2.1) and (2.2). Let sim(u) =

{y1, . . . , ym}. We may assume without loss of generality that

u = u0y1u1y2u2 · · · ymum

where con(u0u1 · · ·um) = mul(u). It follows from (2.1) that sim(v) = {y1, y2, . . . , ym}.
Moreover, v = v0y1v1y2v2 · · · ymvm by (2.2). We can apply (2.1) again to conclude

that con(u0u1 · · ·um) = con(v0v1 · · ·vm). Now it is easy to see that the identity system

{x2 ≈ x3, x2y ≈ xyx ≈ yx2} implies the identities

u = u0y1u1y2u2 · · · ymum ≈ v0y1v1y2v2 · · · ymvm = v,

whence D1 satisfies u ≈ v.

Lemma 2.14. If a variety of monoids V is non-completely regular and non-commutative

then D1 ⊆ V.

Proof. Suppose that D1 * V. Then there is an identity u ≈ v that holds in V but is false

in D1. Corollary 2.6 implies that C2 ⊆ V. Then u ≈ v holds in C2, whence (2.1) holds

by Proposition 2.2. Now Lemma 2.12 and the assumption that V is non-commutative
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imply (2.2). Hence Proposition 2.13 applies, and we conclude that u ≈ v holds in D1,

a contradiction.

Lemma 2.15. If X is a non-completely regular variety of monoids and Dn+1 * X for

some n then X satisfies an identity of the form

xy1xy2x · · ·xynx ≈ xk1y1xk2y2xk2 · · ·xknynxkn+1 (2.3)

where ki > 1 for some i.

Proof. If X is commutative then it satisfies the identity

xy1xy2x · · ·xynx ≈ xn+1y1y2 · · · yn,
and we are done. Suppose now that X is non-commutative. Then it satisfies a non-trivial

identity of the form xy1xy2x · · ·xynx ≈ w by Lemmas 2.3 and 2.7. Now Lemma 2.14

applies, showing that D1 ⊆ X. According to Proposition 2.13,

w = xk1y1x
k2y2x

k2 · · · ynxkn+1 .

If ki > 1 for some i then we are done. Suppose that ki ≤ 1 for all i. There is 1 ≤ i ≤ n+1

with ki = 0 because the identity xy1xy2x · · ·xynx ≈ w is trivial otherwise. Substitute

xyi for yi in this identity for all i such that ki = 0. If kn+1 = 0 then we multiply the

resulting identity by x on the right. Thus, we obtain an identity of the form (2.3) where

ki > 1 for some i.

3. k-decomposition of a word and related notions

Here we introduce a series of notions and examine their properties. These notions and

results play a key role in the most complicated part of the proof of Theorem 1.1 in

Chapter 6.

For a word u and letters x1, . . . , xk ∈ con(u), let u(x1, . . . , xk) denote the word

obtained from u by retaining the letters x1, . . . , xk. Equivalently,

u(x1, . . . , xk) = ucon(u)\{x1,...,xk}.

Let w be a word and sim(w) = {t1, . . . , tm}. We can assume without loss of generality

that w(t1, . . . , tm) = t1 · · · tm. Then

w = t0w0t1w1 · · · tmwm (3.1)

where w0,w1, . . . ,wm are possibly empty words and t0 = λ. The words w0,w1, . . . ,wm

are called 0-blocks of w, while t0, t1, . . . , tm are said to be 0-dividers of w. The representa-

tion of w as a product of alternating 0-dividers and 0-blocks, starting with the 0-divider

t0 and ending with the 0-block wm, is called the 0-decomposition of w.

Let now k be a natural number. We define the k-decomposition of w by induction

on k. Let (3.1) be the (k − 1)-decomposition of w with (k − 1)-blocks w0,w1, . . . ,wm

and (k − 1)-dividers t0, t1, . . . , tm. For any i = 0, 1, . . . ,m, let si1, . . . , siri be all simple

letters in wi that do not occur in the word w to the left of wi. We can assume that

wi(si1, . . . , siri) = si1 · · · siri . Then

wi = vi0si1vi1si2vi2 · · · siriviri (3.2)
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for possibly empty words vi0,vi1, . . . ,viri . Put si0 = ti. The words vi0,vi1, . . . ,viri are

called k-blocks of the word w, while the letters si0, si1, . . . , siri are said to be k-dividers

of w.

Remark 3.1. Note that only the first occurrence of a letter in a given word might be a

k-divider of this word for some k. In view of this observation, below we use expressions

like “a letter x is (or is not) a k-divider of a word w” meaning that the first occurrence

of x in w has the specified property.

For any i = 0, 1, . . . ,m, we represent the (k − 1)-block wi in the form (3.2). As a

result, we obtain the representation of w as a product of alternating k-dividers and k-

blocks, starting with the k-divider s00 = t0 and ending with the k-block vmrm . This

representation is called the k-decomposition of w.

Remark 3.2. Since the length of w is finite, there is a number k such that the k-

decomposition of w coincides with its n-decompositions for all n > k.

For the reader’s convenience, we illustrate the notions of k-blocks, k-dividers and

k-decomposition of a word by

Example 3.3. Let w = xyxzytszxs. The unique simple letter in w is t. Therefore, the

0-decomposition of w is

λ · xyxzy · t · szxs (3.3)

(throughout this example we underline blocks to distinguish them from dividers). The

unique simple letter of the leftmost 0-block xyxzy is z; the 0-block szxs contains two

simple letters, namely z and x, but both occur in w to the left of this block. Therefore,

the 1-decomposition of w is

λ · xyx · z · y · t · szxs.

Analogous arguments show that the 2-decomposition of w is

λ · x · y · x · z · y · t · szxs,

and if k ≥ 3 then the k-decomposition of w is

λ · λ · x · λ · y · x · z · y · t · szxs.

For a given word w, a letter x ∈ con(w), a natural number i ≤ occx(w) and an

integer k ≥ 0, we denote by hki (w, x) the rightmost k-divider of w that precedes the ith

occurrence of x in w. The (possibly empty) letter hki (w, x) is called the (i, k)-restrictor

of the letter x in w. This notion is illustrated by

Example 3.4. Let w be as in Example 3.3. The 0-decomposition of w has the form (3.3).

We see that the rightmost 0-divider of w that precedes the first two occurrences of x,

the two occurrences of y, and the first occurrences of z and t is λ, while the rightmost

0-divider of w that precedes the third occurrence of x, the second occurrence of z and both

occurrences of s is t. This means that h01(w, x) = h02(w, x) = λ, h03(w, x) = t, h01(w, y) =

h02(w, y) = λ, h01(w, z) = λ, h02(w, z) = t, h01(w, s) = h02(w, s) = t and h01(w, t) = λ.

Analogously, making use of Example 3.3, it is easy to find all other restrictors of letters

in w. The results are presented in Table 3.1.
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Table 3.1. Restrictors of letters in the word xyxzytszxs

a k i hk
i (w, a) a k i hk

i (w, a)

1 λ 0 1 λ
0 2 λ 2 t

3 t 1 1 λ
1 λ z 2 t

1 2 λ 2 1 y
x 3 t 2 t

1 λ ≥ 3 1 y
2 2 y 2 t

3 t 0 1 t
1 λ 2 t

≥ 3 2 y 1 1 t
3 t s 2 t

0 1 λ 2 1 t
2 λ 2 t

1 1 λ ≥ 3 1 t
y 2 z 2 t

2 1 λ 0 1 λ
2 z t 1 1 z

≥ 3 1 x 2 1 z
2 z ≥ 3 1 z

Lemma 3.5. Let w be a word, t be a letter and k, r be numbers with r < k.

(i) If t is an r-divider of w then t is also a k-divider of w.

(ii) If hk1(w, x) = hk2(w, x) then hr1(w, x) = hr2(w, x) as well.

(iii) If t0w0t1w1 · · · tmwm is the k-decomposition of w and m > 0 then tm ∈ sim(w).

Proof. Claims (i) and (ii) are obvious. To verify (iii), suppose that tm ∈ mul(w). Then

tm is not a 0-divider of w. Let p be the least natural number such that tm is a p-divider

but not a (p− 1)-divider of w. Evidently, p ≤ k.

Suppose that hp−11 (w, tm) = hp−12 (w, tm). This means that there are no (p− 1)-

dividers in w between the first and the second occurrences of tm in w. In other words,

both these occurrences lie in the same (p− 1)-block of w. Therefore, tm is not simple in

this (p− 1)-block. In particular, tm is not a p-divider of w, contradicting the choice of tm.

Thus, hp−11 (w, tm) 6= hp−12 (w, tm). Note that the arguments of this paragraph are very

typical. Below we use arguments like this many times, without repeating them explicitly.

Note that tm 6= hp−12 (w, tm) because tm is not a (p− 1)-divider of w. Put tm+1 =

hp−12 (w, tm). Since p − 1 < k, claim (i) implies that tm+1 is a k-divider of w. The last

k-divider of w is tm. Therefore, the first occurrence of tm+1 in w precedes the first

occurrence of tm in w. Therefore, hp−11 (w, tm) = tm+1 = hp−12 (w, tm), a contradiction.

For a given word w and a letter x ∈ con(w), we define a number called the depth of x

in w and denoted by D(w, x). If x ∈ sim(w) then we put D(w, x) = 0. Suppose now that

x ∈ mul(w). If there is a natural k such that the first and the second occurrences of x in

w lie in different (k − 1)-blocks of w then the depth of x in w equals the minimal k with
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this property. Finally, if, for any natural k, the first and the second occurrences of x in

w lie in the same k-block of w then we put D(w, x) =∞. In other words, D(w, x) = k

if and only if hk−11 (w, x) 6= hk−12 (w, x) and k is the least number with this property,

while D(w, x) = ∞ if and only if hk−11 (w, x) = hk−12 (w, x) for any k. This definition is

illustrated by

Example 3.6. As in Examples 3.3 and 3.4, put w = xyxzytszxs. Here we systematically

use information about restrictors of letters in w indicated in Table 3.1. In particular, in

view of the table, hk1(w, x) = λ for all k, while h02(w, x) = h12(w, x) = λ and h22(w, x) = y.

Therefore, D(w, x) = 3. Further, h01(w, y) = h02(w, y) = λ, h11(w, y) = λ and h12(w, y) = z.

Hence D(w, y) = 2. The equalities h01(w, z) = λ and h02(w, z) = t imply that D(w, z) = 1.

Further, hk1(w, s)=hk2(w, s)= t for each k≥0, whence D(w, s)=∞. Finally, D(w, t)=0

because t ∈ sim(w).

The following criterion for a letter of a word to be a k-divider is often used in the

proof of Theorem 1.1.

Lemma 3.7. A letter t is a k-divider of a word w if and only if D(w, t) ≤ k.

Proof. The statement is evident when k = 0 because both the property of t being a

0-divider of w and the equality D(w, t) = 0 are equivalent to t being simple in w.

Further, if k > 0 then a letter t is a k-divider of w if and only if the first and the

second occurrences of t lie in different (k − 1)-blocks of w. In turn, the last condition is

equivalent to hk−11 (w, t) 6= hk−12 (w, t), i.e., to D(w, t) ≤ k.

Words u and v are said to be k-equivalent if they have the same set of k-dividers and

these k-dividers appear in u and in v in the same order.

Lemma 3.8. Let k be a non-negative integer. Words u and v are k-equivalent if and only

if (2.1) holds and, for any x ∈ con(uv), hk1(u, x) = hk1(v, x) whenever either D(u, x) ≤ k
or D(v, x) ≤ k.

Proof. Sufficiency. Suppose that

t0u0t1u1 · · · tmum (3.4)

and s0v0s1v1 · · · srvr are the k-decompositions of u and v, respectively. Evidently, t0 =

s0 = λ. If m = r = 0 then the statement is evident. Let now m > 0. In view of

Lemma 3.7, D(u, ti) ≤ k for any 1 ≤ i ≤ m. By the hypothesis, this implies that

ti−1 = hk1(u, ti) = hk1(v, ti) for any 1 ≤ i ≤ m, whence ti−1 is a k-divider of v. According

to Lemma 3.5(iii), tm ∈ sim(u). Then (2.1) implies that tm ∈ sim(v), whence tm is

a 0-divider of v. Now Lemma 3.5(i) applies to show that tm is a k-divider of v. So,

the letters t1, . . . , tm are k-dividers of v, whence m ≤ r. By symmetry, r ≤ m. Thus

m = r. Further, t1 coincides with sp for some p. If p 6= 1 then hk1(v, t1) 6= t0, contrary to

hk1(v, t1) = hk1(u, t1) = t0. So, p = 1, and therefore t1 = s1. By induction, we can verify

that tj = sj for any j ≤ m.

Necessity. Suppose that (3.4) is the k-decomposition of u. Then the k-decomposition

of v has the form

t0v0t1v1 · · · tmvm. (3.5)
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Let x ∈ con(u) and D(u, x) ≤ k. Lemma 3.7 implies that x = ti for some 1 ≤ i ≤ m.

Therefore, hk1(v, x) = hk1(u, x) = ti−1. Analogously, we verify that if x ∈ con(v) and

D(v, x) ≤ k then hk1(v, x) = hk1(u, x).

Lemma 3.9. Let w be a word, x be a letter multiple in w with D(w, x) = k and t be a

(k − 1)-divider of w.

(i) If t = hk−12 (w, x) then `1(w, x) < `1(w, t).

(ii) If `1(w, x) < `1(w, t) < `2(w, x) then D(w, t) = k − 1; if moreover k > 1 then

`2(w, x) < `2(w, t).

Proof. (i) Suppose that `1(w, t) < `1(w, x). Then the equality t = hk−12 (w, x) implies

that t = hk−11 (w, x). Thus, hk−11 (w, x) = hk−12 (w, x), which contradicts the assumption

that D(w, x) = k. So, `1(w, x) ≤ `1(w, t). Since t is a (k − 1)-divider, Lemma 3.7 im-

plies that D(w, t) ≤ k − 1. In particular, D(w, t) 6= D(w, x), whence t 6= x. Therefore,

`1(w, x) < `1(w, t).

(ii) Suppose now that `1(w, x) < `1(w, t) < `2(w, x). Put r = D(w, t). By Lemma 3.7,

r ≤ k − 1. If D(w, t) = r < k − 1 then t is an r-divider by Lemma 3.7. Therefore, t =

hr2(w, x). Further, t 6= hr1(w, x) because `1(w, x) < `1(w, t). Thus, hr1(w, x) 6= hr2(w, x).

This means that D(w, x) ≤ r + 1 < k, a contradiction. So, D(w, t) = k − 1.

Let now k > 1. Then t ∈ mul(w). Suppose that `2(w, t) < `2(w, x). Put s =

hk−22 (w, t). In view of (i), `1(w, t) < `1(w, s). Arguments similar to those from the

previous paragraph imply that D(w, s) = k− 2. According to Lemma 3.7, s is a (k − 2)-

divider of w. The choice of s guarantees that the first occurrence of s in w precedes

the second occurrence of t. On the other hand, the second occurrence of t precedes the

second occurrence of x. Thus, the first occurrence of s precedes the second occurrence

of x. At the same time, the first occurrence of x precedes the first occurrence of s because

`1(w, x) < `1(w, t) < `1(w, s). Therefore, the first and second occurrences of x in w lie

in different (k − 2)-blocks. Hence, D(w, x) ≤ k − 1, a contradiction.

Lemma 3.10. Let u and v be words and ` be a natural number. Suppose that (2.1) holds

and

h`−1i (u, x) = h`−1i (v, x) for i = 1, 2 and all x ∈ con(u). (3.6)

Then u and v have the same set of `-dividers.

Proof. Let t be an arbitrary `-divider of u. If t ∈ sim(u) then t ∈ sim(v) by (2.1).

Therefore, t is a 0-divider of v. According to Lemma 3.5(i), t is an `-divider of v. Suppose

now that t ∈ mul(u). Then (2.1) implies that t ∈ mul(v). Since t is an `-divider of u,

h`−11 (u, t) 6= h`−12 (u, t). Then h`−11 (v, t) 6= h`−12 (v, t) by (3.6). This implies that t is an

`-divider of v. Similarly we prove that if s is an `-divider of v then s is an `-divider

of u.

Lemma 3.11. Let u and v be words and k be a natural number. Suppose that (2.1)

and (3.6) with ` = k hold. Then (3.6) holds with ` = s for any 1 ≤ s ≤ k.

Proof. If k = 1 then the assertion is valid by the hypothesis. Suppose now that k > 1.

Let (3.4) be the (k − 1)-decomposition of u. In view of Lemma 3.8, the (k − 1)-decom-

position of v has the form (3.5). Let s < k be least such that (3.6) with ` = s is false.
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Then there exists a letter x such that hs−1i (u, x) 6= hs−1i (v, x) for some i ∈ {1, 2}. By the

definition of (i, s− 1)-restrictors, hs−1i (u, x) and hs−1i (v, x) are some (s− 1)-dividers of

u and v respectively. Lemma 3.5(i) implies that (s− 1)-dividers of u and v are (k − 1)-

dividers of these words. Therefore, hs−1i (u, x) = tp and hs−1i (v, x) = tq for some p 6= q.

We may assume without loss of generality that p < q. By the hypothesis, hk−1i (u, x) =

hk−1i (v, x), whence this (i, k − 1)-restrictor of x coincide with tn for some n. Clearly, n ≥ q
because s < k. Since tn precedes the ith occurrence of x in u, we have `1(u, tq) < `i(u, x).

Since tp is an (i, s− 1)-restrictor of x in u, there are no (s− 1)-dividers of u between the

first occurrence of tp and the ith occurrence of x in u. In particular, tq is not an (s− 1)-

divider of u. Further, Lemma 3.7 implies that D(u, tq) > s−1. In particular, D(u, tq) > 0,

whence tq ∈ mul(u). If s = 1 then tq is a 0-divider of v, whence tq is simple in v. This

contradicts (2.1). Thus, s > 1. This means that hs−21 (u, tq) = hs−22 (u, tq). Since (3.6)

holds with ` = s − 1, we obtain hs−21 (v, tq) = hs−22 (v, tq). According to Lemma 3.5(ii),

hr−21 (v, tq) = hr−22 (v, tq) for all r ≤ s. Then D(v, tq) > s− 1. Lemma 3.7 implies that tq
is not an (s− 1)-divider of v, which contradicts tq = hs−1i (v, x).

Lemma 3.12. Let u and v be words and k be a natural number. Suppose that (2.1)

and (3.6) with ` = k hold. Then, for any letter x ∈ con(u), D(u, x) = k if and only if

D(v, x) = k.

Proof. In view of Lemma 3.11, (3.6) holds with ` = s for any 1 ≤ s ≤ k. Suppose that

D(u, x) = k. This implies that

hs−11 (v, x) = hs−11 (u, x) = hs−12 (u, x) = hs−12 (v, x)

whenever 1 ≤ s < k but

hk−11 (v, x) = hk−11 (u, x) 6= hk−12 (u, x) = hk−12 (v, x).

This implies that D(v, x) = k. By symmetry, if D(v, x) = k then D(u, x) = k.

Lemma 3.13. Let w be a word, r > 1 be a number and y be a letter such that D(w, y) =

r − 2. Then if `1(w, z) < `1(w, y) for some letter z with D(w, z) ≥ r then `2(w, z) <

`1(w, y).

Proof. Let z be a letter with `1(w, z) < `1(w, y) and D(u, z) ≥ r. Lemma 3.7 implies

that y is an (r − 2)-divider of w. Then if `1(u, y) < `2(u, z) then the (r − 2)-divider

y is located between the first and the second occurrences of z in u. This contradicts

the equality hr−21 (u, z) = hr−22 (u, z). The case `1(u, y) = `2(u, z) is also impossible.

Therefore, `2(w, z) < `1(w, y).

Below, in order to facilitate understanding of our considerations, we will sometimes

write the number in brackets over a letter to indicate the number of occurrences of this

letter in the given word; for instance, we may write

w =
(1)

x1
(1)

x2
(2)

x1
(1)

x3
(2)

x2
(3)

x1 .

Lemma 3.14. Let u ≈ v be an identity and s be a natural number. Suppose that (2.1)

and (3.6) with ` = s hold and there is a letter xs such that D(u, xs) = s. Then there

exist letters x0, x1, . . . , xs−1 such that D(u, xr) = D(v, xr) = r for any 0 ≤ r < s and
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the identity u ≈ v has the form

u2s+1
(1)

xs u2s
(1)

xs−1 u2s−1
(2)

xs u2s−2
(1)

xs−2 u2s−3
(2)

xs−1 u2s−4
(1)

xs−3

· u2s−5
(2)

xs−2 · · ·u4
(1)

x1 u3
(2)

x2 u2
(1)

x0 u1
(2)

x1 u0

≈ v2s+1
(1)

xs v2s
(1)

xs−1 v2s−1
(2)

xs v2s−2
(1)

xs−2 v2s−3
(2)

xs−1 v2s−4
(1)

xs−3

· v2s−5
(2)

xs−2 · · ·v4
(1)

x1 v3
(2)

x2 v2
(1)

x0 v1
(2)

x1 v0 (3.7)

for some possibly empty words u0,u1, . . . ,u2s+1 and v0,v1, . . . ,v2s+1.

Proof. In view of Lemma 3.11, (3.6) holds with ` = r for any 1 ≤ r ≤ s. We use this fact

below without references.

Put xs−1 = hs−12 (u, xs). Now (3.6) with ` = s implies that hs−12 (v, xs)

= hs−12 (u, xs) = xs−1. According to Lemma 3.9, D(u, xs−1) = s − 1 and `j(u, xs) <

`j(u, xs−1) for any j = 1, 2. Recall that D(u, xs) = s. According to Lemma 3.12,

D(v, xs) = s. Now we apply Lemma 3.9 again to obtain D(v, xs−1) = s − 1 and

`j(v, xs) < `j(v, xs−1) for any j = 1, 2.

Further, put xs−2 = hs−22 (u, xs−1). According to Lemma 3.9, D(u, xs−2) = s − 2

and `j(u, xs−1) < `j(u, xs−2) for any j = 1, 2. Now (3.6) with ` = s − 1 implies

that hs−22 (v, xs−1) = hs−22 (u, xs−1) = xs−2. We again apply Lemma 3.9 to obtain

D(v, xs−2) = s − 2 and `j(v, xs−1) < `j(v, xs−2) for any j = 1, 2. Since `1(u, xs) <

`1(u, xs−1) < `1(u, xs−2), we have `2(u, xs) < `1(u, xs−2) by Lemma 3.13. Analogously,

`2(v, xs) < `1(v, xs−2).

Continuing, we define the letters xr = hr2(u, xr+1) for r = s−3, s−4, . . . , 1 and prove

that D(u, xr) = D(v, xr) = r, `j(u, xr+1) < `j(u, xr), `j(v, xr+1) < `j(v, xr) for any

j = 1, 2, `2(u, xr+2) < `1(u, xr) and `2(v, xr+2) < `1(v, xr).

Finally, put x0 = h02(u, x1). According to Lemma 3.9, D(u, x0) = 0 and `1(u, x1) <

`1(u, x0). Now (3.6) with ` = 1 implies that h02(v, x1) = h02(u, x1) = x0. We again apply

Lemma 3.9 to obtain D(v, x0) = 0 and `1(v, x1) < `1(v, x0). Since `1(u, x2) < `1(u, x1) <

`1(u, x0), we have `2(u, x2) < `1(u, x0) by Lemma 3.13. Analogously, `2(v, x2)<`1(v, x0).

In view of the above, the identity u ≈ v has the form (3.7) for some possibly empty

words u0,u1, . . . ,u2s+1 and v0,v1, . . . ,v2s+1.

Lemma 3.15. Let w = y1 · · · yn where the letters y1, . . . , yn are not necessarily pairwise

different. Further, let u = u′ξ(w)u′′ for some possibly empty words u′ and u′′ and some

endomorphism ξ of F 1. Put ξ(yi) = wi for all i = 1, . . . , n. If D(w, yi) > 0 then the

subword wi of u contains no r-divider of u for any r < D(w, yi).

Proof. Let 1 ≤ i ≤ n and D(w, yi) > 0. Then yi ∈ mul(w), whence con(wi) ⊆
mul(ξ(w)) ⊆ mul(u). This implies that wi does not contain any 0-divider of u. Let

now r > 0 be least such that there exists i such that D(w, yi) > r but wi contains

some r-divider t of u. The choice of r and Lemma 3.7 imply that D(u, t) = r. Clearly,

t /∈ con(w1 · · ·wi−1), whence yi differs from y1, . . . , yi−1. Since yi ∈ mul(w), there is

some j ≥ i such that wj contains the second occurrence of t in u. Put x = hr−12 (u, t).

In view of Lemma 3.9(i), `1(u, t) < `1(u, x). Then there is i ≤ ` ≤ j such that w`

contains the (r − 1)-divider x of u. In view of the choice of r, D(w, y`) ≤ r − 1. This
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implies that yi 6= y`, whence `1(w, yi) < `1(w, y`). Further, since yi ∈ mul(w), there

is p ≥ j such that yi = yp. We note that ` < p because yp = yi 6= y`. So, we obtain

`1(w, yi) < `1(w, y`) < `2(w, yi). Lemma 3.7 implies that y` is an (r − 1)-divider of w,

whence hr−11 (w, yi) 6= hr−12 (w, yi), contrary to D(w, yi) > r.

4. The proof of the “only if” part

Throughout this chapter, V denotes a fixed non-group chain variety of monoids. We aim

to verify that V is contained in one of the varieties listed in Theorem 1.1. The chapter is

divided into three sections.

4.1. Reduction to the case when D2 ⊆ V. A variety of monoids is called aperiodic

if all its groups are singletons. Lemma 2.1 implies that SL ⊆ V. If V contains a non-

trivial group then the variety generated by this group is incomparable with SL. This

contradicts V being is a chain variety. Therefore, V is aperiodic, whence it satisfies the

identity xn ≈ xn+1 for some n. If V is commutative then V ⊆ SL ⊆ C2 for n = 1 and

V ⊆ Cn otherwise.

Further, if V is a variety of band monoids then Lemma 2.9 and the observation that V

cannot contain simultaneously the incomparable varieties LRB and RRB imply that V

is contained in one of these two varieties.

Suppose now that V is non-commutative and is not a variety of band monoids. Then V

is not completely regular because every aperiodic completely regular variety consists of

bands. Then Lemma 2.14 implies that D1 ⊆ V. To continue our considerations, we need

several assertions.

Lemma 4.1. Let X be a monoid variety such that D1 ⊆ X. Then either X satisfies an

identity of the form

xsyxt ≈ yxr (4.1)

where s ≥ 1, t ≥ 0, s + t ≥ 2 and r ≥ 2, or, for any identity u ≈ v that holds in X, we

have

h01(u, x) = h01(v, x) for all x ∈ con(u). (4.2)

Proof. Let u ≈ v be an identity that holds in X. The inclusion D1 ⊆ X and Propo-

sition 2.13 imply (2.1) and (2.2). Hence if (3.4) is the 0-decomposition of u then the

0-decomposition of v has the form (3.5). Suppose that (4.2) is false. Then there is a let-

ter x ∈ mul(u) such that h01(u, x) 6= h01(v, x). Now (2.1) implies that x ∈ mul(v). Further,

we may assume without loss of generality that there are i < j such that ti = h01(u, x) and

tj = h01(v, x). Substituting y for tj and 1 for all letters occurring in the identity u ≈ v

except x and tj , we see that X satisfies an identity of the form (4.1) where s ≥ 1, t ≥ 0,

s+ t ≥ 2 and r ≥ 2.

When we make simultaneously several substitutions in some identity, say, substitute

ui for xi for i = 1, . . . , k, then we will say for brevity that we perform the substitution

(x1, . . . , xk) 7→ (u1, . . . ,uk).4.2
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Proposition 4.2. A non-trivial identity u ≈ v holds in the variety E if and only if (2.1)

and (4.2) hold.

Proof. Necessity. Suppose that E satisfies u ≈ v. The inclusion D1 ⊆ E and Propo-

sition 2.13 imply that this identity satisfies (2.1). Suppose that (4.2) is false. Then

Lemma 4.1 shows that E satisfies an identity of the form (4.1) where s ≥ 1, t ≥ 0,

s+ t ≥ 2 and r ≥ 2. Consider the semigroup

P = 〈e, a | e2 = e, ae = a, ea = 0〉 = {e, a, 0}.
Note that E contains the monoid P 1, i.e., the semigroup P with a new identity element

adjoined. Making the substitution (x, y) 7→ (e, a) in (4.1) results in the contradiction

0 = a. Thus, P 1, and therefore E, violates (4.1), a contradiction.

Sufficiency. Suppose that the identity u ≈ v satisfies (2.1) and (4.2). Let (3.4) be the

0-decomposition of u. In view of Lemma 3.8, the 0-decomposition of v has the form (3.5).

We are going to verify that u ≈ v holds in E. Recall that E is given by the identity system

{x2 ≈ x3, x2y ≈ xyx, x2y2 ≈ y2x2}. (4.3)

Put X = con(u0) = {x1, . . . , xk}. Clearly, no block of any word w contains letters simple

in w. Therefore, we may assume without loss of generality that u0 = x21 · · ·x2k.

We will use induction on the parameter m from (3.4) and (3.5).

Induction base. Let m = 0. Now (2.1) implies that con(u0) = con(v0). Since the

variety E satisfies the identity
x2y2 ≈ y2x2, (4.4)

it also satisfies v0 ≈ x21 · · ·x2k. Therefore, the identities

u = t0u0 = t0x
2
1x

2
2 · · ·x2k ≈ t0v0 = v

hold in E.

Induction step. Let now m > 0. The identity system (4.3) implies the identity

u ≈ t0x21x22 · · ·x2kt1(u1)X · · · tm(um)X .

By (4.2), con(u0) = con(v0), whence (4.3) implies the identity

v ≈ t0x21x22 · · ·x2kt1(v1)X · · · tm(vm)X .

Put u′ = (u1)X · · · tm(um)X and v′ = (v1)X · · · tm(vm)X . It is easy to verify that

the identity u′ ≈ v′ satisfies (2.1) and (4.2). By the induction assumption, the identity

u′ ≈ v′ holds in E, whence this variety satisfies

u ≈ t0x21x22 · · ·x2kt1u′ ≈ t0x21x22 · · ·x2kt1v′ ≈ v.

Thus, u ≈ v holds in E.

Lemma 4.3. Let X be a non-completely regular variety of monoids. If E * X and X

satisfies the identity

x2 ≈ x3 (4.5)

then X also satisfies the identity

yx2 ≈ x2yx2. (4.6)
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Proof. If X is commutative then by (4.5), X satisfies the identities yx2 ≈ yx4 ≈ x2yx2.

Suppose now that X is non-commutative. Then Lemma 2.14 implies that D1 ⊆ X. Since

E * X, there is an identity u ≈ v that holds in X but fails in E. Then Proposition 4.2

shows that either (2.1) or (4.2) is false. Proposition 2.2 implies that (2.1) is true because

C2 ⊆ D1 ⊆ X. Therefore, (4.2) is false. Now Lemma 4.1 shows that X satisfies an identity

of the form (4.1) where s ≥ 1, t ≥ 0, s + t ≥ 2 and r ≥ 2. Substitute x2 for x in this

identity. Since X satisfies (4.5), we conclude that (4.6) holds in X.

Let us return to the examination of a chain variety V. Recall that we reduce consid-

erations to the case when D1 ⊆ V. Hence C3 * V because C3 and D1 are incomparable.

Then Lemma 2.5 and the fact that V is aperiodic imply that the identity (4.5) holds

in V. Suppose now that D2 * V. The variety V does not contain at least one of the

incomparable varieties E and
←−
E . Assume without loss of generality that

←−
E * V. The

dual of Lemma 4.3 then implies that V satisfies the identity

x2y ≈ x2yx2. (4.7)

Further, Lemma 2.15 implies that the identity

xyx ≈ xqyxr (4.8)

with q > 1 or r > 1 holds in V.

If u and v are words and ε is an identity then we will write u
ε
≈ v whenever the

identity u ≈ v follows from ε. If q > 1 then V satisfies the identities

xyx
(4.8)

≈ xqyxr
(4.7)

≈ xqyxr+2 (4.5)

≈ x2yx2
(4.7)

≈ x2y.

Recall that V satisfies (4.5) too. Then Lemma 2.10(ii) shows that V ⊆ LRB∨C2. Since

V is non-idempotent and chain, V ⊆ E by Lemma 2.10(i). Therefore, V ⊆ K.

Suppose now that q ≤ 1. Then r > 1. If q = 0 then V ⊆ RRB ∨ C2 by the dual

of Lemma 2.10(ii) because V satisfies the identity (4.5). Since
←−
E * V and V is not a

variety of band monoids, it follows from the dual of Lemma 2.10(i) that V ⊆ D1 ⊆ D.

Let now q = 1. Then V satisfies the identity

xyx ≈ xyx2 (4.9)

because it satisfies (4.5). Therefore, the identities x2yx
(4.9)

≈ x2yx2
(4.7)

≈ x2y hold in V.

Thus, V satisfies

x2y ≈ x2yx. (4.10)

Corollary 2.6 implies that C2 ⊆ V. Therefore, LRB * V. Hence there is an identity

u ≈ v that holds in V but fails in LRB. The initial part of a word w, denoted by ini(w),

is the word obtained from w by retaining the first occurrence of each letter. It is evident

that an identity a ≈ b holds in LRB if and only if ini(a) = ini(b). Hence ini(u) 6= ini(v).

Proposition 2.2 implies that con(u) = con(v). Therefore, we can assume that there are

letters x, y ∈ con(u) such that u(x, y) = xsyw1 and v(x, y) = ytxw2 where s, t > 0 and

con(w1) = con(w2) = {x, y}. Let us substitute 1 for all letters except x and y in u ≈ v.

We find that V satisfies the identity xsyw1 ≈ ytxw2. If s = 1 then we substitute x2

for x in this identity and obtain an identity of the form x2yw′1 ≈ ytx2w′2. Thus, we can

assume that s ≥ 2. Analogously, we can assume that t ≥ 2. Moreover, the identity (4.5)



Chain varieties of monoids 21

allows us to assume that s = t = 2. Now we can apply (4.10) to deduce an identity of the

form x2yk ≈ y2xm where k,m > 1. Moreover, (4.5) allows us to assume that k = m = 2.

We thus find that (4.4) holds in V. This means that V ⊆ K.

It remains to consider the case when D2 ⊆ V.

4.2. Reduction to the case when L ⊆ V. Here we need some notation and a series

of auxiliary assertions. Let n and m be non-negative integers such that n + m > 0. For

any θ ∈ Sn+m, we put

wn,m(θ) =
( n∏
i=1

ziti

)
x
(n+m∏
i=1

zθ(i)

)
x
( n+m∏
i=n+1

tizi

)
,

w′n,m(θ) =
( n∏
i=1

ziti

)
x2
(n+m∏
i=1

zθ(i)

)( n+m∏
i=n+1

tizi

)
.

Note that the words wn(π, τ) and w′n(π, τ) introduced in Chapter 1 are of the form

wn,n(θ) and w′n,n(θ) respectively for an appropriate permutation θ ∈ S2n.

Lemma 4.4. The variety L satisfies the identities

wn,m(θ) ≈ w′n,m(θ) (4.11)

for all n, m and θ ∈ Sn+m.

Proof. It suffices to verify that each identity of the form (4.11) follows from some identity

of the form
wn(π, τ) ≈ w′n(π, τ). (4.12)

To do this, we fix an identity of the form (4.11), namely

p0xq0xr0 ≈ p0x
2q0r0

where p0 = z1t1 · · · zntn, q0 = zθ(1) · · · zθ(n+m) and r0 = tn+1zn+1 · · · tn+mzn+m. The

word q0 may be uniquely represented as

q0 = u1v1 · · ·ukvk
where con(u1 · · ·uk) = {z1, . . . , zn} and con(v1 · · ·vk) = {zn+1, . . . , zn+m} (we mean here

that u1 = λ whenever θ(1) > n, and vk = λ whenever θ(n+m) ≤ n). Each of the words

u1, . . . ,uk (except u1 whenever u1 = λ) has the form zj1 · · · zjs where j1, . . . , js ≤ n,

while each of the words v1, . . . ,vk (except vk whenever vk = λ) has the form zj1 · · · zjs
where j1, . . . , js > n.

Suppose first that u1 = λ. Let z and t be letters that do not occur in p0q0r0x.

Put p′ = ztp0, q′ = zq0 and r′ = r0. The identity p′xq′xr′ ≈ p′x2q′r′ evidently

implies (4.11). Up to the evident renaming of letters, the identity p′xq′xr′ ≈ p′x2q′r′

has the form indicated in the previous paragraph with u1 6= λ. Thus, we can assume that

u1 6= λ. Analogous arguments allow us to suppose that vk 6= λ.

Let now u1 = zj1 · · · zjs with j1, . . . , js ≤ n. Let z′j1 , t′j1 , . . . , z′js−1
, t′js−1

be letters

that do not occur in p0q0r0x. Put p1 = p0. Denote by q1 the word obtained from q0 by

replacing u1 with zj1z
′
j1
· · · zjs−1

z′js−1
zjs . Finally, we put r1 = r0t

′
j1
z′j1 · · · t

′
js−1

z′js−1
. The
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identity p0xq0xr0 ≈ p0x
2q0r0 follows from p1xq1xr1 ≈ p1x

2q1r1 by substitution of 1

for z′j1 , t
′
j1
, . . . , z′js−1

, t′js−1
.

Further, let v1 = zj1 · · · zjs where j1, . . . , js > n. Let z′j1 , t
′
j1
, . . . , z′js−1

, t′js−1
be letters

that do not occur in p1q1r1x. Put p2 = z′j1t
′
j1
· · · z′js−1

t′js−1
p1. Further, we denote by

q2 the word obtained from q1 by replacing v1 with zj1z
′
j1
· · · zjs−1

z′js−1
zjs . Finally, we

put r2 = r1. The identity p1xq1xr1 ≈ p1x
2q1r1 follows from p2xq2xr2 ≈ p2x

2q2r2 by

substitution of 1 for z′j1 , t′j1 , . . . , z′js−1
, t′js−1

.

We continue this process and apply analogous modifications of our identity with the

use of the words u2,v2, . . . ,uk,vk. As a result, we obtain an identity of the form

p2kxq2kxr2k ≈ p2kx
2q2kr2k, (4.13)

which implies an identity of the form (4.11) fixed at the beginning of the proof. We can

evidently rename the letters and assume that p2k = z1t1 · · · zptp, q2k = zξ(1) · · · zξ(p+q)
and r2k = tp+1zp+1 · · · tp+qzp+q for some natural numbers p, q and some permutation

ξ ∈ Sp+q with ξ(i) ≤ p for all odd i and ξ(i) > p for all even i. It remains to verify that

p = q. For i = 1, . . . , k, we denote the length of ui by ni and the length of vi by mi.

Then n1 + · · ·+ nk = n and m1 + · · ·+mk = m. It is easy to see that

p = n+ (m1 − 1) + · · ·+ (mk − 1) = n+m− k
= m+ n− k = m+ (n1 − 1) + · · ·+ (nk − 1) = q.

Therefore, the identity (4.13) has the form (4.12).

Lemma 4.5. Suppose that a monoid variety X satisfies the identities

xyxzx ≈ x2yz, (4.14)

x2y ≈ yx2 (4.15)

and (4.11) for all n, m and θ ∈ Sn+m. Let u be a word. If there is a letter x ∈ mul(u)

such that u(x, y) 6= xyx for any letter y then X satisfies the identity

u ≈ x2ux. (4.16)

Proof. Suppose first that occx(u) > 2. Then u = u1xu2xu3 · · ·unxun+1 where n > 2

and u1, . . . ,un+1 are possibly empty words with x /∈ con(u1 · · ·un+1). Clearly, u1 · · ·un+1

= ux. Then X satisfies the identities

u = u1xu2xu3 · · ·unxun+1
(4.14)

≈ u1x
2u2u3 · · ·un+1

(4.15)

≈ x2u1u2 · · ·un+1 = x2ux,

whence (4.16) holds in X.

It remains to consider the case when occx(u) = 2. Then u = u1xu2xu3 and x /∈
con(u1u2u3). If u2 = λ then u = u1x

2u3
(4.15)

≈ x2u1u3 = x2ux hold in X, and we are

done. Let now u2 6= λ.

If y ∈ con(u2) and y ∈ sim(u) then u(x, y) = xyx, a contradiction. Thus, y ∈ mul(u)

for any y ∈ con(u2). Suppose that occy(u) > 2 for some y ∈ con(u2). Then we can use

the same arguments as in the first paragraph of the proof to conclude that X satisfies

u ≈ y2uy. This identity can be rewritten in the form u ≈ u′1xu
′
2xu

′
3 where u′1 = y2u1,

u′2 = (u2)y and u′3 = (u3)y. Thus, we can remove from u2 all letters y with occy(u) > 2.

In other words, we can assume that either u2 = λ or occy(u) = 2 for all y ∈ con(u2).
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The former case has already been considered in the previous paragraph. Now we examine

the latter case.

Recall that a word w is called linear if occx(w) ≤ 1 for any letter x. Suppose that u2 is

linear, say, u2 = y1 · · · yk for some letters y1, . . . , yk. Then either yi ∈ con(u1)\con(u3) or

yi ∈ con(u3) \ con(u1) for any 1 ≤ i ≤ k. Renaming the letters y1, . . . , yk if necessary, we

may assume that y1, . . . , yn ∈ con(u1) \ con(u3) and yn+1, . . . , yn+m ∈ con(u3) \ con(u1)

for some n and m with n+m = k. Then

u = u1xyθ(1)yθ(2) · · · yθ(n+m)xu3

for some θ ∈ Sn+m. We also have

u1 = w0y1w1y2w2 · · · ynwn and u3 = wn+1yn+1wn+2yn+2 · · ·wn+myn+mwn+m+1

for some possibly empty words w0,w1, . . . ,wn+m+1. Then X satisfies the identities

u = w0

( n∏
i=1

yiwi

)
x
(n+m∏
i=1

yθ(i)

)
x
( n+m∏
i=n+1

wiyi

)
wn+m+1

(4.11)

≈ w0

( n∏
i=1

yiwi

)
x2
(n+m∏
i=1

yθ(i)

)( n+m∏
i=n+1

wiyi

)
wn+m+1

(4.15)

≈ x2w0

( n∏
i=1

yiwi

)(n+m∏
i=1

yθ(i)

)( n+m∏
i=n+1

wiyi

)
wn+m+1

= x2ux.

We see that X satisfies the identity (4.16) again.

It remains to consider the case when u2 is not linear. Then there is a letter y ∈ con(u2)

such that u2 = v1yv2yv3 where v1, v2 and v3 are possibly empty words, y /∈ con(v1v2v3)

and v2 is either empty or linear. If v2 is linear then the same arguments as in the previous

paragraph show that

u = u1xv1yv2yv3xu3 ≈ y2uy = y2u1xv1v2v3xu3 = u′1xu
′
2xu3

hold in X where u′1 = y2u1 and u′2 = v1v2v3. If v2 = λ then

u = u1xv1y
2v3xu3

(4.15)
≈ y2u1xv1v3xu3 = u′1xu

′
2xu3

is valid in X where u′1 = y2u1 and u′2 = v1v3. In both the cases, y /∈ con(u′2). In other

words, we can remove the letter y from u2. Further, we can repeat these arguments as

long as the word u2 is non-empty and non-linear. In other words, we may assume that

u2 is either empty or linear. Both these cases have already been considered above. Thus,

we have proved that X always satisfies (4.16).

Lemma 4.6. L = varS(xzxyty).

Proof. Put Z = varS(xzxyty). First, we verify that Z ⊆ L. In view of Lemma 2.3, it

suffices to check that the word xzxyty is an isoterm for L. Put

Ψ = {x2y ≈ yx2, xyxzx ≈ x2yz, σ1, σ2, wn(π, τ) ≈ w′n(π, τ) | n ∈ N, π, τ ∈ Sn}.

We recall that L = var Ψ. We suppose that L satisfies a non-trivial identity xzxyty ≈ w

for some word w. Therefore, there exists a deduction of the identity xzxyty ≈ w from
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the identity system Ψ, i.e., a sequence of words

v0,v1, . . . ,vm (4.17)

such that v0 = xzxyty, vm = w and, for any 0 ≤ i < m, there exist words ai, bi, an

identity si ≈ ti ∈ Ψ and an endomorphism ξi of F 1 such that either vi = aiξi(si)bi and

vi+1 = aiξi(ti)bi, or vi = aiξi(ti)bi and vi+1 = aiξi(si)bi. We can assume without loss

of generality that (4.17) is the shortest such deduction. In particular, this means that

xzxyty 6= v1. We note that if ξ0(x) = λ then ξ0(s0) = ξ0(t0) for any s0 ≈ t0 ∈ Ψ. The

last equality implies that xzxyty = v1, but this is impossible. Thus, we can assume that

ξ0(x) 6= λ.

Suppose that xzxyty = v0 = a0ξ0(s0)b0 and v1 = a0ξ0(t0)b0. The case when s0 =

x2y is impossible because ξ0(s0) contains the square of a non-empty word, while xzxyty

is square-free. The case when s0 = xyxzx is also impossible because there is a letter that

occurs in ξ0(s0) at least three times, while every letter from con(xzxyty) occurs in the

word xzxyty no more than twice. Finally, the case when s0 = wn(π, τ) for some n ∈ N,

π, τ ∈ Sn is impossible because there exists a letter c ∈ ξ0(x) such that c is multiple in

ξ0(s0) and every letter located between the first and the second occurrences of c in ξ0(s0)

is multiple, while for every d ∈ mul(xzxyty) there is a letter e ∈ sim(xzxyty) such that e

lies between the first and the second occurrences of d in xzxyty. So, the identity s0 ≈ t0
is either σ1 or σ2. By symmetry, we can consider only the first case when s0 ≈ t0 is

equal to σ1. Then s0 = xyzxty and t0 = yxzxty. Since ξ0(x) 6= λ, we see that con(ξ0(x))

contains a letter a. Then a ∈ {x, y} because a ∈ mul(ξ0(s0)). Suppose that a = x. Then

ξ0(y) = λ because

xzxyty = a0ξ0(s0)b0 = a0ξ0(x)ξ0(y)ξ0(z)ξ0(x)ξ0(t)ξ0(y)b0.

Therefore, ξ0(t0) = ξ0(x)ξ0(z)ξ0(x)ξ0(t) = ξ0(s0). Then

v1 = a0ξ0(t0)b0 = a0ξ0(s0)b0 = xzxyty,

contradicting the choice of (4.17). The case a = y is handled similarly.

Suppose now that xzxyty = v0 = a0ξ0(t0)b0. The case when

t0 ∈ {yx2, x2yz, w′n(π, τ) | n ∈ N, π, τ ∈ Sn}

is impossible because ξ0(t0) contains the square of a non-empty word in this case, while

xzxyty is square-free. So, the identity s0 ≈ t0 is either σ1 or σ2. Arguments similar to

those from the previous paragraph yield a contradiction with the fact that xzxyty and

v1 are distinct.

Thus, we have verified that xzxyty is an isoterm for L, and therefore Z ⊆ L. It

remains to verify the opposite inclusion. Suppose that Z satisfies an identity u ≈ v. We

need to prove that u ≈ v holds in L. Lemma 4.4 allows us to use Lemma 4.5. Let x be

a letter multiple in u and u(x, y) 6= xyx for any letter y. By Lemma 4.5, the variety L

satisfies the identity (4.16). Obviously, C2 ⊆ Z, whence x ∈ mul(v) by Proposition 2.2.

Since xzxyty is an isoterm for Z, xyx is an isoterm for Z too. Therefore, v(x, y) 6= xyx

for any letter y. Lemma 4.5 again shows that the identity v ≈ x2vx holds in L. Thus, if

ux ≈ vx holds in L then this variety satisfies u ≈ x2ux ≈ x2vx ≈ v. So, we can remove

from u ≈ v all multiple letters x such that u(x, y) 6= xyx for any y. In other words, we
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may assume that for any x ∈ mul(u) there is a letter y such that u(x, y) = xyx = v(x, y).

In particular, occx(u), occx(v) ≤ 2 for any letter x.

Lemma 2.1 and the evident inclusion C2 ⊆ Z imply that con(u) = con(v). It is clear

that for any a, b /∈ con(u), the identities u ≈ v and aub ≈ avb are equivalent in the

class of monoids. Therefore, we can assume that the first and the last letters in each

of the words u and v are simple in that word. Let sim(u) = sim(v) = {t0, t1, . . . , tm}.
We can assume that v(t1, . . . , tm) = t1 · · · tm. In view of Lemma 2.7, D1 ⊆ Z. Then

Proposition 2.13 implies that

u = t0a1t1a2t2 · · · tm−1amtm and v = t0b1t1b2t2 · · · tm−1bmtm

for some possibly empty words a1, . . . ,am and b1, . . . ,bm.

Let 0 ≤ i ≤ m− 1. Then u = w1tiai+1ti+1w2 where

w1 =

{
t0a1t1 · · · ti−1ai if 0 < i ≤ m− 1,

λ if i = 0,

w2 =

{
ai+2ti+2 · · ·amtm if 0 ≤ i < m− 1,

λ if i = m− 1.

We are going to check that

ai+1 = u1u
′
1u2u

′
2 · · ·uku′k, (4.18)

and therefore u = w1tiu1u
′
1u2u

′
2 · · ·uku′kti+1w2 for some possibly empty words u1,u

′
k

and non-empty words u′1,u2,u
′
2, . . . ,uk such that con(uj) ⊆ con(w1) and con(u′j) ⊆

con(w2) for all j = 1, . . . , k. If ai+1 = λ then (4.18) holds with k = 1 and u1 = u′1 = λ.

Suppose now that ai+1 6= λ. Let x ∈ con(ai+1). Then x ∈ mul(u). There is y ∈ sim(u)

with u(x, y) = xyx. Suppose that x ∈ mul(ai+1). Then xyx is a subword of ai+1. This

means that y is simple in ai+1. But this is not the case because y 6= tj for any 0 ≤ j ≤ m.

Thus, x is simple in ai+1, whence x ∈ con(w1w2). We have proved that every letter from

con(ai+1) is simple in ai+1 and occurs either in w1 or in w2.

Let u1 be the maximal prefix of ai+1 such that con(u1) ⊆ con(w1) (if the first letter

of ai+1 does not occur in w1 then u1 = λ). Then ai+1 = u1b for some possibly empty

word b. If b = λ then (4.18) holds with k = 1 and u′1 = λ. Otherwise, let u′1 be the

maximal prefix of b such that con(u′1) ⊆ con(w2). Then ai+1 = u1u
′
1c for some possibly

empty word c. If c = λ then (4.18) holds with k = 1. Otherwise, let u2 be the maximal

prefix of c such that con(u2) ⊆ con(w1). Continuing this process, we obtain (4.18).

Put

w′1 =

{
t0b1t1 · · · ti−1bi if 0 < i ≤ m− 1,

λ if i = 0,

w′2 =

{
bi+2ti+2 · · ·bmtm if 0 ≤ i < m− 1,

λ if i = m− 1.

The same arguments as above show that bi+1 = v1v
′
1v2v

′
2 · · ·vrv′r for some natu-

ral r, possibly empty words v1,v
′
r and non-empty words v′1,v2,v

′
2, . . . ,vr such that
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con(vj) ⊆ con(w′1) and con(v′j) ⊆ con(w′2) for all j = 1, . . . , r. Therefore,

v = w′1tiv1v
′
1v2v

′
2 · · ·vrv′rti+1w

′
2.

Further, we may assume that k ≥ r. We are going to verify that k = r, con(uj) = con(vj)

and con(u′j) = con(v′j) for all j = 1, . . . , r.

Let x ∈ con(u1). As shown above, u(x, ti) = xtix. Therefore, v(x, ti) = xtix too,

whence occx(w′1) = 1. Note that v(x, ti+1) 6= xti+1x because u(x, ti+1) = x2ti+1. There-

fore, x /∈ con(w′2), whence x ∈ con(v1 · · ·vr). If x /∈ con(v1) then x ∈ con(vp) for some

p > 1. Then there exists y ∈ con(v′p−1). Note that u(y, ti+1) = v(y, ti+1) = yti+1y.

Therefore, y ∈ con(w2), whence y ∈ con(u′j) for some 1 ≤ j ≤ k. Then u(x, y, ti, ti+1) =

xtixyti+1y, while v(x, y, ti, ti+1) = xtiyxti+1y. This contradicts xtixyti+1y being an

isoterm for Z. Thus, x ∈ con(v1), whence con(u1) ⊆ con(v1). Analogously, con(v1) ⊆
con(u1). Therefore, con(u1) = con(v1).

Let x ∈ con(u′1). As shown above, u(x, ti+1) = xti+1x. Therefore, v(x, ti+1) = xti+1x

too, whence occx(w′2) = 1. Note that v(x, ti) 6= xtix because u(x, ti) = tix
2. Therefore,

x /∈ con(w′1), whence x ∈ con(v′1 · · ·v′r). If x /∈ con(v′1) then x ∈ con(v′p) for some

p > 1. Then there exists y ∈ con(vp). Note that u(y, ti) = v(y, ti) = ytiy. Therefore,

y ∈ con(w1), whence y ∈ con(uj) for some 1 ≤ j ≤ k. Note that y /∈ con(u1). Indeed, if

y ∈ con(u1) then y∈ con(v1) because con(u1) = con(v1). Hence occy(v)≥occy(v1vpw
′
2)

≥ 3, a contradiction. So, y ∈ con(uj) for some 2 ≤ j ≤ k. Then u(x, y, ti, ti+1) =

xtixyti+1y, while v(x, y, ti, ti+1) = xtiyxti+1y. This contradicts xtixyti+1y being an

isoterm for Z. Thus, x ∈ con(v′1), whence con(u′1) ⊆ con(v′1). Analogously, con(v′1) ⊆
con(u′1). We have proved that con(u′1) = con(v′1).

Repeating the arguments from the previous two paragraphs with evident modifica-

tions, we can check that con(ui) = con(vi) and con(u′i) = con(v′i) for i = 2, . . . , r.

If k > r then there is a letter x ∈ con(ur+1). As shown above, u(x, ti) = xtix.

Therefore, v(x, ti) = xtix too, whence occx(w′1) = 1. Note also that v(x, ti+1) =

u(x, ti+1) = x2ti+1. In particular, v(x, ti+1) 6= xti+1x. Therefore, x /∈ con(w′2), whence

x ∈ con(v1 · · ·vr). Then x ∈ con(u1 · · ·ur) because con(ui) = con(vi) for i = 1, . . . , r.

Thus, occx(u) ≥ occx(w1u1 · · ·ur+1) ≥ 3, a contradiction. Therefore, k = r.

We have proved that k = r, con(ui) = con(vi) and con(u′i) = con(v′i) for all i =

1, . . . , k. Fix s ∈ {1, . . . , k}. Then us and vs are linear words depending on the same

letters. The same is true for u′s and v′s. The identity σ1 [respectively σ2] allows us to

swap the first [the second] occurrences of two multiple letters whenever these occurrences

are adjacent to each other. Therefore, the identities σ1 and σ2 allow us to reorder letters

within us and u′s in an arbitrary way. Thus, if we replace us by vs and u′s by v′s in u

then the word we obtain should be equal to u in L. This is true for all s = 1, . . . , k. Hence

L satisfies the identities

u = w1tiai+1ti+1w2 = w1tiu1u
′
1u2u

′
2 · · ·uku′kti+1w2

≈ w1tiv1v
′
1v2v

′
2 · · ·vkv′kti+1w2 = w1tibi+1ti+1w2.

Thus, if we replace ai+1 by bi+1 in u then the resulting word should be equal to u in L.
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This is true for all i = 0, . . . ,m− 1. Therefore, L satisfies the identities

u = t0a1t1a2t2 · · · tm−1amtm ≈ t0b1t1b2t2 · · · tm−1bmtm = v.

The lemma is proved.

Lemma 4.6 and [8, Lemma 5.10] imply that any proper subvariety of L is contained

in varS(xyx). Lemmas 2.7 and 2.8 now imply

Corollary 4.7. The lattice L(L) is the chain T ⊂ SL ⊂ C2 ⊂ D1 ⊂ D2 ⊂ L.

A non-finitely based variety all whose proper subvarieties are finitely based is called

limit. The variety varS(xzxyty) is limit by [8, Proposition 5.1]. Thus, Lemma 4.6 implies

Corollary 4.8. The variety L is a limit variety. In particular, it does not have a finite

basis of identities.

According to the result of [11] mentioned in Chapter 1, there are uncountably many

periodic group varieties whose subvariety lattice is the 3-element chain. Let G be the class

of all such varieties. Since the class of finitely based group varieties is countably infinite,

the class G contains non-finitely based varieties. Group varieties whose subvariety lattice

is the 2-element chain are varieties of Abelian groups of a prime exponent. They are

finitely based. Thus, all non-finitely based varieties from G are limit varieties. But explicit

examples of limit chain group varieties have not been published so far.

We denote by M the subvariety of N given within N by the identity

α1 : x1y1x0x1y1 ≈ y1x1x0x1y1.

Note that α1 belongs to a countably infinite series of identities αk that will be defined in

Section 6.1.

Lemma 4.9. Let X be a monoid variety and D2 ⊆ X.

(i) If L * X then X satisfies the identity γ1.

(ii) If M * X then X satisfies the identity σ1.

Proof. (i) According to Lemmas 2.3 and 4.6, the variety X satisfies a non-trivial identity

of the form xzxyty ≈ w. Note that xyx is an isoterm for X by Lemmas 2.3 and 2.7.

Then [20, Fact 4.1(i)] implies that w = xzyxty. Therefore, γ1 holds in X.

(ii) According to Lemmas 2.3 and 2.7, xyx is an isoterm for X. Further, the variety M

is generated by the monoid S(xyzxty) (this fact is dual to Proposition 1 in Erratum to [8]).

Then S(xyzxty) /∈ X, whence X satisfies a non-trivial identity of the form xyzxty ≈ w

by Lemma 2.3. Fact 4.1(ii) of [20] implies that w = yxzxty. Therefore, σ1 holds in X.

We return to the examination of a chain variety V. In Section 4.1 we have reduced

the considerations to the case when D2 ⊆ V. Then E * V because D2 and E are non-

comparable. The variety V satisfies (4.6) by Lemma 4.3. Similarly, the fact that
←−
E * V

implies that V satisfies (4.7) by the dual of Lemma 4.3. Hence (4.15) holds in V. If V

contains neither L, M nor
←−
M then Lemma 4.9 and the dual of its claim (ii) imply that

V satisfies σ1, σ2 and γ1, whence V ⊆ D.
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It remains to consider the case when V contains L, M or
←−
M. Then V does not contain

D3 because L, M and
←−
M are non-comparable with D3. Lemma 2.15 and the fact that V

satisfies (4.15) imply that (4.14) holds in V.

Let M ⊆ V. Then V contains neither L nor
←−
M. Lemma 4.9(i) and the dual of

Lemma 4.9(ii) imply that V ⊆ N. Dual arguments show that if
←−
M ⊆ V then V ⊆

←−
N.

We have reduced our considerations to the case when L ⊆ V.

4.3. The case when L ⊆ V. Clearly, here M,
←−
M * V. Lemma 4.9(ii) and its dual imply

that V satisfies the identities σ1 and σ2. As we have already seen above, V satisfies (4.14)

and (4.15) as well. Thus, V is contained in

O = var{x2y ≈ yx2, xyxzx ≈ x2yz, σ1, σ2}.

To complete the proof of the necessity in Theorem 1.1, it suffices to verify that V ⊆ L.

To this end, it remains to check that V satisfies all identities of the form (4.12) where

n is a natural number and π, τ ∈ Sn. To do this, we need several auxiliary claims. Let

n ∈ N, 0 ≤ k ≤ ` ≤ n and π, τ ∈ Sn. Put

wk,`
n (π, τ) =

( n∏
i=1

ziti

)( k∏
i=1

zπ(i)zn+τ(i)

)
x
( ∏̀
i=k+1

zπ(i)zn+τ(i)

)
x

·
( n∏
i=`+1

zπ(i)zn+τ(i)

)( 2n∏
i=n+1

tizi

)
.

We note that w0,n
n (π, τ) = wn(π, τ) and w0,0

n (π, τ) = w′n(π, τ).

Lemma 4.10. Let X be a monoid variety such that L ⊆ X ⊆ O, n be a natural number

and π, τ ∈ Sn. If S(wn(π, τ)) /∈ X then X satisfies a non-trivial identity of the form

wn(π, τ) ≈ wk,`
n (π, τ) (4.19)

for some 0 ≤ k ≤ ` ≤ n.

Proof. Suppose that S(wn(π, τ)) /∈ X. Then Lemma 2.3 shows that the variety X satisfies

a non-trivial identity of the form

wn(π, τ) =
( n∏
i=1

ziti

)
x
( n∏
i=1

zπ(i)zn+τ(i)

)
x
( 2n∏
i=n+1

tizi

)
≈ w. (4.20)

Put a = zπ(1), b = tπ(1)zπ(1)+1tπ(1)+1 · · · zntnx, c = zn+τ(1) and

d = zπ(2)zn+τ(2) · · · zπ(n)zn+τ(n)xtn+1zn+1 · · · tn+τ(1)−1zn+τ(1)−1tn+τ(1).

The wordwn(π, τ) contains the subword abacdc. Therefore, the submonoid ofS(wn(π, τ))

generated by a, b, c and d is isomorphic to S(xzxyty). Now Lemmas 2.3 and 4.6 imply

that xzxyty is an isoterm for X. Now we are going to verify that

`2(w, zi) < `1(w, zn+j) if and only if `2(wn(π, τ), zi) < `1(wn(π, τ), zn+j) (4.21)

for any 1 ≤ i, j ≤ n. Indeed, let 1 ≤ i, j ≤ n. The word xyx is an isoterm for X. Since

[wn(π, τ)](zi, ti) = zitizi and [wn(π, τ)](zn+j , tn+j) = zn+jtn+jzn+j , and (4.20) holds
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in X, we have w(zi, ti) = zitizi and w(zn+j , tn+j) = zn+jtn+jzn+j . The variety X is

non-commutative, whence `1(w, ti) < `1(w, tn+j). Therefore,

w(zi, tn+j) = [wn(π, τ)](zi, tn+j) = z2i tn+j ,

w(zn+j , ti) = [wn(π, τ)](zn+j , ti) = tiz
2
n+j .

Summarizing, we have

w(zi, ti, tn+j) = [wn(π, τ)](zi, ti, tn+j) = zitizitn+j ,

w(zn+j , ti, tn+j) = [wn(π, τ)](zn+j , ti, tn+j) = tizn+jtn+jzn+j .

Suppose that `2(w, zi) < `1(w, zn+j). Then the observations in the previous para-

graph imply that w(zi, zn+j , ti, tn+j) = zitizizn+jtn+jzn+j . Since xzxyty is an isoterm

for X, we have

[wn(π, τ)](zi, zn+j , ti, tn+j) = zitizizn+jtn+jzn+j = w(zi, zn+j , ti, tn+j),

whence `2(wn(π, τ), zi) < `1(wn(π, τ), zn+j).

Suppose now that `2(wn(π, τ), zi) < `1(wn(π, τ), zn+j). Then

[wn(π, τ)](zi, zn+j , ti, tn+j) = zitizizn+jtn+jzn+j .

Now we apply the fact that xzxyty is an isoterm for X again to obtain

w(zi, zn+j , ti, tn+j) = [wn(π, τ)](zi, zn+j , ti, tn+j) = zitizizn+jtn+jzn+j ,

whence `2(w, zi) < `1(w, zn+j).

Thus (4.21) is proved. Then

wx =
( n∏
i=1

ziti

)( n∏
i=1

zπ(i)zn+τ(i)

)( 2n∏
i=n+1

tizi

)
.

Being a subvariety of O, the variety X satisfies the identities xyxzx ≈ x2yz ≈ yzx2.

Therefore, we can assume that occx(w) = 2 for any x ∈ con(w). So,

w =
( n∏
i=1

p2i−1zip2iti

)
q0

( n∏
i=1

zπ(i)q2i−1zn+τ(i)q2i

)( 2n∏
i=n+1

tir2i−2n−1zir2i−2n

)
where ( 2n∏

i=1

pi

)( 2n∏
i=0

qi

)( 2n∏
i=1

ri

)
= x2.

Suppose first that x ∈ con(p2j−1p2j) for some 1 ≤ j ≤ n and j is the least number

with this property. If p2j−1p2j = x then( 2n∏
i=2j+1

pi

)( 2n∏
i=0

qi

)( 2n∏
i=1

ri

)
= x.

It can be easily verified directly that substituting 1 for all letters except x and tj in (4.20)

we obtain the identity tjx
2 ≈ xtjx. But this is impossible because xzx is an isoterm for X.

Therefore, p2j−1p2j = x2, i.e., either p2j−1 = p2j = x or p2j−1 = x2 or p2j = x2. If
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p2j−1 = p2j = x then X satisfies the identities

wn(π, τ) ≈ w =
(j−1∏
i=1

ziti

)
xzjxtj

( n∏
i=j+1

ziti

)( n∏
i=1

zπ(i)zn+τ(i)

)( 2n∏
i=n+1

tizi

)
σ1≈

(j−1∏
i=1

ziti

)
zjx

2tj

( n∏
i=j+1

ziti

)( n∏
i=1

zπ(i)zn+τ(i)

)( 2n∏
i=n+1

tizi

)
(4.15)

≈
( n∏
i=1

ziti

)
x2
( n∏
i=1

zπ(i)zn+τ(i)

)( 2n∏
i=n+1

tizi

)
= w′n(π, τ) = w0,0

n (π, τ),

and we are done. If p2j−1 = x2 or p2j = x2 then we can apply (4.15) and obtain the

required conclusion. So, we can assume that p1 · · ·p2n = λ.

The case when x ∈ con(r2j−1r2j) for some 1 ≤ j ≤ n can be considered quite

analogously to the previous case with the use of the identity σ2 rather than σ1.

Finally, let x /∈ con(p1 · · ·p2n) and x /∈ con(r1 · · · r2n). Then q0q1 · · ·q2n = x2. Note

that either x /∈ con(q0) or x /∈ con(q2n) because otherwise (4.20) is trivial. Assume

without loss of generality that x /∈ con(q0), whence q1 · · ·q2n = x2. Let x ∈ con(qk)

and k is the least number with this property. If qk = x2 then (4.15) yields the required

conclusion. Suppose now that x ∈ con(q`+1) for some k ≤ ` ≤ 2n− 1.

Each occurrence of x in w lies either in a subword like zπ(i)xzn+τ(i) or in a subword

like zπ(i)zn+τ(i)xzπ(i+1)zn+τ(i+1). We need to verify that w is equal in X to some word

which has the same structure as w but contains only occurrences of x of the second type.

If both occurrences of x in w are of the second type then we are done. Suppose that both

are of the first type. Then X satisfies the identities

wn(π, τ) ≈ w =
( n∏
i=1

ziti

)(k−1∏
i=1

zπ(i)zn+τ(i)

)
zπ(k)xzn+τ(k)

( ∏̀
i=k+1

zπ(i)zn+τ(i)

)
· zπ(`+1)x zn+τ(`+1)

( n∏
i=`+2

zπ(i)zn+τ(i)

)( 2n∏
i=n+1

tizi

)
σ2≈
( n∏
i=1

ziti

)(k−1∏
i=1

zπ(i)zn+τ(i)

)
zπ(k) xzn+τ(k)

( ∏̀
i=k+1

zπ(i)zn+τ(i)

)
· x
( n∏
i=`+1

zπ(i)zn+τ(i)

)( 2n∏
i=n+1

tizi

)
σ1≈
( n∏
i=1

ziti

)( k∏
i=1

zπ(i)zn+τ(i)

)
x
( ∏̀
i=k+1

zπ(i)zn+τ(i)

)
x

·
( n∏
i=`+1

zπ(i)zn+τ(i)

)( 2n∏
i=n+1

tizi

)
= wk,`

n (π, τ)

(for the reader’s convenience, we have underlined pairs of adjacent letters that are trans-

posed by σ1 or σ2). Finally, if two occurrences of x in w are of different types, then we

can use analogous but simpler arguments. If an occurrence of the first type lies in qk



Chain varieties of monoids 31

[in q`+1] then it suffices to apply the identity σ1 [respectively σ2] only. Thus, in all cases

an identity of the form (4.19) holds in X.

Lemma 4.11. Let m be a natural number, 0 ≤ k < ` < m, q = ` − k and π, τ ∈ Sm.

Then there are permutations ρ, σ ∈ Sq such that the identity wq(ρ, σ) ≈ w′q(ρ, σ) implies

the identity wk,`
m (π, τ) ≈ wk,k

m (π, τ).

Proof. For convenience, we put {zπ(k+1), zπ(k+2), . . . , zπ(`)} = {zp1 , . . . , zpq} and

{zm+τ(k+1), zm+τ(k+2), . . . , zm+τ(`)} = {zr1 , . . . , zrq}

where 1 ≤ p1 < · · · < pq ≤ m < r1 < · · · < rq ≤ 2m. The word wk,`
m (π, τ) has the form

u0zp1u1 · · · zpquqxzπ(k+1)zm+τ(k+1) · · · zπ(`)zm+τ(`)xuq+1zr1 · · ·u2qzrqu2q+1

where

u0 =

p1−1∏
i=1

ziti,

us = tps

(ps+1−1∏
i=ps+1

ziti

)
for all 1 ≤ s < q,

uq = tpq

( m∏
i=pq+1

ziti

)( k∏
i=1

zπ(i)zm+τ(i)

)
,

uq+1 =
( m∏
i=`+1

zπ(i)zm+τ(i)

)( r1−1∏
i=m+1

tizi

)
tr1 ,

uq+1+s =
( rs−1∏
i=rs−1+1

tizi

)
trs for all 1 ≤ s < q,

u2q+1 =

2m∏
i=rq+1

tizi.

We are going to rename all letters except x in wk,`
m (π, τ). First, we rename all letters

from

con(wk,`
m (π, τ)) \ {x, zp1 , . . . , zpq , zr1 , . . . , zrq}

to some pairwise different letters that do not occur in wk,`
m (π, τ). Further, we perform

the substitution

(zp1 , . . . , zpq , zr1 , . . . , zrq ) 7→ (z1, . . . , zq, zq+1, . . . , z2q).

As a result, we get the word

u′ = u′0z1u
′
1 · · · zqu′qxzρ(1)zq+σ(1) · · · zρ(q)zq+σ(q)xu′q+1zq+1 · · ·u′2qz2qu′2q+1

for some ρ, σ ∈ Sq and some words u′0,u
′
1, . . . ,u

′
2q+1.

Now we can perform the substitution (t1, . . . , t2q) 7→ (u′1, . . . ,u
′
2q) in the identity

wq(ρ, σ) ≈ w′q(ρ, σ). We get the identity



32 S. V. Gusev and B. M. Vernikov

z1u
′
1 · · · zqu′qxzρ(1)zq+σ(1) · · · zρ(q)zq+σ(q)xu′q+1zq+1 · · ·u′2qz2q

≈ z1u′1 · · · zqu′qx2zρ(1)zq+σ(1) · · · zρ(q)zq+σ(q)u′q+1zq+1 · · ·u′2qz2q.

We apply this identity to the word u′ and obtain the identity

u′ ≈ u′0z1u
′
1 · · · zqu′qx2zρ(1)zq+σ(1) · · · zρ(q)zq+σ(q)u′q+1zq+1 · · ·u′2qz2qu′2q+1.

Now we implement the reverse renaming of letters (to the one described above). We

obtain the identity

wk,`
m (π, τ) ≈ u0zp1u1 · · · zpquqx2zπ(k+1)zm+τ(k+1) · · · zπ(`)zm+τ(`)x

· uq+1zr1 · · ·u2qzrqu2q+1

= wk,k
m (π, τ).

The lemma is proved.

Now we are well prepared to complete the proof of necessity of Theorem 1.1. Recall

that we have reduced our considerations to the case L ⊆ V ⊆ O. We denote by K the

class of all varieties of the form varS(wn(π, τ)) where n ∈ N and π, τ ∈ Sn. It is clear that

L ⊆ X whenever X ∈ K. We use this fact below without explicit mention. Let X ∈ K.

We are going to verify that X contains at least two incomparable subvarieties from K.

For any ξ ∈ Sn, we define the following two permutations from Sn+2:

ξ1 =

(
1 2 3 4 5 . . . n+ 2

ξ(1) + 2 1 2 ξ(2) + 2 ξ(3) + 2 . . . ξ(n) + 2

)
,

ξ2 =

(
1 2 3 4 5 . . . n+ 2

ξ(1) + 2 2 1 ξ(2) + 2 ξ(3) + 2 . . . ξ(n) + 2

)
.

We have X = varS(wn(π, τ)) for some n, π and τ . Let T1 = Sn+2(π1, τ1) and T2 =

Sn+2(π2, τ1). If T1 /∈ X then Lemma 4.10 allows us to assume that X satisfies a non-

trivial identity of the form wn+2(π1, τ1) ≈ wk,`
n+2(π1, τ1) for some 1 ≤ k ≤ ` ≤ n + 2.

Then we substitute

• 1 for z1, z2, zn+3, zn+4, t1, t2, tn+3 and tn+4,

• zi−2 for zi whenever 3 ≤ i ≤ n+ 2 and zi−4 for zi whenever n+ 5 ≤ i ≤ 2n+ 4,

• ti−2 for ti whenever 3 ≤ i ≤ n+ 2 and ti−4 for ti whenever n+ 5 ≤ i ≤ 2n+ 4.

Thus X satisfies the identity wn(π, τ) ≈ ws,t
n (π, τ) where s = 1 whenever k ≤ 3 and

s = k−2 whenever k > 3, while t = 1 whenever ` ≤ 3 and t = `−2 whenever ` > 3. Since

s ≥ 1, this identity is non-trivial. This contradicts the fact that X = varS(wn(π, τ)) and

Lemma 2.3. Thus, we have proved that T1 ∈ X. Analogously, T2 ∈ X.

Suppose that T1 ∈ varT2. Then Lemma 2.3 shows that wn+2(π1, τ1) is an isoterm

for varT2. At the same time, it is easy to verify that varT2 satisfies wn+2(π1, τ1) ≈
w′n+2(π1, τ1). Therefore, varT1 * varT2. Analogously, varT2 * varT1. We see that varT1
and varT2 are incomparable. Moreover, it is evident that these two varieties lie in K.

Thus, if X = varS(wn(π, τ)) for some n, π and τ then X is not a chain variety.

Therefore, S(wn(π, τ)) /∈ V for all n, π and τ . For any n, we denote by ε the triv-

ial permutation from Sn. Then S(w1(ε, ε)) /∈ V. According to Lemma 4.10, V satisfies

a non-trivial identity w1(ε, ε) ≈ wk,`
1 (ε, ε) with 0 ≤ k ≤ ` ≤ 1. Since w0,0

1 (ε, ε) =
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w′1(ε, ε), w0,1
1 (ε, ε) = w1(ε, ε) and the identity w1(ε, ε) ≈ wk,`

1 (ε, ε) is non-trivial, V sat-

isfies w1(ε, ε) ≈ w′1(ε, ε) or w1(ε, ε) ≈ w1,1
1 (ε, ε). Clearly, the latter identity together

with (4.15) implies the former. Thus, V satisfies w1(ε, ε) ≈ w′1(ε, ε).

Thus, there is a number n such that V satisfies the identities (4.12) for all π, τ ∈ Sn
(for instance, n = 1). We are going to verify that every n has this property. Towards

a contradiction, suppose that the above claim is true for 1, . . . , n but false for n + 1.

Let π1, τ1 ∈ Sn+1. Since S(wn+1(π1, τ1)) /∈ V, Lemma 4.10 implies that V satisfies

wn+1(π1, τ1) ≈ wk,`
n+1(π1, τ1) for some 0 ≤ k ≤ ` < n + 1. Suppose that k < `. Then

Lemma 4.11 with m = n + 1, π = π1 and τ = τ1 shows that there exist ρ, σ ∈ S`−k
such that the identity w`−k(ρ, σ) ≈ w′`−k(ρ, σ) implies wk,`

n+1(π1, τ1) ≈ wk,k
n+1(π1, τ1).

The former identity holds in V because ` − k ≤ n. Thus, in any case V satisfies

wn+1(π1, τ1) ≈ wk,k
n+1(π1, τ1). Note that wk,k

n+1(π1, τ1)
(4.15)

≈ w0,0
n+1(π1, τ1) = w′n+1(π1, τ1).

Therefore, wn+1(π1, τ1) ≈ w′n+1(π1, τ1) holds in V for any π1, τ1 ∈ Sn+1. This contradicts

the choice of n. So, the variety V satisfies the identities (4.12) for all n and π, τ ∈ Sn,

whence V = L.

We have thus completed the proof of the “only if” part of Theorem 1.1.

5. The proof of the “if” part: all varieties except K

In this and the following chapters we are going to prove that if X is a subvariety of one of

the varieties listed in Theorem 1.1 then X is a chain variety. Since the property of being

a chain variety is inherited by subvarieties, we can assume that X coincides with one of

the varieties listed in Theorem 1.1. By symmetry, we can exclude the varieties
←−
K and

←−
N.

Thus, it suffices to verify that Cn, D, K, L, LRB, N and RRB are chain varieties. Here

we consider all these varieties except K, which will be examined in the next chapter.

Lemmas 2.8 and 2.9(i) and Corollary 4.7 immediately imply that D, L, LRB and

RRB are chain varieties.

Proposition 5.1. The lattice L(Cn) is the chain

T ⊂ SL ⊂ C2 ⊂ · · · ⊂ Cn.

Proof. Let V ⊆ Cn. Then V is commutative and aperiodic. If C2 * V then V is

completely regular by Corollary 2.6. Then V ⊆ SL, whence V coincides with either T

or SL. It remains to verify that if C2 ⊆ V ⊆ Cn then V = Cs for some 2 ≤ s ≤ n. We

will use induction on n. If n = 2 then the assertion is obvious. Let now n > 2. Suppose

that V 6= Cn. Then Lemma 2.5 implies that V satisfies the identity xn−1 ≈ xn, whence

V ⊆ Cn−1. By the induction assumption, V = Cs for some 2 ≤ s ≤ n− 1.

It remains to consider the variety N.

Proposition 5.2. The lattice L(N) is the chain

T ⊂ SL ⊂ C2 ⊂ D1 ⊂ D2 ⊂M ⊂ N.

Proof. First of all, we are going to check that N satisfies identities of the form (4.11)

for all n, m and θ ∈ Sn+m. Indeed, wn,m(θ) = pxqxr where p = z1t1 · · · zntn, q =
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zθ(1) · · · zθ(n+m) and r = tn+1zn+1 · · · tn+mzn+m. Suppose first that θ(n+m) ≤ n. Then

wn,m(θ) = z1t1 · · ·
(1)

zθ(n+m) tθ(n+m) · · · zntn
(1)

x zθ(1) · · ·
(2)

zθ(n+m)

(2)

x r.

We see that the second occurrences of the letters zθ(n+m) and x in wn,m(θ) are adjacent

to each other. The identity σ2 allows us to swap these occurrences. In other words,

wn,m(θ)
σ2≈ pxzθ(1) · · · zθ(n+m−1)xzθ(n+m)r.

Suppose now that θ(n+m) > n. Then

wn,m(θ) = p
(1)

x zθ(1) · · ·
(1)

zθ(n+m)

(2)

x tn+1zn+1 · · · tθ(n+m)
(2)

zθ(n+m) · · · tn+mzn+m.

We see that the first occurrence of zθ(n+m) and the second occurrence x in wn,m(θ) are

adjacent to each other. The identity γ1 allows us to transpose these occurrences. In other

words,

wn,m(θ)
γ1≈ pxzθ(1) · · · zθ(n+m−1)xzθ(n+m)r.

We see that in any case the identity

wn,m(θ) ≈ pxzθ(1) · · · zθ(n+m−1)xzθ(n+m)r

holds in N. Analogous arguments show that we can successively swap the second occur-

rence of x with zθ(n+m−1), zθ(n+m−2), . . . , zθ(1) and deduce that N satisfies the identities

wn,m(θ) ≈ px2zθ(1) · · · zθ(n+m)r = px2qr = w′n,m(θ).

Therefore, we can apply Lemma 4.5 below.

Suppose that V ⊆ N. If M * V then V ⊆ D by Lemma 4.9(ii). Therefore, in view

of Lemma 2.8, it suffices to consider the case when M ⊆ V. We need to verify that V

coincides with M or N. Let u ≈ v be an identity that holds in V. Our aim is to verify

that u ≈ v either implies the identity α1 or holds in N. Proposition 2.2 implies that

sim(u) = sim(v). Let sim(u) = {t0, t1, . . . , tm}. As in the proof of Lemma 4.6, we can

assume that

u = t0a1t1a2t2 · · · tm−1amtm and v = t0b1t1b2t2 · · · tm−1bmtm

for some possibly empty words a1, . . . ,am and b1, . . . ,bm.

Let x be a letter multiple in u and u(x, y) 6= xyx for any letter y. By Lemma 4.5,

the variety V satisfies (4.16). Obviously, C2 ⊆ M ⊆ V, whence x ∈ mul(v) by Propo-

sition 2.2. Since D2 ⊆ M ⊆ V, we apply Lemmas 2.3 and 2.7 to conclude that xyx is

an isoterm for V. Therefore, v(x, y) 6= xyx for any letter y. We apply Lemma 4.5 again

to conclude that v ≈ x2vx holds in V. Thus, u ≈ v follows from the identities (4.16),

v ≈ x2vx and ux ≈ vx. So, we can remove from u ≈ v all multiple letters x such that

u(x, y) 6= xyx for any y. In other words, we may assume that for any x ∈ mul(u) there is

a letter y such that u(x, y) = xyx = v(x, y). In particular, occx(u), occx(v) ≤ 2 for any

letter x.
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Let 0 ≤ i ≤ m− 1. Then u = w1tiai+1ti+1w2 where

w1 =

{
t0a1t1 · · · ti−1ai if 0 < i ≤ m− 1,

λ if i = 0,

w2 =

{
ai+2ti+2 · · ·amtm if 0 ≤ i < m− 1,

λ if i = m− 1.

Analogously, v = w′1tibi+1ti+1w
′
2 where

w′1 =

{
t0b1t1 · · · ti−1bi if 0 < i ≤ m− 1,

λ if i = 0,

w′2 =

{
bi+2ti+2 · · ·bmtm if 0 ≤ i < m− 1,

λ if i = m− 1.

Suppose that ai+1 contains the subword d = xixj where xi ∈ con(w1) and xj ∈ con(w2).

The occurrence of the letter xi in d is the second occurrence of xi in u, while the oc-

currence of xj in d is the first occurrence of xj in u. The identity γ1 allows us to swap

these two occurrences. Therefore, N satisfies the identity u ≈ w1tip1q1ti+1w2 where

con(p1) ⊆ con(w2) and con(q1) ⊆ con(w1). Analogously, we can prove that N satisfies

v ≈ w′1tip2q2ti+1w
′
2 where con(p2) ⊆ con(w′2) and con(q2) ⊆ con(w′1).

We are going to verify that con(p1) = con(p2) and con(q1) = con(q2). Let x ∈
con(p1). Then u(x, ti+1) = xti+1x. Therefore, v(x, ti+1) = xti+1x. This means that

x ∈ con(w′1p2q2) and x ∈ con(w′2). If x ∈ con(q2) then x ∈ con(w′1) as well, whence

occx(v) ≥ 3. Therefore, x /∈ con(q2). Note that u(x, ti) = tix
2. Therefore, v(x, ti) 6= xtix,

whence x /∈ con(w′1). We see that x ∈ con(p2). We have just proved that con(p1) ⊆
con(p2). By symmetry, con(p2) ⊆ con(p1) , whence con(p1) = con(p2). Analogous argu-

ments imply that con(q1) = con(q2).

Therefore, p1 = x1 · · ·xk and p2 = xπ(1) · · ·xπ(k) for some x1, . . . , xk ∈ con(w2) ∩
con(w′2) and some π ∈ Sk, whence N satisfies

u ≈ w1tix1 · · ·xkq1ti+1w2 and v ≈ w′1tixπ(1) · · ·xπ(k)q2ti+1w
′
2.

Then the identity

w1tix1 · · ·xkq1ti+1w2 ≈ w′1tixπ(1) · · ·xπ(k)ti+1q2w
′
2 (5.1)

holds in V.

Suppose that π is non-trivial. Then there are j and ` such that j<` but π(j)>π(`).

Substituting 1 for all letters occurring in (5.1) except xj , x` and ti+1, we obtain

xjx`ti+1s ≈ x`xjti+1s
′ where s, s′ ∈ {xjx`, x`xj}. Now we apply σ2 to get xjx`ti+1xjx` ≈

x`xjti+1xjx`. The last identity is nothing but α1 (up to renaming the letters). So, if π

is non-trivial then V satisfies α1. This means that V ⊆M, whence V = M. In other

words, if p1 6= p2 then V = M.

Let now p1 = p2. The words q1 and q2 are linear and con(q1) = con(q2) ⊆ con(w1)∩
con(w′1). Thus, if some letter z occurs in con(q1) then this occurrence is the second

occurrence of z in u. Hence the identity σ2 allows us to reorder the letters in q1 in an
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arbitrary way. Therefore, we can replace q1 by q2 in u, and the resulting word should be

equal to u in N. Thus, N satisfies the identities

u = w1tiai+1ti+1w2 ≈ w1tip1q1ti+1w2 ≈ w1tip2q2ti+1w2 ≈ w1tibi+1ti+1w2.

This is true for all i = 0, 1, . . . ,m− 1. Therefore, N satisfies

u = t0a1t1a2t2 · · · tm−1amtm ≈ t0b1t1b2t2 · · · tm−1bmtm = v.

The proposition is proved.

6. The proof of the “if” part: the variety K

Here we are going to verify that K is a chain variety. This case is much more complex than

all those discussed in the previous chapter, and its consideration will be much longer. For

the reader’s convenience, we divide this chapter into four sections.

6.1. Reduction to the interval [E,K]. We fix notation for the following identity

system:

Φ = {xyx ≈ xyx2, x2y2 ≈ y2x2, x2y ≈ x2yx}.

Note that K = var Φ. For any s ∈ N and 1 ≤ q ≤ s, we put

bs,q = xs−1xsxs−2xs−1 · · ·xq−1xq.

For brevity, we will write bs rather than bs,1. We also put b0 = λ for convenience. We

introduce the following four countably infinite series of identities:

αk : xkykxk−1xkykbk−1 ≈ ykxkxk−1xkykbk−1,
βk : xxkxbk ≈ xkx2bk,
γk : y1y0xky1bk ≈ y1y0y1xkbk,
δmk : ym+1ymxkym+1bk,mymbm−1 ≈ ym+1ymym+1xkbk,mymbm−1

where k ∈ N and 1 ≤ m ≤ k. Note that the identities α1 and γ1 have already appeared

above. We define the following four countably infinite series of varieties:

Fk = var{Φ, αk}, Hk = var{Φ, βk}, Ik = var{Φ, γk}, Jmk = var{Φ, δmk }.

In this chapter we are going to verify

Proposition 6.1.

(1) The lattice L(K) is the set-theoretical union of the lattice L(E) and the interval

[E,K].

(2) The lattice L(E) is the chain T ⊂ SL ⊂ C2 ⊂ D1 ⊂ E.

(3) If X is a monoid variety such that E ⊂ X ⊂ K then X belongs to the interval

[Fk,Fk+1] for some k.

(4) The interval [Fk,Fk+1] is the chain

Fk ⊂ Hk ⊂ Ik ⊂ J1
k ⊂ J2

k ⊂ · · · ⊂ Jkk ⊂ Fk+1. (6.1)
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This proposition immediately implies that L(K) is the following chain:

T ⊂ SL ⊂ C2 ⊂ D1 ⊂ E ⊂ F1 ⊂ H1 ⊂ I1 ⊂ J1
1

⊂ F2 ⊂ H2 ⊂ I2 ⊂ J1
2 ⊂ J2

2

...

⊂ Fk ⊂ Hk ⊂ Ik ⊂ J1
k ⊂ J2

k ⊂ · · · ⊂ Jkk
...

⊂ K.

In the remainder of this section we verify claim (1) of Proposition 6.1. Claim (2) follows

from Lemma 2.10(i). Claims (3) and (4) are proved in Sections 6.3 and 6.4 respectively.

Section 6.2 contains auxiliary assertions.

Let X be a monoid variety with X ⊆ K. We need to verify that either E ⊆ X or

X ⊆ E. Substituting 1 for y in the identity (4.9), we find that X satisfies the identity (4.5).

If X is commutative then X ⊆ C2 ⊆ E, and we are done. Thus, we can assume that X

is non-commutative. The variety X is aperiodic because it satisfies (4.5). Suppose that

X is completely regular. Every aperiodic completely regular variety is a variety of band

monoids and every band satisfying (4.4) is commutative. Thus, if X is completely regular

then it is commutative, a contradiction. Hence we can assume that X is not completely

regular. Then D1 ⊆ X by Lemma 2.14.

Suppose that E * X. Then X satisfies (4.6) by Lemma 4.3. Further, X satisfies (4.10)

as well because X ⊆ K. Hence x2y
(4.10)

≈ x2yx2
(4.6)

≈ yx2. We see that (4.15) holds in X.

Moreover,

xyx
(4.9)

≈ xyx2
(4.6)

≈ x3yx2
(4.5)

≈ x2yx2
(4.6)

≈ yx2
(4.15)

≈ x2y,

whence the identity

xyx ≈ x2y (6.2)

holds in X. So, X satisfies yx2
(4.15)

≈ x2y
(6.2)

≈ xyx. The identities (4.15), (4.4) and (6.2)

evidently imply σ1, σ2 and γ1. Thus, X ⊆ D1 ⊆ E. We have proved that if E * X then

X ⊆ E. Hence claim (1) of Proposition 6.1 is proved.

6.2. Several auxiliary results. Here we prove several lemmas that will be used re-

peatedly below.

6.2.1. Some properties of the varieties Fk, Hk, Ik, J
m
k , K and their identities

Lemma 6.2. The variety K satisfies:

(i) the identity σ2;

(ii) the identity

xyxzx ≈ xyxz; (6.3)

(iii) any identity u ≈ v such that con(u) = con(v) and occx(u), occx(v) ≥ 2 for any letter

x ∈ con(u).
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Proof. (i) We have xzytxy
(4.9)

≈ xzytx2y2
(4.4)

≈ xzyty2x2
(4.9)

≈ xzytyx.

(ii) We have xyxzx
(4.9)

≈ xyx2zx
(4.10)

≈ xyx2z
(4.9)

≈ xyxz.

(iii) According to (ii), V satisfies (6.3). This allows us to assume that occx(u) =

occx(v) = 2 for any x ∈ con(u). Let con(u) = con(v) = {x1, . . . , xk}. We are going to

verify that u ≈ x21 · · ·x2k in K. We will use induction on k.

Induction base. Suppose that k = 1. Here the identity u ≈ v has the form x21 ≈ x21,

whence it trivially holds in K.

Induction step. Let now k > 1. We may assume that `1(u, xi) < `1(u, xk) for any

1 ≤ i < k. Then
u = u′xkxj1xj2 · · ·xjsxkxjs+1

xjs+2
· · ·xjs+t

where xjr ∈ con(u′) for any 1 ≤ r ≤ s+ t. Then the identities

u
(4.9)

≈ u′xkx
2
j1x

2
j2 · · ·x

2
jsx

2
kx

2
js+1

x2js+2
· · ·x2js+t

(4.4)

≈ u′x3kx
2
j1x

2
j2 · · ·x

2
js+t

(4.5)

≈ u′x2kx
2
j1x

2
j2 · · ·x

2
js+t

(4.4)

≈ u′x2j1x
2
j2 · · ·x

2
js+t

x2k
(6.3)

≈ u′xj1xj2 · · ·xjs+tx
2
k = uxk

x2k

hold in K. The word uxk
contains exactly k−1 letters. By the induction assumption, the

identity uxk
≈ x21 · · ·x2k−1 holds in K, whence this variety satisfies u ≈ uxk

x2k ≈ x21 · · ·x2k.

Similarly, v ≈ x21 · · ·x2k in K, whence K satisfies u ≈ v.

Lemma 6.3. The identity system Φ together with the identity

xxkxbk ≈ x2xkbk (6.4)

forms an identity basis of the variety Jkk.

Proof. First of all, we note that (6.4) holds in Jkk. To check this, it suffices to perform the

substitution (yk, yk+1) 7→ (1, x) in the identity δkk and use the equality bk = xk−1xkbk−1.

So, we need to verify that δkk follows from Φ and (6.4). In view of Lemma 6.2, we can use

the identities σ2 and (6.3). Here is the required deduction (letters in the right column

refer to comments after the deduction):

yk+1ykxkyk+1bk,kykbk−1 = yk+1ykxkyk+1xk−1xkykbk−1 (a)

≈ yk+1ykxkyk+1xk−1ykxkbk−1 (b)

≈ y2k+1ykxkxk−1ykxkbk−1 (c)

≈ y2k+1ykxkxk−1xkykbk−1 (d)

= y2k+1ykxkxk−1xkykxk−2xk−1bk−2 (e)

≈ y2k+1ykxkxk−1xkykxk−2xkxk−1xkbk−2 (f)

≈ yk+1ykyk+1xkxk−1xkykxk−2xkxk−1xkbk−2 (g)

≈ yk+1ykyk+1xkxk−1xkykxk−2xk−1bk−2 (h)

= yk+1ykyk+1xkbk,kykbk−1. (i)
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(a) Here we use the equality bk,k = xk−1xk.

(b) Here we modify the subword ykxkyk+1xk−1xkyk by performing the substitution

(x, t, y, z) 7→ (yk, 1, xk, yk+1xk−1) in σ2.

(c) Here we perform the substitution (x, xk) 7→ (yk+1, ykxk) in (6.4) and use the

equality bk = xk−1xkbk−1.

(d) Here we modify the subword ykxkxk−1ykxk by performing the substitution

(x, t, y, z) 7→ (yk, 1, xk, xk−1)

in σ2.

(e) Here we use the equality bk−1 = xk−2xk−1bk−2.

(f) Here (6.3) allows us to add two new occurrences of the letter xk after its second

occurrence in the word y2k+1yk
(1)

xk xk−1
(2)

xk ykxk−2xk−1bk−2.

(g) Here we perform the substitution (x, xk, xk−1) 7→ (yk+1, yk, xkxk−1xk) in (6.4)

and use the equality bk = xk−1xkxk−2xk−1bk−2.

(h) Here (6.3) allows us to delete the third and fourth occurrences of the letter xk in

the word yk+1ykyk+1
(1)

xk xk−1
(2)

xk ykxk−2
(3)

xk xk−1
(4)

xk bk−2.

(i) Here we use the equalities bk,k = xk−1xk and bk−1 = xk−2xk−1bk−2.

Lemma 6.4. We have

Fk ⊆ Hk ⊆ Ik ⊆ J1
k ⊆ J2

k ⊆ · · · ⊆ Jkk ⊆ Fk+1. (6.5)

Proof. Since all varieties that appear in (6.5) are contained in K, we can apply Lemma 6.2.

In particular, this allows us to use the identities σ2 and (6.3).

1◦. The inclusion Fk ⊆ Hk. We need to verify that βk follows from Φ and αk. Here

is the required deduction:

xxkxbk = xxkxxk−1xkbk−1 because bk = xk−1xkbk−1

≈ xxkxxk−1xkx2bk−1 by (6.3)

≈ xkx2xk−1xkx2bk−1 we perform the substitution

(xk, yk) 7→ (xkx, x) in αk

≈ xkx2xk−1xkbk−1 by (6.3)

= xkx
2bk because bk = xk−1xkbk−1.

2◦. The inclusion Hk ⊆ Ik. Here we need to verify that γk follows from Φ and βk.

Indeed,

y1y0xky1bk ≈ y1y0xky21bk by (6.3)

≈ y1y0y1xky1bk we modify the subword xky
2
1bk

by substituting y1 for x in βk

≈ y1y0y1xkbk by (6.3).

3◦. The inclusion Ik ⊆ J1
k. It suffices to verify that δ1k follows from γk. Since bk,1 = bk

and b0 = λ, the identity δ1k has the form

y2y1xky2bky1 ≈ y2y1y2xkbky1.
To deduce this identity from γk, it suffices to modify the subword y2y1xky2bk by per-

forming the substitution (y0, y1) 7→ (y1, y2) in γk.
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4◦. The inclusion Jmk ⊆ Jm+1
k where 1 ≤ m < k. It suffices to verify that δm+1

k follows

from δmk . Indeed, we get δm+1
k if we multiply δmk by x−1x0 on the left and then increase

by 1 the index of each letter in the resulting identity.

5◦. The inclusion Jkk ⊆ Fk+1. In view of Lemma 6.3, it suffices to verify that αk+1

follows from Φ and (6.4). We have

xk+1yk+1xkxk+1yk+1bk ≈ (xk+1yk+1)2xkbk (a)

≈ (yk+1xk+1)2xkbk (b)

≈ yk+1xk+1xkyk+1xk+1bk (c)

≈ yk+1xk+1xkxk+1yk+1bk. (d)

(a) Here we substitute xkyk for x in (6.4).

(b) Here we apply the identity (xy)2 ≈ (yx)2 that holds in K by Lemma 6.2(iii).

(c) Here we substitute ykxk for x in (6.4).

(d) Here we perform the substitution (x, t, y, z) 7→ (yk+1, 1, xk+1, xk) in σ2.

Below we often use the inclusions (6.5) without reference to Lemma 6.4. Note that in

fact strict inclusions (6.1) are valid. We will prove these inclusions in Subsection 6.4.6.

6.2.2. k-decompositions of sides of the identities αk, βk, γk and δmk

Lemma 6.5. Let u be the left-hand or the right-hand side of one of the identities αk, βk,

γk or δmk . Then:

(1) If xi, yj ∈ con(u) then D(u, xi) = i and D(u, yj) = j. The depth of the letter x in

the left-hand [right-hand ] side of the identity βk equals k + 1 [respectively ∞].

(2) The k-decomposition of the word u has the form indicated in Table 6.1.

As in Example 3.3, we underline k-blocks of words in Table 6.1 to distinguish them

from k-dividers.

Table 6.1. k-decompositions of some words

The k-decomposition of the

The identity left-hand side right-hand side

αk λ · λ · xk · λ · yk · λ · xk−1 · xkyk λ · λ · yk · λ · xk · λ · xk−1 · xkyk
·xk−2 · xk−1 · · ·x1 · x2 · x0 · x1 ·xk−2 · xk−1 · · ·x1 · x2 · x0 · x1

βk λ · x · xk · x · xk−1 · xk · xk−2 λ · λ · xk · x2 · xk−1 · xk · xk−2

·xk−1 · · ·x1 · x2 · x0 · x1 ·xk−1 · · ·x1 · x2 · x0 · x1
γk λ · λ · y1 · λ · y0 · λ · xk · y1 · xk−1 λ · λ · y1 · λ · y0 · y1 · xk · λ · xk−1

·xk · xk−2 · xk−1 · · ·x1 · x2 · x0 · x1 ·xk · xk−2 · xk−1 · · ·x1 · x2 · x0 · x1
δmk with λ · λ · ym+1 · λ · ym · λ · xk · ym+1 λ · λ · ym+1 · λ · ym · ym+1 · xk · λ
m < k ·xk−1 · xk · · ·xm−1 · xmym · xm−2 ·xk−1 · xk · · ·xm−1 · xmym · xm−2

·xm−1 · · ·x1 · x2 · x0 · x1 ·xm−1 · · ·x1 · x2 · x0 · x1
λ · yk+1 · yk · λ · xk · yk+1 · xk−1 λ · yk+1 · yk · yk+1 · xk · λ · xk−1

δkk ·xkyk · xk−2 · xk−1 · · ·x1 · x2 · x0 ·xkyk · xk−2 · xk−1 · · ·x1 · x2 · x0
·x1 ·x1
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Proof of Lemma 6.5. We restrict ourselves to verifying both the claims for the left-hand

side of αk only. In all other cases the proof is similar. We denote the left-hand side of αk
by uk. So,

uk = xkykxk−1xkykxk−2xk−1xk−3xk−2 · · ·x1x2x0x1.

(1) The letter x0 is simple in uk, whence D(uk, x0) = 0. All other letters from con(uk)

occur in uk exactly twice. In particular, they are multiple in uk, and therefore their depth

in uk is greater than 0. The first occurrence of x1 in uk is not preceded by any simple

letter. Therefore, h01(uk, x1) = λ. Further, only x0 is simple in uk and precedes the second

occurrence of x1 in uk. Hence h02(uk, x1) = x0. We see that h01(uk, x1) 6= h02(uk, x1),

whence D(uk, x1) = 1.

Neither the first nor the second occurrence of x2 in uk is preceded by any letter simple

in uk. This means that h01(uk, x2) = h02(uk, x2) = λ, whence D(uk, x2) > 1. The second

occurrence of x2 in uk is preceded by exactly one occurrence of x1 and there are no letters

between these occurrences of x1 and x2. Moreover, h01(uk, x1) 6= h02(uk, x1). Therefore,

h12(uk, x2) = x1. On the other hand, h11(uk, x2) 6= x1 because x1 does not occur before

the first occurrence of x2 in uk. Thus, h11(uk, x2) 6= h12(uk, x2), whence D(uk, x2) = 2.

We introduce some new notation to facilitate further considerations. For a ∈ mul(uk),

we denote by uk[a; 1, 2] the subword of uk between the first and the second occur-

rences of a in uk. For instance, uk[xk; 1, 2] = ykxk−1, uk[yk; 1, 2] = xk−1xk, while

uk[x1; 1, 2] = x2x0. Let now 2 < r < k. Suppose that we have proved D(uk, xi) = i

for all i = 0, 1, . . . , r − 1. We are going to check that D(uk, xr) = r. Suppose that

D(uk, xr) = s < r. This means that hs−11 (uk, xr) 6= hs−12 (uk, xr). Therefore, there is a let-

ter z such that its first occurrence in uk lies in uk[xr; 1, 2] and hs−21 (uk, z) 6= hs−22 (uk, z).

But uk[xr; 1, 2] = xr+1xr−1 whenever r < k − 1 and uk[xk−1; 1, 2] = xkykxk−2. In any

case, the unique letter whose first occurrence in uk lies in uk[xr; 1, 2] is xr−1. In view

of our assumption, D(uk, xr−1) = r − 1. Since s − 2 < r − 2, the last equality im-

plies that hs−21 (uk, xr−1) = hs−22 (uk, xr−1). Thus, there are no letters z with the above-

mentioned properties. Therefore, D(uk, xr) ≥ r. Suppose now that D(uk, xr) = t > r.

Then hr−11 (uk, xr) = hr−12 (uk, xr). Therefore, there are no letters z whose first occurrence

in uk lies in uk[xr; 1, 2] and D(uk, z) = r− 1. But our assumption implies that xr−1 has

these properties. Thus, D(uk, xr) = r.

Quite analogous arguments establish that D(uk, yk) = k. One has to take into account

the equality D(uk, xk−1) = k− 1 proved above and the fact that the unique letter whose

first occurrence in uk lies in u[yk; 1, 2] is xk−1.

It remains to verify that D(uk, xk) = k. We note that neither the first nor the second

occurrence of xk in uk is preceded by any simple letter, whence h01(uk, xk) = h02(uk, xk)

= λ. Suppose that hi1(uk, xk) 6= hi2(uk, xk) for some 0 < i < k − 1. Then there is a

letter z such that its first occurrence in uk lies in u[xk; 1, 2] and hi−11 (uk, z) = hi−12 (uk, z).

This means that D(uk, z) ≤ i < k − 1. Further, u[xk; 1, 2] = ykxk−1 and occurrences

of both yk and xk−1 are the first occurrences of these letters in uk. As we have seen

above, D(uk, yk), D(uk, xk−1) ≥ k − 1. Thus, hi1(uk, xk) = hi2(uk, xk) for all 0 ≤ i <

k − 1. Now we check that hk1(uk, xk) 6= hk2(uk, xk). Indeed, we have seen above that

D(uk, xk−1) = k−1 and D(uk, yk) = k. Therefore, hk−21 (uk, xk−1) 6= hk−22 (uk, xk−1) and
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hk−21 (uk, yk) = hk−22 (uk, yk). This implies that hk−12 (uk, xk) = xk−1. On the other hand,

the first occurrence of xk in uk is not preceded by any letter, whence hk−11 (uk, xk) = λ.

We see that hk1(uk, xk) 6= hk2(uk, xk). In view of the above, this means that D(uk, xk) = k.

(2) By Lemma 3.7, the k-dividers of a word w are exactly the first occurrences of

letters x ∈ con(w) with D(w, x) ≤ k and the empty word at the beginning of the

word w. As proved above, D(uk, x) ≤ k for any x ∈ con(uk). Thus, the k-dividers of

uk are just the first occurrences of all letters from con(uk) and the empty word at the

beginning of uk. All subwords of uk between these k-dividers and only they are k-blocks

of uk. Thus, the k-decomposition of the word uk has the form indicated in Table 6.1.

Note that claim (1) of Lemma 6.5 explains the choice of indices of letters in the

identities αk, βk, γk and δmk .

6.2.3. Swapping letters within k-blocks. In this subsection we verify only one state-

ment. It is the core of the whole proof of Theorem 1.1. Its proof is very long and technical.

At the same time, it is the basis for the rest of the proof of Theorem 1.1 and plays a key

role there.

Lemma 6.6. Let V be a monoid variety such that V ⊆ K, u be a word and k be a natural

number. Further, let u = u′abu′′ where u′ and u′′ are possibly empty words, while ab is

a subword of some (k − 1)-block of u. Suppose that one of the following holds:

(i) V satisfies δmk , a ∈ con(u′) and D(u, a) > m;

(ii) V satisfies γk and a ∈ con(u′);

(iii) V satisfies βk and D(u, a) 6= D(u, b);

(iv) V satisfies αk.

Then V satisfies the identity u ≈ u′bau′′.

Proof. We will prove assertions (i)–(iv) simultaneously. Suppose that V satisfies the

hypothesis of one of these four claims. In particular, V satisfies δkk in any case. Let (3.4)

be the (k − 1)-decomposition of u and ab is a subword of ui for some 0 ≤ i ≤ m. Then

ui = u′iabu
′′
i for some possibly empty words u′i and u′′i . Clearly, u′ = t0u0t1u1 · · · tiu′i

and u′′ = u′′i ti+1ui+1 · · · tmum.

If a, b ∈ con(u′) then

u = u′abu′′
(4.9)

≈ u′a2b2u′′
(4.4)

≈ u′b2a2u′′
(4.9)

≈ u′bau′′,

and we are done. Thus, we can assume without loss of generality that

b /∈ con(u′). (6.6)

If D(u, b) ≤ k− 1 then b is a (k − 1)-divider of u by Lemma 3.7. But this is not the case

because the first occurrence of b in u lies in the (k − 1)-block ui. Therefore, D(u, b) ≥ k.

Further, if a ∈ mul(u′) then Lemma 6.2(ii) implies that the identities u′abu′′ ≈ u′bu′′ ≈
u′bau′′ hold in V. Thus, we can assume that

if a ∈ con(u′) then a ∈ sim(u′). (6.7)

Further considerations are divided into three cases depending on the depth of b in u:

D(u, b) = k, k < D(u, b) < ∞ and D(u, b) = ∞. Each of these cases is divided into
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subcases corresponding to claims (i)–(iv). Thus, the proof of each of assertions (i)–(iv)

will be completed after considering the corresponding subcase of Case 3.

Case 1: D(u, b) = k. This case is the most difficult from the technical point of view

and the longest. By examining two other cases, we will repeatedly refer to properties that

will be verified here. Let p ≈ q be one of the identities αk, βk, γk or δmk . In a sense, the

identity p ≈ q “looks like” u′abu′′ ≈ u′bau′′. We have in mind that the words p and q

start with the same prefix (which is empty for αk and βk) and end with the same suffix,

and the subword between the prefix and the suffix is the product of two letters in p and

the product of the same two letters in the reverse order in q. This makes it possible in

principle to apply the identity p ≈ q to one of the sides of the identity u′abu′′ ≈ u′bau′′

in order to obtain the other side of it. To realize this possibility, we need, with the

use of the identities that hold in K, to reduce, say, the right-hand side of the identity

u′abu′′ ≈ u′bau′′ to a form to which the identity p ≈ q can be applied. To do this, we

first need to find “inside” u the letters x0, x1, . . . , xk which would appear in the same

order as the letters with the same names in one of the sides of the identity p ≈ q.

Put xk = b. Let Xk−1 be the set of (k − 1)-dividers z of u such that

`1(u, xk) < `1(u, z) < `2(u, xk).

The fact that D(u, xk)=k implies hk−11 (u, xk) 6=hk−12 (u, xk), whence hk−12 (u, xk)∈Xk−1.

Therefore, Xk−1 is non-empty. Further, Lemma 3.9(ii) implies that D(u, z) = k − 1 and

`2(u, xk) < `2(u, z) for any z ∈ Xk−1. Now we consider the letter xk−1 ∈ Xk−1 such that

`2(u, z) ≤ `2(u, xk−1) for any z ∈ Xk−1.

Let Xk−2 be the set of (k − 2)-dividers z of u such that `1(u, xk−1) < `1(u, z) <

`2(u, xk−1). ThenD(u, xk−1) = k−1 implies that hk−21 (u, xk−1) 6= hk−22 (u, xk−1), whence

hk−22 (u, xk−1) ∈ Xk−2. Therefore, Xk−2 is non-empty. Further, Lemma 3.9(ii) implies

that D(u, z) = k − 2 and `2(u, xk−1) < `2(u, z) for any z ∈ Xk−2. Now we consider the

letter xk−2 ∈ Xk−2 such that `2(u, z) ≤ `2(u, xk−2) for any z ∈ Xk−2. Since `1(u, xk) <

`1(u, xk−1) < `1(u, xk−2), Lemma 3.13 implies that `2(u, xk) < `1(u, xk−2).

Further, for s = k−3, k−4, . . . , 1 we define one by one the set Xs and the letter xs in

the following way: Xs is the set of all s-dividers z of u such that `1(u, xs+1) < `1(u, z) <

`2(u, xs+1), and xs is a letter such that xs ∈ Xs and `2(u, z) ≤ `2(u, xs) for any z ∈ Xs.

Arguments similar to those from the previous two paragraphs show that Xs is non-empty,

D(u, xs) = s, `j(u, xs+1) < `j(u, xs) for any j = 1, 2 and `2(u, xs+2) < `1(u, xs).

Finally, put x0 = h02(u, x1). In view of Lemma 3.9, we have D(u, x0) = 0 and

`1(u, x1)<`1(u, x0). Since `1(u, x2)<`1(u, x1), Lemma 3.13 implies `2(u, x2)<`1(u, x0).

Then

u = u′abv2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v4x1v3x2v2x0v1x1v0 (6.8)

for some possibly empty words v0,v1, . . . ,v2k. One can verify that if 2 ≤ s ≤ k then

`2(u, z) < `2(u, xs−1) for any z ∈ con(v2sv2s−1). (6.9)

Put

ws = u′abv2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v2s+2xsv2s+1xs+1.
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The word ws is the prefix of u that immediately precedes v2s, while v2s−1 precedes

the second occurrence of xs−1 in u. This implies the required conclusion whenever z ∈
con(ws). Suppose now that z /∈ con(ws). Then `1(u, xs) < `1(u, z) < `2(u, xs). If z is an

(s− 1)-divider of u then z ∈ Xs−1, whence `2(u, z) < `2(u, xs−1) by the choice of xs−1.

Otherwise D(u, z) > s−1 by Lemma 3.7. Then since `1(u, z) < `1(u, xs−2), Lemma 3.13

implies that `2(u, z) < `1(u, xs−2), whence `2(u, z) < `2(u, xs−1).

The further realization of the plan outlined at the beginning of Case 1 depends on

the identity that plays the role of p ≈ q. Therefore, further considerations are divided

into four subcases.

Subcase 1.1: V satisfies the hypothesis of claim (i), i.e., δmk holds in V, a ∈ con(u′)

and D(u, a) > m. Claim (6.7) allows us to assume that a ∈ sim(u′). Then u′ = wav for

some possibly empty words v and w. This implies that

u = wavabv2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v4x1v3x2v2x0v1x1v0. (6.10)

Put D(u, a) = r. Further considerations are divided into two parts corresponding to

whether r ≤ k + 1 or r > k + 1.

(A) r ≤ k + 1. Here we need to define two more letters, namely yr−1 and yr−2, and

clarify the location of these letters within u. Let Yr−1 be the set of (r − 1)-dividers z

of u such that `1(u, a) < `1(u, z) < `2(u, a). The fact that D(u, a) = r implies that

hr−11 (u, a) 6= hr−12 (u, a), whence hr−12 (u, a) ∈ Yr−1. Therefore, the set Yr−1 is non-empty.

Lemma 3.9(ii) implies that D(u, z) = r − 1 and `2(u, a) < `2(u, z) for any z ∈ Yr−1.

Then `1(u, b) < `2(u, z) for any z ∈ Yr−1. Now we consider the letter yr−1 ∈ Yr−1 such

that `2(u, z) ≤ `2(u, yr−1) for any z ∈ Yr−1.

Now we check some additional properties of the letter xr, which are fulfilled under

certain restrictions to r. Suppose that r < k+ 1. Then xr is defined. Our aim is to prove

that

`2(u, xr) < `2(u, yr−1). (6.11)

Put yr−2 = hr−22 (u, yr−1). Since D(u, yr−1) = r−1, Lemma 3.9 implies that D(u, yr−2) =

r − 2 and `1(u, yr−1) < `1(u, yr−2). Recall that `1(u, a) < `1(u, yr−1), which implies

`1(u, a) < `1(u, yr−2). Since D(u, a) = r, we can apply Lemma 3.13 to conclude that

`2(u, a) < `1(u, yr−2). The second occurrence of a in u immediately precedes the first

occurrence of b = xk, whence `1(u, xk) < `1(u, yr−2). Then Lemma 3.13 implies that

`2(u, xk) < `1(u, yr−2). This yields `1(u, xk−1) < `2(u, xk) < `1(u, yr−2). If k − 1 ≥ r

then Lemma 3.13 shows that `2(u, xk−1) < `1(u, yr−2). Continuing, we eventually obtain

`2(u, xr) < `1(u, yr−2). The choice of yr−2 implies that the first occurrence of yr−2 in u

precedes the second occurrence of yr−1. Therefore, `2(u, xr) < `2(u, yr−1). So, we have

proved that if r < k + 1 then (6.11) is true.

Let now r > 2. Note that

`1(u, yr−1) < `2(u, a) < `1(u, b) = `1(u, xk) < `1(u, xk−1) < · · · < `1(u, xr−3).

If `1(u, xr−3) < `2(u, yr−1) then xr−3 lies between the first and the second occurrences

of yr−1 in u. Since xr−3 is an (r − 3)-divider of u, we obtain a contradiction with the
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equality D(u, yr−1) = r − 1. Thus,

`2(u, yr−1) < `1(u, xr−3) (6.12)

whenever r > 2.

One can return to arbitrary r ≤ k+1. This restriction guarantees that xr−2 and xr−1
are defined. There are three possibilities for the second occurrence of yr−1 in u:

`1(u, xr−2) < `2(u, yr−1) < `2(u, xr−1); (6.13)

`2(u, yr−1) < `1(u, xr−2); (6.14)

`2(u, xr−1) < `2(u, yr−1). (6.15)

The equality (6.10) may be rewritten in the form

u = wavabv2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v2r
(1)

xr−1

· v2r−1
(2)

xr v2r−2
(1)

xr−2 v2r−3
(2)

xr−1 v2r−4
(1)

xr−3 v2r−5
(2)

xr−2 · · ·
· v4x1v3x2v2x0v1x1v0. (6.16)

Suppose that (6.13) holds. Then the second occurrence of yr−1 in u belongs to v2r−3,

whence v2r−3 = v′2r−3yr−1v
′′
2r−3 for possibly empty words v′2r−3 and v′′2r−3. Further,

since `1(u, a) < `1(u, yr−1) < `2(u, a), the first occurrence of yr−1 belongs to v. Therefore,

v = v2k+2yr−1v2k+1 for possibly empty words v2k+2 and v2k+1.

Combining all the above, we can clarify the presentation (6.10) of the word u and

write this word in the form

u = wav2k+2yr−1v2k+1abv2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·
· v2rxr−1v2r−1xrv2r−2xr−2v

′
2r−3yr−1v

′′
2r−3xr−1v2r−4xr−3v2r−5xr−2 · · ·

· v4x1v3x2v2x0v1x1v0.

Note that u′ = wav2k+2yr−1v2k+1 and

u′′ = v2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v2rxr−1v2r−1xrv2r−2xr−2

· v′2r−3yr−1v′′2r−3xr−1v2r−4xr−3v2r−5xr−2 · · ·v4x1v3x2v2x0v1x1v0.

Similarly to the proof of (6.9), we can verify that if z ∈ con(v2k+2v2k+1) then

`2(u, z) ≤ `2(u, yr−1).

Now we are ready to begin the process of modifying u to get u′bau′′. But first, we

will outline the general scheme of further considerations, since arguments of that type

will be repeated many times below. We rely on the fact that (6.3) is satisfied by the

variety K. This allows us to add any letter that is multiple in a given word to any place

after the second occurrence of this letter in the word. Using this, we will add different

missing letters or even words in different places in u (or in a word which equals u in V)

in order to make it possible to apply to that word the identity that is fulfilled in V at

the moment (now the identity is δmk ). Next, we will apply this identity, and then “reverse

the process”, i.e., making use of (6.3), remove unnecessary letters or even words from the

resulting word to obtain u′bau′′.
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Let us implement this plan. First, we apply (6.3) to u and insert yr−1 after the second

occurrence of xr−1 in u. We obtain

u ≈ wav2k+2yr−1v2k+1abv2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·

· v2r
(1)

xr−1 v2r−1xrv2r−2xr−2v2r−3
(2)

xr−1 yr−1v2r−4xr−3v2r−5xr−2 · · ·
· v4x1v3x2v2x0v1x1v0. (6.17)

Further, we apply (6.3) sufficiently many times to the right-hand side of (6.17) and replace

there the third occurrence of yr−1 with v2k+2yr−1v2k+1 and the second occurrence of xs−1
with v2sxs−1v2s−1 for any 2 ≤ s ≤ k. We find that V satisfies the identity

u ≈ wav2k+2yr−1v2k+1abpv0 (6.18)

where

p = v2kxk−1v2k−1bv2k−2xk−2v2k−3v2kxk−1v2k−1v2k−4 · · ·v2r−2xr−2v2r−3

· v2rxr−1v2r−1v2k+2yr−1v2k+1v2r−4xr−3v2r−5v2r−2xr−2v2r−3v2r−6 · · ·
· v4x1v3v6x2v5v2x0v1v4x1v3.

By the hypothesis, r = D(u, a) > m. Then by Lemma 6.4, δr−1k holds in V. Now we

perform the substitution

(x0, . . . , xk−1, xk, yr−1, yr) 7→ (v2x0v1, . . . ,v2kxk−1v2k−1, b,v2k+2yr−1v2k+1, a)

in δr−1k to obtain the identity

av2k+2yr−1v2k+1abp ≈ av2k+2yr−1v2k+1bap.

This identity together with (6.18) implies that V satisfies the identity

u ≈ wav2k+2yr−1v2k+1bapv0.

Now we apply (6.3) to the right-hand side of the last identity “in the opposite direction”

and replace v2k+2yr−1v2k+1 with yr−1 and v2sxs−1v2s−1 with xs−1 for any 2 ≤ s ≤ k.

As a result, we obtain the identity

u ≈ wav2k+2yr−1v2k+1bav2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v2r−2xr−2

· v2r−3xr−1yr−1v2r−4xr−3v2r−5xr−2v2r−6 · · ·v4x1v3x2v2x0v1x1v0.

Finally, we apply (6.3) to the right-hand side of the last identity and delete the third

occurrence yr−1. We obtain the identity

u ≈ wav2k+2yr−1v2k+1bav2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v2r−2xr−2

· v′2r−3yr−1v′′2r−3xr−1v2r−4xr−3v2r−5xr−2v2r−6 · · ·v4x1v3x2v2x0v1x1v0

= u′bau′′.

It remains to consider the case when either (6.14) or (6.15) holds. We are going to

verify that in both cases, (6.17) holds. This suffices because then we can complete our

considerations as above. If (6.14) holds then (6.11) and (6.16) imply that

u=wav2k+2yr−1v2k+1abv2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v2r
(1)

xr−1 v2r−1xrv
′
2r−2

· yr−1v′′2r−2xr−2v2r−3
(2)

xr−1 v2r−4xr−3v2r−5xr−2 · · ·v4x1v3x2v2x0v1x1v0
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for some possibly empty words v′2r−2,v
′′
2r−2 such that v2r−2 = v′2r−2yr−1v

′′
2r−2. Here we

add one more occurrence of yr−1 immediately after the second occurrence of xr−1. As a

result, we obtain (6.17). Finally, if (6.15) is the case then we use (6.12). Then

u = wav2k+2
(1)

yr−1 v2k+1abv2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v2rxr−1v2r−1xr

· v2r−2xr−2v2r−3xr−1v
′
2r−4

(2)

yr−1 v′′2r−4
(1)

xr−3 v2r−5xr−2 · · ·v4x1v3x2v2x0v1x1v0

for some possibly empty words v′2r−4,v
′′
2r−4 such that v2r−4 = v′2r−4yr−1v

′′
2r−4. Then we

can add a third occurrence of the letter xr−1 immediately before the second occurrence

of yr−1 and obtain

u≈wav2k+2
(1)

yr−1 v2k+1abv2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v2rxr−1v2r−1xrv2r−2

· xr−2v2r−3xr−1v
′
2r−4xr−1

(2)

yr−1 v′′2r−4
(1)

xr−3 v2r−5xr−2 · · ·v4x1v3x2v2x0v1x1v0.

This is nothing but (6.17) (up to renaming of words).

(B) r > k + 1. Recall that equality (6.10) is true. Suppose that v is non-empty.

Let y ∈ con(v). Suppose that `1(u, xk−1) < `2(u, y). This implies that hk−11 (u, y) 6=
hk−12 (u, y) because xk−1 is a (k − 1)-divider of u. Then y is a k-divider of u. Since v

(and in particular y) is located between the first and the second occurrences of a in u,

this contradicts D(u, a) = r > k+ 1. So, `2(u, y) ≤ `1(u, xk−1) for any y ∈ con(v). Then

we apply (6.3) sufficiently many times to the right-hand side of (6.10), namely, we insert

v after the second occurrence of b there. Clearly, we can formally insert v after the second

occurrence of b whenever v = λ too. Further, in view of (6.9), we can replace the second

occurrence of xs−1 in the right-hand side of (6.10) with v2sxs−1v2s−1 for any 2 ≤ s ≤ k.

We deduce that V satisfies the identity

u ≈ wavabpv0 (6.19)

where

p = v2kxk−1v2k−1bvv2k−2xk−2v2k−3v2kxk−1v2k−1 · · ·v4x1v3v6x2v5v2x0v1v4x1v3.

In view of Lemma 6.4, V satisfies δkk . Now we perform the substitution

(x0, . . . , xk−1, xk, yk, yk+1) 7→ (v2x0v1, . . . ,v2kxk−1v2k−1, b,v, a)

in δkk to obtain the identity

avabp ≈ avbap.

This identity together with (6.19) implies that V satisfies the identity

u ≈ wavbapv0.

Now we apply (6.3) to the right-hand side of the last identity “in the opposite direction”,

namely we delete v after the second occurrence of b and replace v2sxs−1v2s−1 with xs−1
for any 2 ≤ s ≤ k. As a result, we obtain the identity

u ≈ wavbav2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v4x1v3x2v2x0v1x1v0 = u′bau′′.

Subcase 1.2: V satisfies the hypothesis of claim (ii), i.e., γk holds in V and a ∈ con(u′).

Recall that equality (6.8) is true. Claim (6.7) allows us to assume that a ∈ sim(u′). Then,
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as in Subcase 1.1, u has the form (6.10). Note that u′ = wav and

u′′ = v2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v4x1v3x2v2x0v1x1v0.

Recall that (6.9) is true for any 2 ≤ s ≤ k. Now we can apply (6.3) sufficiently many

times to the right-hand side of (6.10) and replace the second occurrence of xs−1 with

v2sxs−1v2s−1 for any 2 ≤ s ≤ k. We infer that V satisfies the identity

u ≈ wavabv2kxk−1v2k−1bv2k−2xk−2v2k−3v2kxk−1v2k−1 · · ·
· v4x1v3v6x2v5v2x0v1v4x1v3v0.

Put p1 = av and

p2 = v2kxk−1v2k−1bv2k−2xk−2v2k−3v2kxk−1v2k−1 · · ·v4x1v3v6x2v5v2x0v1v4x1v3.

Then the last identity has the form

u ≈ wp1abp2v0. (6.20)

By the hypothesis, V satisfies the identity γk. Now we perform the substitution

(x0, x1, . . . , xk−1, xk, y0, y1) 7→ (v2x0v1,v4x1v3, . . . ,v2kxk−1v2k−1, b,v, a)

in γk to obtain the identity p1bap2 ≈ p1abp2. This identity together with (6.20) implies

that V satisfies u ≈ wp1bap2v0, i.e.,

u ≈ wavbav2kxk−1v2k−1bv2k−2xk−2v2k−3v2kxk−1v2k−1 · · ·
· v4x1v3v6x2v5v2x0v1v4x1v3v0.

Now we apply (6.3) to the right-hand side of the last identity “in the opposite direction”

and replace v2sxs−1v2s−1 with xs−1 for any 2 ≤ s ≤ k. As a result, we obtain

u ≈ wavbav2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v4x1v3x2v2x0v1x1v0,

i.e., u ≈ u′bau′′.

Subcase 1.3: V satisfies the hypothesis of claim (iii), i.e., βk holds in V and D(u, a) 6=
D(u, b). Subcase 1.2 allows us to assume that a /∈ con(u′). This fact and (6.6) immediately

imply that `1(u, a) < `1(u, b). If D(u, a) ≤ k − 1 then a is a (k − 1)-divider of u by

Lemma 3.7. But this is not the case. Therefore, D(u, a) ≥ k. Since D(u, b) 6= D(u, a) and

D(u, b) = k, we obtain D(u, a) > k.

Note that `2(u, a) < `1(u, xk−1) because hk−11 (u, a) = hk−12 (u, a) and xk−1 is a

(k − 1)-divider. Recall that (6.8) is true. Then v2k = v′2kav
′′
2k for some possibly empty

words v′2k,v
′′
2k. Thus,

u = u′abv′2kav
′′
2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v4x1v3x2v2x0v1x1v0.

Now we are going to verify that the identity

u ≈ u′abav2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v4x1v3x2v2x0v1x1v0 (6.21)

holds in V. This is evident whenever v′2k = λ. Suppose now that v′2k = v∗d for some

possibly empty word v∗ and some letter d. Then u may be rewritten in the form

u = u′
(1)

a bv∗d
(2)

a v′′2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v4x1v3x2v2x0v1x1v0.
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Note that the subword da located between v∗ and v′′2k lies in some (k − 1)-block of u.

Indeed, the occurrence of d in this subword is not a (k − 1)-divider of u because otherwise

the first and the second occurrences of a in u lie in different (k − 1)-blocks, contradicting

the inequality D(u, a) > k, while the occurrence of a in this subword is not a (k − 1)-

divider of u because this is not the first occurrence of a in u.

According to Lemma 6.4, the variety V satisfies the identity γk. In view of the state-

ment that was proved in Subcase 1.2, V satisfies the identity

u ≈ u′abv∗adv′′2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v4x1v3x2v2x0v1x1v0.

Acting in this way, we can successively swap the letter a with all letters of the word v′2k
to deduce that

u ≈ u′abav′2kv
′′
2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v4x1v3x2v2x0v1x1v0

holds in V. Now we apply (6.3) to the right-hand side of the last identity and insert the

letter a after v′2k. We obtain (6.21).

Recall that (6.9) is true for any 2 ≤ s ≤ k. Now we can apply (6.3) sufficiently many

times to the right-hand side of (6.21) and replace the second occurrence of xs−1 with

v2sxs−1v2s−1 for any 2 ≤ s ≤ k. We conclude that V satisfies the identity

u ≈ u′abapv0 (6.22)

where

p = v2kxk−1v2k−1bv2k−2xk−2v2k−3v2kxk−1v2k−1 · · ·v4x1v3v6x2v5v2x0v1v4x1v3.

Now we perform the substitution

(x0, x1, . . . , xk−1, xk, x) 7→ (v2x0v1,v4x1v3, . . . ,v2kxk−1v2k−1, b, a)

in βk, which yields abap ≈ ba2p. One can apply this identity to (6.22). We find that the

identity

u ≈ u′ba2pv0 = u′ba2v2kxk−1v2k−1bv2k−2xk−2v2k−3v2kxk−1v2k−1 · · ·
· v4x1v3v6x2v5v2x0v1v4x1v3v0

holds in V. Now we apply (6.3) to the right-hand side of the last identity “in the opposite

direction” and replace v2sxs−1v2s−1 with xs−1 for any 2 ≤ s ≤ k. As a result, we obtain

the identity

u ≈ u′ba2v2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v4x1v3x2v2x0v1x1v0.

Repeating the arguments used above in the deduction of (6.21), we find that V satisfies

u ≈ u′bav2kxk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v4x1v3x2v2x0v1x1v0 = u′bau′′,

i.e., u ≈ u′bau′′.

Subcase 1.4: V satisfies the hypothesis of claim (iv), i.e., αk holds in V. By Sub-

cases 1.2 and 1.3, and by (6.6), we can assume that a, b /∈ con(u′) and D(u, b) = D(u, a).

Recall that (6.8) is true.

Note that `2(u, a) < `1(u, xk−2) because hk−21 (u, a) = hk−22 (u, a) and xk−2 is a

(k − 2)-divider. Therefore, there are possibly empty words v′ and v′′ such that one of
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the following equalities holds:

v2k = v′av′′, v2k−1 = v′av′′ or v2k−2 = v′av′′.

Then one of the following equalities holds:

u = u′abv′av′′xk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v4x1v3x2v2x0v1x1v0,

u = u′abv2kxk−1v
′av′′bv2k−2xk−2v2k−3xk−1 · · ·v4x1v3x2v2x0v1x1v0,

u = u′abv2kxk−1v2k−1bv
′av′′xk−2v2k−3xk−1 · · ·v4x1v3x2v2x0v1x1v0.

We consider only the first case; the other two cases can be considered similarly. Since V

satisfies (6.3), we see that the identity

u ≈ u′abv2kxk−1v2k−1abv2k−2xk−2v2k−3xk−1 · · ·v4x1v3x2v2x0v1x1v0 (6.23)

holds in this variety.

Recall that (6.9) is true for any 2 ≤ s ≤ k. Now we can apply (6.3) sufficiently many

times to the right-hand side of (6.23) and replace the second occurrence of xs−1 with

v2sxs−1v2s−1 for any 2 ≤ s ≤ k. We deduce that V satisfies the identity

u ≈ u′abpv0 (6.24)

where

p = v2kxk−1v2k−1abv2k−2xk−2v2k−3v2kxk−1v2k−1 · · ·v4x1v3v6x2v5v2x0v1v4x1v3.

Now we perform the substitution

(x0, x1, . . . , xk−1, xk, yk) 7→ (v2x0v1,v4x1v3, . . . ,v2kxk−1v2k−1, a, b)

in αk to obtain abp ≈ bap. Applying this identity to (6.24), we get u ≈ u′bapv0. Now

we apply (6.3) to the right-hand side of the last identity “in the opposite direction” and

replace v2sxs−1v2s−1 with xs−1 for any 2 ≤ s ≤ k. As a result, we obtain

u ≈ u′bav2kxk−1v2k−1abv2k−2xk−2v2k−3xk−1 · · ·v4x1v3x2v2x0v1x1v0.

Now we apply (6.3) again and delete the occurrence of a located between v2k−1 and

the second occurrence of b in the right-hand side of the last identity. We see that V

satisfies

u≈u′bav′av′′xk−1v2k−1bv2k−2xk−2v2k−3xk−1 · · ·v4x1v3x2v2x0v1x1v0 =u′bau′′,

i.e., u ≈ u′bau′′.

Case 2: k < D(u, b) <∞. As we will see below, this case reduces to the previous one

by relatively simple arguments. Put D(u, b) = r. Further considerations are divided into

three subcases.

Subcase 2.1: V satisfies the hypothesis of (i) or (ii). Here a ∈ con(u′). Hence the

occurrence of a in the subword ab of u mentioned in the formulation of the lemma is not

the first occurrence of a in u. Therefore, this occurrence of a in u is not an (r − 1)-divider

of u. Lemma 3.7 together with the fact that D(u, b) = r implies that the occurrence of b

in the subword ab of u is not an (r − 1)-divider of u either. Therefore, ab lies in some

(r − 1)-block of u.
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Let

s0w0s1w1 · · · snwn (6.25)

be the (r − 1)-decomposition of u. Then there exists 0 ≤ j ≤ n such that wj = w′jabw
′′
j ,

whence u′ = s0w0s1w1 · · · sjw′j and u′′ = w′′j sj+1wj+1 · · · snwn. Since Jmk ⊆ Jmr and

Ik ⊆ Ir by Lemma 6.4, we apply the statements proved in Subcases 1.1 and 1.2 to obtain

the conclusion that u ≈ u′bau′′ holds in V.

Subcase 2.2: V satisfies the hypothesis of (iii), i.e., βk holds in V and D(u, a) 6=
D(u, b). Subcase 2.1 allows us to assume that a /∈ con(u′).

Suppose that D(u, a) = s < r. If s ≤ k − 1 then a is a (k − 1)-divider of u by

Lemma 3.7. But this is not the case because the first occurrence of a in u lies in the

(k − 1)-block ui. Therefore, s ≥ k. Let (6.25) be the (s− 1)-decomposition of u. Then

there exists a number 0 ≤ j ≤ n such that wj = w′jabw
′′
j , u′ = s0w0s1w1 · · · sjw′j and

u′′ = w′′j sj+1wj+1 · · · snwn. Put u∗ = u′bau′′. Since a, b /∈ {s1, s2, . . . , sn}, the (s− 1)-

decomposition of u∗ has the form

s0w0s1w1 · · · sjw∗j · · · snwn

where w∗j = w′jbaw
′′
j . Then (2.1) and (3.6) with v = u∗ and ` = s hold. Now Lemma 3.12

shows that D(u∗, a) = s. Since V satisfies the identity βs by Lemma 6.4, we apply the

statement proved in Subcase 1.3 to deduce that the identity u∗ = u′bau′′ ≈ u′abu′′ = u

holds in V.

Suppose now thatD(u, a) > r. Let now (6.25) be the (r − 1)-decomposition of u. Then

there exists a number 0 ≤ j ≤ n such that wj = w′jabw
′′
j , whence u′ = s0w0s1w1 · · · sjw′j

and u′′ = w′′j sj+1wj+1 · · · snwn. Since Hk ⊆ Hr by Lemma 6.4, we apply the statement

proved in Subcase 1.3 to obtain the identity u ≈ u′bau′′ in V.

Subcase 2.3: V satisfies the hypothesis of claim (iv), i.e., αk holds in V. Subcase 2.2

allows us to assume that D(u, a) = D(u, b). Put D(u, a) = r. Then the subword ab of u

mentioned in the formulation of the lemma lies in some (r − 1)-block of u. Let (6.25) be

the (r − 1)-decomposition of u. Then there exists 0 ≤ j ≤ n such that wj = w′jabw
′′
j ,

whence u′ = s0w0s1w1 · · · sjw′j and u′′ = w′′j sj+1wj+1 · · · snwn. Since Fk ⊆ Fr by

Lemma 6.4, we apply the statement proved in Subcase 1.4 to obtain the identity u ≈
u′bau′′ in V.

Case 3: D(u, b) =∞. This case is also divided into three subcases.

Subcase 3.1: V satisfies the hypothesis of (i) or (ii). Let s be a non-negative integer.

Repeating the arguments from Subcase 2.1, we find that the subword ab of u mentioned

in the formulation of the lemma lies in some s-block of u. By Remark 3.2, there is r ≥ k
such that (6.25) is the `-decomposition of u for any ` ≥ r. Then ab is a subword of wj

for some 0 ≤ j ≤ n. We have wj = w′jabw
′′
j for some possibly empty words w′j and w′′j .

Then u′ = s0w0s1w1 · · · sjw′j and u′′ = w′′j sj+1wj+1 · · · snwn. We now prove that

occz(wj) ≥ 2 (6.26)

for any z ∈ con(wj). Suppose first that sj = hr1(u, z) and occz(wj) = 1. If occz(u) = 1

then z is a 0-divider of u. Lemma 3.5(i) implies that then z ∈ {s1, . . . , sn}, a contra-
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diction. Therefore, occz(u) ≥ 2. Since occz(wj) = 1, we have sj 6= hr2(u, z). This means

that D(u, z) ≤ r+ 1. According to Lemma 3.7, z is an (r + 1)-divider of u, which contra-

dicts the fact that (6.25) is the (r + 1)-decomposition of u. So, (6.26) is true whenever

sj = hr1(u, z). Suppose now that sj 6= hr1(u, z). Then the (1, r)-restrictor of z in u is sp
for some p < j. This means that z ∈ con(s0w0s1w1 · · · sj−1wj−1). Then

u = fzgwj1zwj2sj+1wj+1 · · · snwn

for some possibly empty words f ,g,wj1 and wj2 with fzg = s0w0s1w1 · · · sj−1wj−1sj
and wj = wj1zwj2. Then (4.9) implies that V satisfies the identity

u ≈ fzgwj1z
2wj2sj+1wj+1 · · · snwn.

Therefore, we can assume that the claim (6.26) is true again. Thus, the claim holds for

any z ∈ con(wj). Then Lemma 6.2(iii) implies that V satisfies wj ≈ w′jbaw
′′
j , whence

u = s0w0s1w1 · · · sjwjsj+1wj+1 · · · snwn

≈ s0w0s1w1 · · · sjw′jbaw′′j sj+1wj+1 · · · snwn = u′bau′′

in this variety.

We have thus completed the proof of (i) and (ii).

Subcase 3.2: V satisfies the hypothesis of (iii), i.e., βk holds in V and D(u, a) 6=
D(u, b). Then D(u, a) < ∞. Put D(u, a) = r. Repeating the arguments from Sub-

case 1.3, we have a /∈ con(u′) and r ≥ k. Let (6.25) be the (r − 1)-decomposition of u.

Then there exists 0 ≤ j ≤ n such that wj = w′jabw
′′
j , u′ = s0w0s1w1 · · · sjw′j and

u′′ = w′′j sj+1wj+1 · · · snwn. Put u∗ = u′bau′′. Since a, b /∈ {s1, . . . , sn}, the (r − 1)-

decomposition of u∗ has the form s0w0s1w1 · · · sjw∗j · · · snwn where w∗j = w′jbaw
′′
j .

Then (2.1) and (3.6) with v = u∗ and ` = r hold. Now Lemma 3.12 implies that

D(u∗, a) = r, whence a is an r-divider of u∗ by Lemma 3.7. Then hr1(u∗, b) 6= hr2(u∗, b).

This implies that D(u∗, b) > r. Since V satisfies the identity βr by Lemma 6.4, we ap-

ply the statement proved in Subcase 1.3 to deduce that the identities u∗ = u′bau′′ ≈
u′abu′′ = u hold in V.

We have thus completed the proof of (iii).

Subcase 3.3: V satisfies the hypothesis of (iv), i.e., αk holds in V. Subcase 3.2 allows

us to assume that D(u, a) = D(u, b) = ∞. This together with Lemma 3.7 implies that

the subword ab of u mentioned in the formulation of the lemma lies in some s-block of u

for any s. Now we repeat the arguments used in Subcase 3.1 and prove that u ≈ u′bau′′

holds in V.

We have thus completed the proof of (iv) and of the entire lemma.

6.3. Reduction to intervals of the form [Fk,Fk+1]. Here we prove Proposition 6.1(3).

We need several auxiliary results.

Lemma 6.7. Let V be a monoid variety such that V ⊆ K and V satisfies an identity

u ≈ v, and s be a natural number. Suppose that (2.1) and (3.6) with ` = s hold and there

are letters x and xs such that D(u, xs) = s, `i(u, x) < `1(u, xs) and `1(v, xs) < `i(v, x)

for some i ∈ {1, 2}.
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(i) If i = 1 then V ⊆ Hs.

(ii) If i = 2 then V ⊆ Jss.

Proof. Lemma 6.2(iii) allows us to assume that occy(u), occy(v) ≤ 2 for any letter y.

Now Lemma 3.14 implies that there are letters x0, x1, . . . , xs−1 such that D(u, xr) =

D(v, xr) = r for any 0 ≤ r < s and the identity u ≈ v has the form (3.7) for some

possibly empty words u0,u1, . . . ,u2s+1 and v0,v1, . . . ,v2s+1.

Suppose that i = 1. Then `1(u, x) < `1(u, xs) and `1(v, xs) < `1(v, x). Suppose that

`1(u, xs) < `2(u, x). In view of the above,

• the first occurrence of x in u lies in u2s+1,

• the second occurrence of x in u lies in u2su2s−1 · · ·u0,

• the first and second occurrences of x in v lie in v2sv2s−1 · · ·v0.

Now we substitute xsx
2 for xs in the identity u ≈ v to obtain the identity

u2s+1xsx
2u2sxs−1u2s−1xsx

2u2s−2xs−2u2s−3xs−1 · · ·u4x1u3x2u2x0u1x1u0

≈ v2s+1xsx
2v2sxs−1v2s−1xsx

2v2s−2xs−2v2s−3xs−1 · · ·v4x1v3x2v2x0v1x1v0. (6.27)

Further, we apply the identity (6.3) and delete the third and subsequent occurrences of

x in both sides of (6.27) to obtain the identity

u2s+1xsx(u2sxs−1u2s−1xsu2(s−1)xs−2u2s−1xs−1 · · ·u4x1u3x2u2x0u1x1u0)x

≈ v2s+1xsx
2(v2sxs−1v2s−1xsv2(s−1)xs−2v2s−1xs−1 · · ·v4x1v3x2v2x0v1x1v0)x.

Now substitute 1 for all letters except x, x0, x1, . . . , xs to get

xxsxxs−1xsxs−2xs−1 · · ·x1x2x0x1 ≈ xsx2xs−1xsxs−2xs−1 · · ·x1x2x0x1,

i.e., βs. Therefore, V ⊆ Hs. Suppose now that `2(u, x) < `1(u, xs). In view of the above,

• the first and second occurrences of x in u lie in u2s+1,

• the first and second occurrences of x in v lie in v2sv2s−1 · · ·v0.

Now we substitute xsx
2 for xs in the identity u ≈ v and obtain (6.27). The identity (6.3)

allows us to delete the third and subsequent occurrences of x in both sides of (6.27). As

a result, we obtain the identity

u2s+1xsu2sxs−1u2s−1xsu2s−2xs−2u2s−3xs−1 · · ·u4x1u3x2u2x0u1x1u0

≈ v2s+1xsx
2(v2sxs−1v2s−1xsv2(s−1)xs−2v2s−1xs−1 · · ·v4x1v3x2v2x0v1x1v0)x.

Now substitute 1 for all letters except x, x0, x1, . . . , xs to get

x2xsxs−1xsxs−2xs−1 · · ·x1x2x0x1 ≈ xsx2xs−1xsxs−2xs−1 · · ·x1x2x0x1. (6.28)

Then V satisfies the identities

xsx
2xs−1xsxs−2xs−1 · · ·x1x2x0x1

(6.28)

≈ x2xsxs−1xsxs−2xs−1 · · ·x1x2x0x1
(4.5)

≈ x3xsxs−1xsxs−2xs−1 · · ·x1x2x0x1
(6.28)

≈ xxsx
2xs−1xsxs−2xs−1 · · ·x1x2x0x1

(6.3)

≈ xxsxxs−1xsxs−2xs−1 · · ·x1x2x0x1,

whence βs holds in V. Therefore, V ⊆ Hs. Claim (i) is proved.
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Suppose now that i = 2. Then `1(u, x) < `2(u, x) < `1(u, xs). If `1(v, xs) < `1(v, x)

then we return to the already proved claim (i). So, we can assume that `1(v, x) < `1(v, xs).

In view of the above,

• the first and second occurrences of x in u lie in u2s+1,

• the first occurrence of x in v lies in v2s+1,

• the second occurrence of x in v lies in v2sv2s−1 · · ·v0.

Now we substitute xsx
2 for xs in the identity u ≈ v and obtain (6.27). The identity (6.3)

allows us to delete the third and subsequent occurrences of x in both sides of (6.27). As

a result, we obtain the identity

u2s+1xsu2sxs−1u2s−1xsu2s−2xs−2u2s−3xs−1 · · ·u4x1u3x2u2x0u1x1u0

≈ v2s+1xsx(v2sxs−1v2s−1xsv2(s−1)xs−2v2s−1xs−1 · · ·v4x1v3x2v2x0v1x1v0)x.

Now substitute 1 for all letters except x, x0, x1, . . . , xs to get

x2xsxs−1xsxs−2xs−1 · · ·x1x2x0x1 ≈ xxsxxs−1xsxs−2xs−1 · · ·x1x2x0x1,

i.e., (6.4) with k = s. Lemma 6.3 implies now that V ⊆ Jss. Claim (ii) is proved.

Lemma 6.8. Let V be a monoid variety such that V ⊆ K and V satisfies an identity

u ≈ v. If (2.1) holds, while (3.6) is false for some ` > 1, then V ⊆ J`−1`−1.

Proof. Suppose that (2.1) holds, while (3.6) is false for some ` = k > 1, and k is the least

number with this property. Then there exists a letter x such that hk−1i (u, x) 6= hk−1i (v, x)

where either i = 1 or i = 2. Let (3.4) be the (k − 1)-decomposition of u. In particular, the

set of (k − 1)-dividers of u is {t0, t1, . . . , tm}. Since (3.6) with ` = k−1 holds, Lemma 3.10

implies that v has the same (k − 1)-dividers as u (but the order of the first occurrences

of these letters in u and v may be different). Put tp = hk−1i (u, x) and tq = hk−1i (v, x).

Clearly, p 6= q.

Suppose first that `i(u, x) < `1(u, tq). The choice of tp and tq guarantees that

`1(u, tp) < `i(u, x) and `1(v, tq) < `i(v, x). Therefore, `1(u, tp) < `1(u, tq), whence p < q

in this case. If tq is simple in u then (2.1) implies that tq is simple in v too. Therefore,

tq is a 0-divider of u and v. Since tq = hk−1i (v, x), we have tq = h0i (v, x). Claim (3.6)

with ` = 1 implies that tq = h0i (u, x). But this contradicts p < q. So, tq is multiple

in u, whence tq is multiple in v as well by (2.1). Therefore, D(v, tq) > 0. Moreover,

D(v, tq) ≤ k − 1 by Lemma 3.7 because tq is a (k − 1)-divider of v. Put r = D(v, tq). If

i = 1 then Lemma 6.7(i) with s = r and xs = tq implies that V ⊆ Hr ⊆ Jk−1k−1. If i = 2

then V ⊆ Jrr ⊆ Jk−1k−1 by Lemma 6.7(ii) with s = r and xs = tq.

If `i(v, x) < `1(v, tp) then the argument is similar.

Finally, suppose that `1(u, tq) < `i(u, x) and `1(v, tp) < `i(v, x). The first of these

inequalities implies that the first occurrence of tq in u precedes the ith occurrence of

x in u. But tp is the rightmost (k − 1)-divider of u and precedes the ith occurrence

of x. Therefore, `1(u, tq) < `1(u, tp). Analogously, it follows from `1(v, tp) < `i(v, x)

and tq = hk−1i (v, x) that `1(v, tp) < `1(v, tq). Suppose that tp is simple in u. Then (2.1)

implies that tp is simple in v too. Then tp is a 0-divider of u and v. Since tp = hk−1i (u, x),

we have tp = h0i (u, x). Claim (3.6) with ` = 1 implies that tp = h0i (v, x). Note that
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`1(v, tp) < `1(v, tq) < `i(v, x). Being the rightmost simple letter in v that is located to

the left of x, the letter tp is also the rightmost simple letter in v that is located to the left

of tq. In other words, tp = h01(v, tq). Claim (3.6) with ` = 1 implies that tp = h01(u, tq).

But this contradicts `1(u, tq) < `1(u, tp). So, tp is multiple in u. Therefore, D(u, tp) > 0.

Moreover, D(u, tp) ≤ k − 1 by Lemma 3.7 because tp is a (k − 1)-divider of u. Put

r = D(u, tp). Then the hypothesis of Lemma 6.7 with i = 1, s = r, x = tq and xs = tp
holds. Therefore, Lemma 6.7(i) implies that V ⊆ Hr ⊆ Jk−1k−1.

The following statement starts a series of similar assertions, which also includes Propo-

sitions 6.12, 6.14 and 6.17. These results provide solutions of the word problem in the

varieties Fk, Hk, Ik, Jmk and K. All of them are proved along similar lines. For the “only

if” part, the scheme of proof is almost the same. As to the “if” part, the scheme is gen-

erally outlined in the proof of Proposition 6.9(i) but technically its implementation will

get more and more complicated.

Proposition 6.9. A non-trivial identity u ≈ v holds:

(i) in Fk if and only if (2.1) and (3.6) with ` = k hold;

(ii) in K if and only if (2.1) and (3.6) for all ` hold.

Proof. (i) Necessity. Suppose that u ≈ v holds in Fk. Proposition 2.2 and the inclu-

sion C2 ⊆ Fk imply (2.1). Since Fk satisfies u ≈ v, there is a sequence of words

u = w0,w1, . . . ,wn = v such that, for any i = 0, 1, . . . , n−1, there are words pi,qi ∈ F 1,

an endomorphism ξi of F 1 and an identity ai ≈ bi from the system {Φ, αk} such that

either wi = piξi(ai)qi and wi+1 = piξi(bi)qi, or wi = piξi(bi)qi and wi+1 = piξi(ai)qi.

By induction we can assume without loss of generality that u = pξ(a)q and v = pξ(b)q

for some possibly empty words p and q, an endomorphism ξ of F 1 and an identity

a ≈ b ∈ {Φ, αk}.
If a ≈ b ∈ {xyx ≈ xyx2, x2y ≈ x2yx} then the assertion is obvious because the first

and second occurrences of the letters of u do not take part in modifying ξ(a) to ξ(b).

Suppose now that a ≈ b coincides with (4.4). Then, since D(a, x) = D(a, y) = ∞,

Lemma 3.15 implies that the subword ξ(a) of u located between p and q is contained

in some s-block for all s. In particular, this subword is contained is some (k − 1)-block.

This implies (3.6) with ` = k.

Finally, suppose that a ≈ b coincides with αk. Then

ξ(a) = akbkak−1akbkak−2ak−1 · · ·a1a2a0a1,
ξ(b) = bkakak−1akbkak−2ak−1 · · ·a1a2a0a1

for some words a0,a1, . . . ,ak and bk, whence

u = pakbkak−1akbkak−2ak−1 · · ·a1a2a0a1q,
v = pbkakak−1akbkak−2ak−1 · · ·a1a2a0a1q.

By Lemma 6.5, D(a, xk) = D(a, yk) = k. Then Lemma 3.15 implies that the subword

akbk of u located between p and ak−1 is contained in some (k − 1)-block. This implies

that (3.6) with ` = k is true.

Sufficiency. Let us outline the further argument; note that sufficiency in Proposi-

tions 6.12, 6.14 and 6.17 will be proved according to the same scheme. Let u ≈ v be
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an identity which satisfies the hypothesis of the proposition. We start by considering the

(k − 1)-decomposition of u. Relying on Lemma 6.6 and using identities which hold in Fk,

we show that any (k − 1)-block of u can be replaced by a word of some “canonical form”.

We replace all (k − 1)-blocks of u in this way, getting some word u]. Then we consider v.

It turns out that, up to identities in Fk, this word has exactly the same (k − 1)-blocks

and (k − 1)-dividers as u. This allows us to change (k − 1)-blocks of v in the same way

as (k − 1)-blocks of u, getting the word u] again. This evidently implies that u ≈ v holds

in Fk.

Now we proceed to implementing the above plan. Suppose that u ≈ v satisfies (2.1)

and (3.6) with ` = k. Let (3.4) be the (k − 1)-decomposition of u. Fix i ∈ {0, 1, . . . ,m}.
Lemma 6.2(ii) allows us to suppose that every letter from con(ui) occurs in ui at most

twice. Put mul(ui) = {x1, . . . , xp}, sim(ui) = {y1, . . . , yq} and

ui = x21 · · ·x2py1 · · · yq.
Note that ui is nothing but the “canonical form” of the (k − 1)-block ui mentioned

above. Indeed, u = w1uiw2 for some possibly empty words w1 and w2. Lemmas 6.2(ii)

and 6.6(iv) imply now that Fk satisfies the identity

u = w1uiw2 ≈ w1 uiw2.

In particular, Fk satisfies the identities

u = t0u0t1u1 · · · tm−1um−1tmum ≈ t0u0t1u1 · · · tm−1um−1tm um.

Put u′= t0u0t1u1 · · · tm−1um−1tm um . Note that (2.1) and (3.6) with v=u′ and `=k

hold. Then Lemma 3.8 implies that u and u′ are (k − 1)-equivalent, i.e., t0, t1, . . . , tm are

(k − 1)-dividers of u′, while u0,u1, . . . ,um−1,um are (k − 1)-blocks of this word. Next,

we can repeat the arguments above with u replaced by u′ and obtain the identities

u′ = t0u0t1u1 · · · tm−1um−1tm um ≈ t0u0t1u1 · · · tm−1 um−1 tm um

in Fk. Continuing, we find that Fk satisfies the identities

u = t0u0t1u1 · · · tm−1um−1tmum ≈ t0u0t1u1 · · · tm−1um−1tm um

≈ t0u0t1u1 · · · tm−1 um−1 tm um ≈ · · · ≈ t0 u0 t1 u1 · · · tm um. (6.29)

Put u] = t0 u0 t1 u1 · · · tm um .

We now turn to the word v. By Lemma 3.8, the (k − 1)-decomposition of v has the

form (3.5). Claim (3.6) with ` = k implies that the jth occurrence of a letter x in u lies

in the (k − 1)-block ui if and only if the jth occurrence of x in v lies in the (k − 1)-

block vi, for any x and any j = 1, 2. We are going to check that sim(ui) = sim(vi) and

mul(ui) = mul(vi). Let x ∈ con(ui). Lemma 6.2(ii) allows us to assume that occx(u) ≤ 2.

There are three possibilities. First, if the first and second occurrences of x in u lie in

ui then the first and second occurrences of x in v lie in vi, whence x ∈ mul(ui) and

x ∈ mul(vi). Second, if the first occurrence of x in u lies in ui but the second does

not, then the first occurrence of x in v lies in vi but the second does not lie, whence

x ∈ sim(ui) and x ∈ sim(vi). Finally, third, if the first occurrence of x in u is to the left

of ui, while the second is in ui, then the first occurrence of x in v is to the left of vi, while

the second is in vi. In this case we can apply the identity (4.9). This allows us to suppose

that x ∈ mul(ui) and x ∈ mul(vi). Thus, sim(ui) = sim(vi) and mul(ui) = mul(vi). This
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implies that the (k − 1)-blocks ui and vi have the same “canonical form”. Repeating the

arguments above, we conclude that Fk satisfies the identities v ≈ u] ≈ u.

(ii) Necessity follows from (i) and the evident inclusion Fk ⊆ K, while sufficiency is

proved in the same way as in (i).

Now we are well prepared to quickly complete the proof of claim (3) of Proposition 6.1.

Let E ⊂ X ⊂ K. We have to verify that X ∈ [Fk,Fk+1] for some k. Suppose that F1 * X.

Then there is an identity u ≈ v that holds in X but not in F1. Propositions 4.2 and 6.9(i)

and the inclusion E ⊆ X imply that (2.1) and (4.2) hold, while (3.6) with ` = 1 is false.

Let (3.4) be the 0-decomposition of u. Then Lemma 3.8 implies that the 0-decomposition

of v has the form (3.5). Since u ≈ v violates (3.6) with ` = 1 but satisfies (4.2), there

is a letter x such that h02(u, x) 6= h02(v, x). Put ti = h02(u, x) and tj = h02(v, x). We may

assume that j < i. Since (4.2) holds, we have h01(u, x) = h01(v, x) = tq for some q. Clearly,

q ≤ j. Thus, the identity u ≈ v has the form

u1tqu2xu3tiu4xu5 ≈ v1tqv2xv3xv4tiv5

for some possibly empty words us and vs with s = 1, . . . , 5. Substituting 1 for all letters

in u ≈ v except x and ti, we obtain an identity of the form xtix
p ≈ xqtixr where p ≥ 1,

q ≥ 2 and r ≥ 0. Now (6.3) implies that X satisfies xtix ≈ x2ti. This fact together with

the inclusion X ⊆ K shows that X ⊆ E, contradicting the choice of X. Thus, F1 ⊆ X.

If X contains an infinite number of varieties of the form Fk then Proposition 6.9 implies

that X = K. Hence there is a natural number k such that Fk ⊆ X but Fk+1 * X. Then

Proposition 6.9(i) implies that (2.1) holds, while (3.6) with ` = k+ 1 fails. Now we apply

Lemma 6.8 to conclude that X ⊆ Jkk ⊂ Fk+1. Thus, X ∈ [Fk,Fk+1]. Proposition 6.1(3)

is proved.

6.4. Structure of the interval [Fk,Fk+1]. Here we prove Proposition 6.1(4). We divide

this section into six subsections. In Subsections 6.4.1–6.4.5 we verify that each variety

from the interval [Fk,Fk+1] coincides with one of Fk, Hk, Ik, J1
k, J2

k, . . . , Jkk, Fk+1.

In Subsection 6.4.6 we check that all these varieties are pairwise different. These facts

together with Lemma 6.4 imply Proposition 6.1(4).

6.4.1. If Fk ⊂ X ⊆ Fk+1 then Hk ⊆ X. The first step in the verification of Proposi-

tion 6.1(4) is

Lemma 6.10. If X is a monoid variety such that X ∈ [Fk,Fk+1] then either X = Fk or

X ⊇ Hk.

To check this, we need several auxiliary results.

Lemma 6.11. Let V be a monoid variety with Fs ⊆ V ⊆ K for some s. If V satisfies an

identity u ≈ v such that `1(u, a) < `1(u, b), `1(v, b) < `1(v, a) and D(u, a) = D(u, b) = s

for some a, b ∈ con(u) then V = Fs.

Proof. Put xs = a and ys = b. Since Fs ⊆ V, Proposition 6.9(i) implies (2.1) and (3.6)

with ` = s. Suppose that

`2(u, xs) < `2(u, ys) and `2(v, xs) < `2(v, ys). (6.30)
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Now Lemma 3.14 implies that there are letters x0, x1, . . . , xs−1 such that D(u, xr) =

D(v, xr) = r for any 0 ≤ r < s and the identity u ≈ v has the form (3.7) for some

possibly empty words u0,u1, . . . ,u2s+1 and v0,v1, . . . ,v2s+1.

One can verify that the first occurrences of xs and ys in u lie in the same (s− 1)-block.

Put t1 = hs−11 (u, xs) and t2 = hs−11 (u, ys). For a contradiction, suppose that t1 6= t2.

Since `1(u, xs) < `1(u, ys), we have `1(u, t1) < `1(u, t2). Lemma 3.8 with k = s − 1

implies that `1(v, t1) < `1(v, t2). In view of (3.6) with ` = s, t1 = hs−11 (v, xs) and

t2 = hs−11 (v, ys). But this contradicts `1(v, ys) < `1(v, xs). So, the first occurrences of

xs and ys in u lie in the same (s− 1)-block. In particular, the first occurrence of ys in

u precedes the first occurrence of xs−1 in u because `1(u, xs) < `1(u, xs−1) and xs−1 is

an (s− 1)-divider. This implies that u2s = u′2sysu
′′
2s for some possibly empty words u′2s

and u′′2s. Since the first occurrence of ys in v precedes the first occurrence of xs in v, we

have v2s+1 = v′2s+1ysv
′′
2s+1 for some possibly empty words v′2s+1 and v′′2s+1.

Further, since `1(u, ys) < `1(u, xs−2), we apply Lemma 3.13 with w = u, z = ys, t =

xs−2 and r = s to obtain `2(u, ys) < `1(u, xs−2). This implies that u2s−2 = u′2s−2ysu
′′
2s−2

for some possibly empty words u′2s−2 and u′′2s−2. Analogously, we can verify that v2s−2 =

v′2s−2ysv
′′
2s−2 for some possibly empty words v′2s−2 and v′′2s−2.

In view of the above, the identity u ≈ v has the form

u2s+1xsu
′
2s

(1)

ys u
′
2sxs−1u2s−1xsu

′
2s−2

(2)

ys u
′
2s−2xs−2u2s−3xs−1 · · ·

· u4x1u3x2u2x0u1x1u0

≈ v′2s+1

(1)

ys v
′′
2s+1xsv2sxs−1v2s−1xsv

′
2s−2

(2)

ys v
′′
2s−2xs−2v2s−3xs−1 · · ·

· v4x1v3x2v2x0v1x1v0.

Lemma 6.2(ii) allows us to assume that the letters xr with 1 ≤ r ≤ s and ys occur twice

in each of the words u and v. Now substituting 1 for all letters except x0, x1, . . . , xs
and ys, we get the identity

xsysxs−1xsysxs−2xs−1 · · ·x1x2x0x1 ≈ ysxsxs−1xsysxs−2xs−1 · · ·x1x2x0x1,

i.e., αs.

Suppose now that (6.30) is false. If `2(u, xs) < `2(u, ys) but `2(v, ys) < `2(v, xs) then

the same considerations as above show that V satisfies the identity

xsysxs−1xsysxs−2xs−1 · · ·x1x2x0x1 ≈
(1)

ys
(1)

xs xs−1
(2)

ys
(2)

xs xs−2xs−1 · · ·x1x2x0x1.

According to Lemma 6.2(i), the variety V satisfies the identity σ2. This allows us to

transpose the second occurrences of xs and ys in the right-hand side of the last identity.

As a result, we get αs as well.

Finally, if `2(u, ys) < `2(u, xs) then we can repeat the above arguments but apply

Lemmas 3.13 and 3.14 for ys rather than xs. As a result, we obtain an identity

xsysxs−1ysxsxs−2xs−1 · · ·x1x2x0x1 ≈ ysxsxs−1axs−2xs−1 · · ·x1x2x0x1
where

a =

{
xsys whenever `2(v, xs) < `2(v, ys),

ysxs otherwise.
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If a = xsys, this identity coincides with αs; otherwise we apply σ2 once again and obtain

αs too. Thus, V satisfies αs in any case, whence V ⊆ Fs.

Proposition 6.12. A non-trivial identity u ≈ v holds in the variety Hk if and only

if (2.1), (3.6) and

if either D(u, x) ≤ ` or D(v, x) ≤ ` then h`1(u, x) = h`1(v, x) (6.31)

with ` = k all hold.

Proof. Necessity. Suppose that a non-trivial identity u ≈ v holds in Hk. Proposition 6.9(i)

and the inclusion Fk ⊆ Hk imply (2.1) and (3.6) with ` = k. As in the proof of necessity

in Proposition 6.9(i), we can assume that u = pξ(a)q and v = pξ(b)q for some possibly

empty words p and q, an endomorphism ξ of F 1 and an identity a ≈ b ∈ {Φ, βk}.
If a ≈ b ∈ Φ then (3.6) holds for any ` by Proposition 6.9(ii). Evidently, this implies

the conclusion. Suppose now that a ≈ b coincides with βk. Then

ξ(a) = ak+1akak+1ak−1akak−2ak−1 · · ·a1a2a0a1,
ξ(b) = aka

2
k+1ak−1akak−2ak−1 · · ·a1a2a0a1

for some words a0,a1, . . . ,ak and ak+1, whence

u = pak+1akak+1ak−1akak−2ak−1 · · ·a1a2a0a1q,
v = paka

2
k+1ak−1akak−2ak−1 · · ·a1a2a0a1q.

By Lemma 6.5, D(a, x), D(a, xk) > k − 1. Then Lemma 3.15 implies that the subword

ak+1akak+1 of u located between p and ak−1 is contained in some (k − 1)-block. More-

over, in view of Lemma 3.15, no occurrence of the word ak+1 in u contains any k-dividers

of u because D(u, x) > k by Lemma 6.5. This means that u and v are k-equivalent. Now

Lemma 3.8 implies (6.31) with ` = k.

Sufficiency. The outline of our argument here is the same as in the proof of sufficiency

in Proposition 6.9(i), but the canonical form of a (k − 1)-block of u is more complicated.

Suppose that (2.1), (3.6) and (6.31) with ` = k hold. Let (3.4) be the (k − 1)-

decomposition of u. Fix i ∈ {0, 1, . . . ,m}. Let

tiui = s0a0s1a1 · · · snan (6.32)

be the presentation of tiui as the product of alternating k-dividers s0, s1, . . . , sn and

k-blocks a0,a1, . . . ,an. Put u∗i = a0a1 · · ·an. Let con(u∗i ) = {x1, . . . , xp} and

ui = x21 · · ·x2ps1 · · · sn.

As we will see below, ui is nothing but the above mentioned “canonical form” of the

(k − 1)-block ui.

Clearly, u = w1uiw2 for some possibly empty words w1 and w2. Suppose that x ∈
con(u∗i ) but x /∈ con(w1). If x is simple in ui then x is a k-divider of u, but this is not the

case. Therefore, x is multiple in ui. Since x /∈ con(w1), this means that the first and second

occurrences of x in u lie in the same (k − 1)-block of u, whence D(u, x) > k. Further,

Lemma 3.7 implies that D(u, sj) = k for all j = 1, . . . , n. We see that if a ∈ con(u∗i ) and

b ∈ {s1, . . . , sn} then either a ∈ con(w1) or D(u, a) 6= D(u, b). Now Lemma 6.6(ii)&(iii)
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implies that the identities

u = w1uiw2 ≈ w1u
∗
i s1s2 · · · snw2

hold in Hk. As we have seen above, if x ∈ con(u∗i ) \ con(w1) then occx(u∗i ) ≥ 2. Further,

if x ∈ con(w1) ∩ con(u∗i ) then we can apply (4.9) to obtain occx(u∗i ) ≥ 2 too. Now

Lemma 6.2(ii) shows that occx(u∗i ) = 2 for any x ∈ con(u∗i ). Then by Lemma 6.2(iii) the

identities

u ≈ w1u
∗
i s1s2 · · · snw2 ≈ w1 uiw2

hold in Hk.

So, as in the proof of Proposition 6.9(i), using identities which hold in Hk, we can

replace the (k − 1)-blocks ui of u successively, one by one, by the “canonical form” ui for

i = m,m−1, . . . , 0. Thus Hk satisfies the identities (6.29). Put u] = t0 u0 t1 u1 · · · tm um.

We now turn to the word v. By Lemma 3.8, the (k − 1)-decomposition of v has the

form (3.5). By (6.31) and Lemma 3.8, u and v are k-equivalent. This means that tivi is

the product of alternating k-dividers s0, s1, . . . , sn and k-blocks b0,b1, . . . ,bn, i.e.,

tivi = s0b0s1b1 · · · snbn. (6.33)

Claim (3.6) with ` = k implies that jth occurrence of a letter x in u lies in the (k − 1)-

block ui if and only if the jth occurrence of a letter x in v lies in the (k − 1)-block vi,

for any x and any j = 1, 2. Also, Lemma 6.2(ii) allows us to assume that if the first and

second occurrences of x in u are both outside the (k − 1)-block ui then this letter does

not occur in ui. Then con(u∗i ) = con(b0b1 · · ·bn). This implies that the (k − 1)-blocks

ui and vi have the same “canonical form”. Repeating the arguments given above, we

conclude that Hk satisfies the identities v ≈ u] ≈ u.

Now we can complete the proof of Lemma 6.10. Let Fk ⊂ X ⊆ Fk+1. We have to

verify that X ⊇ Hk. Suppose that Hk * X. Then there exists an identity u ≈ v that

holds in X but not in Hk. Propositions 6.9(i) and 6.12 and the inclusion Fk ⊂ X imply

that (2.1) and (3.6) hold, while (6.31) with ` = k is false. According to Lemma 3.10, u and

v have the same set of k-dividers but u and v are not k-equivalent by Lemma 3.8. Thus

there are k-dividers a, b of u, v such that `1(u, a) < `1(u, b), while `1(v, b) < `1(v, a). In

view of Lemma 3.7, D(u, a), D(u, b) ≤ k. Suppose that D(u, a) = r < k. According to

Lemma 3.11, claim (3.6) with ` = r holds. Then Lemma 3.12 implies that D(v, a) = r.

Also u and v are r-equivalent by Lemma 3.8. Put c = hr1(u, b). Since a is an r-divider of

u by Lemma 3.7, the first occurrence of a in u precedes the first occurrence of c in u. On

the other hand, (3.6) with ` = r implies that c = hr1(v, b), whence `1(v, c) < `1(v, a). This

contradicts u and v being r-equivalent. So, D(u, a) = k. Analogously, D(u, b) = k. Now

Lemma 6.11 with s = k implies that X ⊆ Fk, a contradiction. Lemma 6.10 is proved.

6.4.2. If Hk ⊂ X ⊆ Fk+1 then Ik ⊆ X. The second step in the verification of Proposi-

tion 6.1(4) is

Lemma 6.13. If X is a monoid variety such that X ∈ [Hk,Fk+1] then either X = Hk

or X ⊇ Ik.

To check this, we need the following auxiliary result.
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Proposition 6.14. A non-trivial identity u ≈ v holds in Ik if and only if (2.1), (3.6)

and

h`1(u, x) = h`1(v, x) for all x ∈ con(u) (6.34)

with ` = k all hold.

Proof. Necessity. Suppose that a non-trivial identity u ≈ v holds in Ik. Proposition 6.12

and the inclusion Hk ⊆ Ik imply that (2.1) and (3.6) with ` = k hold. As in the proof

of Proposition 6.9(i), we can assume that u = pξ(a)q and v = pξ(b)q for some possibly

empty words p and q, an endomorphism ξ of F 1 and an identity a ≈ b ∈ {Φ, γk}.
If a ≈ b ∈ Φ then (3.6) holds for any ` by Proposition 6.9(ii). Evidently, this implies

the conclusion. Suppose now that a ≈ b coincides with γk. Then

ξ(a) = b1b0b1akak−1akak−2ak−1 · · ·a1a2a0a1,
ξ(b) = b1b0akb1ak−1akak−2ak−1 · · ·a1a2a0a1

for some words a0,a1, . . . ,ak and b0,b1, whence

u = pb1b0b1akak−1akak−2ak−1 · · ·a1a2a0a1q,
v = pb1b0akb1ak−1akak−2ak−1 · · ·a1a2a0a1q.

By Lemma 6.5, D(a, xk) = k. Then Lemma 3.15 implies that the subword ak of u located

between b1 and ak−1 does not contain any (k − 1)-divider. Also, obviously, the subword

b1 of u located between b0 and ak does not contain any s-divider, for any s. Therefore,

the subword b1ak of u located between b0 and ak−1 lies in some (k − 1)-block. It is

evident that the subword b1 of u located between b0 and ak does not contain the first

occurrence of any letter in u. This implies that (6.34) with ` = k holds.

Sufficiency. As in the proof of Proposition 6.12, the outline of the argument here is

similar to the proof of sufficiency in Proposition 6.9(i), but the canonical form of the

block is even more complicated than in Proposition 6.12.

Suppose that (2.1), (3.6) and (6.34) with ` = k hold. As in the proof of sufficiency in

Proposition 6.12, we suppose that (3.4) is the (k − 1)-decomposition of u, while (6.32)

is the representation of tiui as the product of alternating k-dividers s0, s1, . . . , sn and

k-blocks a0,a1, . . . ,an.

For any j = 0, 1, . . . , n, we put

Xj = {x ∈ con(aj) | the first occurrence of x in u lies in aj}.

Note that Xj may be defined in another (equivalent) way: it is clear that a letter x lies

in Xj if and only if it occurs in the k-block aj and the (1, k)-restrictor of x in u coincides

with the k-divider of u that immediately precedes aj . In other words,

Xj = {x ∈ con(aj) | sj = hk1(u, x)}.

Put X = X0 ∪X1 ∪ · · · ∪Xn, a′j = (aj)X and u∗i = a′0a
′
1 · · ·a′n. Let Xj = {xj1, . . . , xjqj},

con(u∗i ) = {c1, . . . , cp} and

ui = (c1 · · · cp) · (x201 · · ·x20q0) · (s1x211 · · ·x21q1) · (s2x221 · · ·x22q2) · · · (snx2n1 · · ·x2nqn).

As we will see below, ui is nothing but the “canonical form” of the (k − 1)-block ui
mentioned above.
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Clearly, u = w1uiw2 for some possibly empty words w1 and w2. Let x ∈ Xj . If x is

simple in ui then either x coincides with one of the k-dividers s1, . . . , sn or x ∈ con(w1).

But both cases contradict the choice of x. Therefore, x is multiple in ui. In view of (6.3),

we can assume that occx(ui) = 2. Thus, u = axbxc for possibly empty words a, b and c

such that xbx is a subword of ui. We now verify that the variety Ik satisfies the identity

u ≈ ax2bc. If b = λ then this is evident. Let now b 6= λ. Then we apply Lemma 6.6(ii)

and successively transpose the second occurrence of x in u with all the letters of the

word b from right to left. Thus, Ik satisfies the identity u ≈ ax2bc. We can assume that

`1(u, xj0) < `1(u, xj1) < · · · < `1(u, xjqj ). Therefore, Ik satisfies the identity

u ≈ w1 · (x201 · · ·x20q0a
′
0) · (s1x211 · · ·x21q1a

′
1) · · · (snx2n1 · · ·x2nqna

′
n) ·w2. (6.35)

The definition of the set X and words of the form a′j imply that x ∈ con(w1) for any

x ∈ con(u∗i ). Now we can apply Lemma 6.6(ii) to deduce that the identity

u ≈ w1 · u∗i · (x201 · · ·x20q0) · (s1x211 · · ·x21q1) · · · (snx2n1 · · ·x2nqn) ·w2

holds in Ik. As seen above, con(u∗i ) ⊆ con(w1). Then we can apply (6.3) to deduce that

the word u∗i is linear. Then Lemma 6.2(i) implies that Ik satisfies the identities

u ≈ w1 · (c1 · · · cp) · (x201 · · ·x20q0) · (s1x211 · · ·x21q1) · · · (snx2n1 · · ·x2nqn) ·w2 = w1uiw2.

So, as in the proof of Proposition 6.9(i), using identities which hold in Ik, we can

replace the (k − 1)-blocks ui of u successively, one by one, by the “canonical form” ui for

i = m,m− 1, . . . , 0. Thus Ik satisfies the identities (6.29). Put u] = t0 u0 t1 u1 · · · tm um.

We now return to the word v. By Lemma 3.8, the (k − 1)-decomposition of v has

the form (3.5). Furthermore, (6.34) with ` = k and Lemma 3.8 imply that (6.33) is a

representation of tivi as the product of alternating k-dividers s0, s1, . . . , sn and k-blocks

b0,b1, . . . ,bn. Claim (6.34) implies that

Xj = {x ∈ con(bj) | sj = hk1(v, x)}

for all j = 0, 1, . . . , ri. Put b′j = (bj)X . Claim (3.6) with ` = k implies that the jth

occurrence of a letter x in u lies in the (k − 1)-block ui if and only if the jth occurrence

of x in v lies in the (k − 1)-block vi, for any x and any j = 1, 2. Also, Lemma 6.2(ii)

allows us to assume that if the first and second occurrences of x in u do not lie in the

(k − 1)-block ui then x does not occur in ui. Thus con(u∗i ) = con(b′0b
′
1 · · ·b′n). This

implies that the (k − 1)-blocks ui and vi have the same “canonical form”. Repeating the

arguments above, we find that Ik satisfies the identities v ≈ u] ≈ u.

Now we can complete the proof of Lemma 6.13. Let Hk ⊂ X ⊆ Fk+1. We have to

verify that X ⊇ Ik. Suppose that Ik * X. Then there exists an identity u ≈ v that holds

in X but not in Ik. Then Propositions 6.12 and 6.14 and the inclusion Hk ⊂ X imply that

(2.1), (3.6) and (6.31) with ` = k are true, while (6.34) with ` = k is false. Let (3.4) be the

k-decomposition of u. Claim (6.31) and Lemma 3.8 imply that the k-decomposition of v

has the form (3.5). Since (6.34) is false, there is a letter x such that hk1(u, x) 6= hk1(v, x).

Put ti = hk1(u, x) and tj = hk1(v, x). Then i 6= j. We can assume that i < j. Then

`1(u, x) < `1(u, tj), while `1(v, tj) < `1(u, x). Lemma 3.7 implies that D(u, tj) ≤ k. Put

D(u, tj) = r. If r = 0 then tj is a 0-divider of u. Claim (2.1) implies that tj is a 0-divider
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of v too. Then tj = h01(v, x) but tj 6= h01(u, x). In view of Lemma 3.11, claim (3.6) with

` = p holds for any 1 ≤ p ≤ k, a contradiction. Thus, r ≥ 1. Now Lemma 6.7(i) with s = r

and xs = tj applies, and we conclude that X ⊆ Hr ⊆ Hk, a contradiction. Lemma 6.13

is proved.

6.4.3. If Ik ⊂ X ⊆ Fk+1 then J1
k ⊆ X. The third step in the verification of Proposi-

tion 6.1(4) is

Lemma 6.15. If X is a monoid variety such that X ∈ [Ik,Fk+1] then either X = Ik or

X ⊇ J1
k.

To check this, we need

Lemma 6.16. Let V be a monoid variety with V ⊆ K and ` a natural number. Suppose

that V satisfies an identity u ≈ v.

(i) If (2.1), (3.6) and (6.34) hold but the claim

if x ∈ con(u) and D(u, x) ≤ m then h`2(u, x) = h`2(v, x) (6.36)

with m = 1 is false then V ⊆ I`.

(ii) If (2.1), (3.6), (6.34) and (6.36) with m = r hold but (6.36) with m = r + 1 is false

then V ⊆ Jr` .

Proof. Proofs of (i) and (ii) have the same initial part. Suppose that V satisfies the

hypothesis of one of these two claims. Then (2.1), (3.6) and (6.34) hold. Let m be

least such that (6.36) is false. Then there is a letter ym such that D(u, ym) = m and

h`2(u, ym) 6= h`2(v, ym). Put x` = h`2(u, ym) and z` = h`2(v, ym). In view of Lemma 3.7,

we have D(u, x`), D(u, z`) ≤ `. Note that either D(u, x`) = ` or D(u, z`) = `. Indeed, if

D(u, x`), D(u, z`) < ` then D(v, x`), D(v, z`) < ` by Lemma 3.12. Then x` and z` are

(`− 1)-dividers of u and v, whence x` = h`−12 (u, ym) and z` = h`−12 (v, ym). But this

contradicts (3.6). Suppose without loss of generality that D(u, x`) = `. By symmetry,

we may assume that the first occurrence of z` in u precedes the first occurrence of x`
in this word. Since (6.34) holds, `1(v, z`) < `1(v, x`) by Lemma 3.8. This implies that

`2(v, ym) < `1(v, x`).

Now Lemma 3.14 with xs = x` and s = ` shows that there are letters x0, x1, . . . , x`−1
such that, for any p = 0, 1, . . . , `− 1 and q = 0, 1, . . . , `− 2, D(u, xp) = D(v, xp) = p and

the inequalities

`1(w, xp+1) < `1(w, xp) < `2(w, xp+1) and `2(w, xq+2) < `1(w, xq)

hold for w = u,v.

Put ym−1 = hm−12 (u, ym). According to Lemma 3.9, D(u, ym−1) = m − 1 and

`1(u, ym) < `1(u, ym−1). Moreover, (3.6) and Lemma 3.11 imply that hm−12 (v, ym) =

hm−12 (u, ym) = ym−1. Now we apply Lemma 3.9 again to obtain D(v, ym−1) = m − 1

and `1(v, ym) < `1(v, ym−1). In view of Lemma 3.7, the letter x`−1 is an `-divider of u,

whence `2(u, ym) < `1(u, x`−1) because x` = h`2(u, ym) and `1(u, x`) < `1(u, x`−1).

Lemma 6.2(ii) allows us to assume that the letters ym and xp with 1 ≤ p ≤ ` occur

twice in each of the words u and v. Further considerations are divided into two cases

corresponding to statements (i) and (ii).
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Case 1: m = 1. In view of the above, the identity u ≈ v has the form

u2`+4y1u2`+3y0u2`+2x`u2`+1y1u2`x`−1u2`−1x`u2`−2x`−2u2`−3x`−1 · · ·
· u4x1u3x2u2x0u1x1u0

≈ v2`+4y1v2`+3y0v2`+2y1v2`+1x`v2`x`−1v2`−1x`v2`−2x`−2v2`−3x`−1 · · ·
· v4x1v3x2v2x0v1x1v0

for some possibly empty words u0,u1, . . . ,u2`+4 and v0,v1, . . . ,v2`+4 such that xs, y0, y1
/∈ con(uivi) for 0 ≤ s ≤ ` and 0 ≤ i ≤ 2`+ 4. Now substituting 1 for all letters occurring

in this identity except x0, x1, . . . , x`, y0 and y1, we get the identity

y1y0x`y1x`−1x`x`−2x`−1 · · ·x1x2x0x1 ≈ y1y0y1x`x`−1x`x`−2x`−1 · · ·x1x2x0x1,

i.e., γ`. Claim (i) is proved.

Case 2: m > 1. Now we will prove that `2(v, xm) < `2(v, ym−1) and `2(u, xm) <

`2(u, ym−1). Put ym−2 = hm−22 (v, ym−1). Since D(v, ym−1) = m − 1, Lemma 3.9 im-

plies that D(v, ym−2) = m − 2 and `1(v, ym−1) < `1(v, ym−2). Recall that `1(v, ym) <

`1(v, ym−1), whence `1(v, ym) < `1(v, ym−2). Since D(v, ym) = m, we can apply Lem-

ma 3.13 to conclude that `2(v, ym) < `1(v, ym−2). The first occurrence of x` in v pre-

cedes the second occurrence of ym, whence `1(v, x`) < `1(v, ym−2). Then Lemma 3.13

implies that `2(v, x`) < `1(v, ym−2). This yields `1(v, x`−1) < `2(v, x`) < `1(v, ym−2).

If ` − 1 ≥ m then Lemma 3.13 shows that `2(v, x`−1) < `1(v, ym−2). Continuing, we

eventually obtain `2(v, xm) < `1(v, ym−2). In particular, `1(v, xm) < `1(v, ym−2). In

view of Lemma 3.7, the letters xm and ym−2 are `-dividers of v. Now Lemma 3.8 yields

`1(u, xm) < `1(u, ym−2). Then Lemma 3.13 shows that `2(u, xm) < `1(u, ym−2). The

choice of ym−2 implies that the first occurrence of ym−2 in v precedes the second oc-

currence of ym−1. Therefore, `2(v, xm) < `2(v, ym−1). In view of (3.6) and Lemma 3.11,

hm−22 (u, ym−1) = hm−22 (v, ym−1) = ym−2, whence `2(u, xm) < `2(u, ym−1).

Let now m > 2. Note that

`1(u, ym−1) < `2(u, ym) < `1(u, x`) < `1(u, x`−1) < · · · < `1(u, xm−3).

If `1(u, xm−3) < `2(u, ym−1) then xm−3 lies between the first and the second occurrences

of ym−1 in u. Since xm−3 is an (m− 3)-divider of u, we obtain a contradiction with the

equality D(u, ym−1) = m− 1. Thus, `2(u, ym−1) < `1(u, xm−3) whenever m > 2.

Further, there are three possibilities for the second occurrence of ym−1 in u:

`2(u, ym−1) < `1(u, xm−2); (6.37)

`1(u, xm−2) < `2(u, ym−1) < `2(u, xm−1); (6.38)

`2(u, xm−1) < `2(u, ym−1). (6.39)

Suppose that (6.37) holds. Then `1(u, ym−2) < `1(u, xm−2). In view of Lemma 3.8,

`1(v, ym−2) < `1(v, xm−2). Since ym−2 = hm−22 (v, ym−1) by Lemma 3.11, we have

`2(v, ym−1) < `1(v, xm−2). Now if m > 2 then we apply Lemma 3.14 with xs = ym−2
and s = m − 2 to conclude that there are letters y0, y1, . . . , ym−3 such that D(u, yp) =

D(v, yp) = p and, for any p = 0, 1, . . . ,m− 2, the inequalities

`1(w, yp+1) < `1(w, yp) < `2(w, yp+1) and `2(w, yp+2) < `1(w, yp)
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hold for w = u,v. Lemma 6.2(ii) allows us to assume that the letters yp with 1 ≤ p ≤ m
occur twice in each of the words u and v. In view of the above, the identity u ≈ v has

the form

u2`+5ymu2`+4ym−1u2`+3x`u2`+2ymu2`+1x`−1u2`x`u2`−1x`−2u2`−2x`−1 · · ·
· u2m+1ym−2u2mym−1u2m−1xm−1u2m−2ym−3u2m−2ym−2 · · ·u4y1u3y2u2y0u1y1u0

≈ v2`+5ymv2`+4ym−1v2`+3ymv2`+2x`v2`+1x`−1v2`x`v2`−1x`−2v2`−2x`−1 · · ·
· v2m+1ym−2v2mym−1v2m−1xm−1v2m−2ym−3v2m−2ym−2 · · ·v4y1v3y2v2y0v1y1v0

for some possibly empty words u0,u1, . . . ,u2`+5 and v0,v1, . . . ,v2`+5 such that xs, yt /∈
con(uivi) for m − 1 ≤ s ≤ `, 0 ≤ t ≤ m and 0 ≤ i ≤ 2` + 5. Now substituting 1 for all

letters occurring in this identity except y0, y1, . . . , ym and xm−1, xm, . . . , x`, we get the

identity

ymym−1x`ymx`−1x`x`−2x`−1 · · · ym−2ym−1xm−1ym−3ym−2 · · · y1y2y0y1
≈ ymym−1ymx`x`−1x`x`−2x`−1 · · · ym−2ym−1xm−1ym−3ym−2 · · · y1y2y0y1.

Now we rename yi as xi for i = 0, 1, . . . ,m− 2 to obtain the identity

ym
(1)

ym−1 x`ymx`−1x`x`−2x`−1 · · ·xm−2
(2)

ym−1
(2)

xm−1 xm−3xm−2 · · ·x1x2x0x1

≈ ym
(1)

ym−1 ymx`x`−1x`x`−2x`−1 · · ·xm−2
(2)

ym−1
(2)

xm−1 xm−3xm−2 · · ·x1x2x0x1. (6.40)

In view of Lemma 6.2(i), we may use the identity σ2, which allows us to swap the second

occurrences of xm−1 and ym−1 in both sides of (6.40). As a result, we get δm−1` .

Suppose now that (6.38) holds. If `2(v, ym−1) < `1(v, xm−2) then `1(v, ym−2) <

`1(v, xm−2). In view of Lemma 3.8, `1(u, ym−2)<`1(u, xm−2). Since ym−2 =hm−22 (v, ym−1)

by Lemma 3.11, we have `2(u, ym−1) < `1(u, xm−2). This contradicts (6.38). Thus,

`1(v, xm−2) < `2(v, ym−1).

Suppose that `2(v, ym−1) < `2(v, xm−1). Then the identity u ≈ v has the form

u2`+5ymu2`+4ym−1u2`+3x`u2`+2ymu2`+1x`−1u2`x`u2`−1x`−2u2`−2x`−1 · · ·
· u2m+1xm−2u2mym−1u2m−1xm−1u2m−2xm−3u2m−2xm−2 · · ·u4x1u3x2u2x0u1x1u0

≈ v2`+5ymv2`+4ym−1v2`+3ymv2`+2x`v2`+1x`−1v2`x`v2`−1x`−2v2`−2x`−1 · · ·
· v2m+1xm−2v2mym−1v2m−1xm−1v2m−2xm−3v2m−2xm−2 · · ·v4x1v3x2v2x0v1x1v0

for some possibly empty words u0,u1, . . . ,u2`+5 and v0,v1, . . . ,v2`+5 such that xs, ym−1,

ym /∈ con(uivi) for 0 ≤ s ≤ ` and 0 ≤ i ≤ 2`+ 5. Now substituting 1 for all letters occur-

ring in this identity except ym−1, ym, x0, x1, . . . , x`, we get (6.40). As above, combining

this identity with σ2, we get δm−1` .

If `2(v, xm−1) < `2(v, ym−1) then the same arguments as above show that the identity

ym
(1)

ym−1 x`ymx`−1x`x`−2x`−1 · · ·xm−2
(2)

ym−1
(2)

xm−1 xm−3xm−2 · · ·x1x2x0x1
≈ ymym−1ymx`x`−1x`x`−2x`−1 · · ·xm−2xm−1ym−1xm−3xm−2 · · ·x1x2x0x1

holds in V. Now we apply σ2 to the left-hand side to get δm−1` .

Finally, suppose that (6.39) holds. Suppose that `2(v, ym−1) < `2(v, xm−1). Then the

identity u ≈ v has the form
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u2`+5ymu2`+4ym−1u2`+3x`u2`+2ymu2`+1x`−1u2`x`u2`−1x`−2u2`−2x`−1 · · ·
· u2m+1xm−2u2mxm−1u2m−1ym−1u2m−2xm−3u2m−2xm−2 · · ·u4x1u3x2u2x0u1x1u0

≈ v2`+5ymv2`+4ym−1v2`+3ymv2`+2x`v2`+1x`−1v2`x`v2`−1x`−2v2`−2x`−1 · · ·
· v2m+1xm−2v2mym−1v2m−1xm−1v2m−2xm−3v2m−2xm−2 · · ·v4x1v3x2v2x0v1x1v0

for some possibly empty words u0,u1, . . . ,u2`+5 and v0,v1, . . . ,v2`+5 such that

xs, ym−1, ym /∈ con(uivi) for 0 ≤ s ≤ ` and 0 ≤ i ≤ 2` + 5. Now substituting 1 for

all letters occurring in this identity except ym−1, ym, x0, x1, . . . , x`, we get the identity

ymym−1x`ymx`−1x`x`−2x`−1 · · ·xm−2xm−1ym−1xm−3xm−2 · · ·x1x2x0x1
≈ ym

(1)

ym−1 ymx`x`−1x`x`−2x`−1 · · ·xm−2
(2)

ym−1
(2)

xm−1 xm−3xm−2 · · ·x1x2x0x1.

Applying once again σ2 to the right-hand side, we get δm−1` .

If `2(v, xm−1) < `2(v, ym−1) then the same arguments show that δm−1` holds in V.

Proposition 6.17. A non-trivial identity u ≈ v holds in the variety Jrk if and only

if (2.1), (3.6), (6.34) and (6.36) with ` = k and m = r hold.

Proof. Necessity. Suppose that a non-trivial identity u ≈ v holds in Jrk. Claims (2.1), (3.6)

and (6.34) with ` = k follow from Proposition 6.14 and the inclusion Ik ⊆ Jrk. It remains

to verify that (6.36) with ` = k and m = r holds. As in the proof of Proposition 6.9(i),

we can assume that u = pξ(a)q and v = pξ(b)q for some possibly empty words p and q,

an endomorphism ξ of F 1 and an identity a ≈ b ∈ {Φ, δrk}.
If a ≈ b ∈ Φ then (3.6) holds for any ` by Proposition 6.9(ii). Evidently, this implies

the required conclusion. Suppose now that a ≈ b coincides with δrk. Then

ξ(a) = br+1brbr+1akak−1akak−2ak−1 · · ·ar−1arbrar−2ar−1 · · ·a1a2a0a1,
ξ(b) = br+1brakbr+1ak−1akak−2ak−1 · · ·ar−1arbrar−2ar−1 · · ·a1a2a0a1

for some words a0,a1, . . . ,ak and br,br+1, whence

u = pbr+1brbr+1akak−1akak−2ak−1 · · ·ar−1arbrar−2ar−1 · · ·a1a2a0a1q,
v = pbr+1brakbr+1ak−1akak−2ak−1 · · ·ar−1arbrar−2ar−1 · · ·a1a2a0a1q.

By Lemma 6.5, D(a, xk) = k. Then Lemma 3.15 implies that the subword ak of u located

between br+1 and ak−1 does not contain any (k − 1)-divider. Also, obviously, the subword

br+1 of u located between br and ak does not contain any s-divider for all s. Therefore,

the subword br+1ak of u located between br and ak−1 lies in some (k − 1)-block. Now

Lemma 3.15 again shows that the subword br+1 located between p and br does not

contain any s-divider for all s ≤ r. Hence if the second occurrence in u of some letter

lies in the subword br+1 located between br and ak then the depth of this letter is more

than r. This implies (6.36) with ` = k and m = r.

Sufficiency. As in the proofs of Propositions 6.12 and 6.14, the outline of the argument

here is similar to one in the proof of sufficiency in Proposition 6.9(i), but the canonical

form of the block is even more complicated than in Proposition 6.14.

Suppose that (2.1), (3.6), (6.34) and (6.36) with ` = k and m = r all hold. As in the

proof of sufficiency in Proposition 6.12, we suppose that (3.4) is the (k − 1)-decomposition
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of u, while (6.32) is the representation of tiui as the product of alternating k-dividers

s0, s1, . . . , sn and k-blocks a0,a1, . . . ,an.

Clearly, u = w1uiw2 for some possibly empty words w1 and w2. For j = 0, 1, . . . , n,

we put

Xj = {x ∈ con(aj) | the first occurrence of x in u lies in aj}.
Let Xj = {xj1, xj2, . . . , xjqj}, X = X0 ∪X1 ∪ · · · ∪Xn, a′j = (aj)X . As in the proof of

sufficiency in Proposition 6.14, we can verify that

Xj = {x ∈ con(aj) | sj = hk1(u, x)}.
For any j = 0, 1, . . . , n, we put

Zj = {z ∈ con(a′j) | D(u, z) ≤ r},
Z = Z0 ∪ Z1 ∪ · · · ∪ Zn, a′′j = (a′j)Z and u∗i = a′′0a

′′
1 · · ·a′′n. Let Zj = {zj1, . . . , zjhj

},
con(u∗i ) = {c1, . . . , cp} and

ui = (c1 · · · cp) · (x201 · · ·x20q0z01 · · · z0h0) · (s1x211 · · ·x21q1z11 · · · z1h1
) · · ·

· (snx2n1 · · ·x2nqnzn1 · · · znhn
).

As we will see below, ui is nothing but the above mentioned “canonical form” of the

(k − 1)-block ui.

As in the proof of sufficiency in Proposition 6.14, we can verify that Jrk satisfies the

identity (6.35). The definitions of the set X and of words of the form a′j imply that

z ∈ con(w1) for any z ∈ con(a′0a
′
1 · · ·a′n). This implies that if z ∈ Zj then we can assume

that occz(ui) = 1 because Jrk satisfies the identity (6.3) by Lemma 6.2(ii). Then we can

assume without loss of generality that `1(u, zj1) < `1(u, zj2) < · · · < `1(u, zjhj
). Since

z ∈ con(w1) and D(u, z) > r for any z ∈ con(a′′j ), we apply Lemma 6.6(i) with m = r to

deduce that the identity

u ≈ w1 · u∗i · (x201 · · ·x20q0z01 · · · z0h0) · (s1x211 · · ·x21q1z11 · · · z1h1) · · ·
· (snx2n1 · · ·x2nqnzn1 · · · znhn

) ·w2

holds in Jrk. As we have seen above, con(u∗i ) ⊆ con(w1). Then we can apply the iden-

tity (6.3) and infer that the word u∗i is linear. Then Lemma 6.2(i) shows that Jrk satisfies

the identities

u ≈ w1 · (c1 · · · cp) · (x201 · · ·x20q0z01 · · · z0h0
) · (s1x211 · · ·x21q1z11 · · · z1h1

) · · ·
· (snx2n1 · · ·x2nqnzn1 · · · znhn

) ·w2

= w1uiw2.

So, as in the proof of Proposition 6.9(i), using identities which hold in Jrk, we can

replace the (k − 1)-blocks ui of u successively, one by one, by the “canonical form” ui for

i = m,m−1, . . . , 0. Thus Jrk satisfies the identities (6.29). Put u] = t0 u0 t1 u1 · · · tm um.

We turn to the word v. By Lemma 3.8, the (k − 1)-decomposition of v has the

form (3.5). Furthermore, (6.34) with ` = k and Lemma 3.8 imply that (6.33) is a rep-

resentation of tivi as the product of alternating k-dividers s0, s1, . . . , sn and k-blocks

b0,b1, . . . ,bn. Claim (6.34) with ` = k implies that

Xj = {x ∈ con(bj) | sj = hk1(v, x)}
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for all j = 0, 1, . . . , n. Put b′j = (bj)X . In view of (6.36) with ` = k and m = r, we have

Zj = {z ∈ con(b′j) | D(v, z) ≤ r}

for all j = 0, 1, . . . , n. Put b′′j = (b′j)Z . Claim (3.6) with ` = k implies that the jth

occurrence of a letter x in u lies in the (k − 1)-block ui if and only if the jth occurrence

of x in v lies in the (k − 1)-block vi for any x and any j = 1, 2. Also, Lemma 6.2(ii)

allows us to assume that if the first and second occurrences of x in u do not lie in the

(k − 1)-block ui then this letter does not occur in ui. Thus con(u∗i ) = con(b′′0b
′′
1 · · ·b′′n).

This implies that the (k − 1)-blocks ui and vi have the same “canonical form”. Repeating

the arguments above, we find that Jrk satisfies the identities v ≈ u] ≈ u.

Now we can complete the proof of Lemma 6.15. Let Ik ⊂ X ⊆ Fk+1. We have to verify

that X ⊇ J1
k. Suppose that J1

k * X. Then there exists an identity u ≈ v that holds in

X but not in J1
k. Then Propositions 6.14 and 6.17 and the inclusion Ik ⊂ X imply that

(2.1), (3.6) and (6.34) hold, while (6.36) with m = 1 is false. Then Lemma 6.16(i) implies

that X ⊆ Ik, a contradiction. Lemma 6.15 is proved.

6.4.4. If Jmk ⊂ X ⊆ Fk+1 with 1 ≤ m < k then Jm+1
k ⊆ X. The fourth step in the

verification of Proposition 6.1(4) is

Lemma 6.18. If X is a monoid variety such that X ∈ [Jmk ,Fk+1] for some 1 ≤ m < k

then either X = Jmk or X ⊇ Jm+1
k .

Proof. Let 1 ≤ m < k, Jmk ⊂ X ⊆ Fk+1 and Jm+1
k * X. Then there exists an identity

u ≈ v that holds in X but not in Jm+1
k . Then Proposition 6.17 and the inclusion Jmk ⊂ X

imply that (2.1), (3.6), (6.34), and (6.36) with ` = k all hold, while the claim

if x ∈ con(u) and D(u, x) ≤ m+ 1 then hk2(u, x) = hk2(v, x)

is false. Then Lemma 6.16(ii) implies X ⊆ Jmk , a contradiction. We see that either X = Jmk
or Jm+1

k ⊆ X.

6.4.5. The interval [Jkk,Fk+1] consists of Jkk and Fk+1 only. The fifth step in the

verification of Proposition 6.1(4) is

Lemma 6.19. If X is a monoid variety such that X ∈ [Jkk,Fk+1] then either X = Jkk or

X = Fk+1.

Proof. Suppose that Jkk ⊂ X ⊂ Fk+1. Since Fk+1 * X, there exists an identity u ≈ v that

holds in X but not in Fk+1. Propositions 6.9(i) and 6.17 and the inclusion Jkk ⊂ X imply

that (2.1), (3.6), (6.34), and (6.36) with ` = m = k all hold, while hk2(u, x) 6= hk2(v, x) for

some letter x ∈ con(u) such that D(u, x) > k. Then we apply Lemma 6.8 for the variety

Fk+1 and obtain X ⊆ Jkk, a contradiction.

6.4.6. All inclusions are strict. Here we are going to verify the inclusions (6.1). To

do this, we use Lemma 6.5 and Table 6.1 without explicit mention. We note that the

non-strict inclusions (6.5) are true by Lemma 6.4. If u ≈ v is the identity αk then

D(u, xk) = k but hk1(u, xk) = λ and hk1(v, xk) = yk. Then Proposition 6.12 implies

that Fk ⊂ Hk. Suppose that the identity u ≈ v coincides with βk. Then hk1(u, x) = λ,

while hk1(v, x) = xk. We apply Proposition 6.14 to obtain Hk ⊂ Ik. Let now u ≈ v
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be equal to γk. In this case D(u, y1) = 1 but hk2(u, y1) = y0 and hk2(v, y1) = xk. In

view of Proposition 6.17, Ik ⊂ J1
k. Suppose now that u ≈ v coincides with δmk for some

1 ≤ m < k. Then D(u, ym+1) = m+1 but hk2(u, ym+1) = ym and hk2(v, ym+1) = xk. Now

we apply Proposition 6.17 again to obtain Jmk ⊂ Jm+1
k . Finally, suppose that u ≈ v is

the identity δkk . Since hk2(u, yk+1) = yk and hk2(v, yk+1) = xk, Proposition 6.9(i) implies

that Jkk ⊂ Fk+1.

Thus, we have proved the inclusions (6.1). Therefore, the varieties Fk, Hk, Ik, J1
k,

J2
k, . . . , Jkk and Fk+1 are pairwise different. This fact and Lemmas 6.10, 6.13, 6.15, 6.18

(with m = 1, . . . , k− 1) and 6.19 imply Proposition 6.1(4). In view of Lemma 2.10(i) and

the results of Sections 6.1 and 6.3, we have completed the proof of Proposition 6.1.

Lemmas 2.8 and 2.9(i), Corollary 4.7, Propositions 5.1, 5.2 and 6.1, and the dual of

Propositions 5.2 and 6.1 imply the “if” part of Theorem 1.1.

Recall that the “only if” part of Theorem 1.1 was verified in Chapter 4. Thus, Theo-

rem 1.1 is completely proved.

7. Corollaries

First of all, we present an exhaustive list of non-group chain varieties of monoids. Theo-

rem 1.1 together with Lemmas 2.8 and 2.9(i), Corollary 4.7, Propositions 5.1, 5.2 and 6.1,

and the duals of Propositions 5.2 and 6.1 implies

Corollary 7.1. The varieties Cn, Dk, D, E,
←−
E , Fk,

←−
Fk, Hk,

←−
Hk, Ik,

←−
Ik , Jmk ,

←−
Jmk , K,

←−
K, L, LRB, M,

←−
M, N,

←−
N, RRB, SL where n ≥ 2, k ∈ N and 1 ≤ m ≤ k, and only

these varietes, are non-group chain varieties of monoids.

The set of all non-group chain varieties of monoids ordered by inclusion together with

the variety T is shown in Fig. 7.1. It is interesting to compare this figure with the diagram

of the partially ordered set of all non-group chain varieties of semigroups (as already

mentioned in Chapter 1, such varieties were completely determined in [22]). This diagram

is shown in Fig. 7.2 where LZ = var{xy ≈ x}, RZ = var{xy ≈ y}, ZM = var{xy ≈ 0},
Nk = var{x2 ≈ x1 · · ·xk ≈ 0, xy ≈ yx} for all k ≥ 3, Nω = var{x2 ≈ 0, xy ≈ yx},
N2

3 = var{x2 ≈ xyz ≈ 0} and Nc
3 = var{xyz ≈ 0, xy ≈ yx} (here var Σ means the

semigroup variety given by Σ; as is usual when considering semigroup varieties, we write

w ≈ 0 as a shorthand for the identity system wx ≈ xw ≈ w where x /∈ con(w)).

We see that, apart from the group case, there is one countably infinite series and

six “sporadic” chain semigroup varieties, but ten countably infinite series and twelve

“sporadic” chain monoid varieties. Namely, we have the countably infinite series Nk

(including ZM as N2) and sporadic varieties LZ, RZ, SL, N2
3, Nc

3, Nω in the semigroup

case, and countably infinite series Cn (including SL as C1), Dk, Fk,
←−
Fk, Hk,

←−
Hk, Ik,

←−
Ik , Jmk ,

←−
Jmk and sporadic varieties D, E,

←−
E , K,

←−
K, L, LRB, M,

←−
M, N,

←−
N, RRB

in the monoid case. One can say that the number of non-group chain varieties in the

case of monoids is much larger (in an informal sense) than in the case of semigroups.

Consequently, the partially ordered set of non-group chain varieties in the former case is

much more complicated than in the latter.
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Fig. 7.1. All non-group chain varieties of monoids

As mentioned in Chapter 1, a non-group chain variety of semigroups is contained in a

maximal chain variety, while this is not the case for monoid varieties. The following two

corollaries indicate cases when the analog of the semigroup statement is true. Fig. 7.1

shows that the following is true.

Corollary 7.2. A non-group chain variety V of monoids is contained in some maximal

chain variety if and only if C3 * V.

Theorem 1.1 shows that commutative non-group chain varieties of monoids are exclu-

sively SL and Cn with n ≥ 2. This claim and Fig. 7.1 imply
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Corollary 7.3. A non-commutative non-group chain variety of monoids is contained

in some maximal chain variety.

In the following corollary we mention the variety O introduced in Section 4.3.

Corollary 7.4. Let X be a monoid variety with L ⊂ X ⊆ O. Then X is not a chain

variety and does not contain a just-non-chain subvariety.

Proof. Theorem 1.1 immediately implies that there are no chain monoid varieties that

properly contain L, whence X is not a chain variety. It remains to check that X does

not contain a just-non-chain subvariety. Suppose that X contains such a subvariety Y.

In view of Theorem 1.1, any chain subvariety of O is contained in L. In particular, O

(and therefore Y) does not contain incomparable chain subvarieties. On the other hand,

being a non-chain variety, Y contains at least two incomparable subvarieties. These are

proper subvarieties of Y, whence they are chain varieties. We have a contradiction.

The following question seems to be interesting.

Question 7.5. Is it true that a non-chain non-group monoid variety X with X * O

contains a just-non-chain subvariety?

Recall that a variety of universal algebras is called locally finite if its finitely generated

members are all finite. A variety is called finitely generated if it is generated by a finite

algebra. Clearly, if a variety is contained in some finitely generated variety then it is

locally finite.

Corollary 7.6. An arbitrary non-group chain monoid variety is contained in some

finitely generated variety; in particular, it is locally finite.

Proof. Clearly, it suffices to verify that each of the varieties listed in Theorem 1.1 is

contained in a finitely generated variety. It is well known that a proper variety of band

monoids is finitely generated [5]. In particular, LRB and RRB have this property. It is

evident that the monoid S(w) is finite for any word w. Then Lemmas 2.4 and 4.6 provide
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the required conclusion for Cn and L respectively. The fact that
←−
N is finitely generated

follows from [8, Example 1 in Erratum]. By symmetry, it remains to consider the varieties

D and K.

The variety D is not finitely generated by [14, Theorem 2], but it is shown in [15,

Example 5.3] that D is a subvariety of the variety generated by the well-known 6-element

Brandt monoid B1
2 = B2 ∪ {1} where

B2 = 〈a, b | a2 = b2 = 0, aba = a, bab = b〉 = {a, b, ab, ba, 0}.
Finally, it is easy to see that if a monoid M belongs to K and consists of k elements

then M satisfies the identity αk. Therefore, any finitely generated subvariety of K is

contained in Fk for some k. In particular, K is not finitely generated. But Lemma 6.2

implies that K ⊆ var{xyxzx ≈ xyxz, σ2}. To complete our considerations, it remains to

note that var{xyxzx ≈ xyxz, σ2} is generated by the 5-element monoid

〈a, b | a2 = ab = a, b2a = b2〉 ∪ {1} = {a, b, ba, b2, 1}.
This is proved in [17, Corollary 6.6].

The analog of Corollary 7.6 for arbitrary chain varieties of monoids (including group

ones) does not hold. Indeed, as mentioned in Chapter 1, it is verified in [11] that there

are uncountably many non-locally finite chain varieties of groups. But explicit examples

of such varieties have not been specified yet.
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