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Abstract

A variety of universal algebras is called a chain variety if its subvariety lattice is a chain. Non-
group chain varieties of semigroups were completely classified by Sukhanov in 1982. Here we
completely determine non-group chain varieties of monoids (referring to monoid varieties, we
consider monoids as algebras with an associative binary operation and the nullary operation
that fixes the identity element). Even though the lattice of all monoid varieties embeds into the
lattice of all semigroup varieties, surprisingly, the classification of non-group chain varieties in
the monoid case turns out to be much more complicated than in the case of semigroups.
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1. Introduction and summary

There are many articles devoted to the examination of the lattice SEM of all semigroup
varieties. An overview of this area is contained in the detailed survey [21]; see also the
recent work [23] devoted to elements of SEM satisfying some special properties. In sharp
contrast, the lattice MON of all monoid varieties has received much less attention over
the years; when referring to monoid varieties, we consider monoids as algebras with an
associative binary operation and the nullary operation that fixes the identity element. As
far as we know, there are only three papers containing substantial results on this subject.
We have in mind the article [7] where the lattice of commutative monoid varieties is
completely described, the article [24] which contains a complete description of the lattice
of band monoid varieties, and the article [19] where an example of a monoid variety
without covers in the lattice MON is found.

Recently, the situation has begun to change gradually. The papers [8}9,|12H16] are
mainly devoted to examination of identities of monoids but also contain some results
about lattices of varieties. Moreover, [9] contains some results about the lattice MON
that are of independent interest.

Thus nowadays, interest in the lattice MON has grown. Nevertheless, many questions
in this area remain open. For example, it is known that the lattice MON is not modular
(see, e.g., |12, Proposition 4.1] or Fig. ) below), but it was unknown up to the recent
time whether this lattice satisfied some non-trivial identity. Only recently did the first au-
thor give a negative answer to this question [6]. In contrast, the fact that the lattice SEM
does not satisfy any non-trivial lattice identity has been known since the early 1970’s [3//4].

The problem of describing monoid varieties with modular or even distributive subva-
riety lattice seems to be quite difficult. As a first step in this direction, it seems natural to
consider the extreme strengthening of the distributive law, namely the property of being a
chain. Varieties whose subvariety lattice is a chain are called chain varieties. Non-group
chain varieties of semigroups were listed by Sukhanov [22] (see Fig. in Chapter |z|
below), while locally finite chain group varieties were completely determined by Arta-
monov [2]. Note that the problem of completely describing arbitrary chain varieties of
groups seems to be extremely difficult. This is confirmed by the fact that there are un-
countably many periodic non-locally finite varieties of groups with 3-element subvariety
lattice [11].

Some non-trivial examples of chain varieties of monoids appeared in [8,/12}[15]. How-
ever, chain monoid varieties have not been systematically studied so far. In this paper
we obtain a complete description of non-group chain varieties of monoids. Note that it

5]



6 S. V. Gusev and B. M. Vernikov

is verified in [8] that there exists a non-finitely based chain variety of monoids. This
seems to be quite unexpected. For comparison, all non-group chain semigroup varieties
and locally finite chain group varieties are finitely based. This follows from the results
of [2,22] mentioned above. Note also that by the result of [11] mentioned above, there
exist non-finitely based non-locally finite chain varieties of groups. But explicit examples
of such varieties have not yet been specified.

In order to formulate the main result of the article, we need some notation. We denote
by F the free semigroup over a countably infinite alphabet A. Elements of both F' and
A are denoted by small Latin letters. However, elements of F' for which it is not known
exactly that they belong to A are written in bold. As usual, elements of F' and of A are
called words and letters respectively. The symbol F! stands for the semigroup F with
a new identity element adjoined. We treat this identity element as the empty word and
denote it by A\. We connect two sides of identities by the symbol = and use = for equality.
We introduce notation for the following three identities:

o1 1 zyzaty ~ yrzaty,

oo TtYzTY =~ TtYyLYyT,

Y1t Y1YoT1Y1ToT1 R Y1YoY1L1Loxq -
Note that the identities o1 and o9 are dual to each other. The identity v; belongs to a
countably infinite series of identities 7, that will be defined in Section[6.1} For an identity

system ¥, we denote by var X the variety of monoids given by ¥. Let us fix notation for
the following varieties:

C, =var{z" ~ 2" zy~yz} wheren > 2,
S, 2y~ ya®, o1, 02, M},
K = var{zyr ~ zyz?, 2%y* ~ y*2?, 2%y ~ 2%yz),
LRB = var{zy =~ zyz},
N = var{z?y ~ ya?, 2%yz ~ xyxzz, 09, 11},
RRB = var{yz ~ zyx}.

D = var{z® ~

To define one more variety, we need some additional notation. For every natural number n,
we denote by S, the full symmetric group on {1,...,n}. For arbitrary permutations
m, T € Sy, We put

wy(m,7) = (ﬁ ziti)x( zﬂ(i)szrT(i))x( ﬁ tizi),

=.

i=1 i=1 i=n—+1
n n 2n

W'/n(ﬂ-a T) = (H Zztz) z? (H Zw(i)zn+7(i)> ( H tizi) .
i=1 i=1 i=n+1

Note that the words w, (7, 7) and w/,(m,7) with the trivial permutations = and 7 ap-
peared earlier in [8] proof of Proposition 5.5]. Put

L = var{2?y ~ y2?, zyrzz =~ 2%yz, 01, 09, W (m,7) & Wl (7,7) | n €N, 7,7 € S, }.

If X is a monoid variety then we denote by § the variety dual to X, i.e. the variety
consisting of all monoids antiisomorphic to monoids from X.
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The main result of the paper is

THEOREM 1.1. A non-group monoid variety is a chain variety if and only if it is contained
in one of the varieties C,, for somen >2, D, K, K, L, LRB, N, or RRB.

The complete list of all non-group chain varieties of monoids will be given in Corol-
lary The unique non-finitely based non-group chain variety of monoids mentioned
above is L (see Corollary [4.8).

A minimal non-chain variety is called a just-non-chain variety. It is noted in [22, Corol-
lary 2] that, among non-group varieties in SEM, any chain variety is contained in some
maximal chain variety and any non-chain variety contains some just-non-chain subvari-
ety. However, similar results do not hold for non-group varieties in MON. Specifically,
the varieties C3,Cy, ... are not contained in any maximal chain variety (see Fig. in
Chapter@, while it follows from Theoremthat there is a non-chain variety of monoids
that does not contain any just-non-chain subvariety (see Corollary .

In [22] non-group chain varieties of semigroups were described in two ways. The
first one is a description in the identity language. Theorem is an analogue of this
result in the case of monoids. The second way is by presenting the full list of non-group
just-non-chain varieties of semigroups; this gives a characterization of chain varieties
because, in view of [22| Corollary 2], a non-group variety of semigroups is a chain variety
if and only if it does not contain any just-non-chain subvariety. As mentioned in the
preceding paragraph, an analogous claim is false for monoids. Therefore, the second way
of describing chain varieties is not applicable in the case of monoids. For this reason, we
do not consider just-non-chain monoid varieties here.

The article consists of seven chapters. Chapter [2] contains definitions, notation and
auxiliary results. In Chapter [3]we introduce new notions and notation and prove a number
of results of technical character. These notions and results play a significant role in
the proof of Theorem [I.I} Chapter [] is devoted to the proof of the “only if” part of
Theorem while the “if” part is verified in Chapters [5] and [6] Finally, in Chapter [7]
some corollaries of Theorem and of its proof are established.

2. Preliminaries

A word is called a semigroup word if it does not contain the symbol of nullary operation 1.
An identity is called a semigroup identity if both its sides are semigroup words. Note that
an identity of the form w ~ 1 is equivalent to the pair of identities wa ~ xw ~ = where
the letter = does not occur in w. Further, any monoid satisfies the identitiesu-1 ~ 1-u ~ u
for any word u. These observations allow us to assume that all identities that appear below
are semigroup ones.

The content of a word w, i.e., the set of all letters occurring in w, is denoted by
con(w). We denote by SL the variety of all semilattice monoids. The following statement
is well known, but it has never appeared anywhere in this form, as far as we know. For
the sake of completeness, we give its proof here.



8 S. V. Gusev and B. M. Vernikov

LEMMA 2.1. For a monoid variety V, the following are equivalent:

(a) 'V is a group variety;
(b) V satisfies an identity u =~ v with con(u) # con(v);
(c) SLEZV.

Proof. The implication (a)=-(c) is obvious.

The implication (c)=-(b) follows immediately from the evident fact that the variety
SL satisfies any identity u ~ v with con(u) = con(v).

(b)=(a) By the hypothesis, there is a letter = that occurs in precisely one of the
words u and v. Let y be a letter with y ¢ con(uv). Clearly, the identities uy ~ vy and
yu = yv hold in V. One can substitute 1 for all letters occurring in these identities except
2 and y. Then it follows that V satisfies "y =~ y and yx™ ~ y for some n. Hence V is a
group variety. m

A letter is called simple [multiple] in a word w if it occurs in w once [at least twice].
The set of all simple [multiple] letters in a word w is denoted by sim(w) [by mul(w)].
The following statement is well known and can be easily verified.

PROPOSITION 2.2. A non-trivial identity u =~ v holds in the variety Cs if and only if
sim(u) = sim(v) and mul(u) =mul(v). = (2.1)

The following notion was introduced by Perkins [18] and has often appeared in the
literature (see [810}/12,/15], for instance; in |9, Remark 2.4] there are a number of other
references). Let W be a set of possibly empty words. We denote by W the set of all
subwords of words from W and by I(W) the set F''\ W. It is clear that I(W) is an ideal
of F1. Then S(W) denotes the Rees quotient monoid F'/I(W). If W = {wy,...,wy}
then we will write S(wy, ..., wy) rather than S({wy,...,wi}).

A word w is called an isoterm for a class of semigroups if no semigroup in that class
satisfies any non-trivial identity of the form w ~ w’. The following statement is known
in fact and plays an important role below.

LEMMA 2.3. Let V be a monoid variety and W a set of possibly empty words. Then S(W)
lies in 'V if and only if each word in W is an isoterm for V.

Proof. 1t is easy to verify that it suffices to consider the case when W consists of one
word (see [8, paragraph after Lemma 3.3]). Then necessity is obvious, while sufficiency is
proved in [10, Lemma 5.3]. m

The variety generated by a monoid M is denoted by var M.
LEMMA 2.4 (|1, Corollary 6.1.5]). Cp41 = var S(z™) for any natural n. w
LEMMA 2.5. Let V be a monoid variety and n a natural number. If Cpi1 € 'V then V
satisfies an identity x™ ~ T for some m.

Proof. We can assume that V is not a group variety because the conclusion is evident
otherwise. Lemmas [2.3] and [2.4] apply with the conclusion that the variety V satisfies
a non-trivial identity of the form 2™ ~ w. Then con(w) = {z} by Lemma whence
w = 2¥ for some k # n. Clearly, the identity 2" ~ z* implies 2" ~ "™ for some m.
Thus, the variety V satisfies the identity 2" ~ z"t™. u
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As in the case of semigroups, a variety of monoids is called completely regular if it
consists of completely regular monoids (i.e., unions of groups). It is well known that a
variety is completely regular if and only if it satisfies an identity x ~ ™! for some m.
This observation, together with Lemma and the evident fact that the variety Cs is
not completely regular, implies
COROLLARY 2.6. A monoid variety V is completely regular if and only if Co ¢ V. =

For any natural number k, we denote by Dy, the subvariety of D given within D by
the identity x%y192 - - - yr, ~ 2Y12Y27 - - - ¥Yrw. The proof of Proposition 4.1 in [15] implies
LEMMA 2.7. Dy = var S(zy) and D, 41 = var S(xy1zysx - - - zYnx) for any natural n. m

We denote by T the trivial variety of monoids. The subvariety lattice of a monoid
variety X is denoted by L(X). Proposition 4.1 of [15] and its proof readily imply

LEMMA 2.8. The lattice L(D) is the chain
TCSLCcC,CD;CDyC:---CD. =
The following statement follows immediately from |24, Proposition 4.7].
LEMMA 2.9.
(i) The lattice LLILRBV RRB) has the form shown in Fig. 2.1fa).

(ii) Ewery variety of band monoids either contains the variety LRB V RRB or is con-
tained in this variety. m

Put

E = var{z? ~ 2°, 2%y ~ zyx, 2%y* ~ y*2?}.
The following lemma is verified in |12, Proposition 4.1(i) and Lemma 3.3(iv)].
LEMMA 2.10.

(i) The lattice LLILRBV C3) has the form shown in Fig. 2.1|b).
(ii) LRBV Cy = var{z? ~ 23, 2%y ~ ryz}. =

LRBV C,
E
LRB Vv RRB
D,
LRB RRB LRB Cs
SL SL
T T
(a) L(LRB V RRB) (b) LALRB V Cy)

Fig. 2.1. The lattices L(LRB VRRB) and L(LRB V Cs)
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Let w be a word and x a letter. We denote by occ,(w) the number of occurrences of
x in w. If € con(w) and 7 < occ,(w) then ¢;(w,x) denotes the length of the minimal
prefix p of w with occ,(p) = 1.

1.
3

EXAMPLE 2.11. If w=xyz?zy then, evidently, occ, (w)=3, occ, (w)=2 and occ,(w)

Further, the shortest prefixes p of w with occ,(p) = 1, occ,(p) = 2 and occ,(p)
are x, zyxr and zyx? respectively, whence ¢1(w,z) = 1, lo(w,z) = 3 and l3(w,z) =
Analogously, ¢1(w,y) = 2, la(w,y) = 6 and ¢;(w, z) = 5.

Below we often deal with inequalities like ¢;(w,z) < ¢;(w,y). Clearly, this inequality
means simply that the ith occurrence of x in w precedes the jth occurrence of y in w.

If w is a word and X is a set of letters then wy denotes the word obtained from w
by deleting all letters from X. If X = {x} then we write w, rather than w,y.

LEMMA 2.12. If a non-commutative variety of monoids V satisfies an identity u ~ v

such that the claim (2.1)) holds then

Unul(u) = Vmul(u)- (22)
Proof. According to (2.1)), sim(u) = sim(v) and mul(u) = mul(v). It is evident that
holds whenever sim(u) contains < 2 letters. Suppose now that sim(u) contains at least
two different letters and is false. Then there are letters x,y € sim(u) such that
l1(u,z) < £1(u,y) and £1(v,z) > ¢1(v,y). One can substitute 1 for all letters occurring
in the identity u ~ v except x and y. Then we obtain zy = yx, contradicting the fact
that V is non-commutative. m

ProPoOSITION 2.13. A non-trivial identity u =~ v holds in the variety Dy if and only
if (2.1) and (2.2) are true.
Proof. Necessity. The inclusion Co C D; and Proposition [2.2] imply that the identity
u = v satisfies (2.1). Since the variety D; is non-commutative, Lemma implies
that (2.2) holds too.

Sufficiency. Suppose that the identity u & v satisfies (2.1)) and (2.2)). Let sim(u) =
{y1,- .., Ym}. We may assume without loss of generality that

u = Upyiuiy2us - - YmUm

where con(upuy - - - u,,) = mul(u). It follows from (2.1) that sim(v) = {y1,y2, - -, Ym }-

Moreover, v. = voy1ViyaVa - YmVm by (2.2). We can apply (2.1) again to conclude
that con(uguy - - - u,,) = con(vgvy -+ - vy, ). Now it is easy to see that the identity system
{2? ~ 23, 2%y ~ xyx ~ y2?} implies the identities

u = upyiury2us - - - YUy = VoY1ViyYa2Ve - - YmVy =V,
whence D; satisfiesu~v. =

LEMMA 2.14. If a variety of monoids V is non-completely reqular and non-commutative

then D; C V.

Proof. Suppose that D1 ¢ V. Then there is an identity u ~ v that holds in 'V but is false
in D;. Corollary [2.6] implies that Co C V. Then u =~ v holds in Cs, whence (2.1)) holds
by Proposition 2.2 Now Lemma [2.12] and the assumption that V is non-commutative
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imply (2.2]). Hence Proposition applies, and we conclude that u = v holds in Dy,
a contradiction. m

LEMMA 2.15. If X is a non-completely regular variety of monoids and Dy, 41 € X for
some n then X satisfies an identity of the form

TYLTY2 - - - Ty A 2Py aF2yaah? - o gFry, gFnr (2.3)
where k; > 1 for some 1.
Proof. If X is commutative then it satisfies the identity
Ty xyor - wYnt 2 2" yrys oy,

and we are done. Suppose now that X is non-commutative. Then it satisfies a non-trivial
identity of the form zy,zysz - zy,x ~ W by Lemmas and Now Lemma
applies, showing that Dy C X. According to Proposition [2.13

k k k En
w =2y Py x™? - -yt

If k; > 1 for some 7 then we are done. Suppose that k; < 1 for all . Thereis 1 <i<n+1
with k; = 0 because the identity zyizysz - - ry,xr &~ w is trivial otherwise. Substitute
xy; for y; in this identity for all ¢ such that k; = 0. If k,,;1 = 0 then we multiply the
resulting identity by x on the right. Thus, we obtain an identity of the form where
k; > 1 for some 7. m

3. k-decomposition of a word and related notions

Here we introduce a series of notions and examine their properties. These notions and
results play a key role in the most complicated part of the proof of Theorem in

Chapter [0}
For a word u and letters xy,...,2; € con(u), let u(zy,...,z;) denote the word
obtained from u by retaining the letters z1, ..., ;. Equivalently,
u(zy,..., ) = Ucon(u)\{z1,...,ex}*
Let w be a word and sim(w) = {¢1,...,tn}. We can assume without loss of generality

that w(ty,...,tm) =t1- - ty. Then

W = t0w0t1w1 s thm (31)
where wg, W1, ..., W, are possibly empty words and ¢y = A. The words wqg, W1,..., W,
are called 0-blocks of w, while tg,t1, ..., t,, are said to be 0-dividers of w. The representa-

tion of w as a product of alternating 0-dividers and 0-blocks, starting with the O-divider
to and ending with the 0-block w,,, is called the 0-decomposition of w.

Let now k be a natural number. We define the k-decomposition of w by induction
on k. Let be the (k — 1)-decomposition of w with (k — 1)-blocks wo, w1,..., W,
and (k — 1)-dividers tg,t1,...,ty. For any i = 0,1,...,m, let s;1,..., S, be all simple
letters in w; that do not occur in the word w to the left of w;. We can assume that
Wi(SiI; ey Siri) = Si1 " Siry - Then

Wi = V;i08i1Vi18i2Vi2 * * * Sir, Vir, (3.2)
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for possibly empty words v;o, Vi1, ..., Vir,. Put s;0 = t;. The words vio, Vi1,..., Vi, are
called k-blocks of the word w, while the letters s;o, Si1,- .., Sir, are said to be k-dividers
of w.

REMARK 3.1. Note that only the first occurrence of a letter in a given word might be a
k-divider of this word for some k. In view of this observation, below we use expressions
like “a letter x is (or is not) a k-divider of a word w” meaning that the first occurrence
of z in w has the specified property.

For any ¢ = 0,1,...,m, we represent the (k — 1)-block w; in the form . As a
result, we obtain the representation of w as a product of alternating k-dividers and k-
blocks, starting with the k-divider sopp = to and ending with the k-block v,,,. .. This
representation is called the k-decomposition of w.

REMARK 3.2. Since the length of w is finite, there is a number k£ such that the k-
decomposition of w coincides with its n-decompositions for all n > k.

For the reader’s convenience, we illustrate the notions of k-blocks, k-dividers and
k-decomposition of a word by

ExaMPLE 3.3. Let w = zyxzytszxs. The unique simple letter in w is ¢. Therefore, the
0-decomposition of w is
A zyzzy -t szxs (3.3)

(throughout this example we underline blocks to distinguish them from dividers). The
unique simple letter of the leftmost 0-block zyzzy is z; the 0-block szxs contains two
simple letters, namely z and x, but both occur in w to the left of this block. Therefore,
the 1-decomposition of w is

\-wyz-z-y-t-szas.

Analogous arguments show that the 2-decomposition of w is
Agygzgtﬁgzms’
and if k£ > 3 then the k-decomposition of w is

A.A.x.&.y.g.z.y.t.szxs'

For a given word w, a letter © € con(w), a natural number i < occ,(w) and an
integer k > 0, we denote by h¥(w,z) the rightmost k-divider of w that precedes the ith
occurrence of  in w. The (possibly empty) letter h¥(w,x) is called the (i, k)-restrictor
of the letter x in w. This notion is illustrated by

EXAMPLE 3.4. Let w be as in Example The 0-decomposition of w has the form .
We see that the rightmost 0-divider of w that precedes the first two occurrences of =z,
the two occurrences of y, and the first occurrences of z and ¢ is A, while the rightmost
0-divider of w that precedes the third occurrence of x, the second occurrence of z and both
occurrences of s is t. This means that hd(w,z) = hY(w,z) =\, h(w,z) =t, hd(w,y) =
hY(w,y) = X\, h{(w,z) = X\, hY(w,2) = t, h(w,s) = hY(w,s) = t and Al (w,t) = A\
Analogously, making use of Example [3.3] it is easy to find all other restrictors of letters
in w. The results are presented in Table
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Table 3.1. Restrictors of letters in the word xyxzytszxs

a | k i| h¥(w,a) || a| k i | h¥(w,a)
1 A 0 1 A
0 2 A 2 t
3 t 1 1 A
1 A z 2 t
1 2 A 2 1 y
T 3 t 2 t
1 A >3 |1 y
2 2 Y 2 t
3 t 0 1 t
1 A 2 t
>3 1|2 Y 1 1 t
3 t s 2 t
0 1 A 2 1 t
2 A 2 t
1 1 A >3 |1 t
Y 2 z 2 t
2 1 A 0 1 A
2 z t 1 1 z
>3 |1 T 2 1 z
2 z >3 1|1 z

LEMMA 3.5. Let w be a word, t be a letter and k,r be numbers with r < k.

(i) If t is an r-divider of w then t is also a k-divider of w.
(i) If h¥(w,x) = hE(w,x) then h}(w,z) = hi(w,z) as well.
(iil) If towot1 Wy -« -t Wy 18 the k-decomposition of w and m > 0 then t,, € sim(w).

Proof. Claims (i) and (ii) are obvious. To verify (iii), suppose that t,,, € mul(w). Then
tm, is not a 0-divider of w. Let p be the least natural number such that ¢, is a p-divider
but not a (p — 1)-divider of w. Evidently, p < k.

Suppose that k2" (w,t,,) = h5~'(w,t,,). This means that there are no (p — 1)-
dividers in w between the first and the second occurrences of t,, in w. In other words,
both these occurrences lie in the same (p — 1)-block of w. Therefore, ¢, is not simple in
this (p — 1)-block. In particular, ¢,, is not a p-divider of w, contradicting the choice of t,,.
Thus, h’ffl(wgﬁm) =+ hgfl(w,tm). Note that the arguments of this paragraph are very
typical. Below we use arguments like this many times, without repeating them explicitly.

Note that t,, # h5~ (W, t,,) because t,, is not a (p — 1)-divider of w. Put t,,, =
hg_l(w,tm). Since p — 1 < k, claim (i) implies that ¢,,11 is a k-divider of w. The last
k-divider of w is t,,. Therefore, the first occurrence of ¢,,1; in w precedes the first
occurrence of t,, in w. Therefore, hzf_l(w,tm) =tmy1 = hg_l(w,tm), a contradiction. m

For a given word w and a letter « € con(w), we define a number called the depth of x
in w and denoted by D(w, z). If z € sim(w) then we put D(w,z) = 0. Suppose now that
x € mul(w). If there is a natural k such that the first and the second occurrences of = in
w lie in different (k — 1)-blocks of w then the depth of = in w equals the minimal k& with
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this property. Finally, if, for any natural k, the first and the second occurrences of x in
w lie in the same k-block of w then we put D(w,x) = co. In other words, D(w,x) = k
if and only if A¥ Y (w,z) # h5'(w,z) and k is the least number with this property,
while D(w,z) = oo if and only if h¥~*(w,z) = k5~ (w,z) for any k. This definition is
illustrated by

EXAMPLE 3.6. As in Examples[3:3]and [3:4] put w = zyzzytszas. Here we systematically
use information about restrictors of letters in w indicated in Table [3:1] In particular, in
view of the table, h¥ (w,z) = X for all k, while hY(w, 2) = h(w,z) = X and h3(w,z) = y.
Therefore, D(w, z) = 3. Further, hY(w,y) =h3(w,y) =\, hi(w,y) =X and hi(w,y)==z.
Hence D(w,y) = 2. The equalities h{(w, z) = X and h(w, z) = ¢ imply that D(w, 2) = 1.
Further, h¥(w, s)=h5(w,s) =t for each k>0, whence D(w,s)=oo. Finally, D(w,t)=0
because t € sim(w).

The following criterion for a letter of a word to be a k-divider is often used in the
proof of Theorem [1.1

LEMMA 3.7. A letter t is a k-divider of a word w if and only if D(w,t) < k.

Proof. The statement is evident when & = 0 because both the property of ¢ being a
O-divider of w and the equality D(w,t) = 0 are equivalent to t being simple in w.
Further, if & > 0 then a letter ¢ is a k-divider of w if and only if the first and the
second occurrences of t lie in different (k — 1)-blocks of w. In turn, the last condition is
equivalent to h¥~Y(w, t) # hh=1(w,1), i.e., to D(w,t) < k. m

Words u and v are said to be k-equivalent if they have the same set of k-dividers and
these k-dividers appear in u and in v in the same order.

LEMMA 3.8. Let k be a non-negative integer. Words u and v are k-equivalent if and only
if [2.1) holds and, for any x € con(uv), h¥(u,x) = h¥(v,z) whenever either D(u,z) < k
or D(v,x) < k.

Proof. Sufficiency. Suppose that
tougtiug - - - LU, (3.4)

and sgvgsivy - SV, are the k-decompositions of u and v, respectively. Evidently, to =
sp = A If m = r = 0 then the statement is evident. Let now m > 0. In view of
Lemma, D(u,t;) < k for any 1 < i < m. By the hypothesis, this implies that
ti_1 = h¥(u,t;) = h¥(v,t;) for any 1 < i < m, whence t;_; is a k-divider of v. According
to Lemma [3.5(iii), ¢,, € sim(u). Then implies that t,, € sim(v), whence t,, is
a 0-divider of v. Now Lemma i) applies to show that t,, is a k-divider of v. So,
the letters t¢q,...,t,, are k-dividers of v, whence m < r. By symmetry, r < m. Thus
m = r. Further, ¢; coincides with s, for some p. If p # 1 then h¥(v,t1) # to, contrary to
hk(v,t1) = h¥(u,t;) = to. So, p = 1, and therefore t; = s;. By induction, we can verify
that t; = s; for any j < m.

Necessity. Suppose that (3.4)) is the k-decomposition of u. Then the k-decomposition
of v has the form
tov0t1V1 cee tmvm. (35)
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Let 2 € con(u) and D(u,z) < k. Lemma implies that = t; for some 1 < i < m.
Therefore, h¥(v,z) = h¥(u,z) = t;_1. Analogously, we verify that if € con(v) and
D(v,z) <k then hY(v,z) = h¥(u,z). =

LEMMA 3.9. Let w be a word, x be a letter multiple in w with D(w,x) =k and t be a
(k — 1)-divider of w.

() If t = hE~Y(w,z) then 1 (w,x) < £1(w,1).
(i) If ly(w,z) < l1(w,t) < la(w,z) then D(w,t) = k — 1; if moreover k > 1 then
EQ(W,I) < EQ(W,t).

Proof. (i) Suppose that ¢1(w,t) < ¢;(w,z). Then the equality t = hg_l(w,x) implies
that t = h¥ Y (w,z). Thus, h¥~*(w,z) = h5~'(w, z), which contradicts the assumption
that D(w,z) = k. So, ¢1(w,z) < ¢1(w,t). Since t is a (k — 1)-divider, Lemma im-
plies that D(w,t) < k — 1. In particular, D(w,t) # D(w,z), whence ¢ # x. Therefore,
U (w,z) < l1(w,t).

(ii) Suppose now that ¢1(w,z) < {1(w,t) < la(w,z). Put r = D(w,t). By Lemma[3.7]
r<k-—11f D(w,t) =r < k —1 then ¢t is an r-divider by Lemma Therefore, t =
hy(w,x). Further, t # hi(w,z) because ¢1(w,z) < ¢1(w,t). Thus, hi(w,z) # hi(w,x).
This means that D(w,z) < r + 1 < k, a contradiction. So, D(w,t) =k — 1.

Let now k& > 1. Then ¢ € mul(w). Suppose that lo(w,t) < ly(w,z). Put s =
hE=2(w,t). In view of (i), £1(w,t) < f1(w,s). Arguments similar to those from the
previous paragraph imply that D(w,s) = k — 2. According to Lemma sisa (k—2)-
divider of w. The choice of s guarantees that the first occurrence of s in w precedes
the second occurrence of t. On the other hand, the second occurrence of ¢ precedes the
second occurrence of x. Thus, the first occurrence of s precedes the second occurrence
of x. At the same time, the first occurrence of x precedes the first occurrence of s because
li(w,z) < Lyi(w,t) < £1(w,s). Therefore, the first and second occurrences of z in w lie
in different (k — 2)-blocks. Hence, D(w,z) < k — 1, a contradiction. =

LEMMA 3.10. Let u and v be words and £ be a natural number. Suppose that holds
and
hi M, x) = Wi (v,2)  fori=1,2 and all x € con(u). (3.6)

Then u and v have the same set of £-dividers.

Proof. Let t be an arbitrary (-divider of u. If ¢t € sim(u) then ¢ € sim(v) by (2.1).
Therefore, t is a 0-divider of v. According to Lemma i), t is an ¢-divider of v. Suppose
now that ¢ € mul(u). Then implies that ¢ € mul(v). Since t is an ¢-divider of u,
R (u,t) # kS H(u,t). Then hi~Y(v,t) # hS (v, t) by (3:6). This implies that ¢ is an
{-divider of v. Similarly we prove that if s is an ¢-divider of v then s is an ¢-divider
ofu. =

LEMMA 3.11. Let u and v be words and k be a natural number. Suppose that (2.1))
and (3.6) with £ =k hold. Then (3.6) holds with £ = s for any 1 < s <k.
Proof. If k=1 then the assertion is valid by the hypothesis. Suppose now that k > 1.

Let (3.4) be the (k — 1)-decomposition of u. In view of Lemma the (k — 1)-decom-
position of v has the form (3.5)). Let s < k be least such that (3.6) with ¢ = s is false.
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Then there exists a letter  such that hi~'(u,z) # hi ! (v, x) for some i € {1,2}. By the
definition of (i, s — 1)-restrictors, hi~*(u,z) and h{ (v, ) are some (s — 1)-dividers of
u and v respectively. Lemma [3.5(i) implies that (s — 1)-dividers of u and v are (k — 1)-
dividers of these words. Therefore, hf_l(u7 x) =t, and hf_l(v,x) = t, for some p # g.
We may assume without loss of generality that p < ¢. By the hypothesis, hf_l(u,x) =
hf‘l (v, ), whence this (i, k — 1)-restrictor of « coincide with ¢,, for some n. Clearly, n > ¢
because s < k. Since ¢, precedes the ith occurrence of z in u, we have ¢1(u, t,) < ¢;(u, x).
Since t, is an (i, s — 1)-restrictor of x in u, there are no (s — 1)-dividers of u between the
first occurrence of ¢, and the ith occurrence of x in u. In particular, ¢, is not an (s — 1)-
divider of u. Further, Lemma/3.7|implies that D(u,t,) > s—1. In particular, D(u,t,) > 0,
whence ¢, € mul(u). If s = 1 then ¢, is a 0-divider of v, whence ¢, is simple in v. This
contradicts (2.I). Thus, s > 1. This means that h{ >(u,t,) = h3 *(u,t,). Since (3.6)
holds with ¢ = s — 1, we obtain hj~%(v,t,) = hi %(v,t,). According to Lemma
Ry 2(v,t,) = hy 2(v,t,) for all r < s. Then D(v,t,) > s — 1. Lemmaimplies that ¢4
is not an (s — 1)-divider of v, which contradicts t, = hi~'(v,z). =

LEMMA 3.12. Let u and v be words and k be a natural number. Suppose that
and (3.6) with ¢ = k hold. Then, for any letter x € con(u), D(u,z) = k if and only if
D(v,z) =k.

Proof. In view of Lemma [3.11] (3.6) holds with £ = s for any 1 < s < k. Suppose that
D(u,z) = k. This implies that

W (v,2) = kT (we) = hy T (u,2) = hy T (v, @)
whenever 1 < s < k but
RN (v, ) = BY M (u, ) # hE Y (u, 2) = hE (v, ).
This implies that D(v,z) = k. By symmetry, if D(v,z) = k then D(u,z) = k. »

LEMMA 3.13. Let w be a word, r > 1 be a number and y be a letter such that D(w,y) =
r — 2. Then if t(w,z) < {1(w,y) for some letter z with D(w,z) > r then la(w,z) <
El (Wa y)

Proof. Let z be a letter with ¢;(w,2) < ¢;(w,y) and D(u,z) > r. Lemma implies
that y is an (r — 2)-divider of w. Then if ¢;(u,y) < f2(u,z) then the (r — 2)-divider
y is located between the first and the second occurrences of z in u. This contradicts
the equality A} %(u,z) = h5 2(u,z). The case f1(u,y) = l(u,z) is also impossible.
Therefore, l3(w,z) < £1(W,y). m

Below, in order to facilitate understanding of our considerations, we will sometimes
write the number in brackets over a letter to indicate the number of occurrences of this
letter in the given word; for instance, we may write

(1) (1) (2) (1) (2) (3)
W = 212221 X3T2T7 .

LEMMA 3.14. Let u = v be an identity and s be a natural number. Suppose that (2.1))
and (3.6) with £ = s hold and there is a letter x5 such that D(u,zs) = s. Then there
exist letters xo,x1,...,xs—1 such that D(u,x,) = D(v,z.) =r for any 0 < r < s and
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the identity u ~ v has the form

(1) () (2) (1) (2) (1)
U2s41 Ts U2s Ts—1 U2s—1 Ts U25—2 Ts—2 U253 Ts—1 U254 T5—3

2 (1) (2) (1) (2)
cU2s—5 Ts—2 * -+ Ug T1 U3 T2 U2 To U1 T1 U

~ (1) (1) (2) (1) (2) 1)
N V2s41 Ts V25 Ts—1 V25—1 Ts V25—2 Ts5—2 V253 Ts—1 V2s—4 Ts-3

(2) (1) (2) (1) (2)
" V255 Tg—2 "+ V4 T1 V3 T2 Vo T V1 L1 Vo (3.7)
for some possibly empty words ug,uy,..., U511 and Vo, Vi,...,Vasi1.

Proof. In view of Lemma holds with ¢ = r for any 1 < r < s. We use this fact
below without references.

Put .1 = h§ '(u,zs). Now (B.6) with ¢ = s implies that h5 '(v,zs)
= hy '(u,zs) = z, 1. According to Lemma D(u,zs-1) = s — 1 and {j(u,z,) <
lij(u,z5_q) for any j = 1,2. Recall that D(u,z,) = s. According to Lemma
D(v,xzs) = s. Now we apply Lemma again to obtain D(v,zs;_1) = s — 1 and
li(v,xs) < Lj(v,xs_1) for any j =1,2.

Further, put z,_ = h3 ?(u,z,_1). According to Lemma D(u,zs-2) = s — 2
and /;(u,zs-1) < £j(u,zs_2) for any j = 1,2. Now with £ = s — 1 implies
that hy 2(v,zs 1) = hy 2(w, 2, 1) = z,_o. We again apply Lemma to obtain
D(v,z5_9) = s — 2 and {;(v,z5_1) < {;(v,x5_2) for any j = 1,2. Since ¢1(u,z,) <
l1(u,51) < 61(u,z5_2), we have lo(u, z5) < £1(u,z5_2) by Lemma [3.13] Analogously,
(v, xs) < Uy (V,T5_2).

Continuing, we define the letters x,, = hi(u, z.41) for r =s—3,s—4,...,1 and prove
that D(u,z,) = D(v,z,) =7, {j(0,zr41) < {(w,z,), (v, xr41) < (v, z,) for any
i=12l(u,z,42) < l1(u,z,) and lo(v,zr40) < l1(V, ;).

Finally, put o = h9(u,z1). According to Lemma D(u,z) =0 and ¢1(u,z1) <
41(u, zp). Now with ¢ = 1 implies that hS(v,z1) = h3(u, 21) = 9. We again apply
Lemma[3.9)to obtain D(v,zg) = 0 and 1 (v, z1) < {1(v,z0). Since {1 (u, z2) < {1(u,z1) <
41 (u, zp), we have £a(u, 22) < £1(u, zo) by Lemma Analogously, l2(v, z2) <l1(v,zq).

In view of the above, the identity u =~ v has the form for some possibly empty
words ug, Uy, ..., Uzs4+1 and Vg, Vi,...,Vogi1. B

LEMMA 3.15. Let w =y - - -y, where the letters y1,...,yn are not necessarily pairwise
different. Further, let u = u'§(w)u” for some possibly empty words ' and u” and some
endomorphism & of F*. Put &(y;) = w; for alli = 1,...,n. If D(w,y;) > 0 then the
subword w; of u contains no r-divider of u for any r < D(w,y;).

Proof. Let 1 < ¢ < n and D(w,y;) > 0. Then y; € mul(w), whence con(w;) C
mul(§(w)) € mul(u). This implies that w; does not contain any O-divider of u. Let
now r > 0 be least such that there exists ¢ such that D(w,y;) > r but w; contains
some r-divider ¢t of u. The choice of r and Lemma imply that D(u,t) = r. Clearly,
t ¢ con(wy---w;_1), whence y; differs from yy,...,y;—1. Since y; € mul(w), there is
some j > i such that w; contains the second occurrence of ¢ in u. Put = h~'(u,t).
In view of Lemma i), £1(u,t) < ¢1(u,z). Then there is i < ¢ < j such that wy
contains the (r — 1)-divider z of u. In view of the choice of r, D(w,y,) < r — 1. This
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implies that y; # ys, whence ¢1(w,y;) < ¢1(w,y,). Further, since y; € mul(w), there
is p > j such that y; = y,. We note that ¢ < p because y, = y; # y¢. So, we obtain
b(w,y;) < bi(w,ye) < la(w,y;). Lemma implies that y, is an (r — 1)-divider of w,
whence hf ™ (w,y;) # by~ *(w,y;), contrary to D(w,y;) > 7. m

4. The proof of the “only if” part

Throughout this chapter, V denotes a fixed non-group chain variety of monoids. We aim
to verify that V is contained in one of the varieties listed in Theorem The chapter is
divided into three sections.

4.1. Reduction to the case when Dy C V. A variety of monoids is called aperiodic
if all its groups are singletons. Lemma [2.1] implies that SL C V. If V contains a non-
trivial group then the variety generated by this group is incomparable with SL. This
contradicts V being is a chain variety. Therefore, V is aperiodic, whence it satisfies the
identity 2" ~ z"*! for some n. If V is commutative then V C SL C C, for n = 1 and
V C C,, otherwise.

Further, if V is a variety of band monoids then Lemma[2.9]and the observation that V
cannot contain simultaneously the incomparable varieties LRB and RRB imply that V
is contained in one of these two varieties.

Suppose now that V is non-commutative and is not a variety of band monoids. Then V
is not completely regular because every aperiodic completely regular variety consists of
bands. Then Lemma [2.14] implies that Dy C V. To continue our considerations, we need
several assertions.

LEMMA 4.1. Let X be a monoid variety such that Dy C X. Then either X satisfies an
identity of the form

iyt ~ ya” (4.1)
where s > 1, t >0, s+t >2 and r > 2, or, for any identity u ~ v that holds in X, we

have
h)(u,z) = h(v,x)  for all x € con(u). (4.2)

Proof. Let u~ v be an identity that holds in X. The inclusion D; € X and Propo-
sition imply and . Hence if is the 0-decomposition of u then the
0-decomposition of v has the form . Suppose that is false. Then there is a let-
ter x € mul(u) such that h?(u,z) # h?(v,z). Now implies that = € mul(v). Further,
we may assume without loss of generality that there are i < j such that ¢; = h?(u, 2) and
t; = h{(v,x). Substituting y for t; and 1 for all letters occurring in the identity u ~ v
except x and ¢;, we see that X satisfies an identity of the form where s > 1, ¢t > 0,
s+t>2andr>2. m

When we make simultaneously several substitutions in some identity, say, substitute
u; for x; for i =1,...,k, then we will say for brevity that we perform the substitution

(xl,...,xk) — (ul,...,uk).4.2
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PROPOSITION 4.2. A non-trivial identity u = v holds in the variety E if and only if (2.1)
and (4.2) hold.

Proof. Necessity. Suppose that E satisfies u ~ v. The inclusion D; C E and Propo-
sition @ imply that this identity satisfies . Suppose that is false. Then
Lemma @ shows that E satisfies an identity of the form where s > 1, t > 0,
s+t >2and r > 2. Consider the semigroup

P={e,al|e®=e, ae=a, ea=0)={e,a,0}.
Note that E contains the monoid P!, i.e., the semigroup P with a new identity element

adjoined. Making the substitution (x,y) — (e,a) in (4.1]) results in the contradiction
0 = a. Thus, P!, and therefore E, violates (4.1]), a contradiction.

Sufficiency. Suppose that the identity u ~ v satisfies (2.1)) and (4.2)). Let (3.4)) be the
0-decomposition of u. In view of Lemma the 0-decomposition of v has the form (3.5)).

We are going to verify that u & v holds in E. Recall that E is given by the identity system

3

{22 ~ 23, 2%y =~ xyzx, 22y* ~ y?2?}. (4.3)

Put X = con(ug) = {x1,...,2x}. Clearly, no block of any word w contains letters simple

in w. Therefore, we may assume without loss of generality that ug = 2% - z7.

We will use induction on the parameter m from (3.4)) and (3.5).

Induction base. Let m = 0. Now implies that con(ug) = con(vp). Since the
variety E satisfies the identity
22y? ~ %22, (4.4)
it also satisfies vo &~ 2% - - - #7. Therefore, the identities
u = toug = tox%xg - xi ~tgvg =V
hold in E.
Induction step. Let now m > 0. The identity system implies the identity
ur tordas - xiti(uy)x -t (W) x.
By , con(ug) = con(vy), whence implies the identity
v torird - xit (Vi) x b (Vin) x -

Put ' = (u1)x - tm(um)x and v/ = (vi)x - tm(vm)x. It is easy to verify that
the identity u’ =~ v’ satisfies (2.1)) and (4.2)). By the induction assumption, the identity
u’ ~ v’ holds in E, whence this variety satisfies

u R torial - aitiu’ ~ tgried - ait v A V.
Thus, u = v holds in E. =

LEMMA 4.3. Let X be a non-completely regular variety of monoids. If E ¢ X and X
satisfies the identity
2~ (4.5)

then X also satisfies the identity

yr? ~ riyr®. (4.6)



20 S. V. Gusev and B. M. Vernikov

Proof. If X is commutative then by (£.5), X satisfies the identities yz? ~ yaz?* ~ z?y2?.
Suppose now that X is non-commutative. Then Lemma implies that Dy C X. Since
E ¢ X, there is an identity u ~ v that holds in X but fails in E. Then Proposition
shows that either or is false. Propositionimplies that is true because
C,; C D; C X. Therefore, is false. Now Lemmashows that X satisfies an identity
of the form where s > 1,t >0, s+t > 2 and r > 2. Substitute z? for = in this
identity. Since X satisfies (4.5), we conclude that holds in X. m

Let us return to the examination of a chain variety V. Recall that we reduce consid-
erations to the case when D; C V. Hence C3 QZ V because C3 and D; are incomparable.
Then Lemma and the fact that V is aperiodic imply that the identity holds
in V. Suppose now that Dy ¢ V. The variety V does not contain at least one of the
incomparable varieties E and E Assume without loss of generality that E ¢ V. The
dual of Lemma [£.3] then implies that V satisfies the identity

r?y ~ riyr®. (4.7)
Further, Lemma [2.15| implies that the identity
xyx ~ xlyx” (4.8)
with ¢ > 1 or r > 1 holds in V.
If u and v are words and ¢ is an identity then we will write u ~ v whenever the

identity u ~ v follows from e. If ¢ > 1 then V satisfies the identities

g l,qyxr—Q—Z = .132]].132 = ny

&= ,
zyr =~ xlyz

Recall that V satisfies too. Then Lemma [2.10[ii) shows that V C LRBV C,. Since
V is non-idempotent and chain, V C E by Lemma i). Therefore, V C K.
Suppose now that ¢ < 1. Then r > 1. If ¢ = 0 then V C RRB V Cy by the dual
of Lemma Mii) because V satisfies the identity (4.5). Since E ¢ V and V is not a
variety of band monoids, it follows from the dual of Lemma (1) that V C D; C D.
Let now ¢ = 1. Then V satisfies the identity

Ty ~ rys’ (4.9)

14.9]

because it satisfies (4.5). Therefore, the identities z?yx =
Thus, V satisfies

S
<
al\)

=~ 22y hold in V.

=%y ~ 2y (4.10)

Corollary implies that C2 C V. Therefore, LRB ¢ V. Hence there is an identity
u ~ v that holds in V but fails in LRB. The initial part of a word w, denoted by ini(w),
is the word obtained from w by retaining the first occurrence of each letter. It is evident
that an identity a = b holds in LRB if and only if ini(a) = ini(b). Hence ini(u) # ini(v).
Proposition implies that con(u) = con(v). Therefore, we can assume that there are
letters x,y € con(u) such that u(x,y) = z®yw; and v(z,y) = y'xwy where s,t > 0 and
con(wy) = con(ws) = {z,y}. Let us substitute 1 for all letters except x and y in u = v.
We find that V satisfies the identity z°yw; =~ y'zwsy. If s = 1 then we substitute z?
for z in this identity and obtain an identity of the form x?yw} ~ y‘z?w). Thus, we can
assume that s > 2. Analogously, we can assume that ¢ > 2. Moreover, the identity
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allows us to assume that s = ¢t = 2. Now we can apply to deduce an identity of the
form 22y* ~ y22™ where k,m > 1. Moreover, allows us to assume that k = m = 2.
We thus find that holds in V. This means that V C K.

It remains to consider the case when Dy C V.

4.2. Reduction to the case when L C V. Here we need some notation and a series
of auxiliary assertions. Let n and m be non-negative integers such that n +m > 0. For
any 0 € Sy4m, we put

Wp,m(6) = (f[l zztl)x(nlti: Zg(i))l'( "ﬁnl tizi),
i= i= i=n-

n n+m n+m
W;L,m(e) = (H Ziti)fUQ( H Ze(i))( H tzZz)

i=1 i=1 i=n+1
Note that the words w,, (7, 7) and w/, (7, 7) introduced in Chapter [I| are of the form
Win(0) and wy, , (0) respectively for an appropriate permutation 6 € Sa,.
LEMMA 4.4. The variety L satisfies the identities

Wom(0) ~ Wy, ., (0) (4.11)
for allm, m and 0 € Sy 11, .

Proof. Tt suffices to verify that each identity of the form (4.11]) follows from some identity
of the form
wy, (7, 7) &~ w (7, 7). (4.12)

To do this, we fix an identity of the form (4.11)), namely
Porqoxro ~ POIEQQOI‘O

where pg = 21ty -+ 2ptn, Qo = 20(1) """ 20(n+m) and ro = tnt12n+1 " tntmZntm. The
word g, may be uniquely represented as

qo = u1Vvy - UgVg

where con(uy - -ug) = {z1,..., 2, and con(vy - - - vi) = {zn41,- . -, Zn+m} (We mean here
that uy = A whenever (1) > n, and v;, = A whenever §(n +m) < n). Each of the words
ui,...,u; (except u; whenever u; = A) has the form zj, ---z;, where ji,...,js < n,
while each of the words vi,..., vy (except v whenever v, = ) has the form z;, - -- z;
where j1,...,js > n.

s

Suppose first that u; = A. Let z and ¢t be letters that do not occur in pgqeroz.
Put p’ = ztpy, @ = zqp and r' = ry. The identity p’zq’zr’ ~ p’z2q’r’ evidently
implies . Up to the evident renaming of letters, the identity p’zq’zr’ ~ p’z?q’r’
has the form indicated in the previous paragraph with u; # A. Thus, we can assume that
u; # \. Analogous arguments allow us to suppose that v # .

Let now wy = zj, --- 2, with ji,...,5s < n. Let 25, ¢, ..., 2% .  be letters
that do not occur in pgqoroz. Put p; = pg. Denote by q; the word obtained from qq by

replacing u; with 2;, 25, -z, ;2

i %, Finally, we put r1 = rot}, 2} -+, 2z The

J1701 Js—1%Js—1"
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identity poxqoxro ~ por2qoro follows from pirqizr; ~ pi1xz2qir; by substitution of 1

for Z;pt;'p . 72;.e_1’t;‘s_1'
Further, let vi = zj, -~ z;, where ji,...,js >n. Let 27 ;% ... 2% .1,  be letters
that do not occur in piqiriz. Put py = 25, ¢} ---z; t;  pi. Further, we denote by

g2 the word obtained from q; by replacing vy with z; 27 -+~ 25,27

put ro = ri. The identity pizqizr; ~ p122qir; follows from pszqears ~ pax’qers by
! / /

- tjl, e 25 tjs_l'

We continue this process and apply analogous modifications of our identity with the

zj,. Finally, we
substitution of 1 for z;

use of the words ug, va, ..., ug, vi. As a result, we obtain an identity of the form

P2k T2k T2k X PokT q2kT2k, (4.13)

which implies an identity of the form fixed at the beginning of the proof. We can
evidently rename the letters and assume that par = 211 -+ 2plp, Q2 = 2¢(1) ** * Z¢(p+q)
and rop = tp412p+1 - tprq2ptg fOr some natural numbers p,q and some permutation
€ € Sptq with £(7) < p for all odd ¢ and &£(7) > p for all even 7. It remains to verify that
p = q. For i = 1,... k, we denote the length of u; by n; and the length of v; by m;.
Then ny + -+ +ni =n and my + - - - + my = m. It is easy to see that

p=n+m—-+--+mpy—1)=n+m—k
=m+4+n—k=m+m —-1)+--+(np—1)=gq.
Therefore, the identity (4.13]) has the form (4.12). m

LEMMA 4.5. Suppose that a monoid variety X satisfies the identities
Tyzrzr ~ Yz, (4.14)
22y ~ ya? (4.15)

and (4.11)) for all n, m and 0 € S, ym. Let u be a word. If there is a letter x € mul(u)
such that u(z,y) # zyx for any letter y then X satisfies the identity

u =~ z’u,. (4.16)

Proof. Suppose first that occ,(u) > 2. Then u = ujzruszus - - - u,zru,41 where n > 2
and uy, ..., u,4+1 are possibly empty words with z ¢ con(u; - - - u,41). Clearly, u; - - - w41
= u,. Then X satisfies the identities

(4.14) 2 (4.15) 2
u = ujru2rus - - - uUplup41] ~ U1 U2U3--"Up41 ~ T UiU2---Up41 = T Ug,

whence (4.16)) holds in X.

It remains to consider the case when occ,(u) = 2. Then u = ujzuszrus and z ¢

.
con(ujugus). If ug = A then u = wyz?uz; = z*ujuz = 2%y, hold in X, and we are

done. Let now ug # A.

If y € con(uz) and y € sim(u) then u(x,y) = zyz, a contradiction. Thus, y € mul(u)
for any y € con(uz). Suppose that occ,(u) > 2 for some y € con(uy). Then we can use
the same arguments as in the first paragraph of the proof to conclude that X satisfies
u ~ y*u,. This identity can be rewritten in the form u ~ ujzu)zu} where u} = y?u;,
u) = (ug), and ujy = (us),. Thus, we can remove from u, all letters y with occ,(u) > 2.
In other words, we can assume that either uy = X or occy(u) = 2 for all y € con(uy).
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The former case has already been considered in the previous paragraph. Now we examine
the latter case.

Recall that a word w is called linear if occ, (w) < 1 for any letter z. Suppose that us is

linear, say, us = y; - - - Yy, for some letters yi, ..., yx. Then either y; € con(u;)\ con(us) or
y; € con(ug) \ con(uy) for any 1 < i < k. Renaming the letters y1, ...,y if necessary, we
may assume that yi,...,y, € con(uy) \ con(us) and yYp41, ..., Ynt+m € con(us) \ con(uy)

for some n and m with n +m = k. Then

U = U1TYg(1)Y6(2) = * Yo(n+m)TU3

for some 0 € S, 1,,. We also have

u; = Woy1WiyaWo - YWy and U3 = Wy 1Un 1Wni2Unt2 ** WotmYntmWnrmt1

for some possibly empty words wg, Wi,..., Wnitm41. Then X satisfies the identities
n n+m n+m
u = Wy (H ysz>5C< H ye@))»@( H Wiyi>wn+m+1
i=1 i=1 i=n+1
) n n+m n+m
(4.
Wo (H ini)fﬂz( H ye(i)) ( H Wiyi)wn+m+l
i=1 i=1 1=n—+1
) n n+m n+m
(4.15]
~ 2wy (H ini) ( H ye(i)) ( H Wiyi)wn-i-m-‘rl
i=1 i=1 i=n+1
= 2’u,.

We see that X satisfies the identity again.

It remains to consider the case when ug is not linear. Then there is a letter y € con(usz)
such that us = vyyvoyvs where vy, vo and vg are possibly empty words, y ¢ con(vivavs)
and vy is either empty or linear. If v is linear then the same arguments as in the previous
paragraph show that

u = u2viyveyvarus = yru, = yiu avivevarus = ujrurus
hold in X where u} = y?u; and u} = vivavs. If vy = A then

2 (.15) 2 / /
U= ujrviy virus < Y U1rvivzrus = U;TrUyrus

is valid in X where u} = y?u; and u) = v;vs. In both the cases, y ¢ con(u}). In other
words, we can remove the letter y from usy. Further, we can repeat these arguments as
long as the word us is non-empty and non-linear. In other words, we may assume that
U, is either empty or linear. Both these cases have already been considered above. Thus,
we have proved that X always satisfies . m

LEMMA 4.6. L = var S(zzayty).

Proof. Put Z = var S(xzayty). First, we verify that Z C L. In view of Lemma it
suffices to check that the word xzzxyty is an isoterm for L. Put

U = {2y ~ ya?, zyzze ~ 2%yz, 01, 09, Wy (m,7) = Wi (7, 7) | n €N, 7,7 € S, }.

We recall that L = var U. We suppose that L satisfies a non-trivial identity xzzyty ~ w
for some word w. Therefore, there exists a deduction of the identity zzxyty ~ w from
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the identity system W, i.e.; a sequence of words
V0, Vi, ey Vi (4.17)

such that vo = zzxyty, v, = w and, for any 0 < ¢ < m, there exist words a;, b;, an
identity s; ~ t; € ¥ and an endomorphism &; of F! such that either v; = a;&;(s;)b; and
vir1 = ;& (t;)b;, or v; = a;&(t;)b; and v;11 = a;&;(s;)b;. We can assume without loss
of generality that is the shortest such deduction. In particular, this means that
xzayty # vi. We note that if {o(x) = X then &y(sg) = &o(to) for any sp &~ tg € U. The
last equality implies that zzxyty = v, but this is impossible. Thus, we can assume that
o(z) # A.

Suppose that zzayty = vo = ap&p(sg)bo and v = ap€p(tg)bg. The case when sy =
22y is impossible because &y(sg) contains the square of a non-empty word, while zzzyty
is square-free. The case when sg = xyxzz is also impossible because there is a letter that
occurs in &y(sp) at least three times, while every letter from con(zzxyty) occurs in the
word zzzyty no more than twice. Finally, the case when sy = w,, (7, 7) for some n € N,
m, T € Sy, is impossible because there exists a letter ¢ € (x) such that ¢ is multiple in
&o(sp) and every letter located between the first and the second occurrences of ¢ in &y(sg)
is multiple, while for every d € mul(zzzyty) there is a letter e € sim(xzxyty) such that e
lies between the first and the second occurrences of d in zzxyty. So, the identity sy ~ tg
is either oy or o2. By symmetry, we can consider only the first case when sy ~ t( is
equal to o1. Then sy = zyzaty and tg = yrzaty. Since {o(x) # A, we see that con(&y(x))
contains a letter a. Then a € {z,y} because a € mul(£y(sg)). Suppose that a = x. Then
&o(y) = A because

zzzyty = aofo(so)bo = ao&o(z)&o(¥)0(2)80()80(t)E0(y)bo-
Therefore, &(to) = &o(2)80(2)80(2)E0(t) = &o(So). Then
vi = apéo(to)bo = apéo(so)bo = zzayty,

contradicting the choice of (4.17). The case a = y is handled similarly.
Suppose now that xzayty = vg = ag€o(to)bo. The case when

to € {y:z:Z, 2yz, w(m,7)|neN, m,17€eS,}

is impossible because £y(tg) contains the square of a non-empty word in this case, while
xzxyty is square-free. So, the identity sy = tg is either o1 or 3. Arguments similar to
those from the previous paragraph yield a contradiction with the fact that zzxyty and
v are distinct.

Thus, we have verified that xzzyty is an isoterm for L, and therefore Z C L. It
remains to verify the opposite inclusion. Suppose that Z satisfies an identity u ~ v. We
need to prove that u ~ v holds in L. Lemma [£.4] allows us to use Lemma Let = be
a letter multiple in u and u(z,y) # ayx for any letter y. By Lemma the variety L
satisfies the identity . Obviously, Cy C Z, whence x € mul(v) by Proposition
Since zzxyty is an isoterm for Z, xyx is an isoterm for Z too. Therefore, v(z,y) # ryx
for any letter y. Lemma [4.5] again shows that the identity v ~ 22v,, holds in L. Thus, if
2u, ~ 22v, ~ v. So, we can remove
from u =~ v all multiple letters  such that u(z,y) # zyz for any y. In other words, we

u, =~ v, holds in L then this variety satisfies u = z
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may assume that for any z € mul(u) there is a letter y such that u(z,y) = zyz = v(z,y).
In particular, occ,(u),occ,(v) < 2 for any letter x.

Lemma [2.1] and the evident inclusion Cy C Z imply that con(u) = con(v). It is clear
that for any a,b ¢ con(u), the identities ua v and aub ~ avb are equivalent in the
class of monoids. Therefore, we can assume that the first and the last letters in each
of the words u and v are simple in that word. Let sim(u) = sim(v) = {to,t1,...,tm}.
We can assume that v(t1,...,t,) = t1--tp. In view of Lemma D; € Z. Then
Proposition implies that

u = tpartiasty - - typ_1amt, and v =tobitiboty -ty _1bpty,

for some possibly empty words ai,...,a, and by,...,by,.
Let O < ) <m— 1. Then u = wltiai+1ti+1w2 where

toaity - - t;_14; if0<i§m—1,
W1 =
A ifi—0,

Aipotirorapty, f0<i<m-—1,
Wo —
A ifi=m-—1.

We are going to check that
a;11 = wjujugul - - uguy, (4.18)

and therefore u = wit;uyujugul - - - uput; 1 wo for some possibly empty words ug, uj,
and non-empty words uj,ug, uj,...,u; such that con(u;) C con(w;) and con(u}) C
con(wsy) for all j =1,...,k. If a;11 = A then holds with k =1 and u; = uj = \.
Suppose now that a;11 # A. Let © € con(a;11). Then 2 € mul(u). There is y € sim(u)
with u(z,y) = zyz. Suppose that € mul(a;+1). Then zyz is a subword of a;q. This
means that y is simple in a,;11. But this is not the case because y # t; for any 0 < j < m.
Thus, z is simple in a;, 1, whence & € con(w;ws). We have proved that every letter from
con(a;11) is simple in a;41 and occurs either in wy or in wa.

Let u; be the maximal prefix of a;; such that con(u;) C con(wy) (if the first letter
of a;41 does not occur in wy then u; = A). Then a;y; = u;b for some possibly empty
word b. If b = X then holds with £ = 1 and uj = A. Otherwise, let uj be the
maximal prefix of b such that con(u)) C con(wsz). Then a;,1 = ujuc for some possibly
empty word c. If ¢ = A then holds with & = 1. Otherwise, let uy be the maximal
prefix of ¢ such that con(uz) C con(w;). Continuing this process, we obtain (4.18).

Put

, {tobﬂfl"-ti_lbi if0<i<m-—1,
Wi =

A if i =0,

W — bi+2ti+2'~'bmtm ifo<i<m-—1,
S P if i =m—1.

The same arguments as above show that b;11 = vivivav).--v,v] for some natu-
ral r, possibly empty words vi,v.. and non-empty words v{,va,v), ..., v, such that
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con(v;) C con(w}) and con(v’;) C con(wy) for all j = 1,...,r. Therefore,

! / / / /
V =W l;V1V|VaVy - V.V 1 1 Wy

Further, we may assume that k£ > r. We are going to verify that & = r, con(u;) = con(v;)
j

Let x € con(uy). As shown above, u(x,t;) = zt;x. Therefore, v(x,t;) = zt;x too,
whence occ, (w}) = 1. Note that v(z,t;,1) # ot;1 12 because u(x,t; 1) = v2t;,1. There-
fore, x ¢ con(w}), whence x € con(vy ---v,). If ¢ con(vy) then z € con(v,) for some
p > 1. Then there exists y € con(v,_;). Note that u(y,tiy1) = v(y,tiv1) = ytit1y.
Therefore, y € con(wg), whence y € con(u}) for some 1 < j < k. Then u(z,y,t;,ti11) =
atixytiv1y, while v(z,y,t;,ti41) = xt;yrt;1y. This contradicts at;xyt; 11y being an
isoterm for Z. Thus, = € con(vy), whence con(u;) C con(vy). Analogously, con(vy) C

and con(u}) = con(v}) for all j =1,...,7.

con(uy ). Therefore, con(u;) = con(vy).

Let x € con(u}). As shown above, u(x,t; 1) = xt;12. Therefore, v(x,t;11) = xt; 112
too, whence occ,(wj) = 1. Note that v(z,t;) # xt;x because u(x,t;) = t;x. Therefore,
x ¢ con(wy), whence x € con(v)---vy). If x ¢ con(v]) then 2 € con(v}) for some
p > 1. Then there exists y € con(v,). Note that u(y,t;) = v(y,t;) = yt;y. Therefore,
y € con(wy ), whence y € con(u;) for some 1 < j < k. Note that y ¢ con(u,). Indeed, if
y € con(uy) then y € con(vy) because con(u;)=con(vy). Hence occy(v) >occ, (vivywy)
> 3, a contradiction. So, y € con(u;) for some 2 < j < k. Then u(z,y,t;,tip1) =
xtixytip1y, while v(z,y,t;,ti41) = xt;yxt;1y. This contradicts at;xyt; 11y being an
isoterm for Z. Thus, = € con(v}), whence con(u}) C con(v}). Analogously, con(v}) C
con(u}). We have proved that con(u}) = con(v}).

Repeating the arguments from the previous two paragraphs with evident modifica-
tions, we can check that con(u;) = con(v;) and con(u}) = con(v}) for i =2,...,r.

If & > r then there is a letter € con(u,41). As shown above, u(z,t;) = at;z.
Therefore, v(x,t;) = at;xz too, whence occ,(w]) = 1. Note also that v(z,t;41) =
u(z,tir1) = 2t;y1. In particular, v(z,t;11) # t; 2. Therefore, 2 ¢ con(w)), whence
x € con(vy---v,). Then z € con(u; - - - u,) because con(u;) = con(v;) for i = 1,...,7.
Thus, occ,(u) > occy(Wiug ---u,41) > 3, a contradiction. Therefore, k = r.

We have proved that k = r, con(u;) = con(v;) and con(u}) = con(v}) for all ¢ =
1,...,k. Fix s € {1,...,k}. Then u, and v, are linear words depending on the same
letters. The same is true for u/, and v,. The identity oy [respectively og] allows us to
swap the first [the second] occurrences of two multiple letters whenever these occurrences
are adjacent to each other. Therefore, the identities o1 and o9 allow us to reorder letters
within u; and u in an arbitrary way. Thus, if we replace us; by vs and u/, by v/ in u
then the word we obtain should be equal to u in L. This is true for all s =1, ..., k. Hence
L satisfies the identities

/ / /
u = wit;a;41t;41Wo = Wit;ujujUaUy - - - UpUyt;41 Wo

~ / ! / —
~ WltiV1V1V2V2 s VkatH_lWQ = Wltibi+1ti+1w2-

Thus, if we replace a; 11 by b;41 in u then the resulting word should be equal to u in L.
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This is true for all s = 0,...,m — 1. Therefore, L satisfies the identities
u = thltlaQtQ o tnL—lamtm ~ t0b1t1b2t2 o tnL—lbmtnL =V.
The lemma is proved. m

Lemma and |8/ Lemma 5.10] imply that any proper subvariety of L is contained
in var S(zyz). Lemmas [2.7| and [2.8) now imply

COROLLARY 4.7. The lattice L(L) is the chain TC SLC Co CD; C Dy C L. n

A non-finitely based variety all whose proper subvarieties are finitely based is called
limit. The variety var S(zzzyty) is limit by [8, Proposition 5.1]. Thus, Lemma[4.6]implies

COROLLARY 4.8. The variety L is a limit variety. In particular, it does not have a finite
basis of identities. m

According to the result of |[11] mentioned in Chapter |1} there are uncountably many
periodic group varieties whose subvariety lattice is the 3-element chain. Let G be the class
of all such varieties. Since the class of finitely based group varieties is countably infinite,
the class G contains non-finitely based varieties. Group varieties whose subvariety lattice
is the 2-element chain are varieties of Abelian groups of a prime exponent. They are
finitely based. Thus, all non-finitely based varieties from G are limit varieties. But explicit
examples of limit chain group varieties have not been published so far.

We denote by M the subvariety of N given within IN by the identity

Q1 T1Y1ToT1Y1 = Y1X1ToT1Y1-

Note that a; belongs to a countably infinite series of identities ay, that will be defined in

Section [6.1]
LEMMA 4.9. Let X be a monoid variety and Do C X.

(i) If L& X then X satisfies the identity 1.
(ii) If M ¢ X then X satisfies the identity o.

Proof. (i) According to Lemmas and the variety X satisfies a non-trivial identity
of the form zzzxyty ~ w. Note that zyz is an isoterm for X by Lemmas and
Then [20, Fact 4.1(i)] implies that w = zzyxty. Therefore, v, holds in X.

(ii) According to Lemmas[2.3|and 2.7} zyz is an isoterm for X. Further, the variety M
is generated by the monoid S(xyzxty) (this fact is dual to Proposition 1 in Erratum to [g]).
Then S(zyzaty) ¢ X, whence X satisfies a non-trivial identity of the form zyzaty ~ w
by Lemma [2.3] Fact 4.1(ii) of [20] implies that w = yzzaty. Therefore, oy holds in X. m

We return to the examination of a chain variety V. In Section we have reduced
the considerations to the case when Dy C V. Then E € V because Dy and E are non-
comparable. The variety V satisfies by Lemma Similarly, the fact that E <V
implies that V satisfies (4.7) by the dual of Lemma Hence holds in V. If V
contains neither L, M nor M then Lemma and the dual of its claim (ii) imply that
V satisfies 01, 02 and 71, whence V C D.
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It remains to consider the case when V contains L, M or ﬁ Then V does not contain
D3 because L, M and ﬁ are non-comparable with D3. Lemma and the fact that V

satisfies imply that holds in V.
Let M C V. Then V contains neither L nor M Lemma i) and the dual of
Lemma ii) imply that V C N. Dual arguments show that if M C V then V C N.
We have reduced our considerations to the case when L C V.

4.3. The case when L C V. Clearly, here M, M ¢ V. Lemma ii) and its dual imply
that 'V satisfies the identities o1 and o2. As we have already seen above, V satisfies (4.14)
and (4.15) as well. Thus, V is contained in

O = var{2?y ~ ya?, zyrzze ~ 2yz, 01, 02}.

To complete the proof of the necessity in Theorem it suffices to verify that V C L.
To this end, it remains to check that V satisfies all identities of the form where
n is a natural number and m,7 € S,,. To do this, we need several auxiliary claims. Let
neN,0<k</l/<nandmwTe€ls5, Pu

n k L
Wfﬂe(ﬂa T) = (H Ziti> (H Zﬂ(i)ZnJrT(i))iI?( H Zﬂ(z’)ZnJrT(i))z
=1 =1 i=k+1
n 2n
( H Zw(i)zn+7(i)>< H tizz)

i=0+1 i=n+1

0,0

We note that wo"(m,7) = w, (7, 7) and w20 (m, 1) = w/, (7, 7).

LEMMA 4.10. Let X be a monoid variety such that L C X C O, n be a natural number
and w,7 € Sy. If S(wy(m,7)) ¢ X then X satisfies a non-trivial identity of the form

W (m,7) =~ wh(r, ) (4.19)
for some 0 < k </ <n.
Proof. Suppose that S(wy, (7, 7)) ¢ X. Then Lemma[2.3|shows that the variety X satisfies

a non-trivial identity of the form

2n

wy(m,7) = (ﬁ ziti>x(ﬁ zw(i)zn+7(i)>m( H tizi) ~W. (4.20)
i=1 i=1

1=n—+1
Put a = z;(1), b = tr(1)2r(1)+1tr(1)+1 " " ZntnT, € = 2p4r(1) and
d= Zr(2)Rn+7(2) """ Zﬂ(n)zn+7(n)xtn+lzn+1 c tn+7’(1)7lzn+7(1)71tn+r(1)'

The word wy, (7, 7) contains the subword abacdc. Therefore, the submonoid of S(w,, (7, 7))
generated by a, b, ¢ and d is isomorphic to S(zzzyty). Now Lemmas and imply
that zzxyty is an isoterm for X. Now we are going to verify that

ly(w, 2;) < 1(W,2n45) if and only if  lo(Wy (7, 7), 2;) < by(Wi (T, T), 2n4j)  (4.21)

for any 1 < 4,7 < n. Indeed, let 1 < i,7 < n. The word zyzx is an isoterm for X. Since
Wy (7, T)](2i,t;) = zitizi and (Wi (7, 7)](Zn44, tntj) = Zntjtntjzntj, and (4.20) holds



Chain varieties of monoids 29

in X, we have w(z;,t;) = zitiz; and W(2ntj,tntj) = ZntjtntjZntj. The variety X is

non-commutative, whence ¢1(w,t;) < £1(w,t,,4;). Therefore,

(
(w,
W(2iy tntj) = [Wa(m, 7)](2i, tatj) = 2; tn+]v
W(2n ), ti) = (Wi (0 77—)}(zn+mt') =1 Zn+g
Summarizing, we have
W(2i, tiy tngg) = [Wi(m, 7)](2i) tis tngj) = ZitiZitng s,
W(znjs tistnaj) = [Wolm, )] (2o, tis tntg) = tiznajtngiZng-

Suppose that lo(w,z;) < £1(W, z,1;). Then the observations in the previous para-
graph imply that w(z;, 2nyj, ti, tatj) = 2itiZiZntjtntjZntj. Since xzayty is an isoterm
for X, we have

(Wi (7, 7)) (205 Zntjs tis tng) = ZitiZiZntjtntjZnes = W(Zi, Zntjy tis tngg ),
whence lo (W, (7,7),2;) < b1 (Wi (7, T), Zntj)-

Suppose now that fo(w, (7, 7), 2;) < £1(Wyp(m,T), Zn4;). Then

[Wn (7'(', T)} (Zi7 Zn4j, ti, tn+]‘) = zitiziznﬂtnﬂ-znﬂ.

Now we apply the fact that xzzyty is an isoterm for X again to obtain

W(Ziy Zntj, tis tngs) = (W (T, T)](2is Zntjs tis tagj) = ZitiZiZngjtngjZntj

whence lo(w, z;) < £1(W, Zp1j).

Thus (4.21) is proved. Then
i=1 i=1

i=n+1
Being a subvariety of O, the variety X satisfies the identities zyzzz ~ z2yz ~ yzz2.

Therefore, we can assume that occ,(w) = 2 for any = € con(w). So,

2n
(Hp2z 12:P2i z)qO<Hz7r(7, q2i— lzn+r(z)q2z)< H tir2i72nflzir2if2n)

i=1 1=n—+1

(f[l Pi) (ﬁ) qi) <f[1 l“z') = 22

Suppose first that = € con(pgj_1p2;) for some 1 < j < n and j is the least number
with this property. If pp;j_1p2; = = then

2n 2n 2n
(IT »o)(ITa) (I =) ==
i=2j+1 i=0 i=1
It can be easily verified directly that substituting 1 for all letters except  and ¢; in
we obtain the identity ;2% &~ xt;z. But this is impossible because zzz is an isoterm for X.
ThCI‘CfOI‘C, p2j—1p2j = 132, i.C., either p2j—1 = p2j = X Oor p2j—1 = 132 or ij = 132. If

where
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P2j—1 = P2j = x then X satisfies the identities

n n 2n
Wy (m,7) =" w = (H 2 1>xzjxtj( H )(H (i) Zntr (i) )( H tizi)
i=j+1 i=1 i=n+1
n 2n
(’L‘l’ (H Zi 1)2]50 t; ( H tz) (H zﬂ(i)zn+7(,-))( H tlzz)
i=j+1 i=1 1=n+1
(T ([T owoeo) (T 1)
=1 =1 i=n+1
= w(m7T)= WO O, 1),

and we are done. If py;_1 = z? or p2j = 22 then we can apply and obtain the
required conclusion. So, we can assume that pp - - - pa2, = A.

The case when x € con(rgj_ire;) for some 1 < j < n can be considered quite
analogously to the previous case with the use of the identity oy rather than o;.

Finally, let 2 ¢ con(py - - - P2n) and @ ¢ con(ry - - - r,). Then qoqs - - - qa2, = 2. Note
that either ¢ con(qp) or ¢ con(qa,) because otherwise is trivial. Assume
without loss of generality that z ¢ con(qp), whence q; -+ - qq2, = 2. Let © € con(qy)
and k is the least number with this property. If q; = 22 then yields the required
conclusion. Suppose now that z € con(qey1) for some k < ¢ < 2n — 1.

Each occurrence of x in w lies either in a subword like 27(;yZ2,4-(;) or in a subword
like 27 (i) 2n4r(i)T2n(i+1) Zntr(i+1)- We need to verify that w is equal in X to some word
which has the same structure as w but contains only occurrences of x of the second type.
If both occurrences of x in w are of the second type then we are done. Suppose that both
are of the first type. Then X satisfies the identities

wy(m,7) "W = (ﬁ ziti) (kl:[l Zr (i) Zntr (i) )zw(k TZngr (k) ( H 2 (i) Zntr (i) )
i=1 i=1

i=k-+1
n 2n
: Z7r(€+1)xzn+7'(€+1)< H Zﬂ(i)ZTL+T(i)) ( H tlzl)
=042 i= n+1

= (H Zm) (H ZW(%)ZTL-‘rT(Z)) Zr(k) xzn+7(k)( H zﬁ(z)zn+7(z))
‘ i=k+1
( H ZT{"LZTL+T’L)( H tZl)

1=0+1 1=n—+1

= (f[l ziti> (H Zr(i)#n+7(3) ) ( H (i) Bn+ (i) )

1=k+1

' ( ﬁ Zﬂ(z‘)zn+r(i))( H tizz‘) =w,"(m,7)

i=0+1 i=n+1
(for the reader’s convenience, we have underlined pairs of adjacent letters that are trans-
posed by o1 or o3). Finally, if two occurrences of z in w are of different types, then we
can use analogous but simpler arguments. If an occurrence of the first type lies in qg
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[in q+1] then it suffices to apply the identity oy [respectively o] only. Thus, in all cases
an identity of the form (4.19) holds in X. =

LEMMA 4.11. Let m be a natural number, 0 < k <l <m, q={—k and 7,7 € S,
Then there are permutations p,o € Sq such that the identity w,(p, o) = wi(p, o) implies

the identity wk (7, 7) ~ wkF(r, 7).
Proof. For convenience, we put {2x(k41), Zr(k+2)s - - > Zn(6)} = 1Zp1»>--+» 2p, ) and
{Zm+7'(k+1)a Zm+7(k+2)7 SR Zm-ﬁ-'r(é)} = {zrl P qu}

where 1 <p; <---<p; <m <1y <--- <1y <2m. The word wkt(7 1) has the form

UoZp, U1+ * * Zp WL 2 (k1) Zmtr(k+1) * " Zr(€) PmAr () TWq+1 2y * " U2q 27 U2g+1

where
p1—1
U = H Zz iy
Ps+1—1
us =t,, H zit; forall 1 <s<g,
i=ps+1
m
Ug = tpq( H tz) (H 21 (i) Fm+T(4) )
i=pg+1
m
Ug+1 = ( H (i) FmA-T z))( H tzz) ris
i=0+1 1=m-+1
rs—1
Ugtiqs = ( H t zl)t forall 1 <s<gq,
i=rs_1+1
Ugq41 = H tlzl
i=rq+1
We are going to rename all letters except = in w¥:(, 7). First, we rename all letters
from
k.t
con(W (7, 7)) \ {2, Zpys ooy Zpys Zrys o ooy 2y )}

to some pairwise different letters that do not occur in w&*(r

the substitution

7). Further, we perform

(Zpiseevs Zpgr Zrys s 2rg) 7 (21,0003 20, 2g41, - - - 22g)-
As a result, we get the word
u =u iz zul 2,2 ceez W, Zgg1 - - U, ZogUL
= Upz1y qUqt2p(1)2q+o(1) p(9)?q+0o(q) TUg+1%q+1 2¢~2qU2¢+1

for some p, o € S; and some words ug, uj, ..., uh, .
Now we can perform the substitution (ti,...,t2,) = (uj,...,u3,) in the identity
wy(p,0) = wy(p, o). We get the identity
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ZUY  2qUgTZp(1) Zgto (1) Zplq) ato (@) TUg i1 Zg+1 7 UagRag
~ziuy e un;xzzp(l)zﬁa(l) " Zp(g) Zqtolq) g1 Za1 " Uy 22g-
We apply this identity to the word u’ and obtain the identity
u' A~ gz - un;x2zp(1)zq+o(1) © Zp(q)Zqto(q) Uy 171 T Uog gy -

Now we implement the reverse renaming of letters (to the one described above). We
obtain the identity

k.t N 2
W (T, 7) R Wo2p, Uy -+ 2p, UgZ™ 2 (g 1) Zntr (k1) * * * Zre(€) Zmepr (£) T
© Ug412ry © 0 U2gRr, U2g+1

= whk(r, 7).

The lemma is proved. m

Now we are well prepared to complete the proof of necessity of Theorem Recall
that we have reduced our considerations to the case L C'V C O. We denote by K the
class of all varieties of the form var S(w,, (7w, 7)) where n € N and 7,7 € S,,. It is clear that
L C X whenever X € K. We use this fact below without explicit mention. Let X € K.
We are going to verify that X contains at least two incomparable subvarieties from .

For any ¢ € S,,, we define the following two permutations from S, 42:

(1 2 3 4 5 e n+2
51(§<1>+2 1 )

2 2)+2 £B)+2 ... &n)+2
(1 23 4 5 ... n+2
b2 = (5(1)+2 2 1 €2)+2 €B3)+2 ... g(n)+2>'
We have X = var S(w,(m, 7)) for some n, 7 and 7. Let T} = Sp12(m1,71) and Ty =

Snt2(ma, ). If T1 ¢ X then Lemma allows us to assume that X satisfies a non-
trivial identity of the form w,,o(m,71) =~ wﬁ’fz(m,ﬁ) for some 1 < k < ¢ < n+ 2.
Then we substitute

e 1 for 21y 22y Zn+3y Ant4, tlv t27 tn+3 and tn+47
e z;_o for z; whenever 3 <i<n+ 2 and z;_4 for z; whenever n +5 <1 < 2n + 4,
e t;_o for t; whenever 3 <i <n+ 2 and t;_4 for t; whenever n +5 < i < 2n + 4.

Thus X satisfies the identity w,(m,7) ~ wit(7,7) where s = 1 whenever k¥ < 3 and
s = k—2 whenever k > 3, while t = 1 whenever £ < 3 and t = ¢/ — 2 whenever £ > 3. Since
s > 1, this identity is non-trivial. This contradicts the fact that X = var S(w,, (7, 7)) and
Lemma [2.3] Thus, we have proved that 77 € X. Analogously, T» € X.

Suppose that 77 € var7T;. Then Lemma shows that w,,2(m,71) is an isoterm
for varTs. At the same time, it is easy to verify that varTh satisfies wy,4o(m1,71) &
w, 12 (m1,71). Therefore, var T} Q var T5. Analogously, var Ty Q var 1. We see that var T
and var T, are incomparable. Moreover, it is evident that these two varieties lie in K.

Thus, if X = var S(wy,(m,7)) for some n, 7 and 7 then X is not a chain variety.
Therefore, S(w, (7, 7)) ¢ V for all n, 7 and 7. For any n, we denote by ¢ the triv-
ial permutation from S,,. Then S(w(e,€)) ¢ V. According to Lemma [4.10} V satisfies
a non-trivial identity wi(e,¢) ~ whi’(e,e) with 0 < k < £ < 1. Since w?%e,e) =
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w)(g,e), wil(e,¢) = wi(e, ) and the identity w1 (e,¢) ~ wh’(e, ) is non-trivial, V sat-
isfies w1 (g,e) ~ W) (e,¢) or wi(e,e) ~ wi'(e,¢). Clearly, the latter identity together
with implies the former. Thus, V satisfies wy(e,¢) = wi(e,¢).

Thus, there is a number n such that V satisfies the identities for all w,7 € S,
(for instance, n = 1). We are going to verify that every n has this property. Towards
a contradiction, suppose that the above claim is true for 1,...,n but false for n + 1.
Let 71,71 € Spy1. Since S(wpt1(m1,71)) ¢ V, Lemma implies that V satisfies
Wya1(m, 1) = WZ’_il(ﬂ'l,Tl) for some 0 < k < ¢ < n + 1. Suppose that k < ¢. Then
Lemma with m = n+ 1, 7 = m and 7 = 7; shows that there exist p,o0 € S;_j
such that the identity wo_i(p,0) =~ wj_,(p,o) implies wﬁfl(m,ﬁ) ~ wﬁfl(m,n).
The former identity holds in V because ¢ — kK < n. Thus, in any case V satisfies
Wyt (m, 1) = wifl(m,ﬁ). Note that wﬁfl(m,n) = wgﬁl(m,ﬁ) =w,(m1, 7).
Therefore, wy, 1 (71, 71) = W/, (71, 71) holds in V for any 71,71 € Sy,41. This contradicts
the choice of n. So, the variety V satisfies the identities for all n and 7,7 € S,
whence V = L.

We have thus completed the proof of the “only if” part of Theorem

5. The proof of the “if” part: all varieties except K

In this and the following chapters we are going to prove that if X is a subvariety of one of
the varieties listed in Theorem then X is a chain variety. Since the property of being
a chain variety is inherited by subvarieties, we can assume that X coincides with one of
the varieties listed in Theorem By symmetry, we can exclude the varieties K and
Thus, it suffices to verify that C,,, D, K, L, LRB, N and RRB are chain varieties. Here
we consider all these varieties except K, which will be examined in the next chapter.

Lemmas and (1) and Corollary immediately imply that D, L, LRB and
RRB are chain varieties.

PROPOSITION 5.1. The lattice L(C,,) is the chain
TcSLcCyc---CC,.

Proof. Let V.C C,. Then V is commutative and aperiodic. If Co SZ V then V is
completely regular by Corollary Then V C SL, whence V coincides with either T
or SL. It remains to verify that if Co C 'V C C,, then V = C; for some 2 < s < n. We
will use induction on n. If n = 2 then the assertion is obvious. Let now n > 2. Suppose
that V # C,,. Then Lemma implies that V satisfies the identity 2"~ ~ 2™, whence
V C C,,_1. By the induction assumption, V = C; for some 2 < s<n—1. m

It remains to consider the variety N.
PROPOSITION 5.2. The lattice L(N) is the chain
TcSLcCy,cD;cDy;cMCN.

Proof. First of all, we are going to check that N satisfies identities of the form (4.11])
for all n, m and 0 € S,y Indeed, w,, ,,(0) = prqer where p = z1t1 -+ 2ptn, q =
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29(1) """ 29(n4m) A T =ty 12p41 -+ - bygmZnym. Suppose first that 6(n +m) < n. Then

o) ) @ @
Wn,m(e) =z1t1- - 20(n+m) t9(n+m) o Zptp X 20(1) " 20(n+m) L T-
We see that the second occurrences of the letters zg(,4 ) and x in w,,,m(6) are adjacent
to each other. The identity o5 allows us to swap these occurrences. In other words,

Wn,m(e) g'é PZzZg(1) " 29(n+m—1)T20(n+m)Y-
Suppose now that #(n 4+ m) > n. Then

) o @ @
Wn,m(e) =p T ZG(I) e Z@(ner) x tn-‘rlzn-‘rl e t@(ner) Z@(ner) e tn+mzn+m~
We see that the first occurrence of zg(,,+m) and the second occurrence z in wy, ,,(6) are
adjacent to each other. The identity ~y; allows us to transpose these occurrences. In other
words,

Y1
Wom(0) = PZZg(1) " 2o(n+m—1)T29(n+m)T-

We see that in any case the identity

Wmm(e) N PTZg(1) " 20(n+m—1)TZ0(n+m)T

holds in N. Analogous arguments show that we can successively swap the second occur-
rence of x with zg(,4m—1)s 26(n+m—2), - - - » 2g(1) and deduce that N satisfies the identities

Wn,m(e) ~ P$229(1) T Re(nt+m)T = pLL'QCII' = W{n,m(a)

Therefore, we can apply Lemma [4.5] below.

Suppose that V.C N. If M ¢ V then V C D by Lemma ii). Therefore, in view
of Lemma [2.8] it suffices to consider the case when M C V. We need to verify that V
coincides with M or N. Let u = v be an identity that holds in V. Our aim is to verify
that u = v either implies the identity a; or holds in IN. Proposition [2.2| implies that
sim(u) = sim(v). Let sim(u) = {to,%1,...,tm}. As in the proof of Lemma we can
assume that

u = toaltlagtg v tm_lamtm and v = tobltlbgtg e tm—lbmtm

for some possibly empty words ai,...,a,, and by,...,by,.

Let = be a letter multiple in u and u(z,y) # zyz for any letter y. By Lemma
the variety V satisfies . Obviously, C; € M C V, whence z € mul(v) by Propo-
sition Since Do C M C V, we apply Lemmas and to conclude that zyz is
an isoterm for V. Therefore, v(z,y) # xyx for any letter y. We apply Lemma again
to conclude that v ~ z2v, holds in V. Thus, u ~ v follows from the identities ,
v ~ z2v, and u, =~ v,. So, we can remove from u ~ v all multiple letters  such that
u(z,y) # xyx for any y. In other words, we may assume that for any € mul(u) there is
a letter y such that u(z,y) = zyx = v(x,y). In particular, occ,(u), occ,(v) < 2 for any
letter x.
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Let 0 <i<m — 1. Then u = wyt;a;11t,4+1wo where

toaity - - t;_1a; if0<i§m—1,
W1 =
A ifi—0,

Ajpotiro - rapty, f0<i<m-—1,
Wo =
A ifi=m—1.

Analogously, v = wit;b;11t;11 W) where

, tobity---t;_1b; if0 <1 <m—1,
W, =
A ifi=0,

, {bi+2ti+2"'bmtm 1f0§z<m71,

Wq =
S DY ifi=m—1.

Suppose that a; 1 contains the subword d = x;x; where x; € con(w) and x; € con(ws).
The occurrence of the letter x; in d is the second occurrence of x; in u, while the oc-
currence of x; in d is the first occurrence of z; in u. The identity v, allows us to swap
these two occurrences. Therefore, N satisfies the identity u ~ wit;p1qit;+1W2 where
con(py) C con(ws) and con(q;) C con(wy). Analogously, we can prove that N satisfies
v & Wit;padati+1Wh where con(ps) C con(w)) and con(qz) C con(w?).

We are going to verify that con(p;) = con(pz2) and con(qi) = con(qsz). Let z €
con(py). Then u(x,t;y1) = xt;y12. Therefore, v(z,t;11) = at;r12. This means that
x € con(w)paqz) and = € con(wh). If z € con(qs) then z € con(w}) as well, whence
occ,(v) > 3. Therefore, ¢ con(qy). Note that u(z,t;) = t;z%. Therefore, v(z,t;) # xt;x,
whence z ¢ con(w}). We see that € con(pz). We have just proved that con(p;) C
con(pz). By symmetry, con(ps) C con(p;) , whence con(p;) = con(pz). Analogous argu-
ments imply that con(q;) = con(qs).

Therefore, p1 = x1--- 2 and pa = Xr(1) - Tr) for some z1,..., 2, € con(wz) N
con(wj) and some 7 € Sy, whence N satisfies

u~ Wltixl s $kq1ti+1W2 and v~ Wlltia;‘ﬂ(l) s Z‘Tr(k)q2ti+lwl2~
Then the identity

Wity - TpQutip 1 Wa & WitiZa(1) - Tr(ky big1 Q2 Wh (5.1)

holds in V.

Suppose that 7 is non-trivial. Then there are j and £ such that j </¢ but 7(j) > ().
Substituting 1 for all letters occurring in except x;, x¢ and t;11, we obtain
xjxetiv1s = xex tip18 wheres, s’ € {xjze, xox;}. Now we apply o9 to get x xpt, 1220 =
xox;tiv12,T¢. The last identity is nothing but a; (up to renaming the letters). So, if =
is non-trivial then V satisfies ;. This means that V C M, whence V. = M. In other
words, if p; # p2 then V.= M.

Let now p; = ps2. The words q; and qs are linear and con(q;) = con(qz) C con(wy)N
con(w}). Thus, if some letter z occurs in con(q;) then this occurrence is the second
occurrence of z in u. Hence the identity oo allows us to reorder the letters in q; in an
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arbitrary way. Therefore, we can replace q; by gz in u, and the resulting word should be
equal to u in N. Thus, N satisfies the identities

u=witia;11ti+1W2 & Wit;p1qiti1W2 & Wit;paQatip1W2 & Wit;bi 1t 1wa.
This is true for all i =0, 1,...,m — 1. Therefore, N satisfies
u = tpajtiaste - ty_1amt, = tobltlbgtg s tmflbmtm =V.

The proposition is proved. m

6. The proof of the “if” part: the variety K

Here we are going to verify that K is a chain variety. This case is much more complex than
all those discussed in the previous chapter, and its consideration will be much longer. For
the reader’s convenience, we divide this chapter into four sections.

6.1. Reduction to the interval [E,K]|. We fix notation for the following identity
system:

® = {zyr ~ vyx?, 22y* ~ y*2?, 2%y ~ 2?yx).
Note that K = var ®. For any s € Nand 1 < g < s, we put
bs,q = Ts5-1TsTs—2Ts—1 """ Tgq—1Lq-

For brevity, we will write b, rather than b, ;. We also put by = A for convenience. We
introduce the following four countably infinite series of identities:

A TpYkTh—1TKYkDr—1 R YrTrTr—12KYkbr—1,

Bi : xxpaby ~ rLa’by,

Vit Y1YoTrY1br ~ y1yoy12ibr,

Ok Ym1YmTeYm+1PkmYmPm—1 X Ym+1YmYm+1TkPkmYmBm—1
where £ € N and 1 < m < k. Note that the identities oy and ~; have already appeared
above. We define the following four countably infinite series of varieties:

Fi =var{®,ar}, Hg=var{®, 5}, I =var{®, v}, I3 =var{®, "}
In this chapter we are going to verify

PROPOSITION 6.1.

(1) The lattice L(K) is the set-theoretical union of the lattice L(E) and the interval
E,K].

(2) The lattice L(E) is the chain T C SL C C2 C Dy C E.

(3) If X is a monoid variety such that E C X C K then X belongs to the interval
[Fi,Fri1] for some k.

(4) The interval [Fg,Fri1] is the chain

FrCH,CI,CJiCI2C---CJIVCFryr. (6.1)
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This proposition immediately implies that L(K) is the following chain:

TCSLcCycD,CcECF,cH, cI,cJ!
CFyCcHyCI,cJycJ?

CF.cH,CI,cJicIc---CcI}

c K.

In the remainder of this section we verify claim (1) of Proposition Claim (2) follows
from Lemma 2.10{i). Claims (3) and (4) are proved in Sections and respectively.
Section [6.2] contains auxiliary assertions.

Let X be a monoid variety with X C K. We need to verify that either E C X or
X C E. Substituting 1 for y in the identity , we find that X satisfies the identity .
If X is commutative then X C Cy C E, and we are done. Thus, we can assume that X
is non-commutative. The variety X is aperiodic because it satisfies . Suppose that
X is completely regular. Every aperiodic completely regular variety is a variety of band
monoids and every band satisfying is commutative. Thus, if X is completely regular
then it is commutative, a contradiction. Hence we can assume that X is not completely
regular. Then Dy C X by Lemma [2.14]

Suppose that E ¢ X. Then X satisfies by Lemma Further, X satisfies (4.10)

as well because X C K. Hence x%y r2yx? yx?. We see that (4.15) holds in X.

Moreover,
2 3,02 2,22 2 2
Tyr = ryr® ® ryr’ = rryr” = yrt = Ty,
whence the identity
ryr ~ Yy (6.2)

holds in X. So, X satisfies yz? 22y zyz. The identities (4.15), (4.4) and (6.2)
evidently imply o1, oo and ;. Thus, X C D; C E. We have proved that if E ¢ X then
X C E. Hence claim (1) of Proposition is proved.

6.2. Several auxiliary results. Here we prove several lemmas that will be used re-
peatedly below.

6.2.1. Some properties of the varieties Fy, Hy, I, J;*, K and their identities
LEMMA 6.2. The variety K satisfies:

(i) the identity oo;
(ii) the identity
TYTZT R TYTZ; (6.3)
(iil) any identity u &~ v such that con(u) = con(v) and occ,(u),occ,(v) > 2 for any letter
x € con(u).
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Proof. (i) We have xzyta:y =2 rzytz?y? = rayty?z? =2 r2Yytyx.

(ii) We have xyxzx zyzizr = a:yac2z =4 TYTZ.

(iii) According to (ii), V satisfies (6.3). This allows us to assume that occ,(u) =
occ,(v) = 2 for any z € con(u). Let con(u) = con(v) = {=1,...,25}. We are going to

verify that u ~ z}--- 2% in K. We will use induction on &.

Induction base. Suppose that k = 1. Here the identity u ~ v has the form 2?3 ~ 27,
whence it trivially holds in K.

Induction step. Let now k > 1. We may assume that ¢;(u,z;) < ¢1(u,zy) for any
1 <i < k. Then
U =UrpT; T, T TRT Ty, T,

where z;, € con(u’) for any 1 <r < s+ t. Then the identities

l' ulzix?l xi T x?s+t
= u’xzxfl ac?z xiﬁ
= u’x?l mi . ~:r:i+txi
/

i~ . - ... . 2 —_— 2
~ W5 T, Ljspe Tl = Uz, T

hold in K. The word u,, contains exactly k—1 letters. By the induction assumption, the

identity u,, ~ z7 - -xi_l holds in K, whence this variety satisfies u &~ umkxi ~a?- mi
Similarly, v ~ 2% --- 27 in K, whence K satisfies u~ v. =
LEMMA 6.3. The identity system ® together with the identity

xrLrbg ~ r2zLby (6.4)

forms an identity basis of the variety J.

Proof. First of all, we note that holds in J z To check this, it suffices to perform the
substitution (yg, yx+1) — (1, ) in the identity 5,’5 and use the equality by, = z,_17pbr_1.
So, we need to verify that 6,’3 follows from ® and . In view of Lemma we can use
the identities o5 and . Here is the required deduction (letters in the right column
refer to comments after the deduction):

Ykt 1Yk ThYk+ 1Pk kYD1 = Yk 1UrThYb 11Tk 171 Yrbr—1

=

R Yk 1 YR TR Yk+1Th— 1Yk T br—1

o
~

~ 2
R Y 1 YTk T 1Yk TEDL 1

2

2
R Y1 Yk TR TE—1T LYk 1

2
= Ye 1 Yk TR Th— 1Tk Yk TR —2Tk—1br_2

—
= £

2
R Y 1Y TR Tk 1Tk YkTh—2TkTh— 12 br_2
R Yk 1 YR Y+ 1Tk Th—1 TEYRTh— 2Tk Th—1Txbr_2

R Ykt 1Yk Yk+ 1Tk T —1 LYk Th—2Tk—1Dg—2

A/—\AA/C—D\/—\/—\/—\A

= Yr+1YkYk+12EDr kYD _1.
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a) Here we use the equality by, = xp_12k.
b) Here we modify the subword yrxryr+12Tk—12,Yr by performing the substitution
(.’IJ, Y, Z) = (yk:a 17xk7yk:+1$k:71> in oo.
¢) Here we perform the substitution (x,2r) — (Yr+1,yrTx) in and use the
equality by = zx_121bg_1.

(d) Here we modify the subword yxzrxr—1yrxr by performing the substitution

(
(
t
(

(x,t,y,2) = (Y, 1, 2k, Tg—1)
n os.
(e) Here we use the equality by_1 = zx_oxp_1bg_o.
(f) Here allows us to add two new occurrences of the letter xj after its second
occurrence in the word y,ﬁﬂyk 511 Tp_1 3(5211 YkTk—2Tkp—1Dg_2.
(g) Here we perform the substitution (z,zg,xx—1) — (Yk+1, Yk, TeTr_1Tk) 0
and use the equality by = zp_1xTp_oxkr_1bg_o.
(h) Here allows us to delete the third and fourth occurrences of the letter xj in
the word Yy 41UkYhs1 Lh Th1 T4 YrTh_2 £h Tk_1 L4 bg_a.
(1) Here we use the equalities by, = xx_17% and by_1 = Tp_2Tk_1bk_2. ®
LEMMA 6.4. We have
Fr CH,CI, CJ,CJiC.---CINCFyp. (6.5)
Proof. Since all varieties that appear in are contained in K, we can apply Lemma
In particular, this allows us to use the identities o5 and .
1°. The inclusion F C Hy. We need to verify that 8x follows from ® and «y. Here
is the required deduction:

zxrrby = rxrrTE_12br_1 because by, = xp_12br_1
N TTLTTE_1ZRT bp_1 by
~ zprie,_1zpe’bg_1  we perform the substitution
(ke yi) = (2, ) 0y,
~ rprry_12Ebrp_1 by
= z,2°by, because by, = xp_12Lbr_1.
2°. The inclusion Hy C Ij. Here we need to verify that 7, follows from ® and (.
Indeed,
Y1YoTky1br & Y1YoTry; by by
~ y1yoy12ky1br  we modify the subword :z:kyfbk
by substituting y; for x in S
~ Y1Y0y1 2k b by (6.3).
3°. The inclusion I C J}C. It suffices to verify that 5,1 follows from 7. Since by 1 = by,
and by = A, the identity 5; has the form

Y2y17kY2brY1 A Yoy1Y2TkbRY1 -

To deduce this identity from -y, it suffices to modify the subword yoyizry2bi by per-
forming the substitution (yo,y1) — (y1,¥y2) in Y.
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4°. The inclusion J7* C J;C"H where 1 < m < k. It suffices to verify that 52”1 follows
from 6;". Indeed, we get 6,’:”1 if we multiply 6;' by z_1x0 on the left and then increase
by 1 the index of each letter in the resulting identity.

5°. The inclusion Jﬁ C Fi41. In view of Lemma it suffices to verify that a1
follows from ® and (6.4). We have
Tk Yk+1TkTh41Yk+1 Pk & (Trp1Yk41) *Tiby (

~ (Yrr1Th+1) *Tby, (
N Ykt 1Tk 1 TkYk 1Tk bE (C)
N Yk+1Tk+1TkTh1Yk+1bk. (

(a) Here we substitute xxyy for « in .

(b) Here we apply the identity (zy)? ~ (yx)? that holds in K by Lemma [6.2{iii).

(c) Here we substitute yjazy for = in (6.4).

(d) Here we perform the substitution (z,t,y, z) = (yx+1, 1, Tk+1,2k) in 09. =w

Below we often use the inclusions (6.5)) without reference to Lemma Note that in
fact strict inclusions ([6.1) are valid. We will prove these inclusions in Subsection

6.2.2. k-decompositions of sides of the identities oy, [, 7 and 6

LEMMA 6.5. Let u be the left-hand or the right-hand side of one of the identities ay, By,
Y or 65, Then:

(1) If z;,y; € con(u) then D(u,z;) =i and D(u,y;) = j. The depth of the letter x in
the left-hand [right-hand] side of the identity By equals k + 1 [respectively oo].
(2) The k-decomposition of the word u has the form indicated in Table .

As in Example [3.3] we underline k-blocks of words in Table [6.1] to distinguish them
from k-dividers.

Table 6.1. k-decompositions of some words

The k-decomposition of the
The identity left-hand side right-hand side
ak A AT A Yk A Te—1 0 TrYk A A Yk ATk A T—1 - Tk
Tg—2 Th—1 - T1 Tz To - T1 T2 Th—1c T1 Tz To - T1
Br AN ZTp LT Tk Thoo A-Xwp -2’ w1 Tk Thoo
Tp—1 1Ty Lo L1 T @1 Ta-To- L1
Vi AA Y1 A Yo ATk Y1 Te—1 [ A A Y1 A Yo Y1 Tk A Tp—1
‘L Tk Tp—1 L1 Ty To - TL | Tk Tk - Th—1 Tl - Tz - To - T1
57 with XX Ymit A Ym AT Ymat | A A Yl A Y Yl Tk A
m<k 'mk—l'ﬂ"'xmfl'wmym'xm72 ~xk71-w7k~~'xm71'mmym'mm72
L1 X1 Tz To - T L1 T1 Ty To - X1
A Yktl Yk A Tk Yol Thot A Yebl  Ye Yol Tk A Thot
5% TkYk  Th—2 Th—1 " T1 T2 To | TkYk * Th—2 - The1 " T1 - T2 " To
-z -z
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Proof of Lemma[6.5. We restrict ourselves to verifying both the claims for the left-hand
side of ay, only. In all other cases the proof is similar. We denote the left-hand side of ay
by ug. So,

Ur = TeYkTlk-1TrYrTe—2Lk—-1Lk—3Lk—2 " L1L2L0L ] -

(1) The letter zg is simple in ug, whence D(uy, zg) = 0. All other letters from con(uy)
occur in uy exactly twice. In particular, they are multiple in ug, and therefore their depth
in uy is greater than 0. The first occurrence of z; in uy is not preceded by any simple
letter. Therefore, h?(uy, z1) = A. Further, only zq is simple in u;, and precedes the second
occurrence of x; in uy. Hence hY(ug,x1) = x9. We see that hl(uy,z1) # hS(ug, 1),
whence D(ug,z1) = 1.

Neither the first nor the second occurrence of x5 in uy is preceded by any letter simple
in ug. This means that hY(ug,z2) = h9(ux, x2) = A, whence D(uy, z2) > 1. The second
occurrence of x5 in uy, is preceded by exactly one occurrence of x; and there are no letters
between these occurrences of x; and xo. Moreover, h{(ug,z1) # h9(ug,z1). Therefore,
hi(ug,z2) = x1. On the other hand, hl(uy,z2) # 21 because 1 does not occur before
the first occurrence of x5 in ug. Thus, hi(uy,x2) # hi(ug, x2), whence D(ug,z2) = 2.

We introduce some new notation to facilitate further considerations. For a € mul(uy),
we denote by ugla;1,2] the subword of u, between the first and the second occur-
rences of a in ug. For instance, ug[zg;1,2] = yrxr—1, Uglyr;1,2] = zp_12k, while
ui[z1;1,2] = x9xp. Let now 2 < r < k. Suppose that we have proved D(ug,z;) = i
for all ¢ = 0,1,...,r — 1. We are going to check that D(ug,x,) = r. Suppose that
D(uy,z,) = s < r. This means that h{ ! (ug, x,) # h3~ ' (uy, x,). Therefore, there is a let-
ter z such that its first occurrence in uy, lies in ug[z,; 1, 2] and h5 ™2 (ug, 2) # by~ 2(ug, 2).
But ug[z,;1,2] = xpp12,-1 whenever r < k — 1 and ug[rg—1;1,2] = zryrxi—2. In any
case, the unique letter whose first occurrence in uy lies in ugfz,;1,2] is ,_;. In view
of our assumption, D(ug,z,—1) = r — 1. Since s — 2 < r — 2, the last equality im-
plies that k5% (ug, x,_1) = h3 (g, 2,_1). Thus, there are no letters z with the above-
mentioned properties. Therefore, D(ug,x,) > r. Suppose now that D(ug,z,) = ¢ > 7.
Then b}~ ! (uy, z,) = hy ' (uy, x,). Therefore, there are no letters z whose first occurrence
in uy lies in ug[z,;1,2] and D(ug, z) = r — 1. But our assumption implies that x,_; has
these properties. Thus, D(ug,z,) = 7.

Quite analogous arguments establish that D(uy, yx) = k. One has to take into account
the equality D(ug,zx—1) = k — 1 proved above and the fact that the unique letter whose
first occurrence in uy lies in ufyg; 1,2] is zp_1.

It remains to verify that D(ug,x) = k. We note that neither the first nor the second
occurrence of z in uy is preceded by any simple letter, whence hS(ug, zx) = h(uy, xx)
= ). Suppose that hi(uy,xr) # hb(ug,zx) for some 0 < i < k — 1. Then there is a
letter z such that its first occurrence in uy, lies in ufzy; 1, 2] and he ™ (u, 2) = by (uy, 2).
This means that D(ug,z) < i < k — 1. Further, ufzg;1,2] = yrrr—1 and occurrences
of both y; and x_; are the first occurrences of these letters in ug. As we have seen
above, D(ug,yr), D(ug,xp_1) > k — 1. Thus, hi(ug,zx) = hi(ug,z;) for all 0 < i <
k — 1. Now we check that h¥(ug,zr) # h5(ug,z). Indeed, we have seen above that
D(ug,xp—1) = k—1 and D(ug,yx) = k. Therefore, h]f_Z(uk,xk_l) + hg_z(uk,xk_l) and
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RY=2(ug, yr) = hE2(ug, yi). This implies that A5~ (ug, £x) = 2_1. On the other hand,
the first occurrence of xy in uy is not preceded by any letter, whence h’f_l(uk, TE) = A
We see that k¥ (u, zx) # h5(uy, 71). In view of the above, this means that D(uy, z1) = k.

(2) By Lemma the k-dividers of a word w are exactly the first occurrences of
letters € con(w) with D(w,z) < k and the empty word at the beginning of the
word w. As proved above, D(ug,z) < k for any x € con(ug). Thus, the k-dividers of
uy, are just the first occurrences of all letters from con(ux) and the empty word at the
beginning of uy. All subwords of uy, between these k-dividers and only they are k-blocks
of ug. Thus, the k-decomposition of the word uj has the form indicated in Table [

Note that claim (1) of Lemma explains the choice of indices of letters in the
identities oy, Bk, v, and ;.

6.2.3. Swapping letters within k-blocks. In this subsection we verify only one state-
ment. It is the core of the whole proof of Theorem [I.1] Its proof is very long and technical.
At the same time, it is the basis for the rest of the proof of Theorem and plays a key
role there.

LEMMA 6.6. Let 'V be a monoid variety such that V. C K, u be a word and k be a natural
number. Further, let u = u’abu” where u’' and U’ are possibly empty words, while ab is
a subword of some (k — 1)-block of u. Suppose that one of the following holds:

(1) V satisfies 67", a € con(u’) and D(u,a) > m;
(ii) V satisfies v, and a € con(u’);
(iil) V satisfies By and D(u,a) # D(u,b);
(iv) V satisfies ay.

Then V satisfies the identity u ~ u’bau’.

Proof. We will prove assertions (i)—(iv) simultaneously. Suppose that V satisfies the
hypothesis of one of these four claims. In particular, V satisfies 5,@ in any case. Let
be the (k — 1)-decomposition of u and ab is a subword of u; for some 0 < ¢ < m. Then
u; = ujabu} for some possibly empty words u} and u}. Clearly, u’ = touptiuy - - t;u
and v’ = u/t; 1041 -t

If a,b € con(u’) then

/ n @ n @@ n @ "
u="uaeu’ = va*’u’ = Wb E u'ban”,

and we are done. Thus, we can assume without loss of generality that
b ¢ con(u’). (6.6)

If D(u,b) < k—1 then b is a (k — 1)-divider of u by Lemma 3.7} But this is not the case
because the first occurrence of b in u lies in the (k — 1)-block u;. Therefore, D(u,b) > k.
Further, if a € mul(u’) then Lemma [6.2((ii) implies that the identities u’abu” ~ u’'bu’” ~
u’bau” hold in V. Thus, we can assume that

if a € con(u’) then a € sim(u’). (6.7)

Further considerations are divided into three cases depending on the depth of b in u:
D(u,b) = k, k < D(u,b) < oo and D(u,b) = oo. Each of these cases is divided into
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subcases corresponding to claims (i)—(iv). Thus, the proof of each of assertions (i)—(iv)
will be completed after considering the corresponding subcase of Case 3.

Case 1: D(u,b) = k. This case is the most difficult from the technical point of view
and the longest. By examining two other cases, we will repeatedly refer to properties that
will be verified here. Let p ~ q be one of the identities oy, Bk, i or 6;". In a sense, the
identity p ~ q “looks like” u’abu” =~ u’bau’. We have in mind that the words p and q
start with the same prefix (which is empty for o, and fi) and end with the same suffix,
and the subword between the prefix and the suffix is the product of two letters in p and
the product of the same two letters in the reverse order in q. This makes it possible in
principle to apply the identity p ~ q to one of the sides of the identity u’abu” =~ u’baun”
in order to obtain the other side of it. To realize this possibility, we need, with the
use of the identities that hold in K, to reduce, say, the right-hand side of the identity
u’abu” ~ u'bau” to a form to which the identity p ~ q can be applied. To do this, we
first need to find “inside” u the letters zg, 1, ...,z which would appear in the same
order as the letters with the same names in one of the sides of the identity p ~ q.

Put xp = b. Let X;_1 be the set of (k — 1)-dividers z of u such that

O (a,zr) < l1(u, 2) < o(u,xg).

The fact that D(u,z) =k implies A¥ 7 (u, zx) #h5 ' (0, 21,), whence hE =1 (u, z1) € X 1.
Therefore, X;_1 is non-empty. Further, Lemma [3.9(ii) implies that D(u,z) = k — 1 and
lo(u,xg) < la(u, z) for any z € Xj_1. Now we consider the letter xx_; € Xj_1 such that
lo(u, z) < lo(u,z_1) for any z € Xj_1.

Let Xj_o be the set of (k— 2)-dividers z of u such that ¢1(u,zx_1) < f1(u,2) <
lo(u,x—1). Then D(u, z;_1) = k—1 implies that h’f_z(u, Tp—1) # hg_Q(u, Zk—1), whence
h§_2(u,xk_1) € Xj_o. Therefore, X;_o is non-empty. Further, Lemma ii) implies
that D(u,2z) = k — 2 and ly(u,zi—1) < l2(u, z) for any z € X;_o. Now we consider the
letter x—o € Xp_o such that fo(u, z) < lo(u,x_2) for any z € Xy _o. Since ¢1(u, x) <
li(u,zp—1) < b1 (0, zK—2), Lemmaimplies that £o(u, ) < £1(u, xp—_2).

Further, for s = k—3,k—4,...,1 we define one by one the set X and the letter x5 in
the following way: X is the set of all s-dividers z of u such that ¢1(u, zs41) < ¢1(u,2) <
lo(u,x511), and x is a letter such that z, € X, and fa(u, z) < ly(u, z;) for any z € X,.
Arguments similar to those from the previous two paragraphs show that X is non-empty,
D(u,z;s) = s, {j(u,z541) < £j(u,z5) for any j =1,2 and lo(u, zs42) < 1(u, x5).

Finally, put o = hY(u,21). In view of Lemma we have D(u,z9) = 0 and
Oy (u, 1) <ti(u,zg). Since £1(u, z2) </l1(u,x7), Lemma implies £3(u, x2) <41 (u,xp).
Then

u = U abvorZr_1Vak—1bVogp_2Tk_2Vok_3Tk_1 - - V4T1V3T2VaToV1L1V( (6.8)
for some possibly empty words vg, vy, ..., Vvar. One can verify that if 2 < s < k then
la(u,2) < la(u,zs—1) for any z € con(vasvas_1). (6.9)

Put

!
W = WabvorTr_1Vor_10Vog_oTp_2Vor_3Tk_1 " - V2s42TsV2s41Ts 41
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The word w; is the prefix of u that immediately precedes vos, while vos_1 precedes
the second occurrence of x,_1 in u. This implies the required conclusion whenever z €
con(wy). Suppose now that z ¢ con(w;). Then £1(u,z;) < ¢1(u, z) < la(u,z;). If z is an
(s — 1)-divider of u then z € X;_1, whence l3(u, z) < ¢3(u,z5-1) by the choice of x4_;.
Otherwise D(u, z) > s — 1 by Lemma/[3.7] Then since 41 (u, z) < ¢1(u, zs_2), Lemma [3.13]
implies that f5(u, 2) < £1(u, zs_2), whence ly(u, 2) < fo(u,x5_1).

The further realization of the plan outlined at the beginning of Case 1 depends on
the identity that plays the role of p ~ q. Therefore, further considerations are divided
into four subcases.

Subcase 1.1: 'V satisfies the hypothesis of claim (i), i.e., 6;* holds in V, a € con(u’)
and D(u,a) > m. Claim (6.7) allows us to assume that a € sim(u’). Then u’ = wav for
some possibly empty words v and w. This implies that

u = W(lV(leQk{,Ek,1V2k,1bV2k,2$k,2V2k,3$k,1 © 2 V4I1V3X2VaXoV1T1V(. (610)

Put D(u,a) = r. Further considerations are divided into two parts corresponding to
whether r < k+1lorr>k-+1.

(A) r < k+ 1. Here we need to define two more letters, namely y,._; and y,_2, and
clarify the location of these letters within u. Let Y,._; be the set of (r — 1)-dividers z
of u such that ¢;(u,a) < f1(u,z) < ¢2(u,a). The fact that D(u,a) = r implies that
R H(u,a) # hh 7~ (u, a), whence i~ (u,a) € Y,_;. Therefore, the set Y;._; is non-empty.
Lemma [3.9(ii) implies that D(u,z) = r — 1 and {3(u,a) < l3(u,2) for any z € Y, _;.
Then ¢1(u,b) < l2(u, z) for any z € Y,_1. Now we consider the letter y,_1 € Y,_1 such
that ¢5(u, 2) < ly(u,yr—1) for any z € Y,._;.

Now we check some additional properties of the letter x.,., which are fulfilled under
certain restrictions to r. Suppose that » < k+ 1. Then z, is defined. Our aim is to prove
that

62(117 xr) < 52(11,%«—1)- (611)

Put y,_» = hy 2(u,y,_1). Since D(u,y,_1) = r—1, Lemmaimplies that D(u,y,—2) =
r—2 and f1(u,y—1) < ¢1(u,y,—2). Recall that ¢1(u,a) < ¢1(u,y,—1), which implies
l1(u,a) < ¢1(u,yr—2). Since D(u,a) = r, we can apply Lemma to conclude that
ly(u,a) < £1(u,yr-—2). The second occurrence of ¢ in u immediately precedes the first
occurrence of b = xy, whence ¢1(u,z) < ¢1(u,y,—2). Then Lemma implies that
lo(u,xr) < ¢1(u,y,—2). This yields ¢1(u,x5—1) < la(u,xr) < l1(0,y,—2). fk—1>1r
then Lemma shows that lo(u, 2x—1) < 1 (0, y,—2). Continuing, we eventually obtain
lo(u,x,) < £1(u,yr—2). The choice of y,._o implies that the first occurrence of y,_o in u
precedes the second occurrence of y,_1. Therefore, ¢o(u,z,) < f2(u,y,—1). So, we have
proved that if » < k + 1 then is true.
Let now r > 2. Note that

li(u,yr—1) < lo(u,a) < l1(u,b) = (u,z) < l(u,zp—1) < -+ < ly(u,z,—_3).

If ¢1(u,zr—3) < l3(u,yr—1) then z,_5 lies between the first and the second occurrences
of y,—1 in u. Since x,_3 is an (r — 3)-divider of u, we obtain a contradiction with the
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equality D(u,y,—1) = — 1. Thus,
Uy (11, yr—l) </t (11, .737«_3) (612)

whenever r > 2.
One can return to arbitrary r < k+ 1. This restriction guarantees that x,_o and x,_1
are defined. There are three possibilities for the second occurrence of y,._; in u:

/1 (11, .137-_2) < Eg(u, yr—l) < Kg(u, .137»_1); (613)
lo(u, Y1) < l1(w, 20 2); (6.14)
2 (11, xr_l) < lq (11, yr—1)~ (615)

The equality (6.10) may be rewritten in the form

e
u = wavabvopTr_1Vor—1bVor_2Tk—2Vor—3Tk—1 " Vor Tr_1

(2) (1) (2) (1) (2)
*V2r—1 Ty V2r—2 Tp—2 V23 Tp—1 V2r—4 Tyr—3 V2r—5 Tp—2 "

- V4T1V3XoVoloViT1Vy. 6.16
3 0 0

Suppose that holds. Then the second occurrence of y,._1 in u belongs to va,_3,
whence va,_5 = Vb _syr_1Vh,_4 for possibly empty words v}, 5 and vi, _,. Further,
since £1(u,a) < ¢1(u,yr—1) < €2(u, a), the first occurrence of y,_; belongs to v. Therefore,
V = VoptoYr—1Vagy1 for possibly empty words vopo and vopy1.

Combining all the above, we can clarify the presentation of the word u and
write this word in the form

U = WaVok42Yr—1Var4+1abVarTr_1Vor_1bVor 2Tk _oVor_3Tk—1 -
! 1
CVrLy_1V2r—1X9V2r_2Tr_2Vor_ 3Yr—1Vo, _3Lr—1V2r—4Lr_3V2r_5Lp—2 """

- V421V3X2VaXlgV1T1Vy.
Note that u' = wavagioy,—1Vor+1 and

"
U’ = VorTr_1Var—10Var—2Tk—2Vor—3Tk—1 " VorTr—_1V2r_1T7V2r_2Tr_2

/ 17
* Vo _3Yr—1Vaor_3Tr—1V2r—4Ly—3V2r—5Ty—2 " V4L1V3T2V2ToV1T1V(Q.

Similarly to the proof of , we can verify that if z € con(vagiavagy1) then
lo(u,z) < la(u,yr—1).

Now we are ready to begin the process of modifying u to get u’bau”. But first, we
will outline the general scheme of further considerations, since arguments of that type
will be repeated many times below. We rely on the fact that is satisfied by the
variety K. This allows us to add any letter that is multiple in a given word to any place
after the second occurrence of this letter in the word. Using this, we will add different
missing letters or even words in different places in u (or in a word which equals u in V)
in order to make it possible to apply to that word the identity that is fulfilled in V at
the moment (now the identity is 6}"). Next, we will apply this identity, and then “reverse
the process”, i.e., making use of , remove unnecessary letters or even words from the
resulting word to obtain u’bau”.
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Let us implement this plan. First, we apply (6.3 to u and insert y,._; after the second
occurrence of z,_; in u. We obtain

U X Wavak2yr—1V2k+1abVorTr_1Vor_1bVog ok _oVor 3Tg_1- -
) (@)
TVop Lp—1 V2r—1TpV2r—2Ly—2V2r—3 Tr—1 Yr—1V2r—4Lr—3V2r_5Tp—2 "
s V4T1V3T2Vo2XoV1T1VQ. (617)
Further, we apply (6.3)) sufficiently many times to the right-hand side of (6.17]) and replace
there the third occurrence of y,._1 with vop2y,—1Vary1 and the second occurrence of 51
with voszs_1vas_1 for any 2 < s < k. We find that V satisfies the identity
U R Wavaktolr_1Vagt1abpvg (6.18)
where
P = VorTr_1Var—1bVor 2Tk _2Vor_3VorTr_1Vakp—1Vak—4 - Vor_2Tr_2Var_3
*V2rLy 1V2r—1V2E42Yr—1V2k+1V2r 4Ly —3V2r —5V2r 2Ly —2V2r_3V2yr_6* **
* V4X1V3VgLoV5VolgV1V4T1V3.
By the hypothesis, » = D(u,a) > m. Then by Lemma 67! holds in V. Now we
perform the substitution
(s oy The1, Ty Yr—1, Yr) > (V2ZoV1, ..., VorTr_1Vor—_1,b, Vori2yr—1Vart1, @)
in 62_1 to obtain the identity

avok2Yr—1Vakr+1abp = aVopolr—1Vak4+1bap.

This identity together with (6.18)) implies that V satisfies the identity
u X Wavag2¥r—1Var+1bapvo.
Now we apply (6.3) to the right-hand side of the last identity “in the opposite direction”
and replace Vog4oYr—1Vor+1 With y,—1 and vo,zs_1ves—1 with 51 for any 2 < s < k.
As a result, we obtain the identity
U~ WavVok42Yr—1Var+10aVarr_1Vor_10Vor_2Tp_oVor_3Tk—1 - Vor_2%r_2
© V2r 3Ly —1Yr—1V2r—aZr—3V2r—5Lyr—2Vor—6 * * - V4L1V3T2V2LoV1L1VQ.
Finally, we apply (6.3) to the right-hand side of the last identity and delete the third
occurrence y,_1. We obtain the identity
U~ WaVag2Yr—1Vok+10aVarZrp—1Vag—10Vag 20k —2Vok—3Tk—1 " V2r—2Tr—2
: V/2r_3y7“—1V12/r_333r—1V2r—4xr—3v2r—5xr—2v2r—6 11t Vy4I1V3T2VaToV1T1Vo
= u'bau’”.

It remains to consider the case when either (6.14)) or (6.15) holds. We are going to

verify that in both cases, (6.17) holds. This suffices because then we can complete our

considerations as above. If (6.14]) holds then (6.11)) and (6.16) imply that
)
U=WaVop2Yr—1Vakt1abVarTi—1Vak—10Vak_oTk_oVop_3Tk—1 " Vor Tr_1 Vor_1Z,Vo,_o

" (2)
CYr—1Vop_oTr—2V2r_3 Tyr—1 V2r—4Tyr_3V2r_5Tpr—_2*°*V4T1V3T2V2ToV1T1V(
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for some possibly empty words v}, o, vy 5 such that vo,_o = v _oy._1v5,. _,. Here we
add one more occurrence of y,._; immediately after the second occurrence of x,_;. As a
result, we obtain ((6.17). Finally, if (6.15]) is the case then we use (6.12]). Then

&)
U = WaVak42 Yr—1 Vok4+1abVorTr_1Var—10Var_2Tk_oVor—3%Tk—1 - V2rTr_1Vor_1%y
/ (2) " (1)
* V2 2Xr2V2r3Lr—1Vor_g4 Yr—1 Vor_4 Tr—3 V2r—5Lp—2 " V4T1V3T2V2ToV1L1V(

for some possibly empty words v}, _,,vy._, such that vo,_4 = v, _,4y,_1V5,._,. Then we
can add a third occurrence of the letter x,_; immediately before the second occurrence
of y,._1 and obtain

&)
UR WAV 42 Yr—1 Vok+1abVorTr—1Vak—10Vak 2Tk 2Vor—3Tk—1 "+ V2r&r—1Var— 1T, V2r—2
@ e
Ty oVor_3Tp_1Vi. 4 Tp—1 Yr—1 Vop_4 Ty—3 Vor_5Tp_2 -+ V4T1V3L2VaToV1T1Vo.
This is nothing but (6.17)) (up to renaming of words).

(B) » > k + 1. Recall that equality (6.10) is true. Suppose that v is non-empty.
Let y € con(v). Suppose that ¢1(u,z;—1) < ¢3(u,y). This implies that h]f_l(u,y) #+
h5=1(u,y) because zj_; is a (k — 1)-divider of u. Then y is a k-divider of u. Since v
(and in particular y) is located between the first and the second occurrences of a in u,
this contradicts D(u,a) =r > k+ 1. So, ¢3(u,y) < ¢1(u,z,_1) for any y € con(v). Then
we apply (6.3) sufficiently many times to the right-hand side of (6.10), namely, we insert
v after the second occurrence of b there. Clearly, we can formally insert v after the second
occurrence of b whenever v = X\ too. Further, in view of , we can replace the second
occurrence of zs_; in the right-hand side of (6.10) with vosxs_1vas—1 for any 2 < s < k.
We deduce that V satisfies the identity

u ~ wavabpvy (6.19)
where
P = VorZk—1V2k—10VVop 2Tk 2Vokr 3VapTk—_1Vak—1 "+ V4T1V3VL2V5V2aLoV1 V4TI V3.

In view of Lemma V satisfies 5,’3. Now we perform the substitution

(%05 -+ -y The1, Thos Ykr Ykt1) — (V2ToV1, ..., VorTr_1Vag—1,b,V,a)
in 6% to obtain the identity

avabp =~ avbap.
This identity together with (6.19)) implies that V satisfies the identity
u ~ wavbapvy.

Now we apply (6.3 to the right-hand side of the last identity “in the opposite direction”,
namely we delete v after the second occurrence of b and replace vosxs_1vas—1 with zs_1
for any 2 < s < k. As a result, we obtain the identity

U~ wavbavapTi_1Vap_10Vok_0Tk—_oVak_3Tk_1 - - - VAT1V3TaVaZoV1Z1Ve = Wbau.

Subcase 1.2: 'V satisfies the hypothesis of claim (ii), i.e., % holds in V and a € con(u’).
Recall that equality is true. Claim allows us to assume that a € sim(u’). Then,
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as in Subcase 1.1, u has the form ((6.10)). Note that u" = wav and
1
U’ = VopZg—1Vak—1bVag 2Tk —2Vak_3Tk—1 "+ V4T1V3L2V2T(V1T1 V0.

Recall that is true for any 2 < s < k. Now we can apply (6.3) sufficiently many
times to the right-hand side of (6.10) and replace the second occurrence of z,_; with
VosZs_1Vas_1 for any 2 < s < k. We infer that V satisfies the identity

u R wavabvopTr_1Vag—1bVor_2Tk—_2Vor—3VorTr—1Vor—1- "
- V421V3VglaV5ValgV1V4T1V3V(.
Put p; =av and
P2 = VogTk—1V2k—1bVok 2Tk 2Vok—3VokTr—1Vak—1 " V4T1V3V6T2V5VaTV1 V4TI V3.
Then the last identity has the form
u= Wp1abp2v0. (620)
By the hypothesis, V satisfies the identity ;. Now we perform the substitution
(T0, X1+ s Tho15 Tk, Y0, Y1) = (V2TOV1, VATIVS, . ., VaRTh—1Vak—1,0,V,a)
in 7y to obtain the identity p1baps =~ p1abps. This identity together with ([6.20)) implies
that V satisfies u = wpibapavy, i.e.,
u ~ wavbavorTr_1Vog—1bVor_2Tk—_2Vor—_3VorTr—1Vor—1- "
* V4I1V3VgdaV5ValgV1V4T1V3VQ.
Now we apply (6.3)) to the right-hand side of the last identity “in the opposite direction”
and replace vosTs_1Vos_1 with xs_1 for any 2 < s < k. As a result, we obtain
u R wavbavapTr_1Var—1bVagr_ 2Tk _2Vag_3Tk_1 - V4T1V3T2VaToV1T1V0,
ie., u= u'bau”.

Subcase 1.3: 'V satisfies the hypothesis of claim (iii), i.e., 8 holds in V and D(u, a) #
D(u,b). Subcase 1.2 allows us to assume that a ¢ con(u’). This fact and immediately
imply that ¢1(u,a) < ¢1(u,b). If D(u,a) < k — 1 then a is a (k — 1)-divider of u by
Lemma [3.7] But this is not the case. Therefore, D(u,a) > k. Since D(u,b) # D(u,a) and
D(u,b) = k, we obtain D(u,a) > k.

Note that fy(u,a) < £1(u,z_;1) because ht~'(u,a) = hi'(u,a) and x4, is a
(k — 1)-divider. Recall that is true. Then vg, = v, av), for some possibly empty
words v}, , v, Thus,

u= ulabvlgkavgkxk—lvmc—lbV2k—2$k—2V2k—3xk—1 ©rV4T1V3T2VaToV1T1VQ-
Now we are going to verify that the identity

u ~ u'abavop®y_1Vak—10Vog 2Tk _oVok_3Tp_1 -+ V4T1V3T2V2ZoV1T1 Vo (6.21)
holds in V. This is evident whenever v}, = X. Suppose now that v}, = v*d for some
possibly empty word v* and some letter d. Then u may be rewritten in the form

w
"a

(2)
* "
u=u bv*d a ngIk—1V2k—1bV2k—2$k—2V2k—3$k—1 © V4T1V3T2VaToV1T1Vo-
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Note that the subword da located between v* and v}, lies in some (k — 1)-block of u.
Indeed, the occurrence of d in this subword is not a (k — 1)-divider of u because otherwise
the first and the second occurrences of a in u lie in different (k — 1)-blocks, contradicting
the inequality D(u,a) > k, while the occurrence of a in this subword is not a (k — 1)-
divider of u because this is not the first occurrence of a in u.

According to Lemma the variety V satisfies the identity . In view of the state-
ment that was proved in Subcase 1.2, V satisfies the identity

u~ uabvadvy, Tr_1Vok_1bVok 2Tk _oVor 3T 1+ V4T1V3T2VaTVIT1V(.

Acting in this way, we can successively swap the letter a with all letters of the word v},
to deduce that

u = u/abavlzkvlz/kxkflvmcflbV2k72Ik72V2k73xk71 ©V4X1V3T2V2IoV1T1V0
holds in V. Now we apply (6.3]) to the right-hand side of the last identity and insert the
letter a after v/,. We obtain (6.21]).

Recall that is true for any 2 < s < k. Now we can apply (6.3]) sufficiently many
times to the right-hand side of (6.21) and replace the second occurrence of zs_; with
VosTs_1Vas—1 for any 2 < s < k. We conclude that V satisfies the identity

u ~ u'abapvy (6.22)
where

P = VorTk—1Var—10Var 2Tk 2Vok 3VorTk—_1Vag—1 "+ V4T1V3VeT2V5VaToV1V4T] V3.

Now we perform the substitution

(0, 1,5+ Tp—1, Tk, ©) = (V2TOV1, VAT1V3, .. ., VoRTE—1V2k—1,), Q)

in By, which yields abap ~ ba?p. One can apply this identity to (6.22]). We find that the
identity

u ~ u'ba’pvo = Uba’ Vo Tk_1Var—1bVak_2Tk_2Vok_3VarTr_1Vak—1 -

* V4I1V3VgLoV5VolgV1V4T1V3V

holds in V. Now we apply (6.3)) to the right-hand side of the last identity “in the opposite
direction” and replace vosxs_1Vas_1 with sy for any 2 < s < k. As a result, we obtain
the identity

u~= U/ba2v2k$k—1V2k—1szk—zmk—zvzk—:ﬂ?k—l ©V4I1V3T2VaToV1iT1Vo-
Repeating the arguments used above in the deduction of (6.21)), we find that V satisfies

u~ u/baV2k$k—1V2k—1bV2k—2€Ck—2V2k—3$k—1 ©V4I1V3T2VaZoV1iT1Vy = u'bau”,

ie., u~u'bau”.

Subcase 1.4: 'V satisfies the hypothesis of claim (iv), i.e., oy holds in V. By Sub-
cases 1.2 and 1.3, and by (6.6), we can assume that a,b ¢ con(u’) and D(u,b) = D(u,a).

Recall that is true.
Note that fy(u,a) < €1(u,z_») because ht %(u,a) = hi~2(u,a) and z;_o is a
(k — 2)-divider. Therefore, there are possibly empty words v/ and v such that one of
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the following equalities holds:
vor =Vvav”’, vo_1 =Vviav’ or vop_o=vav'.
Then one of the following equalities holds:
/ / 1"
u=uabvav'ry_1Vop_1bVor_2Tr_2Vor_3Tg_1" - V4T1V3T2VaToV1T1 Vo,
/ / 1
u = uabvorTp_1V av bvog_oTp_oVor_3Tk—1 - - V4TI V3T2VaToV1T1 Vo,
u = 0abvorTi_1Var_10V' av"' Ty _oVop_sTi_1 - V4T1V3TaVaZoV1ZL1 V0.
We consider only the first case; the other two cases can be considered similarly. Since V
satisfies (6.3]), we see that the identity
~uab b 6.23
U~ UabVoglr—-1V2k—-1a0V2g 2Tk _2V2oE_3Tk—1 " V4L1V3T2V2LoV1L1V0 ( . )

holds in this variety.

Recall that is true for any 2 < s < k. Now we can apply sufficiently many
times to the right-hand side of and replace the second occurrence of xs_1 with
VosTs_1Vas—1 for any 2 < s < k. We deduce that V satisfies the identity

u ~ u'abpvy (6.24)
where
P = VorTr—1V2k—1abVok 2Tk _2Vok 3VorpTk—1V2k—1 " V4T1V3VeTaV5VaToV1V4TI V3.
Now we perform the substitution
(o, T1y -+, Tho1, Tk, Yk) — (V2ZOV1, V4T1V3, ..., VorZTE_1Vog_1,0a,b)

in ay to obtain abp & bap. Applying this identity to (6.24), we get u =~ u’bapvy. Now
we apply ([6.3)) to the right-hand side of the last identity “in the opposite direction” and
replace vosTs_1Vas_1 with x4_q for any 2 < s < k. As a result, we obtain

~ /
u R ubavorTr_1Vor—10bVag_oTp_2Vag_3Tk_1 - V4TI V3T2VaToV1T1 V0.

Now we apply (6.3]) again and delete the occurrence of a located between vo,_1 and
the second occurrence of b in the right-hand side of the last identity. We see that V
satisfies

u~u'bav'av’zy_1Vor_1bVor_oTk_oVor_3Tk_1 - V4aT1V3TaVaZoViZ1 Vo =u bau”,
i.e., u~u'bau”.

Case 2: k < D(u,b) < co. As we will see below, this case reduces to the previous one
by relatively simple arguments. Put D(u,b) = r. Further considerations are divided into
three subcases.

Subcase 2.1: 'V satisfies the hypothesis of (i) or (ii). Here a € con(u’). Hence the
occurrence of ¢ in the subword ab of u mentioned in the formulation of the lemma is not
the first occurrence of a in u. Therefore, this occurrence of @ in u is not an (r — 1)-divider
of u. Lemma [3.7| together with the fact that D(u,b) = r implies that the occurrence of b
in the subword ab of u is not an (r — 1)-divider of u either. Therefore, ab lies in some
(r — 1)-block of u.
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Let
SOW0OS1W1 * - Sp Wy (6.25)

be the (r — 1)-decomposition of u. Then there exists 0 < j < n such that w; = W;abW}l,
whence u’ = sgwgs;wy - -~st;- and u”’ = W;-/Sj+1Wj+1 -+ S Wy, Since JP* C J and
It C I, by Lemma[6.4] we apply the statements proved in Subcases 1.1 and 1.2 to obtain

the conclusion that u ~ u’bau” holds in V.

Subcase 2.2: 'V satisfies the hypothesis of (iii), i.e., 8 holds in V and D(u,a) #
D(u,b). Subcase 2.1 allows us to assume that a ¢ con(u’).

Suppose that D(u,a) = s < r. If s < k — 1 then a is a (k — 1)-divider of u by
Lemma But this is not the case because the first occurrence of a in u lies in the
(k — 1)-block u;. Therefore, s > k. Let be the (s — 1)-decomposition of u. Then
;’7 u’ = sgwosiwy - sjw; and
u’ = W;/Sj+1Wj+1 o+ 8y Wy, Put u* = u'bau”. Since a,b ¢ {s1,82,...,8,}, the (s — 1)-
decomposition of u* has the form

there exists a number 0 < j < n such that w; = W;abw

%
J
where w} = wibaw’/. Then and with v = u* and £ = s hold. Now Lemma
shows that D(u*,a) = s. Since V satisfies the identity 85 by Lemma we apply the
statement proved in Subcase 1.3 to deduce that the identity u* = u’bau” ~ u’abu” = u
holds in V.

Suppose now that D(u, a) > r. Let now be the (r — 1)-decomposition of u. Then
there exists a number 0 < j < n such that w; = w}abw;.', whence u’ = sowgs;wy - - sjw;
and u”’ = w}’sﬂ_lwﬂ_l -+ 8,w,. Since Hy C H,. by Lemma we apply the statement
proved in Subcase 1.3 to obtain the identity u = u’bau’” in V.

SOW(QS1W1 - S;W, -+ S, Wp

Subcase 2.3: 'V satisfies the hypothesis of claim (iv), i.e., cg holds in V. Subcase 2.2
allows us to assume that D(u,a) = D(u,b). Put D(u,a) = r. Then the subword ab of u
mentioned in the formulation of the lemma lies in some (r — 1)-block of u. Let be
the (r — 1)-decomposition of u. Then there exists 0 < j < n such that w; = wiabw/,
whence u’ = 50w051W1~~-5jW9 and v’ = w}’sj+1wj+1~~~snwn. Since Fp C F, by
Lemma [6.4] we apply the statement proved in Subcase 1.4 to obtain the identity u ~
u'bau” in V.

Case 3: D(u,b) = co. This case is also divided into three subcases.

Subcase 3.1: 'V satisfies the hypothesis of (i) or (ii). Let s be a non-negative integer.
Repeating the arguments from Subcase 2.1, we find that the subword ab of u mentioned
in the formulation of the lemma lies in some s-block of u. By Remark there is r > k
such that (6.25) is the f-decomposition of u for any ¢ > r. Then ab is a subword of w;
for some 0 < j < n. We have w; = wabw/ for some possibly empty words w’ and w’.

/

/
Then u’ = sgwgsiwy - - - SW;

and u” = w/s; 1Wji1 - 5, Wy,. We now prove that
ocez(wj) > 2 (6.26)

for any z € con(w;). Suppose first that s; = h(u, z) and occ,(w;) = 1. If occ.(u) =1

then z is a O-divider of u. Lemma [3.5[i) implies that then z € {s1,...,s,}, a contra-
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diction. Therefore, occ,(u) > 2. Since occ,(w;) = 1, we have s; # hi(u, z). This means
that D(u, z) < r+1. According to Lemma z is an (r + 1)-divider of u, which contra-
dicts the fact that is the (r + 1)-decomposition of u. So, is true whenever
sj = hi(u, z). Suppose now that s; # hi(u, z). Then the (1, r)-restrictor of z in u is s,
for some p < j. This means that z € con(sowos1w1 ---sj_1w;_1). Then

u = fZng12Wj23j+1Wj+1 S Why

for some possibly empty words f,g, w;; and wjs with fzg = sowos1wy---s;_1W;_15;
and w; = w;12W 2. Then (4.9) implies that V satisfies the identity

~ 2
ur fzgw;12°Wiosj 1 1Wjit1 - 8, Wh.

Therefore, we can assume that the claim (6.26]) is true again. Thus, the claim holds for
any z € con(w;). Then Lemma [6.2{iii) implies that V satisfies w; ~ w}baw/, whence

U = SgW0S1W1 - S;W;Sj11Wjit1 - SpWp
R SQWOSIWL - - S Wibaw’ s 1 Wit - sy Wy, = u'bau”
in this variety.
We have thus completed the proof of (i) and (ii).

Subcase 3.2: 'V satisfies the hypothesis of (iii), i.e., 8 holds in V and D(u,a) #
D(u,b). Then D(u,a) < oo. Put D(u,a) = r. Repeating the arguments from Sub-
case 1.3, we have a ¢ con(u’) and r > k. Let (6.25)) be the (r — 1)-decomposition of u.

Then there exists 0 < j < n such that w; = w}abw;', u’

. = soWos1Wy -+ 5w and
u’ = w;’sj+1wj+1-~~snwn. Put u* = u'bau”. Since a,b ¢ {s1,...,8,}, the (r —1)-
decomposition of u* has the form sowos;wy---s;w---s,w, where w; = W;-bawé’.
Then and with v. = u* and ¢ = r hold. Now Lemma implies that
D(u*,a) = r, whence a is an r-divider of u* by Lemma [3.7] Then hf(u*,b) # h%(u*,b).
This implies that D(u*,b) > r. Since V satisfies the identity §, by Lemma we ap-
ply the statement proved in Subcase 1.3 to deduce that the identities u*
u’abu” = u hold in V.

We have thus completed the proof of (iii).

= u'bau”’ ~

Subcase 3.3: 'V satisfies the hypothesis of (iv), i.e., oy holds in V. Subcase 3.2 allows
us to assume that D(u,a) = D(u,b) = co. This together with Lemma implies that
the subword ab of u mentioned in the formulation of the lemma lies in some s-block of u
for any s. Now we repeat the arguments used in Subcase 3.1 and prove that u =~ u’bau”
holds in V.

We have thus completed the proof of (iv) and of the entire lemma. m

6.3. Reduction to intervals of the form [F, Fj1]. Here we prove Proposition[6.1|(3).
We need several auxiliary results.

LEMMA 6.7. Let 'V be a monoid variety such that V.C K and V satisfies an identity
u =~ v, and s be a natural number. Suppose that and with £ = s hold and there
are letters © and xs such that D(u,xs) = s, £;(u,z) < l1(u,x5) and l1(v,zs) < li(v,x)
for some i € {1,2}.
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(i) If i =1 then V C H,.
(ii) If i =2 then V C J5.

Proof. Lemma [6.2iii) allows us to assume that occ,(u),occ,(v) < 2 for any letter y.
Now Lemma implies that there are letters zg,x1,...,25—1 such that D(u,z,) =
D(v,z,) = r for any 0 < r < s and the identity u ~ v has the form for some
possibly empty words ug,uy, ..., uss4+1 and vo, vy, ..., Vosi1.

Suppose that ¢ = 1. Then ¢ (u,z) < {1(u,zs) and ¢1(v,zs) < ¢1(v,z). Suppose that
l1(u,z5) < f2(u,z). In view of the above,

e the first occurrence of z in u lies in ugsy1,
e the second occurrence of z in u lies in ugsugs_1 - - - Ug,
e the first and second occurrences of z in v lie in vogvog_1 - -+ V.

Now we substitute z 22 for x, in the identity u ~ v to obtain the identity
2 2
U2s41LsT U25Ls—1U25—1T 5L U25—2Ls—2U25_3Ls—1 " - Uq4T1U3T2U22T0U1 X1 Ug
~ 2 2
R Vo1 TsT VosTs_1Vos— 1 LT Vos_2Ts_2Vos_3Ts_1 - V4T1V3T2ValoV1L1Ve. (6.27)

Further, we apply the identity (6.3) and delete the third and subsequent occurrences of
z in both sides of (6.27) to obtain the identity

1125+1$sl’(112s$s—11123—1173112(5—1)Zs—zuzs—lws—l Wy TU3TURTOUIT1 )
QjV23+1xsx2(V23xs—1v2s—1xsv2(sll)xs—2v23—lms—l"'V4xlv3x2v2xole1V0)m-
Now substitute 1 for all letters except x, zg, 1, ..., Ts to get
TXsTL5—1LsTs—2Ls—1 " T1T2X0T] R‘xsx2$sflmsx572xsfl"'x1$2x0xla
i.e., Bs. Therefore, V C H;. Suppose now that ¢3(u,z) < ¢1(u, zs). In view of the above,

e the first and second occurrences of z in u lie in ugs1,
e the first and second occurrences of z in v lie in vogvog_1 -+ V.

Now we substitute z,22 for 2 in the identity u ~ v and obtain ([6.27). The identity (6.3))
allows us to delete the third and subsequent occurrences of x in both sides of (6.27)). As
a result, we obtain the identity

U25+1LsU2sLs—1U25—1TsU25—2L5—2U25—3Ts—1 * W4T U3T2U2LoU1 L1 Ug
R Vs 10587 (VasTs—1 Vs 185 Va(s—1)Ts—2V2s—1Ts—1 * * * VAT1V3T2VaTOVITI VO )
Now substitute 1 for all letters except x, xg,x1, ..., Ts to get
B2 E s 1T Tg_1 * T1X2TOL] N LTy 1T sTs—_aTg_1 -+ T1LITOL]- (6.28)

Then V satisfies the identities

e

2

2
Tsl L5 1LsTs—2Ls—1 " T1L2X0L1 T TsTs—1LsTs—2Ls—1 """ T1T2X0L1

2

3
T TsTls—-1Tsls—2Ls—1 "+ L1L2TQL1

B
)
)

L

2
TXsT Ts—1LsTs—2Ls5—1 " T1L2TOL1

03

LLsTLs—1TLsLs—2Ls5—1 " L1L2X0LT,

whence s holds in V. Therefore, V C H. Claim (i) is proved.
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Suppose now that ¢ = 2. Then ¢ (u,z) < lo(u,z) < £1(u, z5). If l1(v,zs) < f1(v, )
then we return to the already proved claim (i). So, we can assume that ¢1 (v, x) < 41 (v, x5).
In view of the above,

e the first and second occurrences of  in u lie in ugs1,
e the first occurrence of z in v lies in vog1,
e the second occurrence of x in v lies in vo,vas_1 -+ - Vg.

Now we substitute x,22 for 2 in the identity u ~ v and obtain ([6.27). The identity (6.3))
allows us to delete the third and subsequent occurrences of x in both sides of (6.27)). As
a result, we obtain the identity

U2s4+1LsU2sLs—1U25—1L5U25—2L5—2U25—3Ls—1 - Ugal1U3T2U2T0U1 L1 Ug
~ V23+1ISI(V23$5—1V25—1$SV2(5—1)$3—2V23—1£ES—1 ©+ V4TI V3T2VRTVIZIVO)z-
Now substitute 1 for all letters except x, zg, x1, ..., Ts to get
1‘23,‘51‘57156'537572.’175,1 T T1X2X0X1 N XX sTL5—1TsTs—2Ls—1 """ L1X2X0X 1,
ie., (6.4) with k¥ = s. Lemma [6.3| implies now that V C J2. Claim (ii) is proved. =

LEMMA 6.8. Let V be a monoid variety such that V.C K and V satisfies an identity
u~v. If (2.1) holds, while (3.6) is false for some £ > 1, then V C Jﬁj.

Proof. Suppose that holds, while is false for some ¢ = k > 1, and k is the least
number with this property. Then there exists a letter 2 such that hf‘l (u,z) # hf‘l(v, x)
where either i = 1 or i = 2. Let be the (k — 1)-decomposition of u. In particular, the
set of (k — 1)-dividers of uis {to,t1,...,tm }. Since with ¢ = k—1 holds, Lemma[3.10]
implies that v has the same (k — 1)-dividers as u (but the order of the first occurrences
of these letters in u and v may be different). Put t, = h¥~*(u,2) and t, = A~ (v, z).
Clearly, p # q.

Suppose first that ¢;(u,z) < f¢i(u,ty). The choice of t, and ¢, guarantees that
l(u,ty) < {i(u,z) and 41 (v,ty) < 4;(v,z). Therefore, ¢1(u,t,) < £1(u,t,), whence p < ¢
in this case. If ¢, is simple in u then implies that ¢, is simple in v too. Therefore,
tq is a O-divider of u and v. Since t, = h¥ (v, z), we have t, = h{(v,z). Claim
with ¢ = 1 implies that ¢, = h{(u,z). But this contradicts p < ¢. So, ¢, is multiple
in u, whence ¢, is multiple in v as well by . Therefore, D(v,t,) > 0. Moreover,
D(v,ty) <k —1 by Lemma [3.7| because t, is a (k — 1)-divider of v. Put r = D(v,t,). If
i = 1 then Lemma i) with s = r and «, = ¢, implies that V C H, C J’,;j. Ifi=2
then V. C J7 C JZ:l by Lemma ii) with s = r and z; = t4.

If ¢;(v,z) < {1(v,t,) then the argument is similar.

Finally, suppose that ¢1(u,t,) < ¢;(u,z) and ¢1(v,t,) < ¢;(v,z). The first of these
inequalities implies that the first occurrence of ¢; in u precedes the ith occurrence of
x in u. But ¢, is the rightmost (k — 1)-divider of u and precedes the ith occurrence
of z. Therefore, ¢1(u,t,) < ¢1(u,t,). Analogously, it follows from ¢1(v,t,) < ¢;(v,x)
and t, = h¥ (v, z) that ¢,(v,t,) < 1(v,t,). Suppose that t, is simple in u. Then
implies that t, is simple in v too. Then t,, is a O-divider of u and v. Since t, = h¥ ! (u, z),
we have t, = h?(u,z). Claim with ¢ = 1 implies that t, = h?(v,z). Note that
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0 (v, tp) < l1(v,ty) < (v, z). Being the rightmost simple letter in v that is located to
the left of z, the letter ¢, is also the rightmost simple letter in v that is located to the left
of t,. In other words, t, = h{(v,t,). Claim with £ = 1 implies that ¢, = h9(u,t,).
But this contradicts ¢1(u,t,) < ¢1(u,t,). So, t, is multiple in u. Therefore, D(u,t,) > 0.
Moreover, D(u,t,) < k — 1 by Lemma because t, is a (k — 1)-divider of u. Put
r = D(u,t,). Then the hypothesis of Lemma withi=1s=r, o =t;, and z, =1,
holds. Therefore, Lemma i) implies that V C H,. C sz. n

The following statement starts a series of similar assertions, which also includes Propo-
sitions [6.12] [6.14] and [6.17] These results provide solutions of the word problem in the
varieties Fy, Hy, I, J7* and K. All of them are proved along similar lines. For the “only
if” part, the scheme of proof is almost the same. As to the “if” part, the scheme is gen-
erally outlined in the proof of Proposition i) but technically its implementation will
get more and more complicated.

PROPOSITION 6.9. A non-trivial identity u =~ v holds:

(i) in Fg if and only if and with £ = k hold;

(ii) in K if and only if and for all £ hold.

Proof. (i) Necessity. Suppose that u ~ v holds in Fj. Proposition and the inclu-
sion Co C Fy imply . Since Fj satisfies u =~ v, there is a sequence of words
u=wg,wi,...,w, = vsuch that, forany i = 0,1,...,n—1, there are words p;,q; € F,
an endomorphism &; of F'' and an identity a; ~ b; from the system {®, a4} such that
either w; = p;&i(a;)q; and w1 = pi&i(bi)qi, or w; = pi&i(b;)q; and w1 = pi&i(as)q;.
By induction we can assume without loss of generality that u = p&(a)q and v = pé(b)q
for some possibly empty words p and q, an endomorphism & of F' and an identity
ar~be{® o}

If a~ b € {zyxr ~ zyr?, 2%y ~ 2%yx} then the assertion is obvious because the first
and second occurrences of the letters of u do not take part in modifying £(a) to £(b).
Suppose now that a ~ b coincides with . Then, since D(a,z) = D(a,y) = oo,
Lemma implies that the subword £(a) of u located between p and q is contained
in some s-block for all s. In particular, this subword is contained is some (k — 1)-block.
This implies with £ = k.

Finally, suppose that a =~ b coincides with aj. Then

¢(a) = aybray_1arbrag_sar_1 -+ - arazaoa,

{(b) = braja_1arbrag—ar—1 - ajazapa;
for some words ag, ay,...,a; and by, whence

u = paybyag_1arbrag_sa;_1 - ajazapa;q,

v = pbyagay_1aybrag_cay_1 - - ajazapaiq.
By Lemma D(a,z;) = D(a,yx) = k. Then Lemma implies that the subword
aiby of u located between p and a;_; is contained in some (k — 1)-block. This implies
that with £ = k is true.

Sufficiency. Let us outline the further argument; note that sufficiency in Proposi-
tions [6.12} [6.14] and [6.17] will be proved according to the same scheme. Let u~ v be
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an identity which satisfies the hypothesis of the proposition. We start by considering the
(k — 1)-decomposition of u. Relying on Lemma [6.6|and using identities which hold in Fy,
we show that any (k — 1)-block of u can be replaced by a word of some “canonical form”.
We replace all (k — 1)-blocks of u in this way, getting some word u®. Then we consider v.
It turns out that, up to identities in Fy, this word has exactly the same (k — 1)-blocks
and (k — 1)-dividers as u. This allows us to change (k — 1)-blocks of v in the same way
as (k — 1)-blocks of u, getting the word u® again. This evidently implies that u ~ v holds
in Fk.

Now we proceed to implementing the above plan. Suppose that u ~ v satisfies
and with ¢ = k. Let be the (k — 1)-decomposition of u. Fix ¢ € {0,1,...,m}.
Lemma ii) allows us to suppose that every letter from con(u;) occurs in u; at most
twice. Put mul(u;) = {x1,...,2p}, sim(w;) = {y1,...,y,} and

; :x%...xiyl...yq.
Note that @; is nothing but the “canonical form” of the (k — 1)-block u; mentioned

above. Indeed, u = wyu;ws for some possibly empty words w; and ws. Lemmas ii)
and (iv) imply now that Fy satisfies the identity

u=wiuwy X< Wi u; wWa.
In particular, Fy satisfies the identities
u=tougtiuy - tm_1Um_1tmUy ~ tougltiuy -t 1 Wm—1tm Uy, -

Put v’ =tguptiu; - - - t—1Wm—1tm Uy, . Note that and with v=u’ and {=k
hold. Then Lemma implies that u and u’ are (k — 1)-equivalent, i.e., tg,t1,. ..ty are
(k — 1)-dividers of u’, while ug,uy,...,un_1, U, are (k — 1)-blocks of this word. Next,
we can repeat the arguments above with u replaced by u’ and obtain the identities

u' = tougtiug - b1 W— 1t Wy & toUotiUy - by 1 W1 by, Upyy
in F. Continuing, we find that Fj, satisfies the identities
u=toguptiuy - tm_1Um—_1tmUm ~ tougtiuy - -ty 1 Wm—1tm Uy
~touoliUl - b1 U1 b Uy & -+ R Lo U t1 UL -+ - Loy Upny (6.29)

Put u? = to ot UL - -ty Uy -

We now turn to the word v. By Lemma the (k — 1)-decomposition of v has the
form . Claim with ¢ = k implies that the jth occurrence of a letter x in u lies
in the (k —1)-block wu; if and only if the jth occurrence of x in v lies in the (k — 1)-
block v;, for any x and any j = 1,2. We are going to check that sim(u;) = sim(v;) and
mul(u;) = mul(v;). Let z € con(u;). Lemmal6.2[(ii) allows us to assume that occ,(u) < 2.
There are three possibilities. First, if the first and second occurrences of x in u lie in
u; then the first and second occurrences of x in v lie in v;, whence z € mul(u;) and
x € mul(v;). Second, if the first occurrence of z in u lies in u; but the second does
not, then the first occurrence of x in v lies in v; but the second does not lie, whence
x € sim(u;) and = € sim(v;). Finally, third, if the first occurrence of z in u is to the left
of u;, while the second is in u;, then the first occurrence of = in v is to the left of v;, while
the second is in v;. In this case we can apply the identity . This allows us to suppose
that € mul(u;) and = € mul(v;). Thus, sim(u;) = sim(v;) and mul(u;) = mul(v;). This
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implies that the (k — 1)-blocks u; and v; have the same “canonical form”. Repeating the
arguments above, we conclude that F, satisfies the identities v ~ u! ~ u.

(ii) Necessity follows from (i) and the evident inclusion Fj, C K, while sufficiency is
proved in the same way as in (i). m

Now we are well prepared to quickly complete the proof of claim (3) of Proposition
Let E C X C K. We have to verify that X € [Fy, Fj1] for some k. Suppose that F; ¢ X.
Then there is an identity u &~ v that holds in X but not in Fy. Propositions 4.2 and [6.9(i)
and the inclusion E C X imply that and hold, while with ¢ =1 is false.
Let be the 0-decomposition of u. Then Lemmaimplies that the 0-decomposition
of v has the form . Since u & v violates with ¢ = 1 but satisfies , there
is a letter x such that hY(u,z) # h3(v,z). Put t; = h3(u,z) and t; = hY(v,z). We may
assume that j < i. Since holds, we have hY(u,z) = h(v,z) = t, for some g. Clearly,
q < j. Thus, the identity u =~ v has the form

uytgurugt; Usrus & Vil Vaxrvarvat; Vs

for some possibly empty words ug and vy with s = 1,...,5. Substituting 1 for all letters
in u A v except = and t;, we obtain an identity of the form xt;x? ~ x%;x" where p > 1,
q > 2 and r > 0. Now implies that X satisfies xt;x ~ x2t;. This fact together with
the inclusion X C K shows that X C E, contradicting the choice of X. Thus, F; C X.
If X contains an infinite number of varieties of the form F; then Proposition implies
that X = K. Hence there is a natural number k such that F C X but Fj41 € X. Then
Proposition (1) implies that holds, while with £ = k 41 fails. Now we apply
Lemma to conclude that X C J¥ C Fy41. Thus, X € [Fy, Fy11]. Proposition 3)
is proved.

6.4. Structure of the interval [Fy,Fj1]. Here we prove Proposition (4) We divide
this section into six subsections. In Subsections we verify that each variety
from the interval [Fy, Fj41] coincides with one of Fy, Hy, I, J: J2, ... J¥ Fpyi.
In Subsection [6.4.6] we check that all these varieties are pairwise different. These facts
together with Lemma imply Proposition 4).

6.4.1. If F, C X C Fy11 then H; C X. The first step in the verification of Proposi-
tion [6.1)(4) is
LEMMA 6.10. If X is a monoid variety such that X € [Fy,Fr11] then either X = Fy, or
X D H,.

To check this, we need several auxiliary results.
LEMMA 6.11. Let 'V be a monoid variety with Fg CV C K for some s. If V satisfies an
identity u ~ v such that {1(u,a) < l1(u,b), ¢1(v,b) < {1(v,a) and D(u,a) = D(u,b) = s
for some a,b € con(u) then V =Fj.

Proof. Put x5 = a and y5 = b. Since F, C 'V, Proposition i) implies (2.1)) and (3.6
with £ = s. Suppose that

lo(u,xs) < la(u,ys) and Lo(v,xs) < lo(V,ys). (6.30)
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Now Lemma implies that there are letters xg,x1,...,2s—1 such that D(u,z,) =
D(v,z,) = r for any 0 < r < s and the identity u ~ v has the form for some
possibly empty words ug, uy, ..., U241 and Vo, Vi, ..., Vosyi.

One can verify that the first occurrences of z, and y, in u lie in the same (s — 1)-block.
Put t; = h‘i_l(u, zs) and to = h‘i_l(u, ys). For a contradiction, suppose that t; # to.
Since 41 (u,zs) < ¢1(u,ys), we have ¢1(u,t;) < ¢1(u,tz). Lemma with k = s — 1
implies that ¢1(v,t1) < £1(v,t2). In view of with £ = s, t; = hi (v, z,) and
ty = h7(v,ys). But this contradicts £1(v,ys) < £1(V,zs). So, the first occurrences of
zs and y, in u lie in the same (s — 1)-block. In particular, the first occurrence of ys in
u precedes the first occurrence of z,_1 in u because ¢1(u, z,) < ¢1(u,z5—1) and z,_1 is
an (s — 1)-divider. This implies that uss = uj ysub, for some possibly empty words uj,
and uf,. Since the first occurrence of ys in v precedes the first occurrence of z in v, we
have Vo1 = Vi, 1¥sVh, . for some possibly empty words v5,; and vi,_ ;.

Further, since ¢1(u,ys) < ¢1(u,25_2), we apply Lemma withw =u, z =y,, t =
xs—2 and r = s to obtain f2(u, ys) < £1(u, 25_2). This implies that ugs_o = uh,_5ysul, o
for some possibly empty words u),_, and uj,_,. Analogously, we can verify that vos_o =
V. oYsVhs_o for some possibly empty words v, 5 and v, _,.

In view of the above, the identity u ~ v has the form

;1 / (2) 4
U25+1TsUgg Ys UggTs—1U25—1TsUgs_ 9 Ys Ugs 9Ts—2U25-3Ts—1 """

© UgqT1u3d2U2ZoU11Ug

~ /! (1) 172 / (2) 7
~ Vosi1 Ys Vos11LsV2sLs—1V2s—1LsVos_o Ys Vog_oLs—2V25-3Ts—1 """

* V421V3T2VoIoV1X1VQ.
Lemma ii) allows us to assume that the letters z, with 1 <r < s and ys occur twice

in each of the words u and v. Now substituting 1 for all letters except zg,x1,...,xs
and y,, we get the identity

TsYsTs—1LsYsls—2Ls—1 " XL1TL2X0X1 N YsTsLs—1TsYsTs—2Ts—1 " T1X2ToT1,

i.e., ag.
Suppose now that (6.30) is false. If £o(u, z5) < €2(u,ys) but lo(v,ys) < la(v, ) then
the same considerations as above show that V satisfies the identity

(1) (1) (2) (2)
TsYsTs—1LsYsls—2Ls—1 " XL1L2TOX1 N YsTs Ts—1 YsTs Ts—2Ts—1 " LT1X2T0L1-

According to Lemma i), the variety V satisfies the identity oo. This allows us to
transpose the second occurrences of x5 and y, in the right-hand side of the last identity.
As a result, we get a; as well.

Finally, if ¢o(u,ys) < ¢3(u,zs) then we can repeat the above arguments but apply
Lemmas [3.13] and [3:14] for y, rather than z,. As a result, we obtain an identity

TsYsTs—1YsTsls—2Ls—1 " T1T2X0X1 N YsTsLs—1ATs—2Ts5—1 "' T1X2T0T1

where

xsys whenever lo(v,xs) < la(V,ys),
a =
YsTs otherwise.
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If a = x4ys, this identity coincides with «ay; otherwise we apply o2 once again and obtain
as too. Thus, V satisfies o in any case, whence V C F,. n

PROPOSITION 6.12. A non-trivial identity u =~ v holds in the variety Hy if and only
if 1), B6) and
if either D(u,z) < £ or D(v,z) < { then hi(u,z) = hi(v,x) (6.31)
with £ =k all hold.
Proof. Necessity. Suppose that a non-trivial identity u & v holds in Hy. Proposition(i)
and the inclusion F C Hy imply (2.1) and (3.6]) with £ = k. As in the proof of necessity
in Proposition i), we can assume that u = p£(a)q and v = p&(b)q for some possibly
empty words p and q, an endomorphism ¢ of F! and an identity a ~ b € {®, 8;.}.
If a~ b € ® then (3.6) holds for any ¢ by Proposition [6.9(ii). Evidently, this implies
the conclusion. Suppose now that a ~ b coincides with £;. Then
£(a) = agqr1apap 185 185a5_2a5_1 - - - A1A2a0a1,
§(b) = axaj a5 12, sag_1 - ajaapa;

for some words ag,ay,...,a; and ax4+1, whence

U = pagi1agagyi1ag—1agdg—2ag—1 - - ajaz23paiq,

V= pakai.Hak—lakak—Qak—l ©raazapalq.
By Lemma D(a,z),D(a,z) > k — 1. Then Lemma implies that the subword
ap+1axag4+1 of u located between p and aj_; is contained in some (k — 1)-block. More-

over, in view of Lemma|3.15] no occurrence of the word a1 in u contains any k-dividers
of u because D(u,x) > k by Lemma This means that u and v are k-equivalent. Now

Lemma [3.§ implies (6.31)) with ¢ = k.

Sufficiency. The outline of our argument here is the same as in the proof of sufficiency
in Proposition[6.9i), but the canonical form of a (k — 1)-block of u is more complicated.

Suppose that (2.1), (3.6) and (6.31) with £ = k hold. Let (3.4) be the (k—1)-

decomposition of u. Fix i € {0,1,...,m}. Let

tiu; = Sgagsiay - - - Spay, (6.32)
be the presentation of ¢;u; as the product of alternating k-dividers sg, s1,...,s, and
k-blocks ag, ai,...,a,. Put uf =aga; ---a,. Let con(u}) = {x1,...,2,} and

; :x%...misl...sn.

As we will see below, u; is nothing but the above mentioned “canonical form” of the
(k — 1)-block u;.

Clearly, u = wiu;ws for some possibly empty words w; and wsy. Suppose that = €
con(u}) but ¢ con(wy). If = is simple in u; then x is a k-divider of u, but this is not the
case. Therefore, x is multiple in u;. Since x ¢ con(wy ), this means that the first and second
occurrences of z in u lie in the same (k — 1)-block of u, whence D(u,x) > k. Further,
Lemma [3.7)implies that D(u,s;) = k for all j = 1,...,n. We see that if a € con(u]) and
b€ {s1,...,8n} then either a € con(wi) or D(u,a) # D(u,b). Now Lemma [6.6]ii)&iii)
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implies that the identities
U= Wiuwy & WU, 5182 -+ §,Wa

hold in Hy. As we have seen above, if z € con(u}) \ con(w) then occ,(u}) > 2. Further,
if € con(wy) Ncon(u}) then we can apply to obtain occ,(uf) > 2 too. Now
Lemma [6.2(ii) shows that occ,(u}) = 2 for any = € con(u}). Then by Lemma [6.2(iii) the
identities

U R Wil $1Sg - Sp,Wao R W1 U; Wo

hold in Hy.

So, as in the proof of Proposition i), using identities which hold in Hy, we can
replace the (k — 1)-blocks u; of u successively, one by one, by the “canonical form” w; for
i=m,m—1,...,0. Thus Hy satisfies the identities . Put u? = tougtyay - - -ty Upm.

We now turn to the word v. By Lemma the (k — 1)-decomposition of v has the
form . By and Lemma u and v are k-equivalent. This means that t;v; is
the product of alternating k-dividers sg, s1, ..., S, and k-blocks by, by,...,b,, ie.,

tivi = 30b081b1 s snbn (633)

Claim with £ = k implies that jth occurrence of a letter = in u lies in the (k — 1)-
block u; if and only if the jth occurrence of a letter  in v lies in the (k — 1)-block v,
for any = and any j = 1,2. Also, Lemma ii) allows us to assume that if the first and
second occurrences of z in u are both outside the (k — 1)-block u; then this letter does
not occur in u;. Then con(uf) = con(bgby - - - by,). This implies that the (k — 1)-blocks
u; and v; have the same “canonical form”. Repeating the arguments given above, we
conclude that Hj, satisfies the identities v ~ uf ~ u. =

Now we can complete the proof of Lemma Let Fi, C X C Fj41. We have to
verify that X D Hj. Suppose that H; ¢ X. Then there exists an identity u ~ v that
holds in X but not in Hg. Propositions (1) and and the inclusion Fy C X imply
that and hold, while with £ = k is false. According to Lemma u and
v have the same set of k-dividers but u and v are not k-equivalent by Lemma Thus
there are k-dividers a, b of u, v such that ¢1(u, a) < ¢1(u,b), while ¢;(v,b) < £1(v,a). In
view of Lemma D(u,a), D(u,b) < k. Suppose that D(u,a) = r < k. According to
Lemma claim with ¢ = 7 holds. Then Lemma [3.12] implies that D(v,a) = r.
Also u and v are r-equivalent by Lemma Put ¢ = h%(u,b). Since a is an r-divider of
u by Lemma[3.7] the first occurrence of a in u precedes the first occurrence of ¢ in u. On
the other hand, with £ = r implies that ¢ = hf(v,b), whence ¢1 (v, ¢) < ¢1(v,a). This
contradicts u and v being r-equivalent. So, D(u,a) = k. Analogously, D(u,b) = k. Now
Lemma [6.11] with s = k implies that X C Fy, a contradiction. Lemma [6.10] is proved. =

6.4.2. If Hy C X C Fy41 then I C X. The second step in the verification of Proposi-
tion 4) is

LEMMA 6.13. If X is a monoid variety such that X € [Hy,Fiy1] then either X = Hy,
or X D 1.

To check this, we need the following auxiliary result.
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PROPOSITION 6.14. A non-trivial identity u =~ v holds in Iy if and only if (2.1), (3.6)
and
RS (u,z) = hi(v,2)  for all x € con(u) (6.34)

with £ =k all hold.

Proof. Necessity. Suppose that a non-trivial identity u ~ v holds in I;. Proposition [6.12]
and the inclusion Hy C Ij imply that (2.1) and (3.6) with £ = k hold. As in the proof
of Proposition i), we can assume that u = p&(a)q and v = p£(b)q for some possibly
empty words p and g, an endomorphism & of F'! and an identity a ~ b € {®,y4}.
If a~ b € ® then (3.6) holds for any ¢ by Proposition [6.9(ii). Evidently, this implies

the conclusion. Suppose now that a ~ b coincides with ~;. Then

&(a) = bibgbjaja,_1aiap_sa,_1 - - -ajazapay,

§(b) = biboagbiag_1aray_sag_1---ajazapa;
for some words ag,ay,...,a; and bg, by, whence

u = pbibobiaia;_1aia;_2a5-1 - -ajazapaiq,

v = pbibpaibia;_iaiar_sai_1---ajazapaiq.
By Lemmal[6.5] D(a,x)) = k. Then Lemma implies that the subword aj, of u located
between b; and ag_; does not contain any (k — 1)-divider. Also, obviously, the subword
b; of u located between by and a; does not contain any s-divider, for any s. Therefore,
the subword bia of u located between by and ag_; lies in some (k — 1)-block. Tt is

evident that the subword b; of u located between by and aj does not contain the first
occurrence of any letter in u. This implies that (6.34) with ¢ = k holds.

Sufficiency. As in the proof of Proposition the outline of the argument here is
similar to the proof of sufficiency in Proposition (i), but the canonical form of the
block is even more complicated than in Proposition [6.12

Suppose that (2.1), and with ¢ = k hold. As in the proof of sufficiency in
Proposition we suppose that is the (k — 1)-decomposition of u, while (6.32])
is the representation of #;u; as the product of alternating k-dividers sg, s1,...,s, and
k-blocks ag,ay,...,a,.

For any 7 =0,1,...,n, we put

X; = {z € con(a,) | the first occurrence of z in u lies in a,}.
Note that X; may be defined in another (equivalent) way: it is clear that a letter z lies
in X if and only if it occurs in the k-block a; and the (1, k)-restrictor of = in u coincides
with the k-divider of u that immediately precedes a;. In other words,
X; = {x € con(a;) | s; = hf(u,z)}.
Put X = XoUX1U---UX,, a) = (a;)x and uf = aga] ---a;,. Let X; = {zj1,..., 7jq; },
con(uf) = {e1,...,cpt and

W= (crocp) - (s ay) - (s12%y - 2fy,) - (5223 -+ @y,) - (sniy - 2y )

As we will see below, W; is nothing but the “canonical form” of the (k — 1)-block u;
mentioned above.
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Clearly, u = wiu;wy for some possibly empty words w; and wo. Let x € X;. If x is
simple in u; then either x coincides with one of the k-dividers s, ..., s, or z € con(wy).
But both cases contradict the choice of z. Therefore, = is multiple in u;. In view of ,
we can assume that occ,(u;) = 2. Thus, u = arbxc for possibly empty words a, b and ¢
such that zbx is a subword of u;. We now verify that the variety Iy satisfies the identity
u ~ azr’bc. If b = ) then this is evident. Let now b # \. Then we apply Lemma ii)
and successively transpose the second occurrence of z in u with all the letters of the
word b from right to left. Thus, I, satisfies the identity u ~ az?bc. We can assume that
li(u,zj0) < f1(u,251) < --- < l1(u,zj4,). Therefore, Iy satisfies the identity

wr w5y adg,ah) - (s1ady o adg,al) o (seadyad, @) wa (6.3)

The definition of the set X and words of the form a} imply that « € con(wy) for any
z € con(u}). Now we can apply Lemma[6.6]ii) to deduce that the identity

qul'Uf'(50(2)1"'13%)'(511?%1"'ﬁql)"'(Snl’il"'xiqn)'W2

holds in Ij. As seen above, con(u}) C con(wy). Then we can apply (6.3) to deduce that
the word u} is linear. Then Lemma [6.2{i) implies that I, satisfies the identities

u~ wi - (Cl . ..Cp) . (a’;(Q)l .. .mgqo) . (81$%1 ...x%ql). .. (Snx’il ...xiq") - Wo = WlUT‘WQ.

So, as in the proof of Proposition i), using identities which hold in Iy, we can
replace the (k — 1)-blocks u; of u successively, one by one, by the “canonical form” w; for
i=m,m—1,...,0. Thus I satisfies the identities (6.29). Put u* = to g t1 Uy - - - t, Wy

We now return to the word v. By Lemma the (k — 1)-decomposition of v has
the form . Furthermore, with ¢ = k and Lemma imply that is a

representation of ¢;v; as the product of alternating k-dividers sg, s1, ..., S, and k-blocks
bg, b1,...,b,. Claim (6.34) implies that
X; ={z € con(bj) |s; = h¥ (v, z)}

for all j = 0,1,...,7;. Put b; = (b;)x. Claim with ¢ = k implies that the jth
occurrence of a letter z in u lies in the (k — 1)-block u; if and only if the jth occurrence
of z in v lies in the (k — 1)-block v;, for any « and any j = 1,2. Also, Lemma ii)
allows us to assume that if the first and second occurrences of x in u do not lie in the
(k — 1)-block u; then z does not occur in u,;. Thus con(uf) = con(byb] ---b/,). This
implies that the (k — 1)-blocks u; and v; have the same “canonical form”. Repeating the
arguments above, we find that I satisfies the identities v ~ uf ~ u. m

Now we can complete the proof of Lemma Let H, € X C Fj,;. We have to
verify that X D I,. Suppose that I ¢ X. Then there exists an identity u ~ v that holds
in X but not in Ij. Then Propositions and [6.14 and the inclusion Hy, C X imply that
, and with £ = k are true, while with £ = k is false. Let be the
k-decomposition of u. Claim and Lemma imply that the k-decomposition of v
has the form (3.5)). Since is false, there is a letter = such that h¥(u, z) # h¥ (v, z).
Put t; = h¥(u,z) and t; = h¥(v,x). Then i # j. We can assume that i < j. Then
(1(u,z) < £1(u,t;), while £1(v,t;) < £1(u,z). Lemma [3.7 implies that D(u,t;) < k. Put
D(u,t;) =r.If r = 0 then t; is a 0-divider of u. Claim implies that ¢; is a 0-divider
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of v too. Then t; = h{(v,x) but t; # h?(u, ). In view of Lemma claim (3.6]) with
¢ = p holds for any 1 < p < k, a contradiction. Thus, » > 1. Now Lemma (1) with s = r
and x, = t; applies, and we conclude that X C H, C Hj, a contradiction. Lemma
is proved. m

6.4.3. If I;, C X C Fi41 then J,l€ C X. The third step in the verification of Proposi-
tion 4) is

LEMMA 6.15. If X is a monoid variety such that X € [Ix,Fiy1] then either X = Iy or
X D J;.

To check this, we need

LEMMA 6.16. Let 'V be a monoid variety with V C K and £ a natural number. Suppose
that 'V satisfies an identity u ~ v.

(i) If 7)), (.6) and (6.34) hold but the claim
if & € con(u) and D(u,x) < m then hi(u,z) = hi(v,z) (6.36)
with m = 1 is false then V C 1.

(i) If (2.1), (3.6), (6.34) and (6.36]) with m = r hold but (6.36) with m = r + 1 is false
then V C Jj.

Proof. Proofs of (i) and (ii) have the same initial part. Suppose that V satisfies the
hypothesis of one of these two claims. Then , and hold. Let m be
least such that is false. Then there is a letter y,, such that D(u,y,,) = m and
RE(0, ym) # BE(V,Ym). Put 2, = hS(u,ym) and 2o = hS(V,yy). In view of Lemma
we have D(u,zy), D(u, z;) < £. Note that either D(u,z¢) = ¢ or D(u, z;) = £. Indeed, if
D(u,x¢),D(u, 2p) < £ then D(v,x¢),D(v,z) < ¢ by Lemma [3.12] Then z, and z; are
(¢ — 1)-dividers of u and v, whence z; = h5~ ' (u,yn) and 2z, = h%~ (v, y,). But this
contradicts (3.6). Suppose without loss of generality that D(u,z,) = ¢. By symmetry,
we may assume that the first occurrence of z; in u precedes the first occurrence of x
in this word. Since holds, ¢1(v,z¢) < ¢1(v,z¢) by Lemma This implies that
EQ(V, ym) < 61(v, IZ)-

Now Lemma [B.14 with z; = ¢ and s = £ shows that there are letters xo, z1,..., 2,1
such that, for any p=0,1,...,/—1and ¢=0,1,...,£—2, D(u,z,) = D(v,z,) = p and
the inequalities

(W, zpy1) < li(w,zp) < Llo(W,zpr1) and Llo(W,zgq0) < l1(W,2q)
hold for w = u, v.

Put ym_1 = A5 (W, ym). According to Lemma [3.9, D(u,ym_1) = m — 1 and
l1(,ym) < £1(1,Ym—1). Moreover, and Lemma [3.11] imply that 23" (v,y,) =
Ry W, Ym) = Ym—1. Now we apply Lemma again to obtain D(v,y;,—1) = m — 1
and 01 (v, Ym) < €1(V,Ym—1). In view of Lemma the letter x,_1 is an /-divider of u,
whence £5(u, y,,) < £1(u, s 1) because x; = hb (W, y,,) and £1(u,zp) < f1(w, 2, 1).

Lemma [6.2(ii) allows us to assume that the letters yp, and x, with 1 < p < £ occur
twice in each of the words u and v. Further considerations are divided into two cases
corresponding to statements (i) and (ii).
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Case 1: m = 1. In view of the above, the identity u ~ v has the form

U2¢4+4Y1U2¢43YoU2042T¢ U204 1Y1 U2 L0 —1U2¢—1LpU2¢—2X¢—2U2¢_3T¢—1 """
© Wyr1u3xraU2ZpU121Ug
N V2u+4aY1V2043Y0oV20+4+2Y1 V241XV 20Te—1V20—1¢V2—2X0p—2V2¢—3T4—1 " **

- V4X1V3TaVaXogV1iT1V

for some possibly empty words ug, uy,. .., Uz 4 and vg, vy,...,Vapyg such that zs, yo, y1
¢ con(u;v;) for 0 < s < £ and 0 < i < 2¢+ 4. Now substituting 1 for all letters occurring
in this identity except zg, x1,...,Ts, yo and y;, we get the identity

Y1YoTeY1Te—1T¢Xg—2%¢—1 " - T1X2X0T1 =~ Y1YoY1T¢Xr—1X¢Lp—2Tp—1 "+ - T1T2X0L1,
i.e., vp. Claim (i) is proved.

Case 2: m > 1. Now we will prove that lo(v,z,,) < €o(v,ym—1) and lo(u, z,,) <
lo(, Ym—1). Put y,—o = hg”_z(v,ym_l). Since D(V,Ym-1) = m — 1, Lemma im-
plies that D(v,ym—2) = m — 2 and £1(V,Ym-1) < €1(V,Ym—2). Recall that ¢ (v,y,) <
01(V,Ym—1), whence ¢1(v,ym) < €1(V,ym—2). Since D(v,y,,) = m, we can apply Lem-
ma, to conclude that lo(v,ym) < €1(V,Ym—2). The first occurrence of x4 in v pre-
cedes the second occurrence of y,,, whence ¢1(v,zy) < ¢1(V,Ym—2). Then Lemma
implies that ¢5(v,z¢) < €1(V,Ym—2). This yields ¢1(v,zo—1) < lo(v,xp) < £1(V,Ym—2).
If /—1 > m then Lemma shows that lo(v,2¢-1) < ¢1(V,Ym—2). Continuing, we
eventually obtain (v, z,,) < ¢1(V,Ym—2). In particular, ¢1(v,z,,) < 1(V,Ym—2). In
view of Lemma the letters z,,, and y,,_o are ¢-dividers of v. Now Lemma [3.8] yields
li(u,2) < €1(0,Ym—2). Then Lemma shows that lo(u, z,,) < ¢1(0,Ym—2). The
choice of y,,_o implies that the first occurrence of ¥,,_o in v precedes the second oc-
currence of y,,—1. Therefore, l5(v, xy,) < lo(V,Ym—1). In view of and Lemma
hg%z(mym,l) = hg%Q(v,ym,l) = Ym—2, whence lo(u, ) < lo(U, Yrm—1).

Let now m > 2. Note that

(W, ym—1) < la(u,ym) < li(u,z) < li(u,zo—1) < -+ < Li(u,Tpm—3).

If 41 (w, T —3) < L2(U, Ym—1) then z,,_3 lies between the first and the second occurrences

of Y1 in u. Since x,,_3 is an (m — 3)-divider of u, we obtain a contradiction with the

equality D(u,ym—1) = m — 1. Thus, ¢3(u, ym—1) < ¢1(0, m—3) whenever m > 2.
Further, there are three possibilities for the second occurrence of y,,,_1 in u:

62 (U., ymfl) < gl (ua xm72); (637)
€1(u, zm_g) < 62(11, ym—l) < 62(11, xm—l); (638)
62(1171‘771—1) < EQ(‘Lym—l)' (639)

Suppose that holds. Then 41 (0, ym—2) < ¢1(0, Zy—2). In view of Lemma
U (VyYm—2) < 1(V,Zpm—2). Since ym_o = h;”fz(v, Ym—1) by Lemma [3.11} we have
by (VyYm—1) < £1(V,Zm—2). Now if m > 2 then we apply Lemma with z, = ym_2
and s = m — 2 to conclude that there are letters yo, 41, .., Ym—3 such that D(u,y,) =
D(v,y,) =p and, for any p=0,1,...,m — 2, the inequalities

gl (W7 yp+1) < 61 (Wa y[)) < €Q(W7 yp-‘rl) and ZQ(W’ yp+2) < El (W7 yp)
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hold for w = u, v. Lemma (ii) allows us to assume that the letters y, with 1 <p <m
occur twice in each of the words u and v. In view of the above, the identity u =~ v has
the form

U2/ 45YmU20+4Ym—1U20432 U204 2Ym U204 12¢—1U2¢T¢U2¢—1T¢—2U2¢—2T¢—1 " "

s Wom41Ym—2U2mYm—1U2m—1Tm—1U2m—2Ym—3U2m—2Ym—2 * * - U4Y1U3YaU2YpoU1Y1UQ
X VU5 YmV2U+4Ym—1V2043Ym V20424 V24 1X¢—1V20XyV2y—1T¢—2V20—2T0—1 " " *

Vom4+1Ym—2VomYm—1V2m—1Tm—-1V2m—2Ym—-3V2m—2Ym—2 - - - V4Y1V3Y2VaYoViyi1vo

for some possibly empty words ug,uy, ..., U5 and vo, vy, ..., vaeys such that zs, y: ¢
con(u;v;) form—1<s</4 0<t<mand0<i<2¢+5 Now substituting 1 for all
letters occurring in this identity except vyo,vy1,-..,Ym and Tm—1,Tm,.-..,Te, we get the
identity

YmYm—1TeYmTe—1TeTe—2T0—1 " Ym—2Ym—-1Tm—-1Ym—-3Ym—2 " - Y1Y2YoY1
N YmYm—1YmTeTe—1T0Te—2T¢—1 " " Ym—2Ym—-1Tm—-1Ym—-3Ym—2 " Y1Y2YoY1-

Now we rename y; as x; for i =0,1,...,m — 2 to obtain the identity

(€9) (2) (2)
Ym Ym—1 TeYmTp—1TpTe—2T¢—1 " Tm—2 Ym—1Tm—1 Tm—-3Tm—2 """ T1T2L0T1

N e @ @
R Ym Ym—1 YmTeTe—1T0T0—2T4—1 " T—2 Ym—-1Tm—1 Tm—3Tm—2 - T1T2ZoT1. (6.40)

In view of Lemma (i)7 we may use the identity oo, which allows us to swap the second
occurrences of x,,_1 and y,,_1 in both sides of . As a result, we get 6;”71.
Suppose now that holds. If 4o(v,Ym—1) < l1(V,Zm—2) then £1(V,ym—2) <
0 (V, Zm—2). Inview ofLemma 01 (0, Yp—2) < L1 (W, Ty —2). Since Yo =hT"2(V, Ym_1)
by Lemma we have lo(u,ym—1) < f1(u,Z;m—2). This contradicts . Thus,
U (VyTm—2) < la(V,Ym—1)-
Suppose that €o(v, ym—1) < €2(V,Zm—1). Then the identity u a v has the form

U204 5YmU20+4Ym—1U20+3TU20+42YmU2¢+41L¢—1U2¢TeU2¢—1L¢—2U2¢—2Tp—1 "
CWom+1Tm—2U2mYm—1U2m—1Tm—1U2m—2Tm—-3U2m—2Lm—2 * * - U4L1U3T2U2ZoU1 X1 Ug
N VoU45YmV2U+aYm—1V204+3YmV204-2T¢ V204 1T¢—-1V 24TV 21T —2V20—2T -1 " " *

CVom41Tm—2VomYm—1V2m—1Tm—-1V2m—2TLm—-3V2m—2Tm—2 * -+ V4T1V3T2V2ToV1T1V(
for some possibly empty words ug, uy, ..., useys and vo, vy, ..., Vogrs such that xs, ym—1,
Ym ¢ con(u;v;) for 0 < s < £and 0 <i < 2¢+5. Now substituting 1 for all letters occur-
ring in this identity except Ym—1,Ym,Zo, 1, ..., xe, we get (6.40). As above, combining
this identity with oo, we get 5;”71.

If b (v, Zm—1) < €2(V,ym—1) then the same arguments as above show that the identity

(1) (2) (2)
Ym Ym—1 TpYmTe—1T¢Tp—2T4—1 " Tm—2 Ym—-1Tm—-1 Tm—-3Tm—-2 " T1T2T0T1

X YnmYm—1YmTeTe—1TTe—2T¢—1 " " Tm—2Tm—1Ym—-1Tm—-3Tm—2 " T1T2L0T1
holds in V. Now we apply o3 to the left-hand side to get 52"_1.

Finally, suppose that (6.39) holds. Suppose that ¢5(v, ym—1) < €2(V, Zym—1). Then the
identity u &~ v has the form



66 S. V. Gusev and B. M. Vernikov

U204+ 5YmU204+4Ym—1U2043T¢U2¢+2Ym U241 L¢—1U2¢TpU20 1L ¢—2U2¢0_2T¢—1 """
s W2m 1 Tm—2U2mTm—1U2m—1Ym—1U2m—2Tm —-3U2m —2Tm—2 * - - U411 U3T2U2T0U1T1 Uy
N VouU+5YmV204+4Ym—1V2043YmV20+4+2T¢V244+1L¢—1V20T¢V2y—1T¢—2V20—2T¢—1 """

CVom+41Tm—2VomYm—-1V2m—1Tm—-1V2m—2TLm—-3V2m—2Tm—2 * -+ V4T1V3T2V2ToV1T1V(

for some possibly empty words ug,u,...,useys5 and v, vi,...,Voeps such that
Ty Ym—1,Ym ¢ con(u;v;) for 0 < s < £ and 0 < 7 < 2¢ + 5. Now substituting 1 for
all letters occurring in this identity except ym;—1, Ym, o, T1,- - ., ¢, We get the identity

YmYm—1TYmTe—1L¢Lp—2T0—1 " Tm—2Tm—-1Ym—-1Tm—-3Tm—2 """ T1L2LoT1
~ Ym yr(nlil YmTpTo—1T¢Te—2T¢—1 """ Tm—2 Z/n(f)qwrf)q Tm—3Tm—2" " L1T2L0L1-
Applying once again o9 to the right-hand side, we get 5;”_1.
If l5(V, Zpm—1) < €2(V,Ym—1) then the same arguments show that (52“1 holdsin V. m

PROPOSITION 6.17. A non-trivial identity u ~ v holds in the variety J}, if and only
if (2.1), (3.6), (6.34) and (6.36|) with £ =k and m = r hold.

Proof. Necessity. Suppose that a non-trivial identity u ~ v holds in Jj,. Claims 7
and with ¢ = k follow from Proposition and the inclusion I, C Jj.. It remains
to verify that with £ = k and m = r holds. As in the proof of Proposition i),
we can assume that u = p¢(a)q and v = p¢(b)q for some possibly empty words p and q,
an endomorphism £ of F! and an identity a~ b € {®,d7}.

Ifa~b e ® then holds for any ¢ by Proposition ii). Evidently, this implies
the required conclusion. Suppose now that a ~ b coincides with d;. Then

¢(a) = byyib,bypiagag_1agag_za5_1 ---a,_1a,bra,_sa,_1---ajazapay,

£(b) = b,11brab,1ar_arag_cai_1---a,_1a,bra,_sa,_; - ajazapa;
for some words ag, ay,...,a; and b,, b1, whence

u = pb,1b;b,1aar1arar2a;—1---a,_1a,bra, sa,_1--ajarapaiq,

v =pb,1b,ayb,1ay 1akag 21 - a,_1a.bra, a1 - -ajazagaiq.
By Lemmal[6.5] D(a,z)) = k. Then Lemma implies that the subword ay, of u located
between b,11 and a;_; does not contain any (k — 1)-divider. Also, obviously, the subword
b, 1 of u located between b,. and a; does not contain any s-divider for all s. Therefore,
the subword b,;1a; of u located between b, and aj_; lies in some (k — 1)-block. Now
Lemma [3.15] again shows that the subword b,.;; located between p and b, does not
contain any s-divider for all s < r. Hence if the second occurrence in u of some letter

lies in the subword b,.;; located between b, and aj then the depth of this letter is more
than 7. This implies (6.36) with £ =k and m = r.

Sufficiency. As in the proofs of Propositions|6.12|and the outline of the argument
here is similar to one in the proof of sufficiency in Proposition i), but the canonical
form of the block is even more complicated than in Proposition

Suppose that (2.1)), (3.6), (6.34) and (6.36]) with £ = k and m = r all hold. As in the
proof of sufficiency in Proposition we suppose that (3.4]) is the (k — 1)-decomposition
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of u, while (6.32)) is the representation of ¢;u; as the product of alternating k-dividers
80,81, --.,8, and k-blocks ag, ay,...,a,.
Clearly, u = wiu;wy for some possibly empty words wy and ws. For 7 =0,1,...,n,
we put
X; = {z € con(a;) | the first occurrence of z in u lies in a,}.

Let X; = {zj1,2j2,...,2j4,}, X = XoU X1 U---UX,, a; = (a;j)x. As in the proof of
sufficiency in Proposition we can verify that

X, ={x €con(a;) |s; = h’f(u, x)}.
For any 7 =0,1,...,n, we put
Zj=A{z¢€ con(a;-) | D(u,z) <r},

Z =2ZoUZyU---UZ, a] = (a})z and uj = aga---aj. Let Z; = {zj1,...,2n,},
con(u}) = {c1,...,¢p} and

u; = (Cl .. .Cp) . (:L'(Q)l . .mquzOI .. 'Zoho) . (slx%I .. "’I‘%qlzll . .Zlhl) e

. (sno:fﬂ .. 'xiqnznl e Znh,)-
As we will see below, @; is nothing but the above mentioned “canonical form” of the
(k — 1)-block u;.

As in the proof of sufficiency in Proposition we can verify that J satisfies the
identity (6.35). The definitions of the set X and of words of the form a;. imply that
z € con(wq) for any z € con(apa) ---a),). This implies that if z € Z; then we can assume
that occ.(u;) = 1 because Ji, satisfies the identity (6.3) by Lemma [6.2{ii). Then we can
assume without loss of generality that £1(u,2;1) < ¢1(u,22) < --- < £1(u, zj3,). Since
z € con(wy) and D(u, z) > r for any z € con(a//), we apply Lemma i) with m = r to
deduce that the identity

u~ W1 u;k . (m%l ...x%q()zOl ...zoho) . (811%1 ...x%qlzll ...Zlhl) e
. (snxil . "xiqnznl e Zph,) W2
holds in J7,. As we have seen above, con(u}) C con(wi). Then we can apply the iden-
tity (6.3) and infer that the word uj is linear. Then Lemma [6.2)(i) shows that Jj, satisfies
the identities
u % Wl . (Cl .. .cp) . (x%l .. .x%qOZ()l .. .Zoho) . (Sll‘%l .. .x§q1211 .. .Zlhl) PR
. (Snl’%l e wiqnznl e Znhn) © Wo
= wiu; Wo.

So, as in the proof of Proposition i)7 using identities which hold in Jj}, we can
replace the (k — 1)-blocks u; of u successively, one by one, by the “canonical form” w; for
i=m,m—1,...,0. Thus J} satisfies the identities (6.29). Put u =toUpt Ty -ty Upn

We turn to the word v. By Lemma the (k — 1)-decomposition of v has the
form (3.5)). Furthermore, (6.34) with £ = k& and Lemma imply that (6.33]) is a rep-
resentation of ¢;v; as the product of alternating k-dividers sg, s1,...,S, and k-blocks
bo, b1, ..., b,. Claim (6.34) with £ = k implies that

X; = {z € con(by) | 5; = hE(v, )}
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for all j =0,1,...,n. Put b} = (b;)x. In view of (6.36) with £ =k and m = r, we have
Zj ={z € con(b}) | D(v,z) <r}

for all j = 0,1,...,n. Put b} = (b})z. Claim with ¢ = k implies that the jth
occurrence of a letter z in u lies in the (k — 1)-block u; if and only if the jth occurrence
of z in v lies in the (k — 1)-block v; for any z and any j = 1,2. Also, Lemma ii)
allows us to assume that if the first and second occurrences of = in u do not lie in the
(k — 1)-block u; then this letter does not occur in u;. Thus con(u}) = con(bjby ---bl).
This implies that the (k — 1)-blocks u; and v; have the same “canonical form”. Repeating
the arguments above, we find that J7, satisfies the identities v ~ u* ~ u. =

Now we can complete the proof of Lemma Let I, C X C Fy11. We have to verify
that X D J,1€. Suppose that J,l€ ¢ X. Then there exists an identity u ~ v that holds in
X but not in J ,16 Then Propositions and and the inclusion I C X imply that
, and hold, while with m = 1 is false. Then Lemma i) implies

that X C I, a contradiction. Lemma |6.15|is proved. =

6.4.4. If J7' € X C Fyyy with 1 <m < k then J}"™' C X. The fourth step in the
verification of Proposition 4) is

LEMMA 6.18. If X is a monoid variety such that X € [J7, Fpy1] for some 1 < m < k
then either X = J' or X D Jz‘“.

Proof. Let 1 <m < k, J}? C X C Fy4 and JZH'I ¢ X. Then there exists an identity
u ~ v that holds in X but not in ka‘H. Then Proposition and the inclusion J7' C X

imply that (2.1]), (3.6)), (6.34), and (6.36)) with £ = k all hold, while the claim
if z € con(u) and D(u,z) < m + 1 then h(u, ) = k5 (v, z)

is false. Then Lemma ii) implies X C J7*, a contradiction. We see that either X = J;"
or JPTTC X, m

6.4.5. The interval [J’,z,FkH} consists of J’,j and Fj,; only. The fifth step in the
verification of Proposition 4) is

LEMMA 6.19. If X is a monoid variety such that X € [J¥, Fyy1] then either X = J§ or
X =Fppi.

Proof. Suppose that Jz C X C Fj41. Since Fi1 € X, there exists an identity u ~ v that
holds in X but not in Fy ;. Propositions i) and and the inclusion J’,: C X imply
that ([2.1)), (3.6), (6.34), and with £ = m = k all hold, while h§(u,z) # h5(v, ) for
some letter z € con(u) such that D(u,z) > k. Then we apply Lemma[6.8| for the variety
Fi41 and obtain X C J’,:, a contradiction. m

6.4.6. All inclusions are strict. Here we are going to verify the inclusions . To
do this, we use Lemma and Table without explicit mention. We note that the
non-strict inclusions are true by Lemma If u = v is the identity aj then
D(u,z;) = k but h¥(u,2,) = X and h¥(v,zr) = yr. Then Proposition implies
that Fj, C Hy. Suppose that the identity u ~ v coincides with 8. Then h¥(u,z) = A,
while h¥(v,z) = xx. We apply Proposition to obtain Hy C Iy. Let now u =~ v
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be equal to 4. In this case D(u,y;) = 1 but h5(u,y1) = yo and h5(v,y;) = 7. In
view of Proposition I, C Ji. Suppose now that u ~ v coincides with §7* for some
1 <m < k. Then D(u, Ymy1) = m~+1but h5 (W, Ymi1) = ym and b5 (v, yrmi1) = 21. Now
we apply Proposition again to obtain J}' C JZ"H. Finally, suppose that u ~ v is
the identity 6F. Since h%(u,yx+1) = yr and h5(v,ykt+1) = 2k, Proposition i) implies
that J§ C Fyp1.

Thus, we have proved the inclusions (6.1)). Therefore, the varieties Fy, Hy, Iy, Ji,
J2 ..., J¥ and Fy 1 are pairwise different. This fact and Lemmas |6.10} 6.13} [6.15] [6.18]
(withm=1,...,k—1) and imply Proposition 4). In view of Lemma[2.10|i) and
the results of Sections [6.1] and [6.3] we have completed the proof of Proposition [6.1] =

Lemmas and i), Corollary Propositions and and the dual of
Propositions [5.2] and [6.1] imply the “if” part of Theorem
Recall that the “only if” part of Theorem [I.1] was verified in Chapter [d] Thus, Theo-

rem [[.1] is completely proved. =

7. Corollaries

First of all, we present an exhaustive list of non-group chain varieties of monoids. Theo-

rem together with Lemmas and i), Corollary Propositions and
and the duals of Propositions [5.2] and [6.1] implies

COROLLARY 7.1. The varicties Cy, Dy, D, E, E, Fy, Fy, Hy, Hy, I, 1, 37, 77, K,
K, L, LRB, M, M, N, N, RRB, SL where n > 2, k € N and 1 < m < k, and only
these varietes, are non-group chain varieties of monoids. m

The set of all non-group chain varieties of monoids ordered by inclusion together with
the variety T is shown in Fig. It is interesting to compare this figure with the diagram
of the partially ordered set of all non-group chain varieties of semigroups (as already
mentioned in Chapter [T} such varieties were completely determined in [22]). This diagram
is shown in Fig. where LZ = var{zy ~ =}, RZ = var{zy ~ y}, ZM = var{zy = 0},
Ny = var{z? = 21 -2 = 0, vy =~ yx} for all k > 3, N, = var{z? ~ 0, vy ~ yx},
N2 = var{z? ~ zyz ~ 0} and N§ = var{zyz ~ 0, vy ~ yz} (here varY means the
semigroup variety given by ¥; as is usual when considering semigroup varieties, we write
w = 0 as a shorthand for the identity system wz ~ zw ~ w where = ¢ con(w)).

We see that, apart from the group case, there is one countably infinite series and
six “sporadic” chain semigroup varieties, but ten countably infinite series and twelve
“sporadic” chain monoid varieties. Namely, we have the countably infinite series Ny
(including ZM as Ny) and sporadic varieties LZ, RZ, SL, N3, N5, N, in the semigroup
case, and countably infinite series C,, (including SL as Cj), Dy, Fi, Fi, Hy, Hy, I,
fk, Jr, ?L’L and sporadic varieties D, E, %, K, i?, L, LRB, M, ﬁ, N, ﬁ, RRB
in the monoid case. One can say that the number of non-group chain varieties in the
case of monoids is much larger (in an informal sense) than in the case of semigroups.
Consequently, the partially ordered set of non-group chain varieties in the former case is
much more complicated than in the latter.
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K D K

: : * .
F3- -D12 3 ‘014
32 Dy i Cus
J3 Do Ji Ci2
I, Do i_? Cu

H. Ds i1, Cuo
F. D, i Co
Ji D¢ ,ﬁ Cs
L Ds i, (o
N N
H, D, i) Cs
L
F, M Dy AM , Cs
E D: £ i
Cs
D.

LRB RRB Cs
SL

T

Fig. 7.1. All non-group chain varieties of monoids

As mentioned in Chapter [I} a non-group chain variety of semigroups is contained in a
maximal chain variety, while this is not the case for monoid varieties. The following two
corollaries indicate cases when the analog of the semigroup statement is true. Fig.
shows that the following is true.

COROLLARY 7.2. A non-group chain variety V of monoids is contained in some maximal
chain variety if and only if C3 ¢ V. m

Theorem [I.1] shows that commutative non-group chain varieties of monoids are exclu-
sively SL and C,, with n > 2. This claim and Fig. imply
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Ny
€

T

Fig. 7.2. All non-group chain varieties of semigroups

COROLLARY 7.3. A non-commutative non-group chain variety of monoids is contained
in some mazimal chain variety. m

In the following corollary we mention the variety O introduced in Section

COROLLARY 7.4. Let X be a monoid variety with L C X C O. Then X is not a chain
variety and does not contain a just-non-chain subvariety.

Proof. Theorem immediately implies that there are no chain monoid varieties that
properly contain L, whence X is not a chain variety. It remains to check that X does
not contain a just-non-chain subvariety. Suppose that X contains such a subvariety Y.
In view of Theorem [1.1} any chain subvariety of O is contained in L. In particular, O
(and therefore Y) does not contain incomparable chain subvarieties. On the other hand,
being a non-chain variety, Y contains at least two incomparable subvarieties. These are
proper subvarieties of Y, whence they are chain varieties. We have a contradiction. m

The following question seems to be interesting.

QUESTION 7.5. Is it true that a non-chain non-group monoid variety X with X ¢ O
contains a just-non-chain subvariety?

Recall that a variety of universal algebras is called locally finite if its finitely generated
members are all finite. A variety is called finitely generated if it is generated by a finite
algebra. Clearly, if a variety is contained in some finitely generated variety then it is
locally finite.

COROLLARY 7.6. An arbitrary non-group chain monoid variety is contained in some
finitely generated variety; in particular, it is locally finite.

Proof. Clearly, it suffices to verify that each of the varieties listed in Theorem [I.]] is
contained in a finitely generated variety. It is well known that a proper variety of band
monoids is finitely generated [5]. In particular, LRB and RRB have this property. It is
evident that the monoid S(w) is finite for any word w. Then Lemmas|2.4|and [4.6| provide
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the required conclusion for C,, and L respectively. The fact that ﬁ is finitely generated
follows from [8, Example 1 in Erratum]. By symmetry, it remains to consider the varieties
D and K.

The variety D is not finitely generated by [14, Theorem 2], but it is shown in [15]
Example 5.3] that D is a subvariety of the variety generated by the well-known 6-element
Brandt monoid B3 = By U {1} where

By = (a,b | a®> =b*> =0, aba = a, bab = b) = {a, b, ab, ba,0}.

Finally, it is easy to see that if a monoid M belongs to K and consists of k elements
then M satisfies the identity ay. Therefore, any finitely generated subvariety of K is
contained in Fy for some k. In particular, K is not finitely generated. But Lemma [6.2
implies that K C var{zyxzza =~ xyxz, o2}. To complete our considerations, it remains to
note that var{zyxrzx ~ xyxz, oo} is generated by the 5-element monoid

{a,b ] a® = ab = a, b’a = b*) U {1} = {a, b, ba,b*, 1}.
This is proved in |17, Corollary 6.6]. m

The analog of Corollary for arbitrary chain varieties of monoids (including group
ones) does not hold. Indeed, as mentioned in Chapter [1} it is verified in [11] that there
are uncountably many non-locally finite chain varieties of groups. But explicit examples
of such varieties have not been specified yet.

References

[1] J. Almeida, Finite Semigroups and Universal Algebra, World Sci., Singapore, 1994.

[2] V. A. Artamonov, Chain varieties of groups, Trudy Sem. Imeni Petrovskogo 3 (1978), 3-8
(in Russian).

[3] S. Burris and E. Nelson, Embedding the dual of IL,, in the lattice of equational classes of
commutative semigroups, Proc. Amer. Math. Soc. 30 (1971), 37-39.

[4] S. Burris and E. Nelson, Embedding the dual of Il in the lattice of equational classes of
semigroups, Algebra Universalis 1 (1971), 248-254.

[5] J. A. Gerhard, Some subdirectly irreducible idempotent semigroups, Semigroup Forum 5
(1972), 362-3609.

[6] S. V. Gusev, On the lattice of overcommutative varieties of monoids, Izv. Vyssh. Uchebn.
Zaved. Mat. 2018, no. 5, 28-32 (in Russian); English transl.: Russian Math. (Iz. VUZ) 62
(2018), no. 5, 23-26.

[7] T.J. Head, The varieties of commutative monoids, Nieuw Arch. Wiskunde (3) 16 (1968),
203-206.

[8] M. Jackson, Finiteness properties of varieties and the restriction to finite algebras, Semi-
group Forum 70 (2005), 154-187; Erratum, Semigroup Forum 96 (2018), 197-198.

[9] M. Jackson and E. W. H. Lee, Monoid varieties with extreme properties, Trans. Amer.
Math. Soc. 370 (2018), 4785-4812.

[10]| M. Jackson and O. Sapir, Finitely based, finite sets of words, Int. J. Algebra Comput. 10
(2000), 683-708.

[11]] P. A. Kozhevnikov, On nonfinitely based varieties of groups of large prime exponent, Comm.
Algebra 40 (2012), 2628-2644.


http://dx.doi.org/10.1090/S0002-9939-1971-0285639-0
http://dx.doi.org/10.1007/BF02944986
http://dx.doi.org/10.1007/BF02572907
http://dx.doi.org/10.3103/S1066369X18050043
http://dx.doi.org/10.1007/s00233-004-0161-x
http://dx.doi.org/10.1090/tran/7091
http://dx.doi.org/10.1142/S0218196700000327
http://dx.doi.org/10.1080/00927872.2011.584097

22]
23]

24]

Chain varieties of monoids 73

E. W. H. Lee, Varieties generated by 2-testable monoids, Studia Sci. Math. Hungar. 49
(2012), 366-389.

E. W. H. Lee, Mazimal Specht varieties of monoids, Moscow Math. J. 12 (2012), 787-802.
E. W. H. Lee, Almost Cross varieties of aperiodic monoids with central idempotents, Bei-
trége Algebra Geom. 54 (2013), 121-129.

E. W. H. Lee, Inherently non-finitely generated varieties of aperiodic monoids with central
idempotents, Zapiski Nauchn. Sem. POMI 423 (2014), 166-182.

E. W. H. Lee, On certain Cross varieties of aperiodic monoids with central idempotents,
Results Math. 66 (2014), 491-510.

E. W. H. Lee and J. R. Li, Minimal non-finitely based monoids, Dissertationes Math. 475
(2011), 65 pp.

P. Perkins, Bases for equational theories of semigroups, J. Algebra 11 (1969), 298-314.
Gy. Pollak, Some lattices of varieties containing elements without cover, in: Noncommu-
tative Structures in Algebra and Geometric Combinatorics (Napoli, 1978), Quad. Ricerca
Sci. 109, CNR, Roma, 1981, 91-96.

O. Sapir, Non-finitely based monoids, Semigroup Forum 90 (2015), 557-586.

L. N. Shevrin, B. M. Vernikov and M. V. Volkov, Lattices of semigroup varieties, Izv. Vyssh.
Uchebn. Zaved. Mat. 2009, no. 3, 3-36 (in Russian); English transl.: Russian Math. (Iz.
VUZ) 53 (2009), no. 3, 1-28.

E. V. Sukhanov, Almost linear semigroup varieties, Mat. Zametki 32 (1982), 469-476 (in
Russian); English transl.: Math. Notes 32 (1982), 714-717.

B. M. Vernikov, Special elements in lattices of semigroup varieties, Acta Sci. Math. (Szeged)
81 (2015), 79-1009.

S. L. Wismath, The lattice of varieties and pseudovarieties of band monoids, Semigroup
Forum 33 (1986), 187-198.


http://dx.doi.org/10.1556/SScMath.49.2012.3.1211
http://dx.doi.org/10.1007/s13366-012-0094-6
http://dx.doi.org/10.1007/s00025-014-0390-6
http://dx.doi.org/10.4064/dm475-0-1
http://dx.doi.org/10.1016/0021-8693(69)90058-1
http://dx.doi.org/10.1007/s00233-015-9708-2
http://dx.doi.org/10.3103/S1066369X09030013
http://dx.doi.org/10.1007/BF01152376
http://dx.doi.org/10.14232/actasm-013-072-0
http://dx.doi.org/10.1007/BF02573192

	Contents
	Abstract
	1 Introduction and summary
	2 Preliminaries
	3 k-decomposition of a word and related notions
	4 The proof of the ``only if'' part
	4.1 Reduction to the case when D2V
	4.2 Reduction to the case when LV
	4.3 The case when LV

	5 The proof of the ``if'' part: all varieties except K
	6 The proof of the ``if'' part: the variety K
	6.1 Reduction to the interval [E,K]
	6.2 Several auxiliary results
	6.2.1 Some properties of the varieties Fk, Hk, Ik, Jkm, K and their identities
	6.2.2 k-decompositions of sides of the identities k, k, k and km
	6.2.3 Swapping letters within k-blocks

	6.3 Reduction to intervals of the form [Fk,Fk+1]
	6.4 Structure of the interval [Fk,Fk+1]
	6.4.1 If FkXFk+1 then HkX
	6.4.2 If HkXFk+1 then IkX
	6.4.3 If IkXFk+1 then Jk1X
	6.4.4 If JkmXFk+1 with 1m<k then Jkm+1X
	6.4.5 The interval [Jkk, Fk+1] consists of Jkk and Fk+1 only
	6.4.6 All inclusions are strict


	7 Corollaries
	References

